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Abstract

Ice cream crystallization processes can be modeled by some population and

energy balance equations. Due to the infinite dimensional and nonlinear

characteristics, such models are highly complex, especially when all the phe-

nomena of nucleation, growth and breakage are considered. Depending on

the control problem under consideration, such a complexity can be useless

and the control law can be designed on the basis of an input-output reduced

order model of the process. In the present paper, we first consider a reduced

order model of 6 ordinary differential equations obtained by the method of

moments. By means of a sensitivity analysis and a parameter identification,

✩This work was supported by the 7th Framework Program of the European Union:
CAFE Project (Computer-Aided Food processes for control Engineering project) - Large
Collaborative Project KBBE-2007-2-3-01.
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it is shown that, to accurately describe the input-output behavior of the sys-

tem whatever the conditions are, it is sufficient to change the values of only

two parameters of this model, which is really interesting from a control point

of view. However, when looking at the simulated data, the complexity of this

moments model appears useless, from the input-output point of view. A sec-

ond model reduction is therefore performed, based on physical assumptions.

We finally get a new model with 3 ordinary differential equations, which is

validated first on experimental data and then by comparison with the initial

moments model.

Keywords: ice cream crystallization, particulate processes, population

balance equation, model identification, model reduction, process control

1. Introduction

Crystallization (e.g. Mullin (2001)) is encountered in many processes,

in particular in the pharmaceutical industry and the food industry (Hartel,

2001). In crystallization processes, an important challenge is to control the

quality and/or the properties of the product. In the case of ice creams, it

is well known that the quality, that is the hardness and the texture of the

ice cream, depends on the ice crystal size distribution (CSD). For example,

depending on the mean crystal size, or more precisely on the dispersion of

crystal sizes (that is on the shape of the CSD), the obtained texture of the

ice cream is more or less grainy. Some physical properties of the ice cream, as

for example its viscosity, also depend on the CSD, or at least on its moments.

In the model considered in this paper, the evolution of the CSD is de-

scribed by a population balance equation (PBE) (Randolph, 1971; Costa
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et al., 2007) to which an energy balance equation is added. Due to the

infinite dimensional and nonlinear characteristics, the model is highly com-

plex, especially when all the phenomena of nucleation, growth and breakage

(Cook and Hartel, 2010) are considered. To control such a system, and more

generally the particulate processes, there exists several approaches (see for

example Christofides et al. (2008) and Nagy et al. (2008)). In some papers,

the proposed control law is designed directly from the PBE (Mesbah et al.,

2012; Sheikhzadeh et al., 2008). It enables to take into account the whole

complexity of the system dynamics but in return, it often needs sophisticated

mathematical tools and can lead to some complex controllers, not always easy

to implement. That’s why most of the time, a reduced order model (early

lumping - see Ray (1978)) is considered. Some examples of model reduc-

tion techniques for particulate processes can be found in Christofides (2002),

Dokucu et al. (2008) or Motz et al. (2004). One of these techniques consists in

applying the method of moments (Christofides, 2002), which transforms the

PBE in an infinite set of moments equations (ordinary differential equations

- ODEs). The number of moments equations we will finally keep, and the

closure of the truncated system are some important questions. In our case,

the first four moment equations are independent of the higher order ones,

and the energy balance equation only involves moments of order 3 or less,

so that the system we consider is finally reduced to a set of 5 ODEs. Note

that this model is not well adapted for all control problems. In particular,

the control of the shape of the CSD, which is of importance in crystallization

processes (Vollmer and Raisch, 2006; Nagy, 2008; Ma and Wang, 2012), is

not the kind of problems we will focus on. Indeed, it is well known that the
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reconstruction of a distribution from its moments is really difficult. However,

the control of all quantities which can be expressed as a function of the 4

first moments and of the ice temperature (Mantzaris and Daoutidis, 2004)

can be performed on the basis of this reduced order moments model.

The first part of the paper deals with the identification of the model

parameters and the validation of this model by comparison with experimental

data. A sensitivity analysis is performed in order to determine the parameters

to be identified. To complete the model of 5 ODEs, an additive equation,

which describes the dynamics of the compressor of the crystallizer is proposed

and identified from experimental data.

One objective of the present paper is also to propose (and identify) a

model suitable for control purposes, that is, which appropriately describes

the dynamic input-output behavior of the system. In our case, we are in-

terested in the dynamical response of the saturation temperature1 to the

variations of the refrigerant fluid temperature. To approximate such a dy-

namic behavior, some of the state variables of the model appear to be useless

(when looking at the simulated data). Based on physical assumptions, a

second model reduction is therefore proposed which finally leads to a new

model only composed of 3 ODEs.

The paper is organized as follows. The experimental setup and the model

of the crystallizer are described in sections 2 and 3. The identification of the

moments model from experimental data is then presented in section 4. To

1The saturation temperature of the ice is a threshold temperature, below which the
crystallization occurs. It can be linked to the ice cream viscosity, the control of which is
interesting in a production point of view.
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complete the modeling, a model of the compressor is proposed and identified

in section 5. Some examples of simulated trajectories are finally compared

with experimental data in section 6. In section 7 the second model reduction

is presented. Finally a comparison between the moments model and the

reduced order one is performed in section 8.

2. Process description

2.1. Pilot plant

The pilot plant is located at IRSTEA Antony (France). The ice cream

crystallizer is a 0.40 meter long cylindric Scraped-Surface Heat Exchanger

(SSHE), with inner diameter of 0.05 meter (see Figure 1). The sorbet mix,

which is mainly composed of sugar, gum and water, is first put in a mix

storage tank which is refrigerated at a temperature T0 of 5◦C. The sorbet mix

is then fed to the crystallizer by a piston pump with a mass flow rate denoted

mfr. Within the vessel jacket of the crystallizer, a refrigerant fluid (R22),

whose temperature Te is called the evaporation temperature, is continually

vaporizing to cool down the sorbet mix and mainly to crystallize (to freeze)

water in the sorbet. When the temperature of the sorbet mix goes below

the saturation temperature (denoted Tsat), the crystallization occurs. Some

ice crystals appear on the inner wall of the cylinder and are scraped by two

scraper blades which turn with a rotation speed denoted Nscrap and so mix

the ice.

The dasher rotation speed Nscrap and the mass flow rate mfr can be varied

directly by the user, which is not the case of the evaporation temperature

Te. The temperature of the refrigerant fluid is indeed modified by means of a
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Figure 1: Schematic representation of the SSHE (Scraped-Surface Heat Ex-
changer) WCB Model MF 50. 1. Inlet connection for sorbet mix. 2. Inlet cover bowl.
3. Rotor. 4. Scraper blades rows. 5. Heat exchange cylinder jacket with vaporizing R22.
6. Heat exchange cylinder. 7. Outlet cover bowl. 8. Outlet pipe for sorbet.

compressor, whose rotation speed is denoted Vcomp. The ranges of admissible

values for the 3 inputs Vcomp, Nscrap and mfr are given in Table 1.

Inputs Lower bound Upper bound
Compressor rotation speed Vcomp 500 rpm 2600 rpm
Dasher rotation speed Nscrap 300 rpm 1000 rpm
Mass flow rate mfr 20 kg.h−1 100 kg.h−1

Table 1: Bounds on the control inputs. rpm stands for ’rotation per minute’.

2.2. Available measurements

Two variables are accessible for on-line measurement : the outlet tem-

perature T of the ice cream and the evaporation temperature Te. These

quantities are measured every 5 seconds.

The temperature T is not measured directly at the outlet of the freezer,

but further in the outlet pipe. At the measurement point, the temperature

T can be reasonably considered to be equal to the saturation temperature

Tsat. Indeed, inside the freezer, the temperature is lower than the satura-

tion temperature so that the crystallization can proceed. But, when the ice

6



leaves the reactor through a non refrigerated pipe, there is no more crystal-

lization. The temperature of the ice increases until it reaches the saturation

temperature value. The location of the measurement point at some distance

of the reactor outlet also generates measurement delay. By denoting Tsat,m

the temperature measurement, we can assume that :

Tsat,m(t) = Tsat(t − d) (1)

where Tsat is the saturation temperature of the ice at the outlet of the freezer

and d is the measurement delay.

Note that the ice mean chord length (MCL) of sorbet was also measured

by using the focus beam reflectance method (FBRM) (see in Arellano et al.

(2012)). As these measurements are only made at equilibrium, they are only

used to validate the model reduction (see section 7.1).

Remark 1. The moments of the CSD are quantities that are often not mea-

surable directly. They may appear to be related under some conditions to the

geometrical properties of the crystal or to some physical quantities. In our

study, we will see that the saturation temperature gives an indirect measure-

ment of the third moment M3 of the CSD, whereas the mean chord length is

related to the ratio of moments M1

M0
.

3. Model of the crystallizer

The model of the crystallizer considered in this paper is composed of one

population balance equation describing the evolution of the CSD inside the
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freezer, and one energy balance equation. The definitions and units2 of all

the variables used in the sequel are given in Table 2.

3.1. Balance Equations

The ice cream crystallizer under consideration is a scraped surface heat

exchanger which is assumed to behave as a plug flow reactor. The popu-

lation balance equation considers transport, crystal growth, nucleation and

breakage, the radial diffusion being assumed to be negligible. If the plug

flow reactor is approximated, from an input-output point of view, by a Con-

tinuous Stirred-Tank Reactor (CSTR) with a transport delay3 (to account

for the fluid transport in the freezer), then we get the following simplified

equation :
∂Ψ

∂t
= −DΨ︸ ︷︷ ︸

transport

− ∂(GΨ)

∂L︸ ︷︷ ︸
growth

+ Nδ(L−Lc)︸ ︷︷ ︸
nucleation

+ Bb︸︷︷︸
breakage

(2)

where δ denotes the Dirac function and the dilution rate D is deduced from

the mass flow rate mfr by the relation:

D =
mfr

ρsV
. (3)

Growth term: the growth rate is assumed to be independent of the

2The units of the variables are the S.I. Units, except for the rotation speeds Nscrap and
Vcomp which are expressed in revolution per second (r.s−1) instead of radians per second.

3The transport delay does not appear in the equation (2) and (7) because the input
variables, that is the CSD and the temperature of the mix at the inlet of the freezer, are
constant variables.
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Definition Unit
Ψ number of crystals per meter (of the freezer) per

cubic meter of the solution at the outlet of the
freezer

m−4

Mj jth order moment mj−3

t time variable s
r radial position variable m
L crystal size variable m
Lc initial crystal size m
Ri freezer minimum diameter m
Re freezer maximum diameter m
G growth rate of the crystals m.s−1

N nucleation rate m−4.s−1

Bb net increase of crystals number by breakage m−4.s−1

Tsat saturation temperature ◦C
Te evaporation temperature ◦C
T ice temperature ◦C
T0 inlet mix temperature ◦C
α surface nucleation constant m−2.s−1.K−2

β growth constant m.s−1.K−1

V volume of the freezer m3

φi ice fraction -
Nscrap dasher rotation speed r.s−1

Vcomp compressor rotation speed r.s−1

ν breakage power coefficient -
ε breakage constant m−1

ω mass fraction of solutes in the unfrozen phase -
ω0 initial mass fraction of solute (sucrose) -
ρi mass density of ice kg.m−3

ρs mass density of solution kg.m−3

U volumetric internal energy J.m−3

µ viscosity Pa.s
γ̇ effective shear rate s−1

µmix viscosity of the unfrozen phase Pa.s
χ viscous dissipation coefficient -
ξ adjustment parameter of the viscosity -
∆H specific fusion latent heat J.kg−1

Cs solute specific heat capacity J.kg−1.K−1

Cw water specific heat capacity J.kg−1.K−1

he convective heat transfer coefficient W.m−2.K−1

S ratio of the periphery over the surface of the section m−1

D dilution rate s−1

U0 inlet energy J.m−3

mfr inlet mass flow rate kg.s−1

Table 2: Nomenclature.
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crystal size; it is given by:

G = β(Tsat − T ). (4)

In this expression, the physical meaning of the saturation temperature Tsat

is respected: it is a threshold temperature, below which (if T < Tsat) the

crystallization occurs, and the crystals grow (G > 0). On the contrary, if

T > Tsat (in warm temperature zones), the crystals are melting and G < 0.

Nucleation term: the nucleation phenomenon consists in the formation

of crystals whose size is here assumed to be characterized by Lc. Only het-

erogeneous nucleation at the freezer wall (r = Re) is considered here. The

nucleation rate N is expressed by:

N = α
2πRe

V
(Tsat − Te)

2 > 0. (5)

Breakage term: because of the scraper, the crystals can also be broken.

We assume that a particle of size L′ is broken into two particles of the same

size L. The total volume of ice is considered unchanged by the fragmentation4

and a spherical shape is assumed (as in Arellano et al. (2013)). Under these

assumptions, the relation between L′ and L is given by L′ = 21/3L and the

net increase of particles by breakage Bb, can be expressed as in Arellano

et al. (2013) by:

Bb = εNscrap φν
i

(
2 22/3 LΨ(

3
√

2L) − LΨ(L)
)

. (6)

4The sum of the volume of the 2 crystals of size L equals the volume of the crystal of
size L′.
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The breakage power coefficient ν is taken equal to 0, as in Gonzalez et al.

(2011).

Under the same hypotheses than for the population balance equation, the

energy balance equation is written as follows :

dU

dt
=D(U0 − U)︸ ︷︷ ︸

transport

+ heS(Te − T )︸ ︷︷ ︸
wall heat transfer

+ µγ̇2︸︷︷︸
viscous dissipation

(7)

with: γ̇ =2πχNscrap and S =
2Re

R2
e − R2

i

. (8)

3.2. Moments model

Applying the method of moments5 to equation (2), we get, for all j � 0

(Gonzalez et al. (2011)) :

dMj

dt
= −DMj + j G Mj−1 + N Lj

c + B
(
21− j

3 − 1
)

Mj+1 (9)

where Mj(t) =
∫∞

0
LjΨ(L, t)dL is the jth order moment of the CSD, and:

B = εNscrap. (10)

Moreover the equation (7) can be rewritten with the temperature T as

the state variable by using the following relation :

U = −∆Hρiφi + ρs (ω0Cs + (1 − ω0)Cw)T. (11)

5The method of moments consists in multiplying the population balance equation by
Lj and then integrating it from L = 0 to L = ∞.
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If we consider the ice crystals as spherical particles (as in Arellano et al.

(2013)), then we have:

φi =
π

6
M3, (12)

which, after computations, leads to :

dT

dt
=D (T0−T ) + K2 (Te−T ) + N2

scrapK3µ + K1

(
3GM2 + NL3

c

)
(13)

with the following quantities :

K0 = ρs (ω0 Cs + (1 − ω0)Cw) , T0 =
U0

K0
, (14)

K1 =
π

6

∆H ρi

K0

, K2 =
heS

K0

, K3 =
(2πχ)2

K0

. (15)

The saturation temperature is supposed to depend only on M3, that is

Tsat = Tsat(M3). As a consequence, G and N can be expressed as functions

of the variables M3 and T , and M3 and Te respectively (i.e. G = G(M3, T )

and N = N(M3, Te)). So, if the viscosity µ is assumed to depend only on

the third moment M3, the temperature T , and the dasher rotation speed

Nscrap (i.e. µ = µ(M3, T, Nscrap)), then the system composed of the four

first moment equations and the temperature equation is closed. The closure

of the system derives from the assumptions that the total volume of ice is

preserved by the fragmentation, and that the crystals are spherical. Indeed,

under these hypotheses, the third moment M3 is proportional to the total

volume of ice, and, as a consequence, is also preserved by the fragmentation.

Concretely, these assumptions lead to the cancellation of the breakage term

in the equation of M3 (21− j
3 − 1 = 0 for j = 3), and therefore to the closure
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of the equations of moments.

In the sequel we shall therefore consider the following model :

dM0

dt
= − DM0 + N + BM1 (16)

dM1

dt
= − DM1 + GM0 + NLc + c1BM2 (17)

dM2

dt
= − DM2 + 2GM1 + NL2

c + c2BM3 (18)

dM3

dt
= − DM3 + 3GM2 + NL3

c (19)

dT

dt
=D (T0 − T ) + K2 (Te − T ) + N2

scrapK3µ + K1

(
3GM2 + NL3

c

)
(20)

with µ = µ(M3, T, Nscrap), G = G(M3, T ), N = N(M3, Te), B = B(Nscrap)

and the constants c1 = 2
2
3 − 1 and c2 = 2

1
3 − 1.

This model is a dynamic version of the one developed by research teams

of AgroParisTech and IRSTEA Antony (France), and described in Arellano

et al. (2013) and Gonzalez et al. (2011).

3.3. Characteristic quantities of the product

The saturation temperature and the viscosity of the ice both depend on

the formula of the mix used (mainly on ingredients content) and on the

desired final product. The sorbet considered in this study is only composed

of water, gum and sugar, and no air is added during the crystallization.

Saturation temperature: the expression of the saturation tempera-

ture (in [◦C]) has been determined experimentally from the commercial mix

(Gonzalez, 2012); it is given by:

Tsat(M3) = −7.683ω + 8.64ω2 − 70.1ω3, (21)
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where, the mass fraction of sugar in the unfrozen phase, ω, depends on the

ice fraction φi in the following way:

ω =
ω0

1 − ρi

ρs
φi

=
ω0

1 − ρi

ρs

π
6
M3

. (22)

According to the “liquidus curve” experimentally determined for the sorbet

mix in Gonzalez (2012), Tsat is a decreasing function6 of M3.

Viscosity: the expression of the viscosity (in [Pa.s]) has been obtained

empirically in Gonzalez (2012); it is given by:

µ(M3, T, Nscrap) = µmix ×
(
1 + 2.5 φi + 10.05 φ2

i + 0.00273 ξ e16.6 φi
)
, (23)

where µmix, the viscosity of the unfrozen phase, is given by:

µmix = 39.02 × 10−9 × γ̇0.600−1e
2242.38
T+273 × (100 ω)2.557. (24)

4. Parameter identification and validation of the model of the crys-

tallizer

The model under consideration in this paper will then be used for a con-

trol purpose. More precisely, the goal is in the end to control the saturation

temperature of the ice cream at the outlet of the freezer. As the control

input is the evaporation temperature, the objective of the modeling is to

accurately describe the input-output behavior of the system, that is the dy-

6The derivative of function Tsat is given by T ′
sat(M3) = ρi

ρs

pi
6

ω2

ω0
×(−7.683 + 2 × 8.64ω − 3 × 70.1ω2

)
< 0.
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namical response of the saturation temperature Tsat to the input Te. As a

consequence, the model will be validated by comparison between the simu-

lated saturation temperature values and the measured ones. Before that, a

sensitivity analysis followed by an identification step will be performed, to

first determine the more sensitive parameters and then estimate their values.

For a review about model identification for crystallization processes, one can

refer to Rawlings et al. (1993).

4.1. Sensitivity analysis

Before identifying the parameters model, we first study the sensitivity

of the model to its parameters. To evaluate the effect of the variation of a

parameter on the model, we use the following quantity (as in Bernard et al.

(2001)):

σx(p) =
1

T

∫ t0+T

t0

∣∣∣∣x(t, X0, p) − x(t, X0, p
ref)

x(t, X0, pref)

∣∣∣∣ dt, (25)

where x is a variable of the model, p is the parameter, X0 is the initial

conditions of the model, t0 is the initial time and t0 + T the given final

time, pref is the reference value of parameter p and x(t, X0, p) is the value

of the variable x at time t obtained by simulation of the model with initial

conditions X0 and parameters value p. The quantity σx(p) can be viewed as

a mean relative difference between the reference value x(t, X0, p
ref) of x and

the one obtained for the parameter value p.

The value of σx(p) has been computed for the parameters ε, Lc, α, β, he,

ξ and χ, which, among all the parameters of the model, are the ones which

are either ill-known or possibly dependent on some neglected phenomena or

external environmental conditions (as, for example, the temperature of the
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Figure 2: Sensitivity analysis: profile of the input Te used for the computation of σx(p).

room in which the freezer is located). In comparison, Ri, Re, V are some

constant physical parameters depending on the geometry of the freezer; ρi,

ρs, ∆H , Cs, Cw are well-known constants; and ω0 and T0 respectively depend

on the mix and the process.

As for the variable x, the effect on all the state variables M0, M1, M2,

M3, and T and the one on Tsat have been studied. However, as explained

before, we focus more specifically on the dynamical response of the saturation

temperature.

The choice of the reference trajectories of the model is obviously impor-

tant. They have been obtained by simulation of the model with the following

input variable values: Nscrap = 750 rpm and mfr = 50 kg.h−1; the initial con-

ditions M0(0) = M1(0) = M2(0) = M3(0) = 0, T (0) = T0 which correspond

to the starting up of the process; and the constant parameter values given in

Table 3. The input profile of the evaporation temperature is the one given in

Figure 2. Finally, the initial and final times are respectively taken equal to

t0 = 200 s and t0 +T = 600 s, time instants at which the process is stabilized.

The results are given in Figure 3.
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Figure 3: Sensitivity analysis: evolution of the quantity σx(p) defined by (25) for
different parameters and variables of the model, for p going from bmin to bmax (see Table
4).
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T0 5◦C Lc 5 10−6 m ρi 1000 kg.m−3

ν 0 Ri 0.016 m ρs 1100 kg.m−3

ε 20 m−1 Re 0.025 m ∆H 333.6 103J.kg−1

ω0 0.25 α 1 109 m−2.s−1.K−2 Cs 1676 J.kg−1.K−1

χ 2 β 5 10−7 m.s−1.K−1 Cw 4187 J.kg−1.K−1

ξ 350 V 3.87 10−4 m3 he 2000 W.m−2.K−1

Table 3: Sensitivity analysis: constant parameters values used for the simulation of
the reference trajectories (chosen according to Arellano et al. (2013) and Gonzalez et al.
(2011)).

parameter unit bmin bmax

ε m−1 0 40
Lc m 0 10−6

α m−2.s−1.K−2 3 × 108 7 × 109

β m.s−1.K−1 0 7 × 10−6

he W.m−2.K−1 1000 4000
ξ − 0 700
χ − 0 40

Table 4: Sensitivity analysis: minimum and maximum bounds bmin and bmax of the
parameters on which the sensibility analysis has been performed.

First note that the variations of ε, Lc, α and ξ have a very low impact

on Tsat. The parameter ε is the breakage constant; as we assume that the

volume of the ice is conserved when a crystal is divided by breakage, it can

be expected that M3 (and so Tsat) that represents the volume of crystals

per cubic meter, is not very much affected by a variation of ε. The possible

values of Lc are very small: the effect of the considered variations of Lc still

remains too small to affect the value of M3. This obviously makes sense,

because Lc is linked to the nucleation phenomenon, by which the number of

crystals, and not the volume, increases. For the same reason, the effect of

the variation of the surface nucleation constant α is also small. Finally ξ is

related to the viscosity term of the model, which, for the considered range of

parameter variation, does not influence the volume of the crystals a lot.
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The growth constant β influences the value of Tsat more than the preceding

parameters. This is physically consistent with the fact that the volume of

the ice depends on the growth rate G. But the parameters which at the most

affect Tsat are he end χ. It is not surprising as he is the convective heat transfer

coefficient, which consequently has a direct impact on both temperatures T

and Tsat, and χ is the viscous dissipation coefficient on which depends the

temperature of the ice.

4.2. Identification of the parameters

According to the sensitivity analysis performed in Section 4.1, the satura-

tion temperature Tsat is mostly influenced by the parameters he and χ. Let’s

now see if the identification of these two parameters is sufficient to obtain

simulated trajectories close to the experimental data.

For that, we have performed several identifications from 12 sets of exper-

imental data. The identifications were made on each of the 12 experimental

data sets separately. Indeed, as it will be discussed later, some parameters of

the model depend on some neglected phenomena or external environmental

conditions and can therefore vary from one experiment to the other. As a

consequence, it is impossible to find a unique set of parameter values for

which the model will explain well the 12 experimental data sets together.

For each i = 1 : 12, that is for each experimental data set, we will denote

in the sequel N i the number of measurement instants, tk,i, k = 1 : N i the

measurement instants, T k,i
sat,m the measurement of the saturation temperature

at time tk,i, di the measurement delay, X0,i the initial conditions values, and

Uk,i the control inputs values at time tk,i.

To identify the parameters (vector p in the sequel) of the model, we used
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the Nelder-Mead simplex method (function fminsearch of Matlab) to solve

the least-squares minimization problem:

p̂ = arg min
p

Ei(p) (26)

where Ei(p) is the least-squares error on the ith experimental data set which

is given by:

Ei(p) =
1

N i

N i∑
k=1

(
Tsat(t

k,i − di, X0,i, Uk,i, p) − T k,i
sat,m

)2

, (27)

with Tsat(t
k,i−di, X0,i, Uk,i, p) the value of the saturation temperature at time

tk,i − di obtained by simulation of the model (16-20) with initial conditions

X0,i, control inputs values Uk,i and parameters values p. The value of the

measurement delay di considered for the identification is discussed in para-

graph 4.4. The control inputs values Uk,i are either known (the mass flow rate

mfr and the dasher rotation speed Nscrap) or measured (the evaporation tem-

perature Te). As for the initial conditions X0,i =
(
M i,0

0 , M i,0
1 , M i,0

2 , M i,0
3 , T i,0

)
,

they are deduced from the measurements T k,i
sat,m of Tsat in the following way:

M i,0
3 = T−1

sat (T
0,i
sat,m), (28)

where T−1
sat is the inverse of the restriction of function Tsat (see formula (21))
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to the interval
[
0, ρs

ρi

6
π

[
of admissible physical values7 of M3; and:

∀j �= 3, M i,0
j =

M i,0
3

L3−j
c

and T i,0 = T 0,i
sat,m − 0.25. (29)

The set of parameter values used for the initialization of the identification is

the one given in Table 3.

The set of parameters to be identified has been divided in 3 subsets,

depending on their influence on the saturation temperature value. We then

have8:

• subset 1: he and χ, the most influential parameters;

• subset 2: β whose influence on Tsat is lower;

• subset 3: α, ξ and Lc, the less influential parameters.

Based on these 3 subsets, we have performed different identifications, the

number of identified parameters varying from 1 to 6 as explained in Table 5.

In this table the distribution of the identified parameters in the 3 subsets is

given, depending on the total number of identified parameters. For example,

for an identification of 5 parameters, we will have: 2 parameters of the subset

1 (that is he and χ), 1 parameter of the subset 2 (that is β) and 2 parameters

of the subset 3 (that is either α and ξ, α and Lc, or ξ and Lc). The values

of the parameters which are not identified are the ones given in Table 3.

7Indeed, the mass fraction of solutes in the unfrozen phase ω is necessarily positive.
From (22), we then deduce that M3 < ρs

ρi

6
π

8Note that the parameter ε has not been identified, its influence on the saturation
temperature being too small compared to any of the other parameters.
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parameters to be identified
total subset 1 subset 2 subset 3

1 1 − −
2 2 − −
3 2 1 −
4 2 1 1
5 2 1 2
6 2 1 3

Table 5: Parameters identification of the freezer model: Distribution of the param-
eters to be identified between the 3 subsets, depending on the total number of parameters
to be identified.

The results are given in Table 6. The first line of the table corresponds

with the reference model, that is the one characterized by the initial set of

parameters given in Table 3. The identification results are then presented

depending on the number of identified parameters. The quality of the iden-

tification is estimated in terms of comparison between the simulations of

the identified model and the experimental data. For the identification of n

parameters, we introduce the following quantities:

• mn
E and σn

E : respectively the mean value and the standard deviation,

on all the 12 experiments, of the minimal value of Ei(p) on the set of

all parameters distribution p of size n (see Table 5):

mn
E =

1

12

12∑
i=1

min
size(p)=n

Ei(p),

σn
E =

(
1

12

12∑
i=1

(
min

size(p)=n
Ei(p)

)2

− m2
E

)1/2

;

• pn
E: the percentage of improvement of the identification results (in

terms of mn
E value, and with respect to the reference model) in compar-

ison with the best identification results obtained with m < n identified
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parameters:

pn
E = 100 × mbn

E − mn
E

m0
E

, with bn = arg min
m<n

mm
E .

For each identification, only 2/3 of the data set are used to compute the

estimate p̂, the last 1/3 being saved for the cross validation. In Table 6,

we use the subscripts cv and t to point out when the computation of Ei(p)

(which appears in the expressions of mn
E and σn

E ) has been performed on

the last 1/3 of the data set (“cross validation” data) or on the whole data

set (“total” set of data).

n: number of mn
Ecv

mn
Et

σn
Et

pn
Et

parameters (×10−2) (×10−2) (×10−2) (%)
0 95.3 95.8 60.6 −
1 9.38 8.04 5.61 90.2
2 1.88 0.988 0.604 8.10
3 1.90 1.00 0.583 −3.35 10−3

4 1.74 0.942 0.573 5.15 10−2

5 1.71 0.941 0.531 −1.85 10−2

6 1.96 1.04 0.613 −1.67 10−1

Table 6: Parameters identification of the freezer model: estimation of the quality
of the identified model depending on the number of identified parameters.

From Table 6, we first conclude that the identification process conse-

quently increases the quality of the model. Indeed, by identifying only 1

parameter (he or χ), the value of m0
E has been decreased of 90.2%.

The results of the identification of both parameters he and χ (n = 2) are even

better, the value of m2
E being 8.10% smaller than m1

E . However, the addition

of 1 identified parameter or more (n � 3) does not improve the quality of the

model any more. As expected from the sensitivity analysis, the identifica-

tion of the two parameters he and χ is therefore sufficient to get an accurate
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model (see Section 6 for a comparison between some experimental data and

the associated simulated trajectories).

We also note that the values of mn
Ecv

are obviously greater than the ones

of mn
Et

(about 2 times greater) but that they are even though sufficiently

small for control purposes.

4.3. Comments on the identified values of parameters he and χ

The identification process presented in the previous section leads to the

conclusion that the identification of parameters he and χ is sufficient to get

a good input-output approximation of the dynamic behavior of the process.

However, each identification has been performed on each data set separately.

We therefore have obtained one set of identified parameter values per data set

and per identification. Let’s now make a few comments about the identified

values.

First focus on the identified values of he and χ for a given set of data. For

identifications of at least 2 parameters, the obtained identified value of he

does not vary a lot from one identification to the other. At mean (on the 12

experiments), the standard deviation is indeed equal to 111.7 W.m−2.K−1,

the mean values ranging from 1800 W.m−2.K−1 to 3600 W.m−2.K−1. The

variations of the identified value of χ are slightly greater. To quantify these

variations, we only consider identifications in which the parameter ξ is not

identified. Indeed, both parameters ξ and χ are related to the viscous dissi-

pation term. In the input-output point of view, their respective contributions

to the variation of the output value can not be distinguished by the identi-

fication process. As a consequence, when ξ is also identified, the obtained
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identified values of χ can vary a lot in comparison with other identifica-

tions. If we do not consider identifications in which ξ is identified, the mean

standard deviation is equal to 0.1169, the mean values ranging from 0.01 to

1.02. The fact that the identified values of he and χ do not vary a lot with

respect to the number of parameters to be identified shows that their contri-

bution to the saturation temperature dynamic are essential and can not be

compensated by other parameters.

Let now look at the identified values of he and χ obtained when only both

of them are identified. In Table 7 the standard deviation and the minimal,

maximal and mean values of he and χ computed on the set of the 12 exper-

iments are given. As we can see, the identified values can vary significantly

min max mean standard deviation
he [W.m−2.K−1] 1827 3486 2496 541.1

χ [−] 3.116 10−3 0.9782 0.4223 0.3326

Table 7: Parameters identification of the freezer model: identified values of he

and χ when only both of them are identified. The standard deviation and the minimal,
maximal and mean values are computed on the set of the 12 experiments.

from one experiment to the other. As a consequence, is is impossible to find

a unique set of parameters values for all the experiments.

Several factors can explain the variations of the values of these parameters.

For example, the heat losses to the ambiance have not been considered in the

modeling: as a consequence, the parameter he should vary with the temper-

ature of the room in which is located the freezer. The heat transfer between

the evaporation temperature and the ice is also directly affected by the thick-

ness of the ice layer which is formed on the wall (by nucleation). We know

that this thickness vary depending on the dasher rotation speed, which is

also not taken into account in the proposed model.
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4.4. Measurement delay

The value d of the measurement delay has also been identified from the

experimental data, using an identification process similar to the one described

in paragraph 4.2. The obtained identified value is given in Figure 4 as a

function of the mass flow rate. As we can see, the larger the mass flow rate,
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Figure 4: Measurement delay: identified values of the measurement delay d versus the
mass flow rate mfr.

the smaller the delay. Indeed, the delay measurement is mainly due to the

distance between the outlet of the freezer and the measurement point: the

ice reaches it more rapidly when the mass flow rate is large.

From Figure 4, we also note that, for a given value of the mass flow rate

(mfr = 25 kg.h−1 for example), the value of the measurement delay varies

from one experiment to another. This can be due to several other factors, as

the viscosity of the ice, or the value of the evaporation temperature.

5. Model of the compressor

According to the responses of the evaporation temperature Te to some

step inputs of the compressor rotation speed Vcomp (see Figure 5a.), the dy-
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namics of the compressor (in the input Vcomp - output Te point of view) can

be approximated by a first order equation with a nonlinear gain, i.e. :

dTe

dt
= − 1

τc
Te +

1

τc
Gc, (30)

where Gc = Gc(Vcomp, mfr) is the nonlinear gain which is assumed to depend

on Vcomp and mfr, and τc is the time constant. Gc and τc have been identified

separately.

5.1. Identification of the time constant τc

To identify τc, we used 3 experimental data sets obtained for different

step inputs of the compressor rotation speed Vcomp. The values of mfr, Nscrap,

and the initial and final values of the step input Vcomp are given in Table 8

for each data set.

step mfr Nscrap initial Vcomp final Vcomp

number [kg.h−1] [rpm] [rpm] [rpm]
1 25 750 750 600
2 50 652 562 1025
3 65 445 1300 750

Table 8: Identification of the model of the compressor: values of mfr, Ncrap, and
the initial and final values of the step input Vcomp for each experimental data sets used
for the identification of the time constant τc of the Te dynamic.

After normalization of the data sets, we applied the Simplified Refined In-

strumental Variable method for Continuous-time model (SRIVC - see Young

(2002); Garnier and Young (2004)); we get the following identified value of

τc:

τc = 31.77 [s]. (31)
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Figure 5: Model of the compressor a. identification of the time constant τc. b.
identification of the nonlinear gain Gc, for mfr = 50 kg.h−1 and Nscrap = 750 rpm.

In Figure 5a, the trajectory obtained by simulation of model dy
dt

= − 1
τc

y +

1
τc

u(t) with u(t) = −1(t) and τc given by (31) is compared to the experimental

normalized data; as expected, the model fits well the data.

5.2. Identification of the nonlinear gain Gc

The nonlinear gain Gc has been identified from a data set composed of

68 measurements of Te at equilibrium, obtained for different values of mfr

and Vcomp, going from 25 kg.h−1 to 75 kg.h−1 for mfr and from 520 rpm to

1487 rpm for Vcomp. As identification model for the nonlinear gain Gc, a

polynomial function of degree 2 of the following form has been chosen:

f(Vcomp, mfr) = a0 + a1 mfr + a2 m2
fr + a3 Vcomp + a4 V 2

comp. (32)
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The estimations of parameters aj , j = 0 : 4 have been obtained by resolution

of the least squares problem:

{aj}j=0:4 = arg min
aj

68∑
i=1

(
f(V i

comp, mfr
i) − T i

e

)2
,

where
(
V i

comp, m
i
fr, T

i
e

)
i=1:68

are the points of the experimental data set. The

obtained values of aj , j = 0 : 4 are given here after:

a0 = −1.122, a1 = −3.025 102, a2 = 1.386 104,

a3 = −1.370, a4 = 2.687 10−2. (33)

As an illustration, the curve of the estimated Gc as a function of Vcomp

(mfr being kept constant and equal to 25 kg.h−1) is plotted in Figure 5b.

and compared to the experimental data used for the identification. As we

can see, the qualitative behavior of the function is good. However, we also

note that, from one experiment to the other, there can be large differences

(2◦C or more) between the evaporation temperature values. In the control

point of view, this “modeling error” can be compensated by the control law,

because it only affects the gain, and not the dynamics of Te. But, to compare

the evaporation temperature measurement data with the model (30), we have

introduced in the sequel an additive adjustment parameter θi, which depends

on the experimental data set under consideration: this parameter enables

to compensate the static error. For the ith experimental data set, we will

therefore have :

Gc(Vcomp, mfr) = f(Vcomp, mfr) + θi, θi ∈ R. (34)
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As we shall see in paragraph 6, this constant adjustment parameter will be

sufficient to get a good approximation of Te. It corresponds to a translation

of the graph of function f .

6. Comparison between some simulated trajectories and experi-

mental data

For illustration, we show in Figure 6 an example of trajectories obtained

by simulation of model (16-20), after identification of parameters he and χ

from experimental data. Their identified values are given here after:

he = 3.106 103 [W.m−2.K−1], χ = 3.117 10−3 [−]. (35)

For the considered experiment (denoted experiment A in the sequel), the

mass flow rate mfr and the scraper rotation speed Nscrap were constant and

respectively equal to 50 kg.h−1 and 750 rpm. The profile of Te is the one given

in Figure 7. The simulated saturation temperature is compared to the whole

set of experimental data, including the data used for the identification of he

and χ, and the ones saved for the cross validation. We have:

K∑
k=1

∣∣∣∣∣T
(16−20)
sat (tk,i) − T k,i

sat,m

T k,i
sat,m

∣∣∣∣∣ (tk,i − tk−1,i
)

= 1.342 10−2, (36)

where T
(16−20)
sat (tk,i) is the value of the saturation temperature at time tk,i

obtained by simulation of model (16-20).

Remark 2. The results obtained with another experimental data set (de-

noted experiment B in the sequel) are given in Figure 10. For this data set,
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Figure 6: Parameters identification of the freezer model: simulated trajectories of
the state variables of the identified model, and comparison of the simulated saturation tem-
perature with experimental data (experiment A: mfr = 50 kg.h−1 and Nscrap = 750 rpm).

the quantity defined in (36) is equal to 3.559 10−3.

In Figure 7, the model of the compressor (30), with the identified value

(31) of τc and the identified expression (34,33) of Gc, is compared with one

experimental data set which has not been used for the identification process

of τc and Gc (cross validation). These data correspond to the experiment

A (presented in Figure 6). The adjustment parameter θi is taken equal to

0.3012 ◦C. It has been estimated from the first 2/3 of the data set by means

of the State Variable Filter (SVF) method. As we can see, the value of Te

obtained by simulation of the model is close to the experimental data values

on the whole data set (identification and cross validation parts).

31



0 500 1000 1500
−20

−19

−18

−17

−16

−15

Time [s]

E
va
p
or
at
io
n

te
m
p
er
at
u
re

T
e
[◦
C
]

Experimental data
Compressor model (30)

0 500 1000 1500
400

600

800

1000

1200

1400

1600

Time [s]

C
om

p
re
ss
or

ro
ta
ti
on

sp
ee
d
V
co

m
p
[r
p
m
]

Figure 7: Model of the compressor - cross validation. Top: compressor rotation
speed Vcomp. Bottom: evaporation temperature Te, comparison between experimental
data and simulated values. (experiment A: mfr = 50 kg.h−1 and Nscrap = 750 rpm)

7. Model reduction

As shown in the previous sections of the paper, the model (16-20) well

describes the input-output behavior of the crystallizer. However, when look-

ing at the simulated trajectories of the model (see Figure 6), we observe that

the dynamics of the moments M0, M1, M2 and M3 are close to each other,

which suggests that the model could be simplified.

In the control problem point of view, the most important variable of the

model is the third moment M3 on which depends the variable to be controlled,

that is the saturation temperature Tsat. The equation of M3 only depends
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explicitly on M3, M2, T and the inputs mfr and Te. The link with the other

state variables M0 and M1 is only made through the variable M2. As a

consequence, if we can find a relation between M2 and M3, then we will get

a reduced order model only composed of the equations of M3 and T .

7.1. Mean crystal size and approximation of M1 and M2

Assuming crystals of spherical shape, the mean crystal size, denoted Lmean

in the sequel, can be expressed as the quotient of M1, that is the sum of

crystals lengths, by M0, that is the total number of crystals:

Lmean =
M1

M0

. (37)

The moment M3 represents the sum of the volumes of the crystals. By

dividing M3 by Lmean, we get a quantity which is representative of the sum

of the areas of the crystals. As a consequence, it can be compared to the

moment M2 which also quantify the total area of ice crystals.

Let us first compare the quantities M2 and M0

M1
M3 in terms of their dy-

namic equations. We have:

d
dt

(
M0

M1
M3

)
= dM3

dt
M0

M1
+ M3

M2
1

(
dM0

dt
M1 − M0

dM1

dt

)
= −DM0

M1
M3 + G

(
3M0

M1
M2 − M2

0

M2
1
M3

)
+ N

(
M0

M1
L3

c + M3

M1
− M0M3

M2
1

Lc

)
+ B

(
1 − c1

M2M0

M2
1

)
M3.

Assume now that M2 is proportional to M0

M1
M3, and M1 is proportional to
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M0

M1
M2 and denote η2 and η1 the proportionality coefficients:

M2 � η2
M0

M1
M3, and M1 � η1

M0

M1
M2. (38)

We then have η2
M0

M1
M2 � η2

η1
M1 and η2

M2
0

M2
1
M3 � M0

M1
M2 � 1

η1
M1, so that :

3η2
M0

M1
M2 − η2

M2
0

M2
1
M3 � 3η2−1

η1
M1. (39)

In the same way, we get:

η2

(
1 − c1

M2M0

M2
1

)
� η2(η1−c1)

η1
, (40)

and:

η2

(
M0

M1
L3

c + M3

M1
− M0M3

M2
1

Lc

)
� η2

L3
c

Lmean
+ 1

η1
L2

mean − 1
η1

LmeanLc. (41)

Let us denote L̃2
c the positive quantity η2

L3
c

Lmean
+ 1

η1
L2

mean − 1
η1

LmeanLc.

We finally get:

d

dt

(
η2

M0

M1
M3

)
� −DM2+

3η2−1
η1

GM1+NL̃2
c+

η2(η1−c1)
η1

BM3, (42)

whereas
dM2

dt
= −DM2+ 2GM1+NL2

c+ c2BM3. (43)

As we can see, both equations (42) and (43) have the same structure. The

differences between the two equations can be expressed as variations of the

values of the parameters β, ε and Lc. Indeed, equation (42) can be written

exactly with the same expression than the equation (43), but with:

34



• β̃ := 3η2−1
2η1

β in place of β,

• ε̃ := η2(η1−c1)
c2η1

ε in place of ε,

• L̃c in place of Lc.

According to the sensitivity analysis performed in paragraph 4.1 (see

Figure 3), it clearly appears that the parameters β and ε do not influence

the value of M2 a lot. As a consequence, if β̃ and ε̃ are respectively close to

β and ε, than, the difference between the growth and breakage terms of the

two equations will be negligible.

The parameter L̃c is not constant because it depends on Lmean := M1

M0
. By

simple computations, we can show that, if 1 > η1η2, the function Lmean �→
η2

L3
c

Lmean
+ 1

η1
L2

mean − 1
η1

LmeanLc is increasing9 on the interval [Lc, +∞). More-

over, some experimental studies performed on the process (Arellano et al.,

2012) have shown that, in the range of admissible input controls values (see

Table 1), and for the same commercial mix than the one considered in this

work, the mean crystal size Lmean at the outlet of the freezer ranged from

5µm = Lc to 9 µm < 2Lc.

Under the hypothesis that Lc < Lmean < 2Lc, we then conclude that:

η2L
2
c < η2

L3
c

Lmean
+ 1

η1
L2

mean − 1
η1

LmeanLc︸ ︷︷ ︸
L̃c

2

< η1η2+4
2η1

L2
c. (44)

As a consequence, if
√

η2 and
√

η1η2+4
2η1

are close to 1, then the difference

9The derivative of the function is given by f ′(Lmean) =
1

η1L2
mean

(−η1η2L
3
c + 2L3

mean − LcL
2
mean

)
and is such that f ′(Lmean) > 0, ∀Lmean � Lc, if

1 > η1η2.
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between Lc and L̃c will always remain small, which, according to the sensi-

tivity analysis performed in Section 4.1 (see Figure 3), will lead to only small

differences between the corresponding values of M2.

Finally, if 1 > η1η2,
3η2−1
2η1

, η2(η1−c1)
c2η1

,
√

η2 and
√

η1η2+4
2η1

are close to 1, than

the approximation:

M2 � η2
M0

M1
M3 (45)

can be justified.

Let us check this approximation on some simulations of the model iden-

tified from experiment A data (see Figure 6). In Figure 8, are given the

plots of M0

M1
M3 versus M2, and M0

M1
M2 versus M1 of 2 simulations: the one

presented in Figure 6 for comparison with the experimental data (simulated

data 1), and the simulated response to a random series of steps10 of Vcomp

(simulated data 2). Both plots exhibit a proportional relationship between

the two variables, which, in that case, validates the assumption (38).

The estimated values11 of η1 and η2 are given here after:

η1 = 0.8627 and η2 = 0.7262, (46)

10The input Vcomp is composed of 40 successive steps, the values of which have been
randomly chosen in the set {200 × k, k = 1 : 13}. Each step lasts 300 s, so that the global
simulation is 12 000 s long. With such an input, the range of simulated M3 values is
maximal.

11These values have been estimated from the simulated response to the Vcomp steps
input (simulated data 2) by use of the least squares method.
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Figure 8: Approximation of moments M2 and M1: plots of M2 versus M0
M1

M3, and M1

versus M0
M1

M2. The proportionality coefficients η1 and η2 are respectively equal to 0.8627
and 0.7262. (experiment A: mfr = 50 kg.h−1 and Nscrap = 750 rpm)

which leads to:

3η2 − 1

2η1

= 0.6832,
η2 (η1 − c1)

c2η1

= 0.8916,

√
η2 = 0.8522, and

√
η1η2 + 4

2η1

= 1.638.

For the simulated trajectories presented in Figure 6 (experiment A), we have:

eM1 :=
1

T

∫ t0+T

t0

∣∣∣∣∣M1(t) − η1
M0(t)
M1(t)

M2(t)

M1(t)

∣∣∣∣∣ dt = 4.651 10−3,

eM2 :=
1

T

∫ t0+T

t0

∣∣∣∣∣M2(t) − η2
M0(t)
M1(t)

M3(t)

M2(t)

∣∣∣∣∣ dt = 8.690 10−3.

The results obtained with the experiment B are given in Figure 10. For

this data set we obtain the following values:

η1 = 0.8943, η2 = 0.7765, eM1 = 7.565 10−3, eM2 = 1.876 10−2. (47)
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The values of η1 and η2 have been computed for each of the 12 experi-

ments. The standard deviation and the minimal, maximal and mean values

of η1 and η2 (on the set of the 12 experiments) are given in Table 9. We note

that the standard deviation is not very large, which means that the values

of η1 and η2 do not vary a lot from experiment to the other.

standard
min max mean deviation

η1 0.8529 0.9207 0.8918 0.02101
η2 0.7077 0.8287 0.7757 0.03692
b1 6.001 104 1.177 105 8.713 104 2.069 104

b2 9.911 103 4.484 104 2.890 104 1.113 104

Table 9: Identification of parameters for the reduced order model: identified
values of η1, η2, b1 and b2. The standard deviation and the minimal, maximal and mean
values are computed on the set of the 12 experiments.

7.2. Reduced order model

The mean crystal size Lmean is a quantity that can be measured (Arellano

et al., 2012). If this measurement is available on-line, it can be viewed as an

input of the following system composed of only two equations:

dM3

dt
= − DM3 + 3G

η2

Lmean

M3 + NL3
c (48)

dT

dt
=D (T0 − T ) + K2 (Te − T )

+ N2
scrapK3µ + K1

(
3G

η2

Lmean

M3 + NL3
c

)
. (49)

In the case where the measurement of Lmean is not available (as it is the case

for the data sets considered in this paper), an estimation of Lmean has to be

considered.

In Arellano et al. (2012), it is shown that when the evaporation temperature
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decreases, the mean crystal size Lmean decreases, whereas the ice mass fraction

φi increases. In other words, the greater the ice mass fraction, the smaller the

mean crystal size. As the ice mass fraction φi is proportional to the moment

M3 (see (12)), we can therefore express Lmean as a decreasing function of

the moment M3 (except in the neigbourhood of M3 = 0 where the mean

crystal size has to be equal to 0). According to the results presented in

Arellano et al. (2012), this function does not depend significantly on the

dasher rotation speed Nscrap, but can vary with the mass flow rate mfr. We

so have:

Lmean = Lmean(mfr, M3), (50)

and so, from (45):

M2 � η2
1

Lmean(mfr, M3)
M3 := M2(mfr, M3), (51)

where M3 �→ M2(mfr, M3) is a positive function wich is increasing when

M3 �→ Lmean(mfr, M3) is decreasing12. This finally leads to the following

reduced order model:

dM3

dt
= − DM3 + 3GM2(mfr, M3) + NL3

c (52)

dT

dt
=D (T0 − T ) + K2 (Te − T )

+ N2
scrapK3µ + K1

(
3GM2(mfr, M3) + NL3

c

)
. (53)

12The derivative of function f : M3 �→ M2(mfr, M3) is given by f ′(M3) =
1

Lmean(mfr,M3)2
(η2Lmean(mfr, M3) − η2∂M3 [Lmean(mfr, M3)] M3).
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The determination of the expression of Lmean(mfr, M3) can be made from ex-

perimental measurements of the mean crystal size, as the ones presented in

Arellano et al. (2012). However, in our case, recall that the objective is to

get a model which accurately describes the time evolution of the saturation

temperature, in an input-output point of view. As a consequence, the iden-

tification of Lmean(mfr, M3) (and of M2(mfr, M3)) will be made directly from

the numerical simulations.

Consider the model identified from experiment A data (Figure 6), for

which mfr = 50 kg.h−1. The plots of M2 versus M3, and M1

M0
(= Lmean) versus

M3 are given in Figure 9 for the simulated data 1 (experiment A simulated

trajectories) and 2 (simulated response to the Vcomp steps input). The plot

of M2 versus M3 shows a relationship between the two variables close to a

line. However, to be physically realistic, the function M3 �→ M2(mfr, M3)

has to be such that M2(mfr, 0) = 0. As a consequence, we have considered a

function of the form:

M2(mfr, M3) = Mλ
3 [b1(mfr)M3 + b2(mfr)] , λ > 0. (54)

To obtain a good estimation of Lmean, we also need to have Lmean(mfr, 0) = 0

(see the plot of M1

M0
versus M3), which leads to the constraint λ < 1 (because

from (51), Lmean(mfr, M3) = η2M
1−λ
3 / [b1(mfr)M3 + b2(mfr)]). Several values

of λ have been tested. The functions identified with the least squares method

from the simulated data 2 are plotted in Figure 9. The identified functions

M3 �→ Lmean(50, M3) and M3 �→ M2(50, M3) obtained with λ = 3/4 are

the ones which fit the simulated data at best. The corresponding identified
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values of b1(50) and b2(50) are given here after :

b1(50) = 6.001 104, b2(50) = 3.731 104. (55)

Some experimental data taken from the paper of Arellano et al. (2012)
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Figure 9: Reduced order model: plots of M2 versus M3, and Lmean versus M3 for
identification of the functions M3 �→ M2(mfr, M3) and M3 �→ Lmean(mfr, M3). (experiment
A: mfr = 50 kg.h−1 and Nscrap = 750 rpm)

have also been considered for comparison with the identification function

Lmean(50, M3). Among the 15 experiments presented in Arellano et al. (2012),

3 have been performed13 with the same values of the mass flow rate and the

dasher rotation speed than the ones used for the numerical simulation of

13The 3 experiments we are talking about are the runs number 10, 13 and 14 of Table
1 in Arellano et al. (2012).

41



Figure 9, that is mfr = 50 kg.h−1 and Nscrap = 750 rpm. The 3 experiments

are presented in Table 10 in which the evaporation temperature, and the

mean values of both the ice mass fraction and the mean chord length are

given. The 3 experimental data points represented in Figure 9 correspond to

Te [◦C] mean chord length [µm] φi [%]
−15.3± 0.1 6.5 ± 0.2 28
−19.8± 0.1 6 ± 0.2 37
−10.6± 0.1 8.1 ± 0.1 14

Table 10: Experimental data from the paper Arellano et al. (2012): evaporation
temperature, mean chord length and ice fraction values measured during a crystallization
performed with mfr = 50kg.h−1 and Nscrap = 750 rpm.

these 3 experiments. The plotted values have been deduced from the values

given in Table 10 in the following way:

• the value of M3 is deduced from φi by the relation (12).

• the value of Lmean is not directly equal to the Mean Chord Length

(MCL). Indeed, as explained in Wynn (2003), the MCL of a sphere is

π/4 � 0.785 times smaller than its diameter. This value is nevertheless

theoretical; the values of Lmean in Figure 9 are obtained by dividing the

MCL by 0.725.

The identified function Lmean(50, M3), and the quantity M1

M0
, give a good

estimation of the mean crystal size for the largest values of M3. For small

values of M3, the estimation is less good, but the qualitative behavior remains

consistent.

The values of b1(mfr) and b2(mfr) have been computed for each of the

12 experiments considered in this paper. The standard deviation and the
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Figure 10: Parameters identification of the freezer model: Top: simulated trajecto-
ries of the saturation temperature and comparison with experimental data. Bottom: plots
of M2 versus M0

M1
M3, M1 versus M0

M1
M2, and M2 versus M3. (experiment B: mfr = 25 kg.h−1

and Nscrap = 750 rpm).

minimal, maximal and mean values of b1(mfr) and b2(mfr) (on the set of

the 12 experiments) are given in Table 9. For all the 12 experiments, the

approximation (54) with λ = 3/4 leads to a good input-output approximation

of the system. The results obtained with the experiment B are given in Figure

10. For this data set, we get the following identified values:

b1(25) = 1.070 105, b2(25) = 9.911 103. (56)
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8. Comparison between the reduced order model (52-54) and the

moments model (16-20)

To validate the reduced order model (52-54), the steady states values of

the model are first compared with the ones of the moments model (16-20).

Unfortunately, due to the complexity of these models and because it depends

on the expressions of Tsat and µ, neither the values nor the number of equi-

librium points can be analytically computed. However, these quantities can

be computed numerically for some given values of the model parameters and

several set of admissible physical values of the input variables (see Casenave

et al. (2012) for a steady-states analysis of the moments model (16-20)).

In Figure 11, the computed steady-states values of both models (52-54)

and (16-20) are given for different values of the evaporation temperature Te

and the dasher rotation speed Nscrap. For the computation, the set of model

parameters is the one used for experiment B (see Figure 10). The mass flow

rate is equal to 25 kg.h−1 and the function M3 �→ M2(25, M3) is assumed to

be of the form (54) with the values of b1(25) and b2(25) given in (56) and

with λ = 3/4. As we can see, the steady-states values of the two models

are really close to each other, which is a first validation of the reduced order

model. Similar results are obtained for other values of the mass flow rate

mfr.

To go further in the validation of the reduced order model, we also have

compared the trajectory of the saturation temperature Tsat obtained by the

simulation of model (52-54) with the one obtained by the simulation of the

moments model (16-20). Consider the data set of experiment A (see Figure

6). In that case, the trajectories obtained by simulation of both models are
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Figure 11: Steady states comparison between the reduced order model (52-54)
and the moments model (16-20). (experiment B: mfr = 25 kg.h−1)

so close to each other that we cannot distinguish them when they are plotted

on the same figure. We indeed have :

1

T

∫ t0+T

t0

∣∣∣∣∣T
(16−20)
sat (t) − T

(52−54)
sat (t)

T
(16−20)
sat (t)

∣∣∣∣∣ dt = 6.850 10−5, (57)

where T
(16−20)
sat (respectively T

(52−54)
sat ) is the trajectory obtained by the sim-

ulation of model (16-20) (respectively model (52-54)). For the experiment B

(see Figure 10), this quantity is equal to 8.587 10−5.

9. Conclusion

The present paper focuses on the identification and the reduction of a

model of an ice cream crystallization process. The model which is initially

considered is a dynamic version of the one presented in Arellano et al. (2013)

and Gonzalez et al. (2011). It is composed of 5 ordinary differential equations

which describe the dynamics of the 4 first moments of the CSD and of the ice
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temperature. The first part of the paper consists in the identification of the

model parameters whereas the second part focuses on the model reduction.

It is shown that, to accurately describe the input-output behavior of the

system (the input and output variables being respectively the evaporation

temperature and the saturation temperature) whatever the conditions are, it

is sufficient to consider a reduced order model composed of 2 ODEs (one for

the third moment M3 and one for the ice temperature T ) and to modify the

values of only two model parameters: the convective heat transfer coefficient

he, and the viscous dissipation coefficient χ. In a control point of view, it

has a real interest: adaptive control techniques can indeed be used to modify

the values of he and χ in such a way that the process is controlled in all

conditions.

Coupling with a black box model (first order equation with a nonlinear gain)

for the modeling of the compressor, the reduced order model of the crystal-

lization process is finally written:

dM3

dt
= − DM3 + 3GM2 + NL3

c

dT

dt
=D (T0 − T ) + K2 (Te − T ) + N2

scrapK3µ + K1

(
3GM2 + NL3

c

)
dTe

dt
= − 1

τc

Te +
1

τc

Gc(Vcomp, mfr),

with µ = µ(M3, T, Nscrap, χ), G = G(M3, T ), N = N(M3, Te), K2 = K2(he),

K3 = K3(χ) and M2 = M2(mfr, M3) = Mλ
3 [b1(mfr)M3 + b2(mfr)].

The problem of the control of the ice cream viscosity will be studied in a

further paper, on the basis of this model.
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Christofides, P., 2002. Nonlinear model reduction and control of particulate

processes, in: Particle Technology Series: Model-Based Control of Partic-

ulate Processes. Springer. volume 14, pp. 9–33.

Christofides, P., El-Farra, N., Li, M., Mhaskar, P., 2008. Model-based control

of particulate processes. Chemical Engineering Science 63, 1156–1172.

47



Cook, K., Hartel, R., 2010. Mechanisms of Ice Crystallization in Ice Cream

Production. Comprehensive Reviews in Food Science and Food Safety 9,

213–222.

Costa, C., Maciel, M., Filho, R., 2007. Considerations on the crystallization

modeling: Population balance solution. Computers & Chemical Engineer-

ing 31, 206–218.

Dokucu, M.T., Park, M.J., Doyle III, F.J., 2008. Reduced-order methodolo-

gies for feedback control of particle size distribution in semi-batch emulsion

copolymerization. Chemical Engineering Science 63, 1230–1245.

Garnier, H., Young, P., 2004. Time-domain approaches to continuous-time

model identification of dynamical systems from sampled data, in: Amer-

ican Control Conference, June 30 - July 2 2004, Barcelona, Spain. pp.

667–672.

Gonzalez, J.E., 2012. Contribution au contrôle par la modélisation d’un
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