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a b s t r a c t

The effects of a TiF3 catalyst on the tribological behaviour of carbon black-contaminated liquid paraffin
and a fully formulated engine lubricating oil (CD SAE15W-40) were investigated using a four-ball
tribological test. Scanning electronic microscopy with energy-dispersive spectroscopy, X-ray photoelec-
tron spectroscopy, surface roughness, and thermogravimetric analyses were used to investigate the
surface element content, chemical valence state, surface roughness, and initial decomposition tempera-
ture of the oil samples, respectively. Results showed that the average wear scar diameter (AWSD) and
friction coefficient of the two kinds of carbon black-contaminated lubricants decreased in the presence of
0.5 wt% TiF3. The variation rates of the carbon black-contaminated liquid paraffin and fully formulated
engine lubricating oil were 29.45% and 11.54%, respectively, and their initial decomposition temperatures
decreased. These phenomena were ascribed to the decomposition of TiF3 catalyst into TiO2 and fluoride
that resulted in the formation of improved boundary lubrication films. Moreover, for the fully formulated
engine oil, the lubrication additive zinc dialkyldithiophosphate was catalyzed by TiF3, decomposing into
polyphosphate, which aided the formation of mixture boundary lubrication films.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The drive to save energy and reduce mankind's dependence on
fossil fuels has promoted the development of a wide variety of
alternative bio-derived fuels such as bio-ethanol, bio-diesel, and
biomass pyrolysis fuel [1–5]. Engines powered by these fuels can
benefit from reduced emissions and improved fuel economy.
However, the generated soot, a by-product of the combustion
process, cannot be eliminated easily [6]. Most of the soot gener-
ated during the combustion process is exhausted, but some can
also contaminate the lubricant within the sump as a result of
blow-by gasses, this can be worsened when exhaust gas recircula-
tion is used [7,8]. Soot contamination of the lubricating oil can lead
to increased wear in critical components as well as the shortening
of oil life and increased frequency of oil changes. Thus, the
importance of reducing the tribological impact of soot contamina-
tion within the lubricating oil is highlighted.

Soot contamination is a serious issue that has been extensively
investigated by both engine and lubrication manufacturers. To
ll rights reserved.
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date, studies on engine soot mainly focus on soot formation and
the associated wear mechanisms. However, the collection of soot
particles to evaluate their tribological properties is difficult and
very time consuming. Producing reliable data also depends on
reproducing soot with consistent properties for use in contamina-
tion tests. To address these concerns, several studies have used
carbon black, which simulates engine-derived soot. Ratoi et al. [9]
used carbon black as engine soot dispersed in an engine oil,
assessed the rapid removal of zinc dialkyldithiophosphate (ZDDP)
reaction films by abrasion. However, this removal was limited (or
even eliminated) by the choice of dispersant additive. Joly-Pottuz
et al. [10] found that carbon black particles were highly abrasive
between steel surfaces with increased wear and friction. However,
they also found that the addition of carbon onions in a lubricant
reduced both friction and wear. Olomolehin et al. [11] found that
the combination of an alkyl ZDDP and carbon black produced
aggressive wear in test samples. They also showed that a lubricant
containing carbon black and a ZDDP additive lead to considerably
more wear than without the ZDDP additive. Green and Lewis used
carbon black simulated engine soot to investigate the oil proper-
ties and wear of engine components. They attributed soot wear
mechanisms to an engine soot abrasion effect [12–14]. These
studies indicate that carbon black can be used as a substitute for
engine soot to investigate the friction and wear properties of
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lubricating oil. Many studies have been conducted to investigate
the soot induced wear of engine parts with the different tribolo-
gical tester [15–18]. They indicate that low levels of carbon black
can play an important role in strengthening the antiwear proper-
ties of an engine's lubricating oil [13]. The wear effects of carbon
black-contaminated lubricating oils on the critical components of
engine frictional parts can be decreased by the optimization of a
dispersant and solid lubricant. The carbon black used in the
present tribological study is a good substitute for engine soot
based its morphology, composition, and particle size [19].

Solid fluorine catalysts have been shown to reduce the wear
effect of carbon black-contaminated lubricating oils. For example,
Nehme [20,21] showed the significant effect of an FeF3 catalyst on
the performance of plain ZDDP oil. The tribological and chemical
interactions of ZDDP/FeF3 underlying their improved wear perfor-
mances have also been examined with high performance lubri-
cants and modified PTFE coating on metal surfaces by
Elsenbaumer et al. [22]. Mourhatch and Aswath [23,24] used
different contact loads and performed several chemistry charac-
terization studies to differentiate the wear mechanisms of ZDDP
plain oil and ZDDP oil in the presence of FeF3. Huq and Aswath
[25] used a TEM to investigate the anti-wear film/wear particles
generated in the present of TiF3 catalyst under boundary lubrica-
tion condition. Parekh [26] examined the chemical interactions
between ZDDP and FeF3 that yielded a new chemical species
responsible for the improved wear performance. There have also
been patents registered regarding the use of transition metal
fluorides as additives to enhance the activity of ZDDP (see for
example Shaub et al. and Aswath et al. [27,28]). Greer [29]
suggested that oil ingredients can be catalyzed with appropriate
fluorinated materials. As is well known, both TiF3 and FeF3
catalysts can reduce the gas emissions, and also can be used to
promote the degradation of ZDDP. This would result in improved
antiwear and antifriction properties for engine oils as well as a
reduction in sulfur and phosphorous levels.
APDS=45 nm

APDS= 40 nm

Fig. 1. HRTEM images of carbon black and engine
However, studies on the use of metal fluorides in simulated
engine soot-contaminated lubricating oil are limited. As are
studies on methods for decreasing the destructive effect of carbon
black (soot) contaminated lubricating oil. Therefore, this paper
describes a study of the effects of a TiF3 catalyst (0.5 wt%) on the
tribological behavior of (1 wt%) carbon black-contaminated liquid
paraffin and a fully formulated engine lubricating oil (CD SAE15W-
40)A series of comparison experiments were designed to address
the efficacy of TiF3 catalyst material to decrease engine soot wear.
A systematic approach was used to establish basic wear data and
subsequent methods for optimizing the formulation of engine oil
with soot.
2. Experimental

2.1. Materials and sample preparation

Commercially available carbon black (CB; Cabot N660R, Shang-
hai Cabot Chemical Industry Co. Ltd., China) was used as an engine
soot alternative. Fig. 1 shows the morphology, chemical composi-
tion, and particulate diameter of the CB. These characteristics were
compared to true engine soot harvested from the combustion of
0# diesel (Hefei Petrochemical Company, China). They were taken
using a HRTEM (high resolution transmission electron microscopy)
and show the average particulate diameter sizes and degrees of
crystalline for the CB and soot particulates. The average particle
diameter of carbon black was 40 nm, and engine soot was 45 nm.
The inset diffraction patterns of two carbonaceous materials
indicated that a large amount of amorphous carbon existed. The
two carbon materials had virtually indistinguishable perturbed
graphitic or turbostratic internal structures.

A commercially available TiF3 catalyst was purchased from Alfa-
Asia Tianjin Chemical Co., Ltd. Fig. 2 shows the morphology and
chemical composition of TiF3.
soot: (a) carbon black, (b) engine soot.
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Fig. 2. SEM and EDS analysis of TiF3.

Table 1
Physicochemical properties of base oil and engine oil.

Item Liquid
paraffin

CD SAE
15W-40

Methods

Density (kg/m3) 0.88 0.85 ASTM D4052
Kinematical viscosity (mm2/s, 40 1C) 100 110.6 ASTM D445
Viscosity index 98 142 ASTM D2270
Sulfur content (wt%) No 2.5% ASTM D4294
Phosphorus content (wt%) No 0.1% ASTM D1091
Water (m/m) % Trace Trace ASTM D6304
Pour point (1C) −15 −24 ASTM D9
Flash point (1C) 210 220 ASTM D93
Acid number (mg KOH g−1) 0.014 0.035 ASTM D664
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A base oil liquid paraffin (LP; Hengshui Diyi Petrochemical Co.,
Ltd.) and a fully formulated engine lubricant (CD SAE 15W-40,
Sinopec Lubricant Company) were used for this investigation.
Their physicochemical properties were measured according to
the American Society of Testing Materials (ASTM) standards, as
shown in Table 1.

The other reagents such as acetone and ethanol were analytical
grade. Tribological tests were conducted using a four-ball trib-
ometer (MQ-800) [30]. The steel balls used in the tests were ASTM
E2100 grade bearing steel with a diameter of 12.7 mm, fabricated
according to the GB/T 308–2002 national standard of China, and
heat treated according to the national mechanical standard of
China (JB/T 1255–2001). The hardness was HRC¼65 and surface
roughness Ra¼0.012 mm. The liquid paraffin oil samples were
prepared with 0 wt% CB+0 wt% TiF3, 1 wt% CB, 0.5 wt% TiF3, and
1 wt% CB+0.5 wt% TiF3. The CB and catalyst where dispensed with
vigorous stirring for 2 h throughout the oil, followed by ultra-
sonication for 30 min to reduce experimental deviation. The CD
SAE 15W-40 samples were prepared in a similar manner.

2.2. Characterization

Tribological tests were at room temperature (approximately
25 1C) according to ASTM D5183-2005 and the procedure
described in [31]. The wear and friction properties of the con-
taminated oils were investigated at 1450 rpm and 196 N load
(maximum Hertzian contact pressure¼2.74 GPa) for 30 min. Prior
to the tribological tests, all oil samples were again placed in an
ultrasonic bath for 30 min to reduce experimental deviation.
Optical microscopy was used to obtain the average wear scar
diameter, and a scanning electron microscopy–energy-dispersive
spectroscopy (SEM/EDS) system (JEOL Model JSM-6490) was used
to observe the surface morphology and elemental composition of
the wear scar area. A surface roughness measurement system
(Taylor-Hobson-6) was used to measure the surface roughness of
the wear scar on the top surface of the steel ball under 10,000�
magnification. The length of the sample was 0.08 mm, and the
evaluation length was five times the sample length using a
Gaussian filter and a steel ball sensor of 10,000:10 mm.

To distinguish the influencial mechanism of the TiF3 catalyst on
the tribological behaviors of engine carbon black-contaminated
engine lubricants, an X-ray photoelectron spectroscopy system
(ESCALAB250) and a thermogravimetric analyzer (Q5000IR) were
used to investigate the elemental chemical valence state in the
wear zones of steel balls and the variations in thermal properties
of the oil samples, respectively. Oil samples (5 mg to 10 mg) were
placed in a platinum pan and heated from 35 1C to 800 1C at a
heating rate of 10 1C/min under 8 mL/min oxygen purge.
3. Results and discussion

3.1. Wear resistance

Fig. 3 shows the wear resistances of the oil samples. Fig. 3
(a) shows the variations in average wear scar diameter of liquid
paraffin with and without TiF3 catalyst. The AWSD of pure liquid
paraffin was 0.444 mm. For the liquid paraffin with 1.0 wt% CB the
AWSD was 0.455 mm. This indicates that the CB has little effect on
the antiwear properties of liquid paraffin. However, the AWSD
decreased to 0.321 mm when the TiF3 catalyst was added, indicat-
ing that TiF3 particles can improve the antiwear properties of
carbon black-contaminated liquid paraffin. The addition of the TiF3
catalyst in uncontaminated liquid paraffin was also investigated.
The results show an AWSD of the pure liquid paraffin increased
when compared to the contaminated oil. The lowest observed
AWSD was that of the liquid paraffin with 1 wt% CB and 0.5 wt%
TiF3. This phenomenon indicated that CB particles make a con-
tribution to the antiwear property of liquid paraffin. In all, TiF3
catalyst material had an important function in strengthening the
antiwear properties of liquid paraffin and carbon black-
contaminated liquid paraffin.

Fig. 3(b) shows the variations in AWSDs of CD SAE 15W-40 with
and without the addition of the TiF3 catalyst. The AWSD of the
uncontaminated lubricant was 0.483 mm, but for the CB-
contaminated CD SAE 15W-40 this decreased to 0.4678 mm. The
addition of 0.5 wt% TiF3 further reduced the AWSD to 0.4138 mm,
which was lower than that of carbon black-contaminated CD SAE
15W-40 lubricant. These results again indicate that the TiF3



LP
LP+1% CB

LP+0.5% TiF3

LP+ 1% CB+ 0.5% TiF3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
W

SD
 (m

m
)

CD SAE 15W-40

CD SAE 15W-40 +1% CB

CD SAE 15W-40 + 0.5% TiF3

CD SAE 15W-40+1% CB +0.5% TiF3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
W

SD
 (m

m
)

Fig. 3. Variations in the average wear scar diameter of carbon black-contaminated liquid paraffin and CD SAE 15W-40 oil with and without TiF3 catalyst (0.5 wt%) at 196 N
load and 1450 rpm rotation speed for 30 min (a) LP (b) CD SAE 15W-40.

0 4 8 12 16 20 24 28 32
0.00

0.03

0.06

0.09

0.12

Fr
ic

tio
n 

co
ef

fic
ie

nt

Time (min)

LP
LP+1% CB
LP+0.5% TiF3
LP+0.5% TiF3+1% CB

0 4 8 12 16 20 24 28 32
0.00

0.03

0.06

0.09

0.12

Fr
ic

tio
n 

co
ef

fic
ie

nt

Time (min)

CD SAE 15W-40
CD SAE 15W-40+1% CB
CD SAE 15W-40+0.5% TiF3
CD SAE 15W-40+0.5% TiF3+1% CB

Fig. 4. Variations in friction coefficient of carbon black-contaminated liquid paraffin and CD SAE 15W-40 oil with and without TiF3 catalyst (0.5 wt%) at 196 N load and
1450 rpm rotation speed for 30 min (a) LP (b) CD SAE 15W-40).

E. Hu et al. / Wear 305 (2013) 166–176 169
catalyst plays an important role in reducing wear. The findings for
the CD SAE 15W40 lubricant were similar to those for liquid
paraffin, i.e., 0.5 wt% TiF3 catalyst addition reduced the wear of
engine oil and carbon black-contaminated engine-lubricating oils.

3.2. Friction reduction

Fig. 4(a) shows the variations in the friction coefficient of liquid
paraffin with and without the TiF3 catalyst. The friction coefficient
of pure liquid paraffin was higher than both of liquid paraffin
added with 1.0 wt% CB and 0.5 wt% TiF3 catalyst. This is likely to be
the result of the poor friction reducing properties of the liquid
paraffin component. The addition of 1 wt% CB to the liquid paraffin
caused the friction coefficient of oil to decrease and this is likely to
an effect of the “roll effect” of dispersed CB particles, similar to that
of Green [13]. Adding 0.5 wt% to CB contaminated liquid paraffin
caused the friction coefficient to decrease further. This indicates
that the TiF3 catalyst caused a significant reduction in friction. A
similar reduction in frictional was also above red when the TiF3
catalyst was added to pure liquid paraffin.

Fig. 4(b) shows the variations in friction coefficient of CD SAE
15W-40 lubricant samples. The friction coefficient of carbon black-
contaminated CD SAE 15W-40 lubricant was higher than that of
pure lubricant. The possible reason for this was that the soot
absorbed additives and exerted agglomeration effects within the
lubricant [32]. When 0.5 wt% TiF3 catalyst was added to the CB
contaminated lubricant, the friction coefficient decreased. This
result once again indicates that the TiF3 catalyst significantly
reduced friction. To further verify the cause of these observations
the TiF3 catalyst was once again added to pure CD SAE 15W40, and
the result indicated that this catalyst material did reduce friction.

The above observations indicate that TiF3 catalyst plays an
important role in reducing friction for the liquid paraffin and fully
formulated lubricating oil, both with and without CB
contamination.

3.3. Surface analysis

The surface morphologies of the wear zones of steel test
samples were observed with an SEM/EDS system to determine
whether the simulated soot particulates would promote the wear.
Table 2(a) shows the images taken from the surfaces steel balls
lubricated using pure liquid paraffin. The black arrows and
rectangle represent the striking furrows and grooves on the
surface of the wear zone. These are the result of the higher
kinematical viscosity of liquid paraffin, causing adhesive wear to
occur during the rubbing process. The surface roughness was
0.040 μm, which indicated that the wear of pure liquid paraffin
was severe. Table 2(b) shows images of surface morphologies of
steel balls using the CB contaminated liquid paraffin. Numerous
furrows with broken edges (black arrows) were observed. This
phenomenon could be attributed to the fact that carbon black
particles were scratching the surfaces. When 0.5% catalyst TiF3 was
added to the CB contaminated liquid paraffin, surface



Table 2
Surface roughness and images of steel balls after rubbing for 30 min under different conditions.

Code Stationary ball Rotational ball Surface roughness (μm)

a 0.040

b 0.050

c 0.015

d 0.020

e 0.055

f 0.033
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Table 2 (continued )

Code Stationary ball Rotational ball Surface roughness (μm)

g 0.026

h 0.037

Notes: (a) LP, (b) LP+1 wt% CB, (c) LP+0.5 wt% TiF3, (d) LP+1 wt% CB+0.5 wt% TiF3, (e) CD SAE 15W-40, (f) CD SAE 15W-40+1 wt% CB, (g) CD SAE 15W-40+0.5 wt% TiF3, and
(h) CD SAE 15W-40+1 wt% CB+0.5 wt% TiF3.
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morphologies of the wear zones revealed a reduction in surface
roughness to 0.020 μm. The furrows that appeared on the wear
zone were less severe than those for the pure liquid paraffin and
CB contaminated liquid paraffin in Table 2(d). To further examine
the antiwear and antifriction properties of the TiF3 catalyst, it was
added to pure liquid paraffin. Results indicate that the surface
roughness decreases continually, and the furrows disappear in the
wear zone in Table 2(c). Therefore 0.5 wt% TiF3 catalyst addition to
liquid paraffin can reduce simulated-soot wear.

Table 2(e) reveals the surface morphological images of steel
balls of pure CD SAE 15W-40 oil. The appearance of furrows was
easily observed on the surface of the rotational ball. The surface
roughness was 0.055 μm. Table 2(e–h) shows images of wear scar
morphologies of fully formulated engine oil. The surface furrows
(Table 2(f)) suggest that wear is more severe than for pure CD SAE
15W-40 oil (Table 2(e)), but surface roughness's were lower. This
phenomenon could be due to the fact that local carbon black
reunion or undispersed carbon black particles exacerbated wear,
this would be consistent with the friction coefficient results.
Surface roughness decreased compared to pure SAE CD 15W-40
oil when 0.5 wt% TiF3 catalyst was present. These results indicated
that TiF3 catalyst strengthens the antiwear and antifriction proper-
ties of carbon black-contaminated CD SAE 15W-40 oil.

Fig. 5 shows the variations in element contents in the wear
zone for the two kinds of oil tested. The inset in Fig. 5(a) signified
that elemental titanium was absorbed onto the wear surfaces
during the friction process. Titanium and fluorine elements were
not observed when the TiF3 catalyst (0.5 wt%) was added to the
carbon black-contaminated liquid paraffin. This observation was
due to the low contents of these elements. Fig. 5(b) reveals that
elemental phosphorus was observed on the wear pair without the
TiF3 catalyst in the fully formulated engine lubricant. This result
indicated that the additives played an important role in antiwear
and friction reduction efficiency. Elemental phosphorus was not



Table 3
Element atomic contents of the wear zones of selected steel ball samples after rubbing for 30 min (rotation speed, 1450 rpm; load, 196 N).

Samples Atom content (at%)

C O Fe P Ti F Zn Ca

LP 42.94 45.82 11.28 0 0 0 0 0
LP+1% CB 63.55 30.77 5.68 0 0 0 0 0
LP+0.5% TiF3+1% CB 62.42 30.27 5.64 0 0.7 0.97 0 0
CD SAE 15W-40+1% CB 50.34 37.24 11.19 1.23 0 0 0 0
CD SAE 15W-40+0.5% TiF3+1% CB 50.32 35.67 6.02 2.97 0.9 1.81 0 2.31

Table 4
EDS analysis of extracted carbon black particles.

Items Element content (wt%)

C O Fe P S Ti F Cr Ca

LP+1 wt% CB 71.08 17.93 10.99 – – – – – –

LP+1 wt% CB+0.5 wt% TiF3 73.39 9.48 3.57 – – 2.94 10.62 – –

SAE CD 15W-40+1 wt% CB 75.67 11.49 6.35 1.71 4.45 – – 0.33 –

SAE CD 15W-40+1 wt% CB+0.5 wt% TiF3 28.68 25.05 3.20 0.44 1.42 18.57 22.64 – –
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found when the TiF3 catalyst was added to CD SAE 15W-40
lubricant, which was likely due to its low content. These results
suggest that the TiF3 catalyst material significantly contributed to
the formation of a boundary lubrication film.

To further examine the effect of the TiF3 catalyst on the
tribological behaviors of the CB contaminated engine oils, X-ray
photoelectron spectroscopy and thermogravimetric analysis were
used to investigate the wear zones and oil samples. Table 3 shows
the variations in elemental content in the wear zones with and
without the TiF3 catalyst. Titanium and fluorine elements were
detected when 0.5 wt% TiF3 was added to the CB contaminated
liquid paraffin. Similarly, these two elements along with phos-
phorus were detected in CD SAE 15W-40 oil. Elemental sulfur was
not detected in the SAE CD 15W-40 oil with 1 wt% CB. The reason
for this was possible due to the low content of ZDDP, which would
have caused the absorptive CB particles or by an “abrasion effect”
from the agglomerated carbon black particles [33,34]. The Absorp-
tion effect could be expounded via the component analysis of the
extracted carbon black particles, given in Table 4. Titanium,
fluorine and phosphorus were detected when the 0.5 wt% TiF3
was added. This indicated that the TiF3 absorbed the ZDDP
molecules to form a mixed/boundary lubrication film. The appear-
ance of titanium and fluorine in the wear zones indicated that the
TiF3 catalyst made some contribution to the efficiency of the
antiwear and antifriction of the lubricants. It also indicated that
titanium and fluorine elements can also assist in the formation of a
boundary film. The detailed element chemical valence states are
shown in Fig. 6. The results of C1s spectral analysis (Fig. 6(a))
showed that the binding energy at 284.8 eV was attributed to C–C
and C–H, and the peak at 286.3 eV was attributed to C–O–C and
C–O–H. The peak at 288.9 eV was C¼O and O–C–O [35]. Table 5
shows the variations in functional group contents (C–C, C–O, and
C¼O). The C–O and C¼O contents obviously increased in the
presence of the catalyst in liquid paraffin [36]. This result was
possibly due to oxidation and degradation effects. In the CD SAE
15W-40, the C–O content decreased because of oxidization result-
ing from the increase in C¼O (Fig. 6(b)). The O1s spectra (Fig. 6(c
and d)) indicated the formation of a boundary film containing
different types of oxidized metals or phosphates.

The binding energy at 707 eV and 720 eV was attributed to Fe
2p characteristic peaks, and the peak at 710.8 eV was attributed to
Fe2O3. The Fe 2p spectra (Fig. 6(e)) showed that the iron atoms
changed into iron oxides (such as Fe2O3 and Fe3O4) in the pure
liquid paraffin and with 1 wt% CB. This result indicated that iron
atoms were subject to oxidative reactions on the rubbing surfaces.
Iron atoms (BE¼707 eV) did not completely change into iron
oxides in the presence of 0.5 wt% TiF3 catalyst (Fig. 6(e)). This
phenomenon indicated that the iron atoms were protected via the
lubrication film.

Moreover, the Ti 2p spectra (Fig. 6(g)) showed that the binding
energies at 457.88 eV and 463.5 eV were the characteristic peaks
of TiO2. The F1s spectrum (Fig. 6(i)) showed that the only peak at
684.9 eV belonged to fluoride [37]. These results indicated that the
boundary lubrication film contained titanium, fluorine, and carbon
elements.

Phosphorus, titanium and fluorine elements were detected
when the catalyst was added to CD SAE 15W-40 lubricant.
Table 3 shows the elemental atom contents. The contents of
phosphorus, fluorine, and titanium with catalyst addition were
higher than those of samples without it. The Ti 2p spectra (Fig. 6
(h)) showed two peaks at 457.88 eV and 463.5 eV, which were
attributed to TiO2. The F1s spectra (Fig. 6(j)) indicated the
existence of fluoride. The P 2p spectra (Fig. 6(k)) of the wear zone
showed only one peak at 133.2 eV, which belonged to phosphate.
These results suggest that the improvements of antiwear and
antifriction of CB contaminated SAE CD 15W-40 oil with 1 wt%
carbon black and 0.5 wt% TiF3 were attributed to the synergistic
effect of ZDDP and the TiF3 catalyst material. The wear mechanism
was attributed to the participations of titanium, fluorine and
phosphate during the formation of boundary lubrication film.

3.4. Wear mechanism analysis

The antiwear and antifriction of carbon black-contaminated
liquid paraffin and formulated engine lubricant were ascribed to
the formation of boundary lubrication films containing carbon,
titanium, and fluorine elements. Fig. 7 shows the schematic
diagram of tribofilm formation for liquid paraffin and CD SAE
15W-40 lubricant in the presence of the TiF3. The active compo-
nents of titanium and fluorine in the oils were physically absorp-
tion in significant amounts on the surfaces of steel balls [38].
During the rubbing process, the chemical reaction for wear played
an important role in the formation of a boundary lubrication film.
This can be used to explain the antiwear and antifriction mechan-
isms of CB contaminated engine oils in the presence of the TiF3
catalyst. The chemical valence state of the titanium was changed
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from Ti3+ to Ti4+. This phenomenon indicated that the TiF3 catalyst
decomposed into TiO2 and fluorates, which have better lubrication
properties [39,40].

The fully formulated engine oil containing different kinds of
lubrication additives such as ZDDP can form a better boundary
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lubrication film than liquid paraffin oil, thereby resulting in lower
AWSD and friction coefficient than CB contaminated liquid paraf-
fin. Moreover, the preferentially absorbed antiwear additives
(ZDDP) and the TiF3 catalyst that formed the protective films
prevented carbon black frommaking contact with the steel surface
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[38]. During the rubbing process, ZDDP degraded into a glassy-
state polyphosphate under the friction force as well as the
frictional thermal and the catalytic conditions [20,41–44]. This
finding was confirmed by the X-ray photo-electron spectroscopy
results showing the phosphorus element in Fig. 7. The catalyzed
ZDDP degradation can also be deduced by varying the initial
decomposition temperatures of the oil samples (Table 6). The
change rates of the initial decomposition temperature of the CB
contaminated liquid paraffin and the fully formulated engine oil
were 2.5% and 13.47%, respectively. These results sufficiently prove
that the TiF3 catalyst played an important role in promoting the
decomposition of engine oil additives such as ZDDP [45].



Table 5
Carbon contents of the wear zone of selective steel ball samples after rubbing for 30 min (rotation speed, 1450 rpm; load, 196 N).

Sample Atom content (at%)

C(C–C) C(C–O) C(C¼O)

LP 41.90 0 1.04
LP+1%CB 61.78 0 1.77
LP+0.5% TiF3+1% CB 53.00 5.25 3.17
CD SAE 15W-40+1% CB 32.51 17.83 0
CD SAE 15W-40+0.5% TiF3+1% CB 44.28 5.04 1.00

Initiation Physical absorption Friction effect

Steel base material Carbon black Liquid paraffin molecule Lubrication film

Steel base material Carbon black Base oil molecule P S Zn ZDDP molecule

Lubrication film

FrictionAbsorption

FrictionAbsorption

Fig. 7. Schematic diagram of tribofilm formation for liquid paraffin and CD SAE 15W-40 oil.

Table 6
Initial decomposition temperature of engine oils with and without TiF3 catalyst.

Items Initial decomposition temperature (1C)

LP+1% soot 248.0
LP+1% soot+0.5% TiF3 241.8
CD SAE 15W-40+1% soot 309.5
CD SAE 15W-40+1% soot+0.5% TiF3 267.8
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4. Conclusions
(1)
 The TiF3 catalyst material makes an important contribution
to enhancing the antiwear and antifriction properties
of engine oils and in the presence of low levels of
contamination.
(2)
 The average wear scar diameter and friction coefficient of two
kinds of carbon black-contaminated engine oils decreased in
the presence of 0.5 wt% TiF3. The variation in the average wear
scar diameter of CB contaminated liquid paraffin and the fully
formulated engine lubricant were 29.45% and 11.54%,
respectively.
(3)
 The antiwear and antifriction mechanisms of the TiF3 catalyst
material were attributed to titanium and fluorine elements
that themselves assisted in the formation of a boundary
lubrication film.
(4)
 The TiF3 catalyst played an important role in promoting
the decomposition of antiwear additives within the engine
lubricating oil. The friction functional transition of the
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simulated soot particles and the thermal stability of engine oils
should be further investigated in the present of a TiF3 catalyst
material.
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