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Abstract: Physicochemical properties of aerosol particles were studied at Mt. Lu, an 1 

elevated site (115°59′E, 29°35′N, 1,165 m) within the acid precipitation area. 2 

Northeast winds transport copious amounts of air pollutants and water vapor from the 3 

Yangtze River Delta into this acid precipitation area. NH4
+ and SO4

2- are the dominant 4 

ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows 5 

abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol 6 

particles in North China and urban areas, there are little soot and mineral particles at 7 

Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in 8 

the research area. Nano-sized spherical metal particles were observed to be embedded 9 

in 37% of S-rich particles. These metal particles were likely originated from heavy 10 

industries and fired-power plants. Hygroscopic experiments show that most particles 11 

start to deliquesce at 73-76% but organic coating lowers the particle deliquescence 12 

relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly 13 

smaller than that of pure ammonium sulfate particles which is 80%. Since RH in 14 

ambient air was relatively high, ranging from 65% to 85% during our study period, 15 

most particles at our sampling site were in liquid phase. Our results suggest that liquid 16 

phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion 17 

in the acid precipitation area. 18 

Keywords: acid precipitation, hygroscopicity, aerosol formation, individual particle 19 

20 
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1. Introduction 21 

Airborne pollutants are deposited on the earth’s surface by 1) wet deposition (rain 22 

and snow); 2) dry deposition (particles and gases). Acting as condensation cloud 23 

nuclei (CCN) and ice nuclei (IN), aerosol particles influence the climate system 24 

indirectly by altering cloud microphysics and albedo (IPCC, 2007), hydrological 25 

balance (Ramanathan et al., 2001), and the ecosystem (Bormann, 1985). In the past 26 

two decades, rapid industrialization and urbanization in China have contributed large 27 

quantities of anthropogenic pollutants into the atmosphere.  28 

Recently, research activities in China has been directed to understand the 29 

formation of haze-fog events in East China, with the Chinese government starting to 30 

improve air quality in the megacities (Zhang et al., 2012). On the other hand, acid 31 

precipitation has been to some extent overlooked, even though it covers 12.9% of the 32 

continental area of China (AEAERC, 2011). The world’s third largest acid rain area 33 

has emerged in this region in the past thirty years, following Europe and North 34 

America (Galloway et al., 1987; Wang and Wang, 1995; Li et al., 2010b; Tang et al., 35 

2010). The impact of anthropogenic air pollutants on precipitation composition and 36 

the subsequent effects on aquatic and terrestrial ecosystems have been well 37 

recognized in North America, Scandinavia, South China, and Europe over the past 38 

decade (Bormann, 1985; Galloway et al., 1987). Progress report from the U.S. 39 

Environmental Protection Agency (EPA, 2006) showed that the developed countries 40 

in past decades that have pursued the tenets of the Clean Air Act have substantially 41 

reduced the size of the acid precipitation area. Conversely, in South China the acid 42 

precipitation area increased slightly and has been shown to occur throughout this 43 

period (Tang et al., 2010).  44 

The largest, contiguous acid-impacted region is south of the Yangtze River, 45 

according to the AEAERC in 2011. Tang et al. (2010) suggest that the center of the 46 

severe acid rain area south of the Yangtze River moved eastwards to include Jiangxi 47 

and Zhejiang provinces. In the acidic cloud water or rain water of south China, SO4
2- 48 

dominates followed by NH4
+, NO3

-, Ca2+, Cl-, F-, K+, Na+, and Mg2+ (Lei et al., 1997; 49 

Cao et al., 2009; Huang et al., 2009; Huang et al., 2010; Li et al., 2010b; Sun et al., 50 
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2010). Recently, Li et al. (2013b) showed that strongly acidic clouds (pH, ~3.5) cover 51 

Jiangxi province and form acid rain in summer. The study further suggested that the 52 

acidic cloud droplets enhance the soluble efficiency of nano-sized metals in clouds, 53 

which may lead to additional adverse impacts on the ecosystem and human health in 54 

South China. 55 

Once aerosol particles act as CCN, chemical properties of individual aerosol 56 

particles can affect the acidity of the corresponding cloud droplet, thereby pointing 57 

out the importance of understanding the physicochemical properties of aerosol 58 

particles in the acid precipitation area. In particular, the chemical composition of 59 

aerosols among various size ranges is a key factor in determining their hygroscopicity, 60 

CCN activity, and optical properties (Hudson, 2007). Individual aerosol particles are a 61 

complex mixture of inorganic and organic species, and soluble and insoluble species 62 

contributed directly or indirectly by anthropogenic and natural sources (Li and Shao, 63 

2009; Posfai and Buseck, 2010). When considering the influence of aerosol particles 64 

in one region, one first needs to understand their chemical composition and mixing 65 

state (Hudson, 2007; Twohy and Anderson, 2008; Posfai and Buseck, 2010; Adachi et 66 

al., 2011; Li et al., 2011a). Individual particle analysis by transmission electron 67 

microscopy (TEM) has become a reliable technique to characterize aerosol particles 68 

which range in size from nanometer to micrometer, as well as provide information on 69 

their sources, morphology, and mixing state (Li and Shao, 2009). 70 

Hygroscopic characterization of aerosol particles has important implications for 71 

their environmental effects (Martin, 2000; Wise et al., 2009; Freney et al., 2010; 72 

Peckhaus et al., 2012). If aerosol particles contain highly hygroscopic species such as 73 

sulfates, nitrates, or soluble organic acids, they would take up water when the relative 74 

humidity (RH) is high enough and grow into cloud droplets at certain supersaturation 75 

conditions (Martin, 2000; Hudson, 2007). Water absorbing hygroscopic components 76 

can change both diameter and wavelength dependent refractive indices of individual 77 

particles (Lack et al., 2009; Adachi et al., 2011). Therefore, it is necessary to quantify 78 

the hygroscopicity of aerosol particles in acid precipitation areas with high RH. 79 

The objective of this paper is to characterize the chemical composition and 80 
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hygroscopicity of individual aerosol particles in an acid deposition area in South 81 

China. In this study, aerosol samples were collected near the summit of Mt. Lu 82 

(115°59′E, 29°35′N, 1,165 m) in Jiangxi province, the center of the heavy acid 83 

precipitation area in South China. Chemical composition and mixing state of 84 

individual particles were investigated using transmission electron microscopy (TEM). 85 

We also studied the hygroscopicity of individual particles using a newly developed 86 

individual particle hygroscopic (IPH) system.  87 

2. Experiments 88 

2.1 Sampling site 89 

Mt. Lu, covering an area of 300 km2 (115°59′E, 29°35′N, 1,165 m), is located 90 

south of Jiujiang city in northern Jiangxi Province, China, between the Yangtze River 91 

and Boyang Lake. Mt. Lu is 700 km northwest of the Pearl River Delta (PRD) and 92 

400 km southwest of the Yangtze River Delta (YRD) (Figure 1). Mt. Lu lies within 93 

the Asian humid continental and tropical monsoon climate zone, where cloud/fog and 94 

rain events are common from spring to autumn. Figure 1 shows that the Mt. Lu area is 95 

located within the acid precipitation area of South China. The town of Guling on top 96 

of Mt. Lu has a population of about 10,000; most residents work in tourism or related 97 

services, so relatively little local pollution is produced. There are some large steel and 98 

oil refining industries and coal-fired power plants in the YRD and non-ferrous mines 99 

associated with non-ferrous mining, smelting, and refining of pure metals in Jiangxi 100 

province. Therefore, the major SO2 emission sources are located in the YRD but 101 

outside of Shanghai city.  102 

2.2 Meteorology  103 

The dominant wind direction below 1500 m during the summer season in South 104 

China is from the Northeast, which brings water vapor and pollutants into acid 105 

precipitation area (Figure S1-S4 in Supporting Information (SI)). The sampling was 106 

conducted during 11 August to 23 September, 2013. The average temperature and 107 

relative humidity (RH) were 23 oC and 80% during non-cloud periods, respectively. 108 

Thirty 48-h air mass back trajectories ending at Mt.Lu from 14 to 24 November were 109 

simulated by HYSPLIT model ((http://ready.arl.noaa.gov/HYSPLIT.php) (Figure S2). 110 

Most of air mass back trajecotries were from South and Northeast areas of Mt. Lu in 111 
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South China. 112 

2.3 Aerosol sampling and analysis 113 

Aerosol particles were collected on copper TEM grids coated with carbon film 114 

(carbon type-B, 300-mesh copper, Tianld Co., China) by a single-stage cascade 115 

impactor with a 0.5-mm-diameter jet nozzle and an air flow rate of 0.5 l min-1. For 116 

these conditions, the calculated size (d50) is ~ 0.5 µm (Marple et al., 1993). Because 117 

the air quality has small changes at Mt. Lu, each sampling time was set up at 4 min in 118 

non-cloud periods. Clouds or fog frequently occurred during our sampling period. 119 

After sample collection, we immediately used optical microscopy with magnification 120 

from ×500 to ×1200 to check whether the carbon film and aerosol distribution on the 121 

TEM grids were suitable for analysis. Then, the grid was placed in a sealed, dry 122 

plastic tube and stored in a desiccator at 25 ºC and 20 ± 3% RH to minimize exposure 123 

to ambient air and preserve it for analysis. Finally, nine samples collected in clear 124 

periods during 14 August - 23 September, 2013 were selected and analyzed by TEM. 125 

Aerosol particles on the TEM grids were analyzed with a JEM-2100 TEM 126 

operated at 200 kV. Particles examined by TEM were dry at the time of observation in 127 

the vacuum of the electron microscope. The effects of water, semi-volatile organics, 128 

and NH4NO3 could not be considered. Elemental composition was determined 129 

semi-quantitatively by an energy-dispersive X-ray spectrometer (EDS) that can detect 130 

elements heavier than carbon. EDS spectra were collected for only 15 s to minimize 131 

radiation exposure and potential beam damage. Copper could not be analyzed because 132 

of interferences from the copper TEM grid. EDS data obtained from INCA software 133 

under channel 4-5. In this study, TEM images with magnification between ×2000 and 134 

×5000 were quickly obtained from the center to the periphery of each sample. The 135 

procedure ensured that the aerosol distribution and morphology over the entire sample 136 

was obtained. To understand the morphology, composition, size, and mixing state of 137 

each aerosol particle, TEM images were taken and EDS was used to determine the 138 

composition of their component parts such as coatings, inclusions, and aggregates. In 139 

order to understand elemental distributions in individual aerosol particles, the 140 

elemental mapping experiments were conducted by the JEM-2100F TEM with a 141 
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scanning TEM (STEM) function. Equivalent circle diameter in two dimensions were 142 

determined using the iTEM software (Olympus soft imaging solutions GmbH, 143 

Germany) (Li et al., 2013a). 144 

A MiniVol sampler (Airmetrics, USA) with a constant pumping rate of 5 l min−1 
145 

was employed to collect PM2.5 on quartz-fiber filters for the analysis of soluble 146 

inorganics. Thirty PM2.5 samples and two blank samples as the reference filters were 147 

collected in non-cloud periods from 11 August to 23 September, 2011. The sampling 148 

periods ranged from 4 hours to 23.5 hours depending on the cloudy and rainy periods 149 

in different days. In addition, we collected the cloud water during cloud or fog periods 150 

and cloud water was acidic, with a pH of 3.52 at Mt. Lu. The detailed information 151 

about cloud water can be found in Li et al. (2013b). The PM2.5 samples were stored at 152 

refrigerator at Mt. Lu and were put in one icebox during the transportation from 153 

sampling site to our laboratory, which kept the temperature lower than 0 oC. Five 154 

cations (Na+, K+, NH4
+, Ca2+, and Mg2+) and five anions (F-, Cl-, NO2

-, NO3
-, and 155 

SO4
2-) were quantified by ion chromatography (IC). Because of limitation from the IC 156 

detection, we only obtained concentration of nine ions (see section 3.2). The hourly 157 

mass concentrations of SO2, NO2, and PM10 were provided by an automatic 158 

environmental monitoring station, about 5 m from the sampling site. In this study, we 159 

obtained valid concentration data of PM10 (n = 1112 hours), SO2 (972 hours), and NO2 160 

(493 hours) (Figure 1). Wind speed, wind direction, relative humidity (RH), 161 

barometric pressure, and ambient temperature were obtained from the local 162 

meteorological station. In this study, the wind vector maps in different altitudes in 163 

South China are shown in supplemental material (Figure S3-S4). 164 

2.4 Hygroscopic experiments of individual aerosol particles 165 

One individual particle hygroscopic (IPH) system was built for observing 166 

hygroscopic properties of individual particles at different relative humidities. The 167 

measurement system consisted of three steps: (1) Introducing wet and dry N2 gas with 168 

controlled flow into one chamber, controlled by two mass control flow meters. (2) 169 

Setting the TEM grids with aerosols on the bottom of one stainless steel column 170 

chamber (size: 20mm (height)×30mm (diameter)) with two holes on top and bottom 171 
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side covered by two microscope slides. RH and temperature sensors of a digital 172 

hygrometer (Testo 645, ±1%) were inserted into the chamber from its side. (3) 173 

Obtaining images in different relative humidity through one inverted microscope 174 

(IBE2003, China) with a camera (Canon 650D). NaCl aerosols were generated from 1 175 

M solutions. We used the same procedure from Wise et al. (2005) to make the 176 

standard samples in the laboratory. Laboratory-generated NaCl particles on TEM 177 

grids were used to calibrate the system (Figure S5). Detailed descriptions of the 178 

similar measurement system were given by Ahn et al. (2010). Similar IPH systems 179 

have successfully observed hygroscopic growth observations of field-collected and 180 

laboratory-generated aerosols with the diameter larger than 0.5 µm (Ahn et al., 2010; 181 

Peckhaus et al., 2012; You et al., 2012). Here two samples of particles with organic 182 

coating and particles with non-coating were chosen to observe particle hygroscopic 183 

growth. The IPH system observed the particle deliquescence and efflorescence at the 184 

RH range from 3% to 90% under one stable room temperature at 20 oC. 185 

3. Results and discussion 186 

3.1 Transport of gas and aerosol pollutants  187 

Wind direction and wind speed are the most important factors for transport of air 188 

pollutants in the troposphere. Examining wind direction, wind speed, and pollutants at 189 

Mt. Lu, Figure 1 shows two major transport paths: from the northeast and from the 190 

south. Figure S3 shows that mean wind in August and September is from the northeast. 191 

These results were consistent with 48-h air mass back trajectories as shown in Figure 192 

S2. The northeasterly wind apparently brought air pollutants and water vapor from the 193 

coastal YRD into the acid precipitation area. 42% (by hour) PM10 data, 46% SO2, and 194 

42% NO2 occur with northeast winds, with their average hourly concentrations at 28 195 

µg m-3, 16 µg m-3, and 11 µg m-3, respectively (Figure 1). Wind rose data (bottom of 196 

Figure 1) also showed a possible source of PM10 from the northeast direction, that is, 197 

the YRD. The southerly wind possibly brought air pollutants from Jiangxi province. 198 

37% PM10 data, 31% SO2, and 37% NO2 occur from northeast winds, with their 199 

average hourly concentrations at 15 µg m-3, 17 µg m-3, and 5 µg m-3, respectively. 200 

Figure 1 also shows that the SO2 emission sources, including heavy industries and 201 
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coal-fired power plants, lie within the YRD, indicating that air pollutants from the 202 

northeast could have contributed to the air pollution on Mt. Lu. The SO2 wind rose 203 

data did not show any particular emission source in the major wind directions. The 204 

reason can be attributed to its relatively short lifetime of SO2 or the region emission 205 

sources. 206 

3.2 Soluble inorganic ions in PM2.5 207 

Nine inorganic ions were quantified in 35 PM2.5 samples. Figure 2 shows that the 208 

highest inorganic ion is SO4
2- with a concentration of 18.4±8.0 µg m-3, close to the 209 

17.2 µg m-3 at the regional background station of Lin’an and more than two times 210 

higher than that at Mt. Heng in Hunan province (Xu et al., 2002; Gao et al., 2012). 211 

Sun et al. (2010) showed that SO4
2- was the dominant anion, followed by NO3

-, both 212 

of which control the acidity of cloud water at Mt. Huang in spring. 213 

Interestingly, the mass concentration of NO3
- at 0.71 ± 0.99 µg m-3 is lower than 214 

1.5 µg m-3 at Mt. Heng (Gao et al., 2012). The partition of NO3
- between the gas and 215 

particulate phases strongly depends on temperature, with lower temperatures favoring 216 

the partition of ammonium nitrate in the particulate phase. Indeed, air temperatures 217 

ranging from 19 oC to 29 oC at Mt. Lu in this study are much higher than the 218 

springtime temperatures at Mt. Heng (9.8 oC to 16.3 oC). Figure 2 shows that NH4
+ at 219 

6.68±3.3 µg m-3 is the major cation to neutralize acidic components. Additionally, K+ 220 

concentration at 0.65±0.22 µg m-3 at Mt. Lu is higher than 0.43 µg m-3 at Mt. Heng 221 

reported by Gao et al.(2012), who suggested that biomass burning contributed 222 

potassium salts in the atmosphere over the precipitation area. The average 223 

cation/anion (C/A) ratio is 0.94 in PM2.5 samples, suggesting that ammonium sulfate 224 

could be the dominant component in the PM2.5.  225 

Soluble ions of 54 cloud water samples show that SO4
2- dominated 30% of the 226 

total ions in cloud water, following by NH4
+ (24%) at Mt. Lu during this period (Yang, 227 

2013). Therefore, SO4
2- is the dominant acidic ion in both aerosol particles and cloud 228 

droplets and contribute to the acidity of cloud water and rain at Mt. Lu in summer.  229 

3.3 Main individual particle types 230 

Based on elemental composition and morphology of individual particles, we 231 
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identified six different particle types: S-rich, metal (including fly ash), organic matter, 232 

soot, K-rich, and mineral. S-rich particles were a dominant aerosol type in all size 233 

ranges, which are internally mixed with metal, organic matter, soot, K-rich, and 234 

mineral (Figure S6). The result is consistent with the SO4
2- as the dominant ion in 235 

PM2.5. In the internally mixed particles, various metal particles were embedded within 236 

individual S-rich particles, and secondary organic matter coated onto the surface of 237 

S-rich particles, as shown in Figure S6 and Figure 3. These observations are 238 

consistent with previous studies (Li et al., 2013b) where large amounts of nano-sized 239 

metal particles were measured in the atmosphere at Mt. Lu. 240 

3.3.1 Sulfates 241 

S-rich particles contained S and O, with certain amounts of K, Na, C, and N 242 

(Figure 3a). S-rich particles at Mt. Lu could be mainly composed of (NH4)2SO4 and 243 

minor (NH4)HSO4, organic matter, and K2SO4. Although TEM analysis cannot give 244 

nitrate information, NH4NO3 cannot be excluded in this study according to the soluble 245 

ions in PM2.5 shown in Figure 2. Many studies already show that individual secondary 246 

particles commonly contain ammonium sulfate and ammonium nitrate in the 247 

atmosphere (Whiteaker et al., 2002; Middlebrook et al., 2011; Hao et al., 2013). As a 248 

result, we can speculate that individual secondary particles could mainly contain 249 

sulfates with other minor particle species. 250 

The second dominant type of S-rich particles contain certain amounts of K 251 

(Figure 3b). The fraction of K in S-rich particles is lower than K2SO4 in Figure 3c. We 252 

suggests that certain amounts of potassium salts coexisted in secondary sulfate 253 

particles, which has been commonly observed in cloud droplets at Mt. Lu (Li et al., 254 

2013b). TEM analysis revealed that this kind of S-rich particle significantly 255 

contributed soluble K+ to PM2.5 shown in Figure 2. We also found that the S-rich 256 

particles were coated frequently by organic matter. Li et al. (2010a) observed similar 257 

particles in Beijing air influenced by agricultural biomass burning. In the present 258 

study, only small numbers of K2SO4 particles were shown in Figure 3b and abundant 259 

S-rich particles with minor K were founds at Mt. Lu. Here we can presume that 260 

particles (e.g., KCl and K2SO4) from biomass burning can transform into S-rich 261 
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particles with certain amounts of K through processing in cloud droplets or 262 

condensations of SO2 and H2SO4. 263 

3.3.2 Metal particles 264 

Numerous metal particles occurred at Mt. Lu and were internally mixed with 265 

S-rich particles (Figure 4). One low-magnification TEM image displays ten S-rich 266 

particles, six of which include metal inclusions confirmed by EDS. Many metal 267 

particles look like an aggregation of several metal particles. Since small sized metal 268 

particles have a higher density, they are darker than other aerosol particle types and 269 

are therefore easy to be identified. For example, Figure 5 shows two dark dots in the 270 

S-rich particle and their composition reveals two metal particles (Fe-rich and Pb-rich). 271 

Li et al. (2013b) found four major metal types at Mt. Lu in cloud droplets: Pb-rich 272 

(35%), fly ash including minor metals (27%), Fe-rich (23%), and Zn-rich (15%). We 273 

still found that Pb, Fe, and Zn in metal particles were the dominant elements in 274 

aerosol particles. These metal particles exhibit a nearly spherical shape (e.g., Figure 5), 275 

suggesting that they likely come from industrial processes and coal-fired power 276 

generation via high-temperature combustion followed by fast cooling (Giere et al., 277 

2006). There are various large steel and oil refining industries and coal-fired power 278 

plants in YRD and many non-ferrous smelting industries are distributed throughout 279 

Jiangxi province. 280 

Li et al. (2013b) show that acidic cloud droplets can dissolve nano-sized metal 281 

particles into sulfates. We carefully examined the composition of individual 282 

metal-bearing particles. In this study, we found that 37% of S-rich particles had metal 283 

inclusions. For example, Figure 6 shows the Sn-O and Pb-S particles were internally 284 

mixed with S-rich particles. Once this kind of aerosol particles act as CCN, SO2 285 

oxidation catalyzed by metal ions could be the dominant in-cloud oxidation pathway 286 

(Harris et al., 2013). 287 

3.3.3 Soot and mineral particles 288 

Many studies showed that soot and mineral particles were the major particle types 289 

in the atmosphere and were commonly found in aerosol samples collected at mountain 290 

site and ground level (Li and Shao, 2009; Posfai and Buseck, 2010; Li et al., 2011b). 291 
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TEM analysis display a rather low number of soot and mineral particles at Mt. Lu 292 

(Figure 7). The typical soot particles in Figure S6g were difficult to be found at Mt. 293 

Lu and some tiny soot particles were internally mixed with organic or sulfate (Figure 294 

3c). A few elongate regular CaSO4 were detected in the samples but the Ca(NO3)2 295 

coated on mineral particles occurring at Mt. Tai and urban cities in North China (Li 296 

and Shao, 2009) had been not found at Mt. Lu. In addition, some mineral particles 297 

mixed with metal particles as shown in Figure S6e occurred in fine and coarse 298 

particles. Such mixed mineral particles were considered as the emissions of industries 299 

and fired-power plant instead of natural soil. 300 

3.3.4 Organic matter 301 

Most organic matter was internally mixed with secondary particles at Mt. Lu. 302 

Most organic aerosols can not be clearly identified in secondary particles (Figure 3a) 303 

although some can be identified as the organic coatings (Figure 3b-c). Therefore, we 304 

classified the internally mixed particles of organic and sulfate in Figure 3b as S-rich 305 

particle type. Only small number of particles in the samples at Mt. Lu were dominated 306 

by organic matter, as shown in Figure S4a. 307 

3.4 Size and mixing of different particle types 308 

Figure 7 shows the relative abundance of 1634 particles from 80 nm to 4 µm. 309 

The S-rich particles account for 82% of all analyzed particles and are the dominant 310 

particle type in all size bins. 46% of 1388 analyzed S-rich particles were defined as 311 

internally mixed particles that include fly ash, metal, soot, or mineral, except for the 312 

organic matter that cannot be clearly identified (Figure 5). Although 18% particles 313 

were not classified as S-rich particles, they still contained certain amounts of sulfates. 314 

In all, morphology, composition, and mixing state of individual particles at Mt. Lu in 315 

South China were more homoneneous than those at Mt. Tai (1535m) in North China 316 

(Li et al., 2011b). In addition, only 6% of S-rich particles contained soot inclusions at 317 

Mt. Lu are much lower than at Mt. Tai in North China where 72% to 83% of S-rich 318 

particles included soot inclusions (Li et al., 2011b). The low percentage of soot and 319 

mineral particles at Mt. Lu differs from the aerosol distribution in North China where 320 

soot and mineral particles were dominant in sizes smaller than 1 µm and larger than 2 321 
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µm (Li and Shao, 2009; Li et al., 2011b). In addition, 6% and 3% of 1388 S-rich 322 

particles mixed soot and mineral particles. 323 

3.5 Hygroscopic properties of individual particles 324 

Hygroscopic properties of individual particles from two different samples exhibit 325 

different hygroscopic growth factors. Figure 8a shows that particles collected on 4 326 

September begin to grow at 73-76% with the average grow factor (GF) at 1.006 and 327 

that dramatic growth occurs at 80% with the average GR at 1.13. Figure 8b shows that 328 

particles collected on 5 September begin to grow at 63-73% with the average GR at 329 

1.04 but that part of them display dramatic growth at 80% with the average GR at 330 

1.23. The dramatic changes of growth factor at 80% suggest that these secondary 331 

particles completely transformed from solid phase to liquid phase in two samples. 332 

When the humidity increase 90%, the GR values increase the largest at 1.26 in Figure 333 

8a and 1.38 in Figure 8b. Additionally, the particles in these two samples have similar 334 

dehydration curves with the efflorescence RH (ERH) at 49-53%. Although the 335 

particles in the two samples have similar DRH and ERH, they exhibit different 336 

hygroscopic growth trends. 337 

A number of studies have shown that hygroscopic properties of aerosol particles 338 

are dependent on their chemical composition (Martin, 2000; Choi and Chan, 2002; 339 

Shi et al., 2012). Figure 2 shows that SO4
2- is the dominant ion in fine particles, 340 

consistent with the dominant S-rich particles found in individual particle analysis. 341 

Individual ambient particles normally start to deliquesce at lower RH than the DRH at 342 

80% of the pure (NH4)2SO4. This result can be attributable to the mixtures of two or 343 

more inorganic species (e.g., (NH4)2SO4, (NH4)HSO4, K2SO4, or NH4NO3) within the 344 

same individual particles (discussed in section 3.3.1) (Freney et al., 2009). In 345 

particular, particles shown in Figure 8b start to deliquesce at 63-73% -- much lower 346 

than those at 73-76% shown in Figure 8a. The ion analysis and TEM observations 347 

together showed similar inorganic ions and particle types, but TEM images revealed 348 

thin organic layers coated on some particles in Figure 8b. Soluble organic species in 349 

the internally mixed particles may cause the water absorption of organic materials at 350 

low RH than inorganic materials (Varutbangkul et al., 2006) and change the 351 
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hygroscopic growth of aerosol particles (Brooks et al., 2002; Choi and Chan, 2002). 352 

Therefore, the soluble organic coatings probably induce the early deliquescence of 353 

individual particles. Shi et al. (2012) showed that the internally mixed 354 

(NH4)2SO4-benzoic acid particles display deliquescence earlier than the DRH of pure 355 

(NH4)2SO4 particles. Also, the ratio of organic and inorganic ions in individual 356 

particles determines their deliquescent transitions (Peckhaus et al., 2012). These 357 

results suggest that soluble organic coatings and mixtures of multi-inorganic species 358 

account for the lower DRH of individual particles at Mt. Lu compared to that of 359 

ammonium sulfate. 360 

The ambient RH during the sampling periods ranged from 65% to 85%. Based on 361 

the hygroscopic experiments, we conclude that the some or all the aerosol particles in 362 

non-cloud periods suspended as the liquid phase or liquid-solid phase while 363 

suspended in air. Therefore, the liquid water around the deliquesced particles provide 364 

an important media for gaseous SO2 to sulfate conversion. 365 

3.6 Implications of acid precipitation 366 

Heavy acid precipitation in South China mostly occurs in highland areas with 367 

altitudes of 500-1500 m, where SO2 emissions are low (Figure S3). Figure 1 shows 368 

the largest and highest intense SO2 emissions in South China in the YRD, one area 369 

that is upwind of Mt. Lu in summer. The dominant wind is from the east during 370 

sampling periods; therefore, the SO2 emissions could be readily transported into the 371 

acid precipitation area and be transformed into secondary sulfates. Large amounts of 372 

secondary particles dominated by SO4
2- can be formed during long-range transport 373 

and can further be CCN in acid clouds. Based on the composition and hygroscopicity 374 

of aerosols in the present study and results from Harris et al. (2013), we summarized 375 

the SO2 oxidation during long-range transport in Figure S7a. Liquid layer formation 376 

on secondary particles due to early deliquescence probably enhance SO2 oxidation 377 

through heterogeneous reactions in multiphase environment (Ravishankara, 1997).  378 

Compared to small amounts of mineral and soot particles from ground-level 379 

sources such as road dust, ground soil, and vehicle emissions, the abundant metal 380 

particles at Mt. Lu suggest that the large amounts of gaseous and particulate emissions 381 
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from major industries and power plants can reach high altitudes. As a result, transition 382 

metals from anthropogenic sources could catalyze SO2 oxidation in clouds (Harris et 383 

al. (2013). In addition, the low concentrations of Ca2+ and Mg2+ in PM2.5 and rather 384 

low number of mineral particles from TEM analysis both suggest that the alkaline 385 

mineral particles have limited acidic buffering capacity at Mt. Lu. Therefore, absence 386 

of mineral particles in the air likely contributes to the higher acidity of aerosol 387 

particles. These phenomenon indicated above can be attributed to the seasonal 388 

meteorological situation in South China and the height of emission sources -- both 389 

critical for determining the transport distance (Kahn et al., 2008; Chen et al., 2013). 390 

Firstly, the humid air and frequent rains limit vertical transport of ground-level urban 391 

pollutants such as soil dust and vehicle emissions raise up to planetary boundary layer. 392 

Secondly, the large industries and power plants with their tall stacks can emit air 393 

pollutants into higher atmospheric levels (Chen et al., 2013). Figure S4 shows that 394 

wind speed is at 3-10 m/s at 1000 m and < 3 m/s on the ground during the sampling 395 

period. Therefore, the pollutants at high altitude can be dispersed quickly and 396 

transported for long distance. In addition, biomass burning plumes can reach the free 397 

troposphere because their buoyancy can be sufficient to lift smoke above the 398 

near-surface boundary layer (Kahn et al., 2008). 399 

Based on our results and discussion, we devised one conceptual model that 400 

describes air pollutant emissions and their transport in Figure S7b. Massive amounts 401 

of air pollutants (e.g., SO2 and metal) from coal-fired plants, heavy industries, and 402 

biomass burning are readily transported into upper levels of the troposphere. The 403 

summer monsoons likely drive large amounts SO2 and water vapor from east lowland 404 

areas to west highland areas in South China. Therefore, beside pollutants’ emission 405 

and transport, regional meteorological properties (i.e. wind and humidity) and terrain 406 

also significantly affect acidic cloud formation. 407 

4. Conclusions 408 

Soluble inorganic ions and individual aerosol particles were studied in summer at 409 

Mt. Lu. Northeast winds transported air pollutants from the YRD into the acid 410 

precipitation area, with the average hourly concentrations at 28 µg m-3 for PM10, 16 411 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

µg m-3 SO2, and 11 µg m-3 for NO2. SO4
2- is the dominant acidic ion in aerosol 412 

particles and could determine the acidity of cloud water and rain at Mt. Lu. In 413 

addition, absence of mineral particles in the air lead to their limited acidic buffering 414 

capacity and conversely aerosol particles become more acidic at Mt. Lu. 415 

The secondary particles occurred in all sizes and S-rich particles were the 416 

dominant particle type, accounting for 82% of all analyzed particles. The study 417 

indicates that individual particles contain multi-inorganic species with the major 418 

compound being (NH4)2SO4 with lesser amounts of NH4HSO4, NH4NO3, or K2SO4. 419 

The hygroscopic experiments show that individual particles start to deliquesce at 420 

73-76%, although the secondary particles completely deliquesce at 80%. In addition, 421 

the soluble organic coatings on secondary particles can start deliquescence at 63-73% 422 

of individual particles but still completely deliquesce at 80%. Considering the ambient 423 

RH of 65-85%, the secondary particles should be in the liquid phase or liquid-solid 424 

multiphase in air. We found large amounts of nano-sized metal particles embedded in 425 

37% S-rich particles. In addition, we devised a conceptual model that describes air 426 

pollutant emissions and their transport, clearly indicating the acid cloud or rain 427 

formation at Mt. Lu. 428 
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Figure Captions 588 

Figure 1 The location of Mt. Lu (115°59 E, 29°35 N, 1,165 m) in the acid precipitation 589 

area wind rose, and concentration distribution for PM10, SO2, and NO2 associated with wind speed 590 

and directions from 1 August to 26 September, 2011. Mt. Heng (27.3o N, 112.7o E, elevation at 591 

1269 m) as one elevated site and Lin’an station (30.3o N, 119.7o E) as one regional background 592 

site, are marked in the acid precipitation area. The data of acid precipitation area were obtained 593 

from the Annual Environment Report of China in 2011 and the contours represent the SO2 594 

emission distributions in East China (units: t/year/grid, grid size: 0.5 degree, data from Zhang et 595 

al.(2009)). 596 

Figure 2 Average soluble inorganic ions concentration in 33 PM2.5 samples at Mt. Lu in summer. 597 

Figure 3 Three different types of individual S-rich particles. (a) S-rich particle with minor K 598 

mixed with one As-rich particle and one Fe-rich particle. EDS data obtained from INCA software 599 

under channel 5. (b) S-rich particle with moderate K coated by organics. (c) K2SO4 particle mixed 600 

with organic coating, soot, and Pb-S. EDS data obtained from INCA software under channel 4. 601 

Figure 4 One low-magnification TEM image showing metal inclusions in S-rich 602 

Figure 5 TEM image and EDS of two metal inclusions in one S-rich particle. 603 

Figure 6 Elemental mapping of an individual metal-bearing particle obtained from the STEM. A 604 

dark-field TEM image of the individual particle and each elemental distribution are shown. 605 

Figure 7 Proportions of aerosol particles collected at Mt. Lu during 11 August to 23 September, 606 

2011 in acid precipitation area. A total of 1634 aerosol particles were identified by their different 607 

morphology and composition. The number of the analyzed aerosol particles in different size 608 

ranges is shown above each column.  609 

Figure 8 Deliquescence and efflorescence of each particle with one color from 3% to 90% RH. (a) 610 

the sample collected on 4 September, 2011 containing secondary particles (b) the sample collected 611 

on 5 September, 2011 containing secondary particles with organic coating. Compositions of 612 

individual particles in the two samples were examined by TEM/EDS as shown in Figure S6. 613 

Mixing state and composition of individual particles were described in the scheme. 614 
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Figure 1 The location of Mt. Lu (115°59 E, 29°35 N, 1,165 m) in the acid precipitation 

area wind rose, and concentration distribution for PM10, SO2, and NO2 associated with wind speed 

and directions from 1 August to 26 September, 2011. Mt. Heng (27.3o N, 112.7o E, elevation at 

1269 m) as one elevated site and Lin’an station (30.3o N, 119.7o E) as one regional background 

site, are marked in the acid precipitation area. The data of acid precipitation area were obtained 

from the Annual Environment Report of China in 2011 and the contours represent the SO2 

emission distributions in East China (units: t/year/grid, grid size: 0.5 degree, data from Zhang et 

al.(2009)). 
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Figure 2 Average soluble inorganic ions concentration in 33 PM2.5 samples at Mt. Lu in summer. 
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Figure 3 Three different types of individual S-rich particles. (a) S-rich particle with minor K mixed with one 

As-rich particle and one Fe-rich particle. EDS data obtained from INCA software under channel 5. (b) S-rich 

particle with moderate K coated by organics. (c) K2SO4 particle mixed with organic coating, soot, and Pb-S. EDS 

data obtained from INCA software under channel 4. 
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Figure 4 One low-magnification TEM image showing metal inclusions in S-rich 

 

 

Figure 5 TEM image and EDS of two metal inclusions in one S-rich particle. 
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Figure 6 Elemental mapping of an individual metal-bearing particle obtained from the STEM. A dark-field TEM 

image of the individual particle and each elemental distribution are shown. 
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Figure 7 Proportions of aerosol particles collected at Mt. Lu during 11 August to 23 September, 2011 in acid 

precipitation area. A total of 1634 aerosol particles were identified by their different morphology and composition. 

The number of the analyzed aerosol particles in different size ranges is shown above each column.  
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Figure 8 Deliquescence and efflorescence of each particle with one color from 3% to 90% RH. (a) the sample 

collected on 4 September, 2011 containing secondary particles (b) the sample collected on 5 September, 2011 

containing secondary particles with organic coating. Compositions of individual particles in the two samples were 

examined by TEM/EDS as shown in Figure S6. Mixing state and composition of individual particles were 

described in the scheme.  
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Highlights: 
(1) SO4

2- is the dominant ion in aerosol particles 

(2) Aerosol particles dominated by sulfate start to deliquesce at 63-76% 

(3) Large amounts of nano-sized metal particles embedded in 37% S-rich particles 

(4) SO2 of long range transport from industries and fired-power plants in the YRD. 
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Figure S1 Terrain of South China and terrain profile of from PRD (East) to Mt. Lu (West). The 

map sourced from the webside at http://srtm.csi.cgiar.org/ 
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Figure S2 48-h Back trajectories of air masses arriving at 1500 m at Mt. Lu during 14 August -24 

September, 2013. Most the trajectories were from South, East, and Northeast of Mt. Lu. 
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Figure S3 Topography and Asian summer monsoon. (a) Acid precipitation area over the highland 

area and summer wind during the sampling period (August and September of 2011 of 

meteorological model projection). The data of acid precipitation area were obtained from the 

Annual Environment Report of China in 2011 (b) SO2 emission distributions and summer wind 

during the sampling period (SO2 data from (Zhang et al., 2009)).  

 

Figure S4 Wind direction and speed in different heights in August and September of 2011 in South 

China (a) wind at 1000 m height (b) wind on ground level. NCEP/NCAR global reanalysis data 

were used for projection of wind vector maps (Kalnay et al., 1996). 
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Figure S5 Humidifying and dehydration curves for the laboratory-generated NaCl particle 

collected on a TEM grid. Deliquescence relative humidity of pure NaCl is at 73-75%, which is 

consistent with the previous studies. 
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Figure S6 Different types of individual particles based on morphology and compositions 
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Figure S7 Conceptual model summarizing acid rain or cloud formation from anthropogenic pollutants. (a) SO2 

transformation over acid precipitation area. (b) pollutants emission and transportation. (1) air pollutants include the 

major gases and aerosols emitted from industrial area, urban area, and biomass burning in rural area. (2) air 

pollutants can be transported long distance into acid precipitation area in upper level and large amounts of 

secondary particles form in the air. (3) humid air and frequent rains limit vertical transport of urban pollutants from 

ground level into the upper atmosphere but not for smog plumes from tall stacks in industrial areas and biomass 

burning. 

 
Figure S8 Sulfate particles without/with organic coating from the two different aerosol samples 

examined by TEM/EDS. After the TEM analysis, hygroscopic properties of aerosol particles in the 

two samples were studied in Figure 8.  
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