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a b s t r a c t 

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test the- 

ories about how the brain processes information. However, a fundamental relationship between the frequency 

spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show 

that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked re- 

sponse is translated to double its original frequency in the subsequent decoding accuracy timecourses. We there- 

fore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass 

filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. 

However, this does not negate the accompanying interpretational challenges. We show that these can be resolved 

by decoding paradigms that utilise both a signal’s instantaneous magnitude and its local gradient information 

as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are 

higher, more stable over time, and free of the technical and interpretational challenges previously characterised. 

We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations 

of decoding results by linking them more clearly to the underlying signal characteristics that drive them. 
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. Introduction 

The field of representational dynamics uses temporal patterns in

ecoding accuracy timecourses to test hypotheses about how the

rain processes information ( Carlson et al., 2013 ; Cichy et al., 2014 ;

ietzmann et al., 2019 ; King & Dehaene, 2014 ). By decoding differ-

nt experimental stimuli from recorded brain activity at high temporal

esolution, researchers use information theoretic measures to quantify

hat features of a stimulus are explicitly represented in neural data as a

unction of time from stimulus onset ( Carlson et al., 2011 ; Cichy et al.,

016 ; Ince et al., 2017 ). An emerging question in neuroscience is how

hese representational dynamics relate to the brain’s underlying neu-

ophysiology ( Gross et al., 2013 ; Jafarpoura et al., 2013 ; Kriegeskorte

 Kievit, 2013 ; Schyns et al., 2011 ). Such analyses seek to go beyond

erely answering what is represented in recorded brain activity, by also

haracterising the neural mechanisms explaining how that information

s represented ( Higgins, Vidaurre, et al., 2021 ; Kikumoto & Mayr, 2018 ;

alentin et al., 2020 ; van de Nieuwenhuijzen et al., 2013 ; Zhan et al.,

019 ). 

This commonly involves a decoding paradigm we will refer to as

nstantaneous signal decoding , where classifiers are trained and tested
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n the raw broadband signal recorded over all sensors at each time-

oint following a stimulus ( Carlson et al., 2013 ; Cichy & Pantazis, 2017 ;

rootswagers et al., 2017 ), and the representational dynamics inter-

reted (often with reference to activity in canonical frequency bands).

his can be used for example to study the phase-locking of information

ontent to canonical oscillations ( Kerrén et al., 2018 ; Kunz et al., 2019 ;

an Es et al., 2020 ), the dynamics of memory ( Higgins, Liu, et al., 2021 ;

aRocque et al., 2013 ; Wolff et al., 2015 ), or the direction of informa-

ion flow ( Cichy et al., 2014 ; Dijkstra et al., 2020 ; Goddard et al., 2016 ;

inde-Domingo et al., 2019 ). A closely related paradigm, we will refer

o as narrowband signal decoding , applies the same procedure after filter-

ng the data into a narrowband of interest. This explicitly links observed

atterns with canonical frequency bands ( Samaha et al., 2016 ; Xie et al.,

020 ). 

Unfortunately, however, the fundamental relationship between the

requency content of the stimulus evoked signal and the inferred in-

ormation content is not widely recognised. Whilst many decoding ap-

roaches aim to be agnostic about the specific data characteristics over

ime that drive their results, there is a considerable risk of misinter-

retation when this relationship is not considered. In this paper we

raw attention to this relationship, highlighting that the spectral con-
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Fig. 1. a pendulum analogy for decoding oscillatory neural signals. A. Commonly used instantaneous signal decoding pipelines can only offer a partial view of 

the brain’s representational dynamics, as they only use the instantaneous data values and cannot detect information stored in the gradient or higher moments of 

the dynamic signal trajectory. When dealing with a dynamical system such as the brain, this is like trying to predict the behaviour of a pendulum given only its 

displacement at a single instant in time – not its velocity or momentum, which would fully characterise the dynamic system. B. Suppose we wish to classify if a 

pendulum is moving or stationary given noisy estimates of its displacement and velocity over time. The information content associated with only the displacement 

readout peaks at the pendulum’s extrema and drops to zero in between. Including the velocity information instead achieves stable information content over time. C. 

Evoked neural data with strong oscillatory components behaves in the same way as the pendulum. When researchers apply instantaneous signal decoding to such data, 

classifiers should perform well at the peaks and troughs of sinusoidal components in the evoked response, and poorly in between. This problem would be overcome 

if the local gradient information was included as features for classification, resulting in information content metrics that are stable over time. 
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q  
ent of the evoked response is translated to double its original frequency

n associated decoding accuracy metrics when using the instantaneous

ignal decoding or narrowband signal decoding paradigms most typically

sed in the literature ( Carlson et al., 2013 ; Cichy & Pantazis, 2017 ;

rootswagers et al., 2017 ). From this, we identify two problems: the

rst is the presence of artefacts due to representational aliasing; the sec-

nd is the broader challenge of how we should interpret information

heoretic metrics that systematically oscillate at double the frequency

f the evoked response spectrum. 

We argue that these problems arise from a narrow focus on infor-

ation content in the instantaneous signal at a single moment in time,

hich ignores information stored in the signal’s gradient or higher mo-

ents. Conceptually, this is analogous to analysing a simple pendulum

y measuring only its displacement at a single instant in time – not its

elocity or acceleration, which would together fully define the dynamic

ystem. As illustrated in Fig. 1 , such a narrow focus only on the pen-

ulum’s displacement leads to inferred information content that peaks

t the pendulum’s extrema (i.e. the peaks and troughs of the oscilla-

ion); taking a broader view of the information contained in both the

isplacement and velocity leads to a measure of information content

hat is stable over time. 

We extend the same logic to the dynamic trajectory of neural ac-

ivity evoked by a stimulus. This motivates a third decoding paradigm

hat we refer to as complex spectrum decoding ( Angjelichinoski et al.,

019 ; Ince et al., 2017 ) , which is one way of including such tempo-

al gradient information. Returning to our example above, if we ap-

lied a Fourier decomposition to the pendulum’s displacement over

ime, we would obtain a single complex frequency component with

 real part (tracking the displacement) and an imaginary part (track-

ng the velocity). This concept generalises to neural activity, where we

ould expect more complex Fourier dynamics played out simultane-

usly over multiple frequency bands and spatial channels. When this

omplex spectrum information is included as features to a classifier,

e show that this results in inferred representational dynamic patterns

hat have higher accuracy, are more stable over time, and which we be-

ieve to provide a better characterisation of the brain’s representational
rchitecture. q  

2 
. How the spectrum of the evoked response determines the 

ignal information content 

We first ask: what is the fundamental relationship between

requency-specific features of the stimulus-evoked response and the re-

ulting timecourse of decoding accuracy? We address this question us-

ng a generative modelling approach, where we model the neural data

ecorded on individual trials as a Fourier series with bandlimited Gaus-

ian noise. From a probabilistic modelling perspective, the mutual infor-

ation is the theoretical quantity analogous to decoding accuracy that

e can then derive. This allows us to characterise how the information

ontent of a signal varies as a function of time and frequency ( Table 1 ).

.1. Generative model of stimulus evoked responses 

We wish to model epoched electrophysiological data recorded from

 channels under two different experimental conditions. Let us denote

y 𝑥 𝑛,𝑡 the [ 𝑃 × 1 ] vector of data recorded at time 𝑡 ∈ { 1 , 2 , … 𝑇 } on

rial 𝑛 ∈ { 1 , 2 , …𝑁 } , where 𝑦 𝑛 ∈ { 1 , −1 } denotes the experimental condi-

ion for that trial. We model 𝑥 𝑛,𝑡 as comprising a condition-independent

voked response term 𝜇𝑡 of dimension [ 𝑃 × 1 ] , and residual terms that

re decomposed into a sum of [ 𝑃 × 1 ] Fourier components 𝑧 𝑛,𝑡,𝜔 : 

 𝑛,𝑡 = 𝜇𝑡 + 

Ω∑
𝜔 =0 

𝑧 𝑛,𝑡,𝜔 (1)

We henceforth refer to 𝑥 𝑛,𝑡 as the ‘broadband signal’ , and the multi-

le 𝑧 𝑛,𝑡,𝜔 terms as the ‘narrowband signals’ . If we assume each narrow-

and signal 𝑧 𝑛,𝑡,𝜔 has a multivariate Gaussian distribution with mean

onditioned on the stimulus (see Appendix A for full details), we obtain

he following expression for the distribution of the broadband signal: 

 ( 𝑋 𝑡 |𝑌 ) ∼ 𝑁 

( 

𝜇𝑡 + 𝑌 

Ω∑
𝜔 =0 

𝐴 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)
, 

Ω∑
𝜔 =0 

Σω 

) 

(2)

Each 𝐴 𝜔 term is a diagonal [ 𝑃 × 𝑃 ] matrix, where the i th diagonal

ntry, denoted by 𝑎 𝜔,𝑖 , reflects the magnitude of the component at fre-

uency 𝜔 on channel i . Both 𝜔 and t are scalar indices reflecting the fre-

uency and time respectively; 𝜙 is a [ 𝑃 × 1 ] vector, each entry of which
𝜔 
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Table 1 

Overview of random variables modelled in this paper. 

Random Variable Observation on nth trial Domain and dimension Used to model: 

𝑋 𝑡 𝑥 𝑛,𝑡 ℝ 1×𝑃 Recorded broadband signal at time t; input used for instantaneous signal decoding 

𝑌 𝑦 𝑛 { 1 , −1 } Stimulus class 

𝑍 𝑡,𝜔 𝑧 𝑛,𝑡,𝜔 ℝ 1×𝑃 Narrowband signal at time 𝑡 in frequency band 𝜔 ; input used for narrowband signal decoding 

𝑊 𝑡,𝜔 𝑤 𝑛,𝑡,𝜔 ℂ 1×𝑃 Complex spectrum signal at time 𝑡 in frequency band 𝜔 ; input used for complex spectrum decoding 
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e  

r  
ontains the phase offset of the oscillation at frequency 𝜔 across the P

hannels. Finally, we model induced effects (i.e. narrowband power that

s not phase aligned to the stimulus) independently in each frequency

and, where Σ𝜔 is the [ 𝑃 × 𝑃 ] covariance matrix modelling the spatial

ariance and correlations expressed at frequency band 𝜔 . Note that this

orresponds to an assumption that only the evoked response, not the

nduced response, differs over the two conditions – this is a simplifying

ssumption that we later relax in Section 2.4 . 

We can now characterise the mutual information between the broad-

and signal 𝑋 𝑡 or its constituent narrowband signals 𝑍 𝑡,𝜔 and the class

abels Y . 

.2. Information content available to narrowband signal decoding 

We wish to explore how the spectrum of the evoked response de-

ermines the representational dynamics inferred from the decoding

aradigms that are most typically used in the literature (T. Carlson et al.,

013 ; Cichy & Pantazis, 2017 ; Grootswagers et al., 2017 ). We start by

onsidering instantaneous decoding of narrowband signals 𝑍 𝑡,𝜔 , which

e refer to as narrowband signal decoding. 

Given a probabilistic model, we can calculate the mutual informa-

ion 𝐼( 𝑍 𝑡,𝜔 , 𝑌 ) , which expresses the amount of information shared be-

ween the signal and the condition label time courses. This measure of

nformation content in the signal that pertains to the condition labels can

e thought of as a surrogate measure of decoding accuracy were one to

o narrowband signal decoding . Starting with a single Fourier component

f the evoked response at frequency 𝜔 , the mutual information is itself

 sinusoidal function that has been translated to double the original fre-

uency, 2 𝜔 : 

 

(
𝑍 𝑡,𝜔 , 𝑌 

)
= 𝑓 

(
𝑐 𝜔 + r ω cos 

(
2 𝜔𝑡 + 𝜉𝜔 

))
(3)

here f is a monotonic, concave function (see Appendix C for proof

nd Fig. A1 for plot of the function); and 𝑐 𝜔 , r ω and 𝜉𝜔 are all scalar

alues that are constant with respect to time (see Appendix D for their

xact values, and Appendix B and D for proof of the above result). The

ntuition for this is based on what was discussed in Fig. 1 : if 𝑍 𝑡,𝜔 were

he displacement of a pendulum oscillating at frequency 𝜔 , a decoder

ill perform best at the peaks and troughs of that oscillation and poorly

n between these points. 

We illustrate this relationship in example 1 ( Fig. 2 ), where we sim-

late an evoked response under two conditions. Suppose that one con-

ition (in blue) contains information content at 10Hz across both chan-

els, and the second condition (in black) does not. The information con-

ent associated with this narrowband component is itself a sinusoidal

unction oscillating at 20Hz. 

.3. Information content available to instantaneous signal decoding 

Realistic neural signals are not expressed in a single component fre-

uency across all spatial areas, but are rather comprised of a number

f spatially distinct components at multiple frequencies. How then does

he entire frequency spectrum of the evoked response determine the fre-

uency spectrum of the associated information content? This equates to

he paradigm of instantaneous signal decoding that is most widely per-

ormed in the literature ( Carlson et al., 2013 ; Cichy & Pantazis, 2017 ;

rootswagers et al., 2017 ). For the broadband signal 𝑋 given in our
𝑡 

3 
odel, the information content is given by: 

 

(
𝑋 𝑡 , 𝑌 

)
= 𝑓 

( 

𝑐 𝐵 + 

Ω∑
𝜔 

𝑟 𝐵,𝜔 cos 
(
2 𝜔𝑡 + 𝜉𝐵,𝜔 

)
+ h ( t ) 

) 

(4)

here 𝑐 𝐵 , 𝑟 𝐵,𝜔 and 𝜉𝐵,𝜔 are scalar values that are constant over time,

nd h(t) refers to additional sinusoidal harmonics distributed across the

requency spectrum between zero and 2Ω (see Appendix E for their exact

alues along with proof of this result). 

Importantly, if the highest frequency component of the evoked re-

ponse on any channel is Ω, it follows that the highest frequency in

he associated information spectrum will be 2Ω. We illustrate this point

ith example 2 in Fig. 2 ; for simplicity we simulate an evoked re-

ponse comprising just 2 spectral components under each condition at

0Hz and 15Hz; the associated information content displays multiple

eaks over time, represented in its Fourier spectrum by frequency com-

onents distributed between 0Hz and 30Hz. As we will explore fur-

her in Section 3.1 , this also means that commonly used anti-aliasing

lters are insufficient to stop representational aliasing, i.e. alias arte-

acts in the inferred information content dynamics. In order to fur-

her illustrate the representational dynamics of instantaneous signal

ecoding, we created Representational Dynamics Simulator , a web ap-

lication analogous to Fig. 2 , where the user can interactively change

he parameters of the evoked spectrum and see the resulting informa-

ion content ( Van Es et al, 2022 ; hosted at https://representational-

ynamics.herokuapp.com ). 

.4. Modelling induced effects 

It is important to consider the degree to which these findings are spe-

ific to our chosen modelling assumptions. We have specifically limited

ur discussion to that of evoked effects by assuming the noise distribu-

ion was invariant over conditions. In the frequency domain, this means

hat we have limited our analysis to the part of the signal that is phase

ligned to stimulus onset. When we introduce condition-specific induced

ffects – i.e. to model the case where one condition induces an increase

n bandlimited power that has random phase alignment with the stimu-

us onset – we can no longer derive an exact analytic expression for the

utual information; however, we can derive an upper bound on the in-

ormation content. This upper bound is a function of components at the

ame frequencies specified in equations 3 (for the narrowband case; see

ppendix G and H for proof) and 5 (for the instantaneous signal case;

ee Appendix I for proof). This result is not mathematically trivial, but

ay nonetheless be intuitive to some readers on the basis that the infor-

ation content of a signal containing both evoked and induced effects

ust be less than the combined information content of each of those

ffects assessed independently; and the information content of induced

ffects assessed independently is constant with respect to time (owing

o the uniform phase distribution that defines induced effects). Thus, we

re able to generalise our findings to the case where induced effects are

resent. 

. Technical and Interpretational issues raised 

The relationship we have characterised above between the stimulus-

voked signal spectrum and the spectrum of the information content

aises several issues with commonly used instantaneous signal decoding

https://representational-dynamics.herokuapp.com
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Fig. 2. How the stimulus evoked spectrum determines the spectrum of information content when instantaneous signal decoding is used. In example 1 on the left, 

we simulate two conditions across two channels, with the upper panel showing the two conditions’ trial-averaged evoked responses (one in blue and one in black). 

The first condition evokes a phase-locked 10Hz oscillation on both channels, the second condition is a null condition in which there is no evoked response. The 

information content (i.e. the mutual information 𝐼( 𝑋 𝑡 , 𝑌 ) between the broadband data 𝑋 𝑡 and the stimulus labels 𝑌 ) is plotted in the lower panel, and can be thought 

of as a surrogate measure of decoding accuracy were one to do instantaneous signal decoding . Although the only oscillation in the evoked response is at 10Hz, the 

information content is a 20Hz sinusoidal signal, reaching maxima at each peak and trough of the evoked response. In example 2 on the right, we simulate a signal 

comprised of 2 Fourier components at 10Hz and 15Hz in both conditions, with slightly different amplitudes. The associated information content is a signal with 

three distinct peaks, with Fourier components at 20Hz and 30Hz and additional harmonics at 5Hz and 25Hz. For illustrative purposes, we created a web application 

where these parameters can be changed interactively ( Van Es et al., 2022 ; hosted at https://representational-dynamics.herokuapp.com ). 
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ipelines. On a technical level, there is a risk of high frequency arte-

acts which we refer to as representational aliasing. On a broader level,

his raises questions about how certain features of decoding accuracy

imecourses should be interpreted. 

.1. Representational aliasing 

The Nyquist frequency defines the highest frequency component that

an be correctly resolved from data that has been digitally sampled at

 specified sampling rate. It is standard practice to apply a low pass

nti-aliasing filter prior to sampling which ensures no signal components

re above the Nyquist frequency and that all signal components can

herefore be correctly resolved. However, this only applies to the signal

omponents, not their associated information spectrum, which we have

hown contains spectral contents at double the highest frequency of the

ignal spectrum. 

It follows that representational aliasing artefacts will be present in

nstantaneous signal decoding accuracy metric unless the following con-

ition is met: 

 S ≥ 4Ω (5)

here Ω is the highest frequency component of the evoked response

nd 𝐹 𝑠 is the sampling rate. Thus, instantaneous signal decoding pipelines

eed to use low pass filters with cut-off no higher than one quarter of
4 
he sampling rate – before training classifiers – in order to eliminate

epresentational aliasing effects. Fig. 3 illustrates this graphically. 

.2. How should we interpret oscillatory information content? 

The oscillatory nature of information content associated with si-

usoidal components of the evoked response is, we argue, interpreta-

ionally problematic. Features resembling multiple successive peaks in

he timecourse of classification accuracy are quite commonly reported

n the literature ( Gennari et al., 2021 ; Hogendoorn & Burkitt, 2018 ;

ohsenzadeh et al., 2018 ; Robinson et al., 2020 ); in some cases, the

ynamics of these successive peaks have been interpreted as evidence

or complex cognitive phenomena such as phase-locked memory reacti-

ation ( Fuentemilla et al., 2010 ; Kerrén et al., 2018 ). As we have shown

n Fig. 2 , successive peaks arise naturally from an evoked response con-

aining sinusoidal components. We argue that a simpler explanation for

heir common appearance in the literature could merely be that the

ypical evoked response is characterised by a succession of peaks and

roughs (e.g. the N70, P100 and N175) that resemble a transient sinu-

oidal waveform. 

We believe a fuller picture of information content should include

he information stored in the dynamic gradient of the signal that is not

vailable using instantaneous signal decoding pipelines. In Section 4 we

xplore a third paradigm that includes such information, and show that

his results in narrowband information content that is stable over time.

https://representational-dynamics.herokuapp.com
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Fig. 3. Demonstration of representational 

aliasing associated with instantaneous sig- 

nal decoding . Consider the information con- 

tent associated with example 1 from Fig. 2 , 

where one condition was associated with 

a stimulus-evoked component at 10Hz. As 

Fig. 2 shows, the single oscillatory mode at 

10 𝐻𝑧 is associated with a true informa- 

tion content that oscillates at a frequency 

of 20 Hz (plotted in blue above). In the 

first case on the top row, given a sampling 

rate of 160 𝐻𝑧 > 4 Ω, the recovered rep- 

resentational dynamics (plotted with black 

dashed line showing sinusoidal interpola- 

tion between the discrete samples) match 

the true frequency. In the second case how- 

ever, given an inadequate sampling rate of 

30 𝐻𝑧 < 4 Ω, the recovered dynamics are 

subject to representational aliasing, result- 

ing in spurious dynamics at 10Hz rather than the true 20Hz pattern. 
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t  
owever, as these methods will not always be practical for reasons given

n the discussion, we would more generally argue that representational

ynamics obtained using instantaneous signal decoding and representing

he ‘double peak’ feature shown in Fig. 2 (and widely characterised in

he literature) should first be assumed to correspond merely to peaks

nd troughs of an evoked sinusoidal signal, rather than more complex

ognitive phenomena. 

. Obtaining measures of sinusoidal information content that are 

table over time 

We contend that the profile of information content obtained by

nstantaneous signal decoding is potentially misleading, as it suggests

he brain’s representational dynamics are much faster than the actual

voked spectrum from which they are derived. Whilst instantaneous sig-

al decoding pipelines are the most popular way to apply decoding to

eural data at high temporal resolution, alternative methods exist that

vercome these limitations. We focus our attention on Fourier analysis

for continuity with our modelling approach and because of these meth-

ds are well-established in neural data analysis), but emphasise these

enefits are not specific to Fourier analysis per se – rather, they arise

henever methods include information in a dynamic signal’s higher

emporal derivatives (e.g. its gradient and rate of change) as features

or classification. 

.1. Complex spectrum decoding 

We previously characterised the information content between stim-

lus labels Y and the narrowband Fourier series components 𝑍 𝑡,𝜔 . These

arrowband components do not in fact include all the information that

s returned by a Fourier signal decomposition; they reflect only the real

omponent of a complex number representation. The imaginary compo-

ents of these narrowband components reflect the instantaneous gradi-

nt information of each narrowband signal; we here characterise the in-

ormation content associated with the full complex signal representation

f each narrowband component, analogous to the decoding accuracy

hat would be obtained when both the narrowband signal and its local

radient are used as features for classification as in Angjelichinoski et al.,

019 ; Ince et al., 2017 . 

.1.1. Real and complex components of a Fourier decomposition 

Fourier decompositions provide a complex representation of the un-

erlying signal that includes both a real signal component and an or-

hogonal imaginary component, which we omitted from our model out-

ine in Section 2 for simplicity. Including this complex-valued informa-
5 
ion, the same model can equivalently be written: 

 𝑛,𝑡 = 𝜇𝑡 + 

Ω∑
𝜔 =0 

𝑧 𝑛,𝑡,𝜔 (6)

 𝑛,𝑡,𝜔 = 

𝑤 𝑛,𝑡,𝜔 + 𝑤 

∗ 
𝑛,𝑡,𝜔 

2 
(7)

 𝑛,𝑡,𝜔 = 𝑦 𝑛 𝐴 𝜔 𝑒 
𝑖 ( 𝜔𝑡 + 𝜙𝜔 ) + 𝜀 n , ω e 𝑖𝜔𝑡 (8)

 𝑛,𝜔 = 𝑁 

(
0 , Σ𝜔 

)
+ 𝑖𝑁 

(
0 , Σ𝜔 

)
(9)

Where 𝑤 

∗ 
𝑛,𝑡,𝜔 

denotes the complex conjugate of 𝑤 𝑛,𝑡,𝜔 . This is exactly

quivalent to the model of Eq. (2) , however it includes the complex

pectral representation 𝑤 𝑛,𝑡,𝜔 of each narrowband Fourier series compo-

ent. It includes a condition-dependent evoked term 𝑦 𝑛 𝐴 𝜔 𝑒 
𝑖 ( 𝜔𝑡 + 𝜙𝜔 ) (i.e.

he component of the response that is phase-locked to the stimulus), and

 condition-independent residual term (i.e. the residual component with

andomly drawn phase and amplitude on each trial; note that the values

or the phase and amplitude are respectively the angle and magnitude

f the complex valued 𝜀 𝑛,𝜔 converted to polar coordinates). 

.1.2. Information content available to complex spectrum decoding 

An alternative to decoding on the raw signal at each point in time is

o use both the real and imaginary parts of the complex-valued Fourier

oefficients as features/inputs to a classifier ( Angjelichinoski et al.,

019 ; Ince et al., 2017 ). We will refer to this decoding paradigm as

omplex spectrum decoding . When all this information is included as fea-

ures for classification, then the resulting information content in each

requency band is given by: 

 

(
𝑊 𝑡,𝜔 , 𝑌 

)
= 𝑓 

(
2 𝑐 𝜔 

)
(10)

here 𝑐 𝜔 is the average value of the sinusoidal expression associated

ith the real information content in Eq. (4) (see Appendix F for proof).

mportantly, this expression is no longer sinusoidal; it is stable over

ime, and greater or equal to the peak information content that can be

btained using only the real spectrum (see Fig. 4 ). Consequently, this

vercomes both the problematic interpretational issues associated with

nstantaneous signal decoding discussed above, as well as the risk of repre-

entational aliasing that would otherwise require low-pass filtering with

ut-off one quarter of the sampling rate. 

.2. Practical considerations for non-stationary and non-oscillatory signals 

We emphasise the generality of these results, deriving from the fact

hat any arbitrary time series can be mapped into the frequency domain
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Fig. 4. Motivation for complex spectrum decoding. A. The signal modelled by 𝑤 𝑛,𝑡,𝜔 can be visualised as a point rotating around a circle in the complex plane, 

with the two stimulus conditions shown in grey and blue corresponding to opposite sides of the circle. As the signal crosses the imaginary axis (i.e. as 𝜃 approaches 
𝜋

2 
), the separability of the two conditions in the real plane is minimised (corresponding to the troughs in the narrowband information content in Fig. 2 ); however, 

at the same point, the two conditions in the complex plane (see the plane defined by 𝜃) are still highly separable. In fact, projecting onto the plane defined by the 

instantaneous phase 𝜃 results in information content that is stable over time and not varying with the phase of the oscillatory signal. B. The real part of the signal 

(i.e. 𝑧 𝑛,𝑡,𝜔 = 𝑅𝑒 ( 𝑤 𝑛,𝑡,𝜔 ) ) is a sinusoid as previously characterised. C. The corresponding narrowband mutual information (i.e. 𝐼( 𝑍 𝑡,𝜔 , 𝑌 ) ) drops to zero in the sinusoidal 

troughs, whereas the complex spectrum information term (i.e. 𝐼( 𝑊 𝑡,𝜔 , 𝑌 ) ) is constant throughout. 
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o  
y a Fourier decomposition. Whilst we have so far simulated quite sim-

lified evoked responses comprising only a few frequency components,

ur approach generalises to those that contain non-stationary and/or

on-oscillatory components. In this section we demonstrate this with

ome more complex simulations. 

.2.1. Sliding window Fourier decompositions 

Real evoked responses are more complex than the illustrative ex-

mples we have simulated so far and in particular do not have spectral

rofiles that are constant over the whole trial epoch. We therefore antic-

pate that the methods introduced above will be most informative when

ombined with sliding window methods, e.g. where separate Fourier

ecompositions are applied to each window within a trial epoch rather

han a single Fourier decomposition applied to the whole epoch. 

There are numerous methods for estimating spectral properties over

liding windows, which are typically similar in motivation but different

n implementation. Perhaps the most important factor is how the trade-

ff between time and frequency resolution is handled. Given our focus

n characterising representational dynamics over time, we prefer meth-

ds that use a fixed temporal resolution, such as the Short-Time Fourier

ransform (STFT). This provides complex-valued Fourier coefficients in

ach frequency band at each timepoint within a trial, allowing decod-

ng accuracy to then be computed timepoint-by-timepoint without the

nterpretational problems previously discussed. 

.2.2. Non-stationary oscillatory signals 

To test these methods on evoked signals characterised by transient

pectral properties, we simulated a signal over two channels using a

ombination of frequency chirp functions and unit step functions (ex-

mple 1 in Fig. 5 ). To maintain simplicity only one of the two conditions

as this profile, the other is a null condition of stationary Gaussian noise.

s shown by the time-frequency diagram on Fig. 5 A, the frequency dis-
6 
ribution of the signal varies over time and over the two channels. For

his signal, we then computed: 

(i) The broadband information content; This corresponds to the infor-

mation content available to instantaneous signal decoding , i.e.

the timepoint-by-timepoint decoding approaches that are most

typically used in the literature ( Carlson et al., 2013 ; Cichy & Pan-

tazis, 2017 ; Grootswagers et al., 2017 ). 

(ii) The complex spectrum information content ; this corresponds to the

information content available to complex spectrum decoding as

we have proposed. In this case however we have estimated the

complex spectral features using a sliding window (specifically us-

ing a STFT with 50ms sliding Hamming window). 

As shown in Fig. 5 B, the broadband information content (analogous

o the decoding accuracy obtained by instantaneous signal decoding ) con-

ains fast dynamics that do not clearly relate to the evoked signal shown

n Fig. 5 A. Applying a similar STFT analysis to this information content

 Fig. 5 B, right hand side) shows it reflects components at up to double

he frequency of the corresponding signals (i.e. it contains components

t up to 100Hz, double the frequencies identified in Fig. 5 A). 

In contrast, the complex spectrum information content provides fre-

uency band specific measures of information content that more closely

eflect the spectral distribution of information at each moment in time

ver the course of the trial (i.e. Fig. 5 B, lower plot reflects the combined

ontributions of the channel power spectral density plots in Fig. 5 A).

rom the perspective of representational dynamics, such information is

t least complementary, and we would argue more informative than that

vailable to instantaneous signal decoding . 

.2.3. Non-oscillatory evoked signals 

In Section 2 we showed that consecutive peaks in decoding accuracy

imecourses could arise due to a simple oscillatory signal, even if this

scillatory signal is itself stable over time. We argued that these peaks
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Fig. 5. Complex spectrum decoding remains applicable and informative even when the spectral properties vary over time or are not fundamentally 

oscillatory. A. In Example 1, we simulate a signal across two channels with a time-varying frequency ‘chirp’ response, with a different onset time on each 

of the two channels. Left hand side plots the actual trial-averaged evoked response for each channel, right hand side the PSD as a function of time on each 

channel, showing the frequency content is transient on each channel and limited to frequencies below 50Hz. B. The information content associated with this 

signal. Top row plots the information content obtained by doing instantaneous signal decoding ; right hand side plots the frequency profile of this mutual in- 

formation timecourse, which reflects a mix of the spectrum from the two channels translated to double their original frequency (i.e. up to 80 Hz). Lower 

plot shows the mutual information obtained by complex spectrum decoding in each frequency band, which reflects the true frequencies at which information is 

present in the original signal. C. In Example 2, we simulate a non-oscillatory evoked response comprising two distinct processes occurring at different times; 

these characterise the signal over each channel in time and frequency. D. The information content available to instantaneous signal decoding identifies and 

separates these processing stages. This profile of two distinct peaks is similarly recovered from the complex spectrum information content (provided a suit- 

able size of sliding window is used), demonstrating that this approach does not obscure such features where they are genuinely reflected in non-sinusoidal 

activity. 
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hould not be interpreted as representing discrete events or cognitive

henomena. This begs the question, how do our methods perform if

he underlying signals do derive from discrete temporal events, where

he underlying signals cannot be parsimoniously represented using si-

usoidal components? 

To test this, we simulated an evoked response deriving from two

patially and temporally distinct “activations ”, and repeated the anal-

sis described above to compare the broadband and narrowband in-

ormation content. To simulate non-oscillatory signals, each activation

as characterised by a Gaussian kernel function ( Fig. 5 C). As shown in

ig. 5 D, the broadband information content (i.e. that available when

oing instantaneous signal decoding ) produces two distinct peaks corre-
7 
ponding to each activation. Notably, this profile is replicated in the

omplex spectrum information content ( Fig. 5 D, lower panel) showing

hat this method does not obscure such phenomena – provided the slid-

ng window width is less than the period between these activations.

ider window lengths progressively include more information from

oth activations and the peaks become much less pronounced (see Sup-

lementary Information, Section 2 and Figure S2). We therefore con-

lude that, subject to appropriate sliding window sizes, complex spec-

rum decoding can eliminate the fast dynamics associated with sinusoidal

omponents of the evoked response, whilst not eliminating the structure

ssociated with spatially distinct, potentially non-oscillatory evoked ac-

ivations. 
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. Evidence from MEG data 

The results we have presented are fundamentally theoretical and

upported by simulated data from models of evoked activity. We there-

ore wanted to test how these findings extend to real data, and therefore

ested our main predictions on a MEG dataset of visual image decoding.

.1. Methods 

We took a publicly available dataset comprising 15 subjects viewing

18 different visual stimuli ( Cichy et al., 2016 ). This data had been ac-

uired on an Elekta Neuromag scanner with 306 channels (204 planar

radiometers and 102 magnetometers) at 1kHz sampling rate, with fil-

ering applied at acquisition with bandpass 0.03Hz to 300Hz. We down-

ampled the data to 100 samples per second with an anti-aliasing filter

ith cut-off at 50Hz and extracted the 0.5 second epochs immediately

ollowing stimulus presentation. The data was then mapped into a com-

lex time-frequency decomposition using an STFT with Hamming win-

ow length of 100ms. The epoched data was then decoded to predict

he trial condition labels using the three paradigms: 

i Instantaneous signal decoding : decoding the raw broadband signal

time-point-by-timepoint as widely performed in the literature (T.

Carlson et al., 2013 ; Cichy & Pantazis, 2017 ; Grootswagers et al.,

2017 ). 

ii Narrowband Signal decoding : sliding window decoding using the

time-frequency estimates from the STFT, but only using the real co-

efficients across all sensors as a set of features. This method is anal-

ogous to decoding on data filtered into specific frequency bands of

interest. 

iii Complex spectrum decoding : sliding window decoding using the

time-frequency estimates from the STFT, using both the real and

imaginary coefficients across all sensors as a set of features. 

Each approach fit linear support vector machine classifiers using

hree-fold cross validation. This was applied to each pair of the 118

mages in a mass pairwise classification paradigm as originally imple-

ented by ( Cichy et al., 2016 ). In cases (ii) and (iii), classifiers were

rained separately on each frequency band. The decoding used three-

old cross-validation to obtain independent classification accuracy met-

ics as a function of time and frequency for each pair of images and each

articipant. 

Finally, to test the hypothesis that different frequency bands con-

ained complementary information, we trained an aggregate classifier to

stimate the aggregate information distributed over all frequency bands.

e did this through a nested cross validation procedure. An inner cross

alidation loop simply consisted of the complex spectrum decoding esti-

ates described above. The outer cross validation loop then partitioned

ll of the stimuli into two equally sized groups and applied two-fold

ross validation to obtain accuracy estimates. This outer loop consisted

f a random forest ensemble classifier with 100 trees, trained to predict

he class label from the outputs of the complex spectrum decoding classi-

ers on each trial. This outer loop was run ten times with replacement

or each subject, randomly sampling a different subset of stimuli with

eplacement on each cross validation fold. 

.2. Decoding accuracy vs time in different decoding paradigms 

Fig. 6 A plots the decode accuracy derived from decoding under the

hree identified paradigms. As paradigms (ii) and (iii) provide accuracy

n each frequency band independently, for ease of visualisation they are

ach plotted separately against paradigm (i). Averaged over all pairs

f stimuli and all subjects, this identifies a systematic variation in the

nformation content at different frequencies as a function of time. The

arliest detectable information appears in higher frequencies, but these

eak quite transiently at relatively low values and are quickly surpassed

y information content in lower frequencies, which rise to higher values
8 
nd are then sustained for a longer duration. Notably, the information

n either the 10Hz or the 0Hz band exceeds that obtained by instanta-

eous signal decoding for nearly the entire period analysed – the accu-

acy averaged over all timepoints is higher for both measures (paired

-test, p < 0.001 Bonferroni corrected for multiple comparisons over fre-

uency bands) which correspond to higher accuracy over a majority

f timepoints in these frequency bands (see Supplementary Informa-

ion, Section 5 and Figure S4). From the perspective of representational

ynamics, this establishes first and foremost that Fourier decomposi-

ions can improve decoding accuracy over instantaneous signal decoding

ethods whilst retaining a profile of how the representational content

volves in both time and frequency. 

.3. Complex spectrum decoding accuracy exceeds narrowband signal 

ecoding accuracy 

Fig. 6 B compares the average classification accuracy in each fre-

uency band, averaged over all subjects and pairs of stimuli, when either

he complex spectrum decoding or narrowband signal decoding is applied

it follows from the definition of the discrete Fourier transform that the

maginary coefficients in the 0Hz and 50Hz frequency bands are always

ero, so in these bands the two paradigms are in fact equivalent). In

ll cases the classification accuracy obtained using complex spectrum de-

oding exceeds that obtained using narrowband spectrum decoding ; this

nformation gap can be interpreted as the information stored in the gra-

ient of these sinusoidal components. 

.4. Narrowband signal decoding produces spectral peaks at double their 

riginal frequency in inferred decoding accuracy metrics 

Our models predict that the information content associated with

voked spectral components at a given frequency is itself oscillatory at

ouble that frequency, unless complex spectrum decoding is applied. We

ave so far plotted the average over all subjects and all comparisons,

herefore obscuring some of the temporal dynamics evident in each com-

arison. For example, in Fig. 6 C we plot the timecourse obtained for one

ubject and one pair of stimuli; the accuracy timecourse obtained from

omplex spectrum decoding appears to follow the envelope of the equiv-

lent timecourse obtained by narrowband signal decoding which appears

o show sinusoidal dynamics. If we take the PSD of these accuracy time-

ourses, we observe a peak at double the frequency band being analysed

i.e. the 10Hz and 20Hz bands are associated with a 20Hz and 40Hz

pectral peak respectively). If we take the PSD of the timecourse for ev-

ry pair of stimuli and every subject and average, we see the PSD is

ignificantly higher in the 10Hz and 20Hz bands at approximately 20Hz

nd 40Hz, respectively. 

Given a sampling rate of 100Hz, we expect representational aliasing

o occur linked to any evoked spectral content above 25Hz. Specifically,

iven evoked spectral content at 30Hz or 40Hz, we expect representa-

ional aliasing artefacts at 40Hz and 20Hz, respectively (for example, a

0Hz component is translated to 60Hz in the accuracy timecourses; as

his is 10Hz above the Nyquist frequency, it is aliased to 10Hz below the

yquist frequency, i.e. to 40Hz). For both of these narrowband signals,

e see peaks at these locations, confirming the presence of representa-

ional aliasing. We stress that this aliasing effect must also be present

n the instantaneous signal decoding results, they just cannot be explic-

tly resolved as we have no knowledge of the frequencies at which they

ould be expected. 

Finally, in these plots we note that spectra are significantly more

eighted towards the lower end of the frequency spectrum for complex

pectrum decoding vs narrowband signal decoding , whilst the opposite re-

ationship is the case towards the upper end of the frequency spectrum.

his means that the higher accuracies obtained by complex spectrum de-

oding in Fig. 5 B are a result of increased low frequency content, or

epresentational dynamics that are more stable over time. 
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Fig. 6. Characterising information content across the frequency spectrum. A. Decoding accuracy timecourses obtained by instantaneous signal decoding vs either 

narrowband signal decoding (left) or complex spectrum decoding (right). All plots show mean + /- SE over subjects. B. Directly comparing the accuracy vs time in 

each frequency band of narrowband signal decoding and complex spectrum decoding . Significance bars denote periods where complex spectrum decoding accuracy is 

significantly greater than narrowband signal decoding : p < 0.01 using cluster permutation tests. C. Single subject results. The dynamics, and therefore any attempt 

to assess the temporal stability of the decode accuracy, are obscured by averaging over all participants and subjects. Top: taking a single subject, single pairwise 

comparison as an example, we show the decode accuracy obtained by either narrowband signal decoding or complex spectrum decoding as a function of time (upper) or 

frequency (lower). These show significant harmonic components at double the fundamental frequency in each band when narrowband signal decoding is used. Lower 

plot: We took all individual accuracy vs time plots (across all subjects and all stimulus comparisons) and computed their power spectral density, then averaged 

(plots show mean + /- SE over subjects). The power spectrum obtained using narrowband signal decoding show strong peaks at harmonic frequencies (for 10Hz and 

20Hz bands) and at aliased frequencies (for 30Hz and 40Hz bands). Significance bars denote significance at p < 0.01 levels using cluster permutation tests; green bars 

denote complex spectrum decoding greater than narrowband signal decoding ; blue bars denote narrowband signal decoding greater than complex spectrum decoding . This 

shows that, in all frequency bands, the increased accuracy obtained by complex spectrum decoding is concentrated in lower frequencies, reflecting more temporally 

stable representational spaces. 

9 
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Fig. 7. Interpreting and aggregating information over multiple frequency bands. A. Complex spectrum decoding (left) directly reflects the frequencies at 

which information is represented in the brain, revealing representational dynamics that have both spectral and temporal structure. In contrast, taking the PSD of 

the instantaneous signal decoding accuracy timecourse (right) is neither interpretable nor free of aliasing artefacts. B. Plotting the classification accuracy achieved 

vs time for instantaneous signal decoding, for each individual frequency using complex spectrum decoding , and then for the aggregate classifier. All plots show mean 

+ /- SE over subjects. C. Plotting the contrast of the aggregate classifier accuracy minus the instantaneous signal decoding accuracy; significance bars denote p < 0.01 

using cluster permutation tests, green bars denote contrast is significantly positive, blue bars denote the sontrast is significantly negative. D Plotting the contrast of 

aggregate classifier accuracy minus the best individual frequency (i.e. the highest accuracy obtained by any complex spectrum decoder at each timepoint); significance 

bars defined as for C. 
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In Fig. 5 , we made the argument that complex spectrum decoding re-

ects the true frequencies at which information is present in the original

ignal. This point is now reinforced with real data. In Fig. 7 A, we plot

he accuracies per frequency alongside the PSD of the accuracy time-

ourses obtained using instantaneous signal decoding. The former is in-

erpretable and reveals an information profile with both spectral and

emporal structure. In contrast, it follows from Eq. (4) that the PSD of

he instantaneous signal decoding timecourse does not correspond to

he frequencies of actual information. The representational aliasing ef-

ects characterised above, and harmonics created when multiple carrier

requencies are combined, have contaminated the spectral profile such

hat no prominent structure can be easily observed. 

.5. Complex spectrum decoding accesses information content that is 

omplementary over frequencies 

Having established that complex spectrum decoding accesses informa-

ion content that is not available to instantaneous signal decoding , one

nal question arises; is the complex spectral information across differ-

nt frequencies overlapping, or complementary? That is to say, if we

ggregate the information over frequency bands, do we obtain perfor-

ance that is merely equivalent to the best individual frequency band

or exceeding it? 

Fig. 7 B plots the performance of the aggregate classifier against the

omplex spectrum decoding accuracies achieved in each frequency band,

nd that obtained by instantaneous signal decoding . The aggregate clas-

ifier significantly outperforms the instaneous signal decoder , reaching a

eak accuracy of 67.6% vs 61.6%. As plotted in Fig. 7 C, this difference
10 
uantifies the total amount of information that is inadvertently being

mitted by the insensitivity of instantaneous signal decoding paradigms to

nformation stored in signal gradients. However the aggregate decoder

ccuracy also peaks at a level higher than that obtained in any individ-

al frequency band. As in Fig. 7 D, over the period between 70msec and

90msec following stimulus presentation, the aggregate classification

ccuracy significantly exceeded the information content in any individ-

al frequency. This coincides with the time over which significant in-

ormation content was distributed across multiple frequency bands, es-

ecially higher frequency bands, proving that these different frequency

ands contain information content that is complementary. The perfor-

ance is quite different for timesteps more than 370msec after stimu-

us onset, with the ensemble classifier underperforming slightly relative

o the best narrowband classifiers (albeit still outperforming standard

roadband methods). Over this period, the classifiers trained on higher

requencies output chance level predictions, and only lower frequency

ands contain meaningful information content. We conclude that over

his period, all meaningful information is concentrated in lower fre-

uency bands, and the inclusion of high frequency bands that only con-

ain noise is in fact detrimental to classifier performance. 

. Discussion 

We have outlined a widely overlooked problem in decoding

ipelines: that frequency components in the evoked response produce

orresponding components at double their original frequency content in

he resulting accuracy metrics. Where researchers are not aware of this

undamental relationship, there is a considerable risk of misinterpret-
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ng results and, in particular, of inferring relationships with canonical

requency bands that are in fact trivial representations of the evoked

esponse spectrum. 

We have argued that including a signal’s higher temporal derivatives

n decoding better reflects the full picture of information content avail-

ble to downstream brain regions, such that the more stable temporal

rofiles obtained by complex spectrum decoding (and related methods) are

 better depiction of the true information content compared to instan-

aneous signal decoding . It is notable that neural circuits – being funda-

entally conductance-based at the cellular level – are perfectly placed

o compute such higher temporal derivatives, such that this information

s readily available for any further computation. This certainly does not

ean that the brain does not encode information to a particular phase of

n underlying oscillation, just that commonly used instantaneous signal

ecoding methods may mistakenly suggest so. 

In particular, studies investigating memory reactivation have inter-

reted the oscillatory dynamics of the classification accuracy as evi-

ence that reactivation is functionally phase-locked to canonical fre-

uency bands. Kerrén et al. (2018 ) analyse the spectrum of the classifi-

ation accuracy timecourse, much as we have done in Fig. 6 C, and inter-

reted the peak at 7Hz as evidence for theta phase locking. Our results

uggest this may rather be the result of a 3.5Hz sinusoidal component in

he evoked response. In a similar vein, Fuentemilla et al. (2010 ) found

hat classification accuracy was modulated by theta phase. Crucially,

his work derived decoding accuracy by using wavelet power estimates

s inputs to the classifier, a measure which is theoretically phase in-

ariant and therefore could circumvent the effects that we have char-

cterised above. Nonetheless, in practice this becomes largely depen-

ent on the parameters controlling the resolution of time and frequency

hen power is estimated, such that the relationships we have charac-

erised remain a potential confound (see Supplementary Information,

ection 4 and Figure S3). We therefore argue broadly for caution in in-

erpreting oscillatory dynamics in classification accuracy timecourses,

nd – where authors wish to make stronger interpretations such as those

iscussed here – recommend rigorous parameter testing with suitably

efined non-parametric tests of significance ( Brookshire, 2022 ) to prove

uch characteristics could not arise trivially. 

Our results are fundamentally mathematical, and should be inter-

reted as such; they derive from the expected Fourier spectrum of the

voked response, not from the fundamental frequency of a canonical

eural oscillation. For example, a 40Hz Fourier component can be pro-

uced by a vast range of underlying neural sources, only a subset of

hich would be considered ‘gamma oscillations’. Our results apply re-

ardless; thus the recommendation to low-pass filter with a cut-off fre-

uency of one quarter of the sampling rate applies to any researcher do-

ng instantaneous signal decoding , irrespective of the frequencies of neural

ctivity they may be interested in or expecting. 

As an information theoretic result, if our modelling assumptions hold

hen these results are fundamental and apply to any instantaneous sig-

al decoding approach regardless of methodological choices on the part

f the researcher; they cannot be overcome by use of nonlinear classi-

ers, machine learning tools, or by analysing different accuracy met-

ics. The result similarly applies more broadly beyond our focus of de-
able 2 

utual information results generalise to other common decoding metrics. We have 

rbitrary monotonic function 𝑓 . All our results generalise to other commonly used dec

imply by substituting 𝑓 by another monotonic function, here denoted by 𝐹 and 
⌣

𝐹

unctions). 

Signal Mutual information Classification accu

𝑋 𝑡 𝐼( 𝑋 𝑡 , 𝑌 ) = 𝑓 ( 𝑐 𝐵 + 
Ω∑
𝜔 

𝑟 𝐵,𝜔 cos ( 2 𝜔𝑡 + 𝜉𝐵,𝜔 ) + h(t) ) 𝐴 ( 𝑋 𝑡 , 𝑌 ) = 𝐹 ( 𝑐 𝐵 +

𝑍 𝜔,𝑡 𝐼( 𝑍 𝑡,𝜔 , 𝑌 ) = 𝑓 ( 𝑐 𝜔 + r ω cos ( 2 𝜔𝑡 + 𝜉𝜔 ) ) 𝐴 ( 𝑍 𝑡,𝜔 , 𝑌 ) = 𝐹 ( 𝑐 𝜔 
𝑊 𝑡,𝜔 𝐼( 𝑊 𝑡,𝜔 , 𝑌 ) = 𝑓 ( 2 𝑐 𝜔 ) 𝐴 ( 𝑊 𝑡,𝜔 , 𝑌 ) = 𝐹 ( 2 𝑐 𝜔

11 
oding wherever unsigned statistics are used – for example, applying

imepoint-by-timepoint F-tests in an ANOVA analysis to ascertain when

 univariate sensor signal significantly differs over conditions would ex-

ibit the same behaviour. In our analysis we have derived the spec-

rum of the information content up to an arbitrary monotonic scaling

enoted by the function f . It follows that other widely used metrics

o assess decoding accuracy (such as classification accuracy, distance

rom the classification hyperplane etc.) are each a different monotonic

caling of this quantity (see Table 2 and SI for further details). We

herefore argue that our results are universally applicable to instanta-

eous signal decoding pipelines (and indeed many other pipelines that

tilise unsigned statistics) regardless of any variations in methodological

hoices. 

We have characterised three major decoding paradigms but do not

laim these to be exhaustive with respect to the literature. A very com-

on approach involves the application of classifiers not to a recorded

ignal itself but to a set of Fourier features derived from a signal, which

n most applications will be equivalent to the narrowband or complex

pectrum decoding paradigms such that all our results remain applica-

le. A related area of research uses the recorded signal and its central-

ifference gradient as features, similarly obtaining enhanced accuracy

s a result ( Ince et al., 2016 ). However an emerging area of research

nfers nonlinear time-domain features, for example through the train-

ng of temporal convolutional networks or recurrent neural networks,

hat are then used as inputs for classification ( Kalafatovich et al., 2020 ;

chirrmeister et al., 2017 ; Zubarev et al., 2019 ). These methods typically

ffer a greater ability to separate conditions, however the accompanying

arriers to interpretability have to date limited their direct application in

he study of representational dynamics. We hope that such interpretabil-

ty barriers will be challenged and overcome in future work, and that

he relationships we have outlined here may aid this endeavor. 

Finally, we have shown that complex spectrum decoding overcomes

he problem of representational aliasing whilst also presenting other

enefits; specifically, leading to higher accuracies that are more stable

ver time. We are not the first to use complex features for decoding and

nd they achieve greater classification accuracy ( Angjelichinoski et al.,

019 ; Ince et al., 2017 ), nor more generally to use gradient informa-

ion as features for decoding ( Zhan et al., 2019 ), however the theoreti-

al principles for the underlying relationship were not previously estab-

ished. However, it similarly presents its own challenges. The significant

ncrease in dimensionality associated with a feature vector that varies

imultaneously over time, space and frequency may present computa-

ional challenges. Furthermore, whilst we see interpretational benefits

o having results that are resolved in both frequency and time, in some

ircumstances (such as the non-sinusoidal signal example simulated in

ection 4.2.3 ) this additional complexity may not harbour any new in-

ights. We have spoken broadly of Fourier analysis, again to stress that

hese results apply generically to STFTs, wavelet decompositions, or any

ther such method – however each of these apply different assumptions

hat mostly result in different trade-offs of time and frequency resolu-

ion. These trade-offs are likely to be especially pertinent in the context

f high temporal resolution decoding. Nonetheless, the benefits can be

uite substantial and well justified by the results. 
characterised the information content associated with three variables up to an 

oding metrics such as classification accuracy and distance from the hyperplane 
 

 (see Supplementary Information Section 1 and Figure S1 for plots of these 

racy Distance from hyperplane 

 

Ω∑
𝜔 

𝑟 𝐵,𝜔 cos ( 2 𝜔𝑡 + 𝜉𝐵,𝜔 ) + h(t) ) 𝐷( 𝑋 𝑡 , 𝑌 ) = 
⌣ 

𝐹 ( 𝑐 𝐵 + 
Ω∑
𝜔 

𝑟 𝐵,𝜔 cos ( 2 𝜔𝑡 + 𝜉𝐵,𝜔 ) + h(t) ) 

+ r ω cos ( 2 𝜔𝑡 + 𝜉𝜔 ) ) 𝐷( 𝑍 𝑡,𝜔 , 𝑌 ) = 
⌣ 

𝐹 ( 𝑐 𝜔 + r ω cos ( 2 𝜔𝑡 + 𝜉𝜔 ) ) 

 

) 𝐷( 𝑊 𝑡,𝜔 , 𝑌 ) = 
⌣ 

𝐹 ( 2 𝑐 𝜔 ) 
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. Conclusion 

We have characterised the relationship between the stimulus evoked

pectrum and the information content spectrum, which is commonly

sed to investigate the brain’s representational dynamics. Understand-

ng how these two quantities relate is crucial to interpreting results ob-

ained via decoding pipelines. By establishing these relationships under

hree different decoding paradigms, this work opens the door to much

tronger interpretation of decoding results by linking the question of

hat is being represented with the neural mechanisms explaining how it

s being represented. We hope this will enable more targeted scientific

nquiry to uncover the true mechanisms by which the brain processes

iverse forms of information. 
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. Full model specification 

The assumptions expressed in Section 2.1 can be more fully ex-

ressed mathematically, with corresponding expressions obtained for

he probability distribution of each of the random variables 𝑋 𝑡 , 𝑌 

nd 𝑍 𝑡,𝜔 . 

We have assumed that the stimulus class is binary with equal

lass probabilities. This corresponds to the following distribution

or Y : 

 ( 𝑌 ) = 

{ 

1 with probability 0 . 5 

−1 with probability 0 . 5 
(A1)

Following on from Eq. (1) , since the 𝜇𝑡 term captures the mean over

oth conditions, we can then model the expected value of each signal

 𝑛,𝑡,𝜔 on individual trials with polarity determined by the trial condition

 𝑛 . We assume these narrowband signals have multivariate Gaussian

oise that is independent and identically distributed (over trials and

onditions) – this corresponds to an assumption that only the evoked

esponse, and not the induced response, differs over the two conditions.

his is a simplifying assumption that we discuss further and ultimately

elax in Section 2.4 . This allows us to specify the probability distribu-

ions of 𝑍 𝑡,𝜔 (of which 𝑧 𝑛,𝑡,𝜔 is the sample corresponding to the n th trial)

s follows: 

 

(
𝑍 𝑡,𝜔 |Y 

)
= 𝑁 

(
𝑌 𝐴 𝜔 cos 

(
𝜔𝑡 + 𝜙𝜔 

)
, Σ𝜔 

)
(A2)

Each 𝐴 𝜔 term is a diagonal [ 𝑃 × 𝑃 ] matrix, where the i th diagonal

ntry, denoted by 𝑎 𝜔,𝑖 , reflects the magnitude of the component at fre-

uency 𝜔 on channel i . Both 𝜔 and t are scalar indices reflecting the

requency and time respectively, whereas 𝜙𝜔 is a [ 𝑃 × 1 ] vector, each

ntry of which contains the phase offset of the oscillation at frequency

cross the P channels. Finally, we model induced effects (i.e. narrow-

and power that is not phase aligned to the stimulus) independently

n each frequency band, where Σ𝜔 is the [ 𝑃 × 𝑃 ] covariance matrix

odelling the spatial variance and correlations expressed at frequency

and 𝜔 . 

For any set of discretely sampled data recordings with at least

 total trials (i.e. more trials than channels), all of the above

arameters are fully identifiable. The data for each channel and each

rial can be decomposed into a discrete Fourier series representation

f the above form where the number of frequency components equals

alf the number of timepoints in the trial Ω = 

𝑇 

2 (for simplicity we

ere model a single Fourier decomposition over the trial; this can

quivalently be computed over sliding windows as in Section 4 , in which

ase the number of frequency components equals half the number of

amples in a window). Following from the uniqueness of the Fourier

ransform, unique values can be obtained for the diagonal matrix 𝐴 𝜔 ,

he phase offsets 𝜙𝜔 and the patterns of spatial correlations in each fre-

uency Σ𝜔 . 

The distribution of the broadband signal 𝑋 𝑡 given in Eq. (2) then

ollows directly from Eq. (1) (by observing that a sum of narrowband

aussian components is also Gaussian distributed). 

. Mutual information for a Gaussian mixture model with equal 

ovariances 

Let us first consider a simpler model and derive a general result that

e can then use to prove our claims. Suppose we have a random variable

 distributed as given in the text: 

 ( 𝑌 ) = 

{ 

1 with probability 0 . 5 

−1 with probability 0 . 5 

Suppose we then have another random variable B of dimension 𝑃 × 1
onditioned on Y as follows: 

 ( 𝐵|𝑌 ) = 𝑁 ( 𝜇 + 𝑌 m , S ) 

http://userpage.fu-berlin.de/rmcichy/fusion_project_page/main.html
https://github.com/OHBA-analysis/RepresentationalDynamicsModelling
https://doi.org/10.5281/zenodo.6579997
https://representational-dynamics.herokuapp.com/
https://doi.org/10.13039/100010269
https://doi.org/10.13039/100010269
https://doi.org/10.13039/501100000781
https://doi.org/10.1016/j.neuroimage.2022.119462
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s (corresponding to the cases 𝑌 = 1 and 𝑌 = −1 ) and equal covariances. The 

m

𝑃

stribution over 𝐵 with mean 𝜇 + 𝑚 and covariance 𝑆. We shall furthermore 

u given the probability distribution 𝑃 ( 𝑋) . We can now compute the following 

r

𝐻

log 

( 

𝑁( 𝐵|𝜇 + 𝑚, 𝑆) 

( 

1 + 𝑒 −2 ( 𝐵− 𝜇) 
𝑇 𝑆 −1 𝑚 

2 

) ) 

𝑑𝐵 

 

−2 ( 𝐵− 𝜇) 𝑇 𝑆 −1 𝑚 
)

) 𝑇 𝑆 −1 𝑚 
)

ntropy of a multivariate Gaussian, which has a known solution; we similarly 

o tion of a univariate function in 𝑢 = 2 ( 𝐵 − 𝜇) 𝑇 𝑆 

−1 𝑚 and 𝑣 = 2 ( 𝐵 + 𝜇) 𝑇 𝑆 

−1 𝑚 

r

𝐻  

− 𝑢 ) 

𝐻 𝑚, 𝑆 ) 

ion: 

𝐼

ut is a function of the scalar product 𝛼 = 2 𝑚 

𝑇 𝑆 

−1 𝑚 . We therefore can state 

e

𝐼

𝑓

C

𝑄

W ur proof below rearranges the first and second derivative of 𝑓 in terms of the 

h r these moments. The moment generating function for 𝑄 ( 𝑢 ) is: 

𝔼

This is equivalent to a Gaussian mixture model with two component

arginal distribution can then be expressed as follows: 

 ( 𝐵 ) = 𝑃 ( 𝑌 = 1 ) 𝑃 ( 𝐵|𝑌 = 1 ) + 𝑃 ( 𝑌 = −1 ) 𝑃 ( 𝐵|𝑌 = −1 ) 

= 

1 
2 
√
2 𝜋|𝑆 |

(
𝑒 
− 1 2 ( 𝐵− 𝜇− 𝑚 ) 

𝑇 𝑆 −1 ( 𝐵− 𝜇− 𝑚 ) + 𝑒 
− 1 2 ( 𝐵− 𝜇+ 𝑚 ) 

𝑇 𝑆 −1 ( 𝐵− 𝜇+ 𝑚 ) 
)

= 

( 

1 √
2 𝜋|𝑆 | 𝑒 − 1 2 ( 𝐵− 𝜇− 𝑚 ) 𝑇 𝑆 −1 ( 𝐵− 𝜇− 𝑚 ) 

) ( 

1 + 𝑒 −2 ( 𝐵− 𝜇) 
𝑇 𝑆 −1 𝑚 

2 

) 

= 𝑁( 𝐵|𝜇 + 𝑚, 𝑆) 

( 

1 + 𝑒 −2 ( 𝐵− 𝜇) 
𝑇 𝑆 −1 𝑚 

2 

) 

Where we use the notation 𝑁( 𝐵|𝜇 + 𝑚, 𝑆) to denote the Gaussian di

se the notation 𝔼 𝑃 ( 𝑥 ) 𝑓 ( 𝑥 ) to denote the expectation of a function 𝑓 ( 𝑥 ) 
esult for the entropy of 𝐵: 

 ( 𝐵 ) = − ∫ 𝑃 ( 𝐵 ) log 𝑃 ( 𝐵 ) 𝑑𝐵 

= − ∫
1 

2 
√
2 𝜋|𝑆 |

(
𝑒 
− 1 2 ( 𝐵− 𝜇− 𝑚 ) 

𝑇 𝑆 −1 ( 𝐵− 𝜇− 𝑚 ) + 𝑒 
− 1 2 ( 𝐵− 𝜇+ 𝑚 ) 

𝑇 𝑆 −1 ( 𝐵− 𝜇+ 𝑚 ) 
)

= log 2 − 

1 
2 
𝔼 𝑁( 𝐵|𝜇+ 𝑚,𝑆) log 𝑁 ( 𝐵|𝜇 + 𝑚, 𝑆 ) − 

1 
2 
𝔼 𝑁( 𝐵|𝜇+ 𝑚,𝑆) log (1 + 𝑒

− 

1 
2 
𝔼 𝑁( 𝐵|𝜇− 𝑚,𝑆) log 𝑁 ( 𝐵|𝜇 − 𝑚, 𝑆 ) − 

1 
2 
𝔼 𝑁( 𝐵|𝜇− 𝑚,𝑆) log (1 + 𝑒 2 ( 𝐵− 𝜇

We then observe that the second and fourth terms correspond to the e

bserve that the third and fifth remaining terms are each an expecta

espectively. With a substitution of variables this simplifies to: 

 ( 𝐵 ) = log 2 + 

1 
2 
log |𝑆 | + 

𝑃 

2 
( 1 + log 2 𝜋) − 𝔼 𝑁( 𝑢 |2 𝑚 𝑇 𝑆 −1 𝑚, 4 𝑚 𝑇 𝑆 −1 𝑚 ) log ( 1 + 𝑒

Similarly, we find that the conditional entropy is given by: 

 ( 𝐵|𝑌 ) = − 

1 
2 
𝔼 𝑁( 𝐵|𝜇− 𝑚,𝑆) log 𝑁 ( 𝐵|𝜇 − 𝑚, 𝑆 ) − 

1 
2 
𝔼 𝑁( 𝐵|𝜇+ 𝑚,𝑆) log 𝑁 ( 𝐵|𝜇 + 

= 

1 
2 
log |𝑆 | + 

𝑃 

2 
( 1 + log 2 𝜋) 

We can therefore apply the chain rule to derive the mutual informat

 ( 𝐵, 𝑌 ) = 𝐻 ( 𝐵 ) − 𝐻( 𝐵|𝑌 ) 
= log 2 − 𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) log ( 1 + 𝑒 − 𝑢 ) 

Note that the second term involves an integral that is intractable, b

quivalently that: 

 ( 𝐵, 𝑌 ) = 𝑓 ( 𝛼) 

Where 

 ( 𝛼) = log 2 − ∫
1 

2 
√
𝜋𝛼

𝑒 
− 1 4 𝛼 ( 𝑢 − 𝛼) 

2 
log ( 1 + 𝑒 − 𝑢 ) 𝑑𝑢 

. Proof that the function f is monotonic and concave 

Firstly, let us define the following probability distribution: 

 ( 𝑢 ) = 

1 
𝐶 1 2 

√
𝜋𝛼

𝑒 
− 1 4 𝛼 ( 𝑢 − 𝛼) 

2 
log ( 1 + 𝑒 − 𝑢 ) 

here 𝐶 1 = ∫ ∞
−∞

1 
2 
√
𝜋𝛼

𝑒 
− 1 4 𝛼 ( 𝑢 − 𝛼) 

2 
log ( 1 + 𝑒 − 𝑢 ) 𝑑𝑢 = 𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) log ( 1 + 𝑒 − 𝑢 ) . O

igher moments of this distribution, thus we now seek an expression fo

 𝑄 ( 𝑢 ) 𝑒 
𝑡𝑢 = 

1 
𝐶 1 ∫

∞

−∞

1 
2 
√
𝜋𝛼

𝑒 
− 1 4 𝛼 ( 𝑢 − 𝛼) 

2 
log ( 1 + 𝑒 − 𝑢 ) 𝑒 𝑡𝑢 𝑑𝑢 

= 

1 
𝐶 1 

𝑒 𝛼𝑡 ( 1+ 𝑡 ) ∫
∞

−∞

1 
2 
√
𝜋𝛼

𝑒 
− 1 4 𝛼 ( 𝑢 − 𝛼( 1+2 𝑡 ) ) 

2 
log ( 1 + 𝑒 − 𝑢 ) 𝑑𝑢 
13 
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Fig. A1. the function 𝑓 ( 𝛼) , which uniquely determines the information content of data generated from the Gaussian model specified in the text, is a monotonic 

concave function. 

moments of the distribution that are ultimately required for the proof. As 

t ntary Information Section 3 for full details, where we obtain the following 

e

𝔼

𝔼
)

W erms inside the expectations are strictly positive, such that their expectation 

i

in Appendix B . 

𝑓

ate by Leibniz rule: 

𝑓 𝑢 

𝑓

= 

𝔼 𝑁( 𝑢 |𝛼( 1+2 𝑡 ) , 2 𝛼) log ( 1 + 𝑒 − 𝑢 ) 
𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) log ( 1 + 𝑒 − 𝑢 ) 

𝑒 𝛼𝑡 ( 1+ 𝑡 ) 

= 

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) log (1 + 𝑒 − 𝑢 −2 𝛼𝑡 
)

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) log ( 1 + 𝑒 − 𝑢 ) 
𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) 𝑒 𝑡𝑢 

The moment generating function allows us to compute the higher 

he algebra for this is somewhat tedious we refer readers to Suppleme

xpressions for these moments: 

 𝑄 ( 𝑢 ) 𝑢 
2 = 𝛼2 + 2 𝛼 − 

4 𝛼2 
𝐶 1 

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) ( 1 − 𝜎( 𝑢 ) ) 2 

 𝑄 ( 𝑢 ) 𝑢 
4 = 𝛼4 + 12 𝛼3 + 12 𝛼2 − 

8 𝛼3 
𝐶 1 

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) (( 1 − 𝜎( 𝑢 ) ) 2 
(
𝛼( 2 𝜎( 𝑢 ) − 1 ) 2 + 6 

)
here 𝜎( 𝑢 ) = 

1 
1+ 𝑒 − 𝑢 denotes the logistic sigmoid function. Note that the t

s always greater than zero. 

Now, consider the function 𝑓 ( 𝛼) , plotted in Fig. A1 and specified as 

The first derivative is: 

 

′( 𝛼) = 

𝑑 

𝑑𝛼
𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) log ( 1 

1 + 𝑒 − 𝑢 

)
Let us denote by 𝑔 ( 𝛼, 𝑢 ) = 

1 
2 
√
𝜋𝛼

𝑒 
− ( 𝑢 − 𝛼) 

2 
4 𝛼 log ( 1 

1+ 𝑒 − 𝑢 ) . We can then evalu

𝑑 

𝑑𝛼

( 

∫ 𝑔 ( 𝛼, 𝑢 ) 𝑑𝑢 
) 

= ∫
𝜕 

𝜕𝛼
𝑔 ( 𝛼, 𝑢 ) 𝑑𝑢 

 

′( 𝛼) = ∫ log 
( 1 
1 + 𝑒 − 𝑢 

)( 

−1 

4 
√
𝜋𝛼3 

𝑒 
− ( 𝑢 − 𝛼) 

2 
4 𝛼 + 

1 
2 
√
𝜋𝛼

𝑒 
− ( 𝑢 − 𝛼) 

2 
4 𝛼

( 

𝑢 2 − 𝛼2 

4 𝛼2 

) 

) 

𝑑

= ∫
( 

1 
2 
√
𝜋𝛼

𝑒 
− ( 𝑢 − 𝛼) 

2 
4 𝛼

) 

log ( 1 + 𝑒 − 𝑢 ) 
( 

𝛼2 + 2 𝛼 − 𝑢 2 

4 𝛼2 

) 

𝑑𝑢 

= 

𝐶 1 
4 𝛼2 

𝔼 𝑄 ( 𝑢 ) 
(
𝛼2 + 2 𝛼 − 𝑢 2 

)
Substituting the above expression for 𝔼 𝑄 ( 𝑢 ) 𝑢 2 , we have: 

 

′( 𝛼) = 

𝐶 1 
4 𝛼2 

( 𝛼2 + 2 𝛼 − 𝛼2 − 2 𝛼 + 

4 𝛼2 
𝐶 1 

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) ( 1 − 𝜎( 𝑢 ) ) 2 

= 𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) ( 1 − 𝜎( 𝑢 ) ) 2 

> 0 

We conclude that 𝑓 is monotonic. 
14 
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𝑓

) 2 

𝑑𝑢 

+ 𝛼2 
)
+ 𝑢 4 

) 

𝑑𝑢 

gain find that most terms cancel out leaving us with: 

𝑓  1 − 𝜎( 𝑢 ) ) 2 
(
𝛼( 2 𝜎( 𝑢 ) − 1 ) 2 + 6 

))) 

W

D

. It can be seen that this is a special case of the model specified in Appendix 

B

𝑚

𝑆

𝐼

𝑚

ine the information term: 

2  𝜔 + 𝑖𝑣 𝜔 
)
𝑒 − 𝑖𝜔𝑡 

)
 

− 𝑖𝑣 𝜔 
)
+ 2 𝑢 𝑇 

𝜔 
Σ−1 
𝜔 
𝑢 𝜔 + 2 𝑣 𝑇 

𝜔 
Σ−1 
𝜔 
𝑣 𝜔 

]
 2 𝑢 𝑇 

𝜔 
Σ−1 
𝜔 
𝑣 𝜔 

𝑒 2 𝑖𝜔𝑡 − 𝑒 −2 𝑖𝜔𝑡 

2 𝑖 

) 

−1 
ω 𝑣 𝜔 sin 2 𝜔𝑡 

)

W −1 
ω 𝑢 𝜔 − 𝑣 𝑇 

𝜔 
Σ−1 
ω 𝑣 𝜔 ) 

2 + (2 𝑢 𝑇 
𝜔 
Σ−1 
ω 𝑣 𝜔 ) 

2 
. 

e paper, we have: 

𝑐

𝑟

𝜉

A second application of Leibniz’ rule gives us the second derivative:

 

′′( 𝛼) = ∫
𝜕 

𝜕𝛼

( 

1 
2 
√
𝜋𝛼

𝑒 
− ( 𝑢 − 𝛼) 

2 
4 𝛼

) ( 

𝑢 2 − 4 𝛼2 − 2 𝛼
4 𝛼2 

) 

log 
( 1 
1 + 𝑒 − 𝑢 

)
𝑑𝑢 

= ∫ log 
( 1 
1 + 𝑒 − 𝑢 

)( 

𝛼4 + 4 𝛼3 + 

(
12 − 2 𝑢 2 

)
𝛼2 − 12 𝑢 2 𝛼 + 𝑢 4 

32 
√
𝜋𝛼9 

) 

𝑒 
− ( 𝑢 −2 𝛼4 𝛼

= − 𝐶 1 ∫
1 

2 𝐶 1 
√
𝜋𝛼

𝑒 
− ( 𝑢 − 𝛼) 

2 
4 𝛼 log ( 1 + 𝑒 − 𝑢 ) 

( 

𝛼4 + 4 𝛼3 + 12 𝛼2 − 2 𝑢 2 
(
6 𝛼

16 𝛼4 

= − 

𝐶 1 
16 𝛼4 

𝔼 𝑄 ( 𝑢 ) 
(
𝛼4 + 4 𝛼3 + 12 𝛼2 − 2 𝑢 2 

(
𝛼2 + 6 𝛼

)
+ 𝑢 4 

)
Now substituting the above expressions for 𝔼 𝑄 ( 𝑢 ) 𝑢 2 and 𝔼 𝑄 ( 𝑢 ) 𝑢 4 we a

 

′′( 𝛼) = − 

𝐶 1 
16 𝛼4 

( 

2 
( 

4 𝛼2 
𝐶 1 

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) ( 1 − 𝜎( 𝑢 ) ) 2 
) (

6 𝛼 + 𝛼2 
)
− 

8 𝛼3 
𝐶 1 

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) ((
= − 

1 
2 𝛼

𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) ( 1 − 𝜎( 𝑢 ) ) 2 
(
6 + 𝛼 − 

(
𝛼( 2 𝜎( 𝑢 ) − 1 ) 2 − 6 

))
= − 

1 
2 
𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) ( 1 − 𝜎( 𝑢 ) ) 2 

(
1 − ( 2 𝜎( 𝑢 ) − 1 ) 2 

)
= − 𝔼 𝑁( 𝑢 |𝛼, 2 𝛼) 2 𝜎( 𝑢 ) ( 1 − 𝜎( 𝑢 ) ) 3 

< 0 

hich follows from 0 < 𝜎( 𝑢 ) < 1 . We conclude that 𝑓 is concave. 

. Mutual information of the narrowband signal 

Consider the narrowband real signal 𝑍 𝜔,𝑡 as specified in Equation A2

 by substituting the following: 

 = 𝐴 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)
 = Σ𝜔 

It therefore follows that the information content is given by: 

 

(
𝑍 𝑡,𝜔 , 𝑌 

)
= 𝑓 

(
2 𝑚 

𝑇 𝑆 

−1 𝑚 

)
Re-writing the mean term in cartesian form, we have: 

 = 

(
𝑢 𝜔 + 𝑖𝑣 𝜔 

)
𝑒 𝑖𝜔𝑡 + 

(
𝑢 𝜔 − 𝑖𝑣 𝜔 

)
𝑒 − 𝑖𝜔𝑡 

2 
Where 𝑢 𝜔 = 𝐴 𝜔 cos ( 𝜙𝜔 ) and 𝑣 𝜔 = 𝐴 𝜔 sin ( 𝜙𝜔 ) . This allows us to determ

 𝑚 

𝑇 𝑆 

−1 𝑚 = 

1 
2 
((
𝑢 𝜔 + 𝑖𝑣 𝜔 

)
𝑒 𝑖𝜔𝑡 + 

(
𝑢 𝜔 + 𝑖𝑣 𝜔 

)
𝑒 − 𝑖𝜔𝑡 

)𝑇 Σ−1 
𝜔 

((
𝑢 𝜔 + 𝑖𝑣 𝜔 

)
𝑒 𝑖𝜔𝑡 + 

(
𝑢

= 

1 
2 

[
𝑒 2 𝑖𝜔𝑡 

(
𝑢 𝜔 + 𝑖𝑣 𝜔 

)𝑇 Σ−1 
𝜔 

(
𝑢 𝜔 + 𝑖𝑣 𝜔 

)
+ 𝑒 −2 𝑖𝜔𝑡 

(
𝑢 𝜔 − 𝑖𝑣 𝜔 

)𝑇 Σ−1 
𝜔 

(
𝑢 𝜔

= 

( 

𝑢 𝑇 
𝜔 
Σ−1 
𝜔 
𝑢 𝜔 + 𝑣 𝑇 

𝜔 
Σ−1 
𝜔 
𝑣 𝜔 + 

(
𝑢 𝑇 
𝜔 
Σ−1 
𝜔 
𝑢 𝜔 − 𝑣 𝑇 

𝜔 
Σ−1 
𝜔 
𝑣 𝜔 

) 𝑒 2 𝑖𝜔𝑡 + 𝑒 −2 𝑖𝜔𝑡 

2 
−

= 

(
𝑢 𝑇 
𝜔 
Σ−1 
ω 𝑢 𝜔 + 𝑣 𝑇 

𝜔 
Σ−1 
ω 𝑣 𝜔 + 

(
𝑢 𝑇 
𝜔 
Σ−1 
ω 𝑢 𝜔 − 𝑣 𝑇 

𝜔 
Σ−1 
ω 𝑣 𝜔 

)
cos 2 𝜔𝑡 − 2 𝑢 𝑇 

𝜔 
Σ

= 𝑐 𝜔 + 𝑟 𝜔 cos 
(
2 𝜔𝑡 + 𝜉𝜔 

)
here 𝑐 𝜔 = 𝑢 𝑇 

𝜔 
Σ−1 
ω 𝑢 𝜔 + 𝑣 𝑇 

𝜔 
Σ−1 
ω 𝑣 𝜔 , tan 𝜉𝜔 = 

2 𝑢 𝑇 𝜔 Σ
−1 
ω 𝑣 𝜔 

𝑢 𝑇 𝜔 Σ−1 ω 𝑢 𝜔 − 𝑣 𝑇 𝜔 Σ−1 ω 𝑣 𝜔 
and 𝑟 2 

𝜔 
= ( 𝑢 𝑇 

𝜔 
Σ

Alternatively, returning to the polar coordinates used throughout th

 𝜔 = cos 
(
𝜙𝑇 
𝜔 

)
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 cos 

(
𝜙𝜔 

)
+ sin 

(
𝜙𝑇 
𝜔 

)
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 sin 

(
𝜙𝜔 

)
= 𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 

(
cos 𝜙𝜔 cos 

(
𝜙𝑇 
𝜔 

)
+ sin 

(
𝜙𝜔 

)
sin 

(
𝜙𝑇 
𝜔 

)))
= 𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 cos 

[
𝜙𝜔 − 𝜙𝑇 

𝜔 

])
And applying the same steps for the remaining variables gives us: 

 

2 
𝜔 
= 𝑇 𝑟 2 

(
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 cos 

([
𝜙𝜔 + 𝜙𝑇 

𝜔 

]))
+ 𝑇 𝑟 2 

(
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 sin 

([
𝜙𝜔 + 𝜙𝑇 

𝜔 

]))
𝜔 = 𝑡𝑎𝑛 −1 

( 

𝑇 𝑟 
(
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 sin 

([
𝜙𝜔 + 𝜙𝑇 

𝜔 

]))
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝜔 
𝐴 𝜔 cos 

([
𝜙𝜔 + 𝜙𝑇 

𝜔 

]))) 
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nstructed from the [ 𝑃 × 1 ] vector 𝜙𝜔 such that the 𝑖, 𝑗th matrix entry is given 

b

n by: 

𝐼

E

e seen that this is a special case of the model specified in Appendix B by 

s

𝑚

𝑆

ignal is given by 

𝐼

2

 

𝜔 

)𝑇 
𝐴 𝜔 Σ−1 

𝐵 

( Ω∑
𝜓= 𝜔 +1 

𝐴 𝜓 cos 
(
𝜓𝑡 + 𝜙𝜓 

)) ) 

W  𝜙𝜔 ) and 𝑣 𝜔 = 𝐴 𝜔 sin ( 𝜙𝜔 ) , such that: 

𝐴

the frequency of each sinusoidal component of the evoked response, plus 

a  pair of frequencies in the evoked response: 

ℎ

Where we have used the notation [ 𝜙 ± 𝜙𝑇 ] for the [ 𝑃 × 𝑃 ] matrix co

y 𝜙𝜔,𝑖 ± 𝜙𝜔,𝑗 . 

We conclude that the narrowband signal information content is give

 

(
𝑍 𝑡,𝜔 , 𝑌 

)
= 𝑓 

(
𝑐 𝜔 + r ω cos 

(
2 𝜔𝑡 + 𝜉𝜔 

))
. Mutual information of the broadband signal 

Consider the broadband signal 𝑋 𝑡 as specified in Eq. (2) . It can b

ubstituting the following: 

 = 

Ω∑
𝜔 =0 

𝐴 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)
 = 

Ω∑
𝜔 =0 

Σ𝜔 

It therefore follows that the information content in the broadband s

 

(
𝑋 𝑡 , 𝑌 

)
= 𝑓 

(
2 𝑚 

𝑇 𝑆 

−1 𝑚 

)
Substituting the above values: 

 𝑚 

𝑇 𝑆 

−1 𝑚 = 2 

[ Ω∑
𝜔 =0 

𝐴 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)] 𝑇 [ Ω∑
𝜔 =0 

Σ𝜔 

] −1 [ Ω∑
𝜔 =0 

𝐴 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)]

= 2 

( Ω∑
𝜔 =0 

cos 
(
𝜔𝑡 + 𝜙𝜔 

)𝑇 
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜔 cos 

(
𝜔𝑡 + 𝜙𝜔 

)
+ 2 cos 

(
𝜔𝑡 + 𝜙

here Σ𝐵 = 

Ω∑
𝜔 =0 

Σ𝜔 . Writing in cartesian coordinates where 𝑢 𝜔 = 𝐴 𝜔 cos (

 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)
= 

(
𝑢 𝜔 + 𝑖𝑣 𝜔 

)
𝑒 𝑖𝜔𝑡 + 

(
𝑢 𝜔 − 𝑖𝑣 𝜔 

)
𝑒 − 𝑖𝜔𝑡 

2 
This becomes: 

That is, a consant term 𝑐 𝐵 plus a sinusoidal component at double 

dditional harmonic components ℎ ( 𝑡 ) at the sum and difference of each

 ( 𝑡 ) = 2 
Ω∑

𝜓= 𝜔 +1 
𝑠 𝜔,𝜓 cos 

(
( 𝜓 + 𝜔 ) 𝑡 + 𝜁𝜔,𝜓 

)
+ 𝑡 𝜔,𝜓 cos 

(
( 𝜓 − 𝜔 ) 𝑡 + 𝜃𝜔,𝜓 

)

16 
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t

, we have: 

))2 

𝑇 
𝜓 

]))2 

 

 

]))2 
t

𝐼

F

 that this is a special case of the model specified in Appendix B by substituting 

t

𝑚

𝑆

𝐼

2

,𝑡 is given by: 

𝐼

The variables take the following values: 

𝑐 𝐵 = 

Ω∑
𝜔 =0 

𝑢 𝑇 
𝜔 
Σ−1 
B 𝑢 𝜔 + 𝑣 𝑇 

𝜔 
Σ−1 
B 𝑣 𝜔 

𝑟 2 
𝐵,𝜔 

= 

(
𝑢 𝑇 
𝜔 
Σ−1 
B 𝑢 𝜔 − 𝑣 𝑇 

𝜔 
Σ−1 
B 𝑣 𝜔 

)2 + (2 𝑢 𝑇 
𝜔 
Σ−1 
B 𝑣 𝜔 ) 

2 

tan 𝜉𝐵,𝜔 = 

2 𝑢 𝑇 
𝜔 
Σ−1 
B 𝑣 𝜔 

𝑢 𝑇 
𝜔 
Σ−1 
B 𝑢 𝜔 − 𝑣 𝑇 

𝜔 
Σ−1 
B 𝑣 𝜔 

𝑠 2 
𝜔,𝜓 

= 

(
𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑢 𝜓 − 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑣 𝜓 

)2 + 

(
𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑣 𝜓 + 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑢 𝜓 

)2 
tan 𝜁𝜔,𝜓 = 

𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑣 𝜓 + 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑢 𝜓 

𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑢 𝜓 − 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑣 𝜓 

𝑡 2 
𝜔,𝜓 

= 

(
𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑢 𝜓 + 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑣 𝜓 

)2 + 

(
𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑣 𝜓 − 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑢 𝜓 

)2 
an 𝜃𝜔,𝜓 = 

𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑣 𝜓 + 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑢 𝜓 

𝑢 𝑇 
𝜔 
Σ−1 
𝐵 
𝑢 𝜓 − 𝑣 𝑇 

𝜔 
Σ−1 
𝐵 
𝑣 𝜓 

Converting back to the polar coordinates used throughout the paper

𝑐 𝐵 = 

Ω∑
𝜔 =0 

𝑇 𝑟 
(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜔 cos 

[
𝜙𝜔 − 𝜙𝑇 

𝜔 

])
𝑟 2 
𝐵,𝜔 

= 

(
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜔 cos 

[
𝜙𝜔 + 𝜙𝑇 

𝜔 

]))2 + 

(
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜔 sin 

[
𝜙𝜔 + 𝜙𝑇 

𝜔 

]
tan 𝜉𝐵,𝜔 = 

𝑇 𝑟 
(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜔 sin 

[
𝜙𝜔 + 𝜙𝑇 

𝜔 

])
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜔 cos 

[
𝜙𝜔 + 𝜙𝑇 

𝜔 

])
𝑠 2 
𝜔,𝜓 

= 

(
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 cos 

[
𝜙𝜔 + 𝜙𝑇 

𝜓 

]))2 
+ 

(
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 sin 

[
𝜙𝜔 + 𝜙

tan 𝜁𝜔,𝜓 = 

𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 sin 

[
𝜙𝜔 + 𝜙𝑇 

𝜓 

])
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 cos 

[
𝜙𝜔 + 𝜙𝑇 

𝜓 

])
𝑡 2 
𝜔,𝜓 

= 

(
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 cos 

[
𝜙𝜔 − 𝜙𝑇 

𝜓 

]))2 
+ 

(
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 sin 

[
𝜙𝜓 − 𝜙𝑇

𝜔

an 𝜃𝜔,𝜓 = 

𝑇 𝑟 
(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 sin 

[
𝜙𝜓 − 𝜙𝑇 

𝜔 

])
𝑇 𝑟 

(
𝐴 𝜔 Σ−1 

𝐵 
𝐴 𝜓 cos 

[
𝜙𝜔 − 𝜙𝑇 

𝜓 

])
We conclude that the broadband information content is given by 

 

(
𝑋 𝑡 , 𝑌 

)
= 𝑓 

( 

𝑐 𝐵 + 

Ω∑
𝜔 

𝑟 𝐵,𝜔 cos 
(
2 𝜔𝑡 + 𝜉𝐵,𝜔 

)
+ h ( t ) 

) 

. Mutual information of the complex-valued Fourier signal 

Consider the complex signal 𝑊 𝜔,𝑡 as specified in Eq. (8) . It can be seen

he following: 

 = 

[
𝑢 𝜔 ; 𝑣 𝜔 

]
 = 

[ 
Σω 0 
0 Σω 

] 
It therefore follows that the information content is given by: 

 

(
𝑊 𝑡,𝜔 , 𝑌 

)
= 𝑓 

(
2 𝑚 

𝑇 𝑆 

−1 𝑚 

)
Substituting the above values we observe that: 

 𝑚 

𝑇 𝑆 

−1 𝑚 = 2 
(
𝑢 𝑇 
𝜔 
Σ−1 
ω 𝑢 𝜔 + 𝑣 𝑇 

𝜔 
Σ−1 
ω 𝑣 𝜔 

)
= 2 𝑐 𝜔 

We conclude that the information content in the complex signal 𝑊 𝜔

 

(
𝑊 𝑡,𝜔 , 𝑌 

)
= 𝑓 

(
2 𝑐 𝜔 

)

17 
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G t covariances 

anges in power that have no phase alignment to the stimulus) has the same 

d umption that the narrowband covariance matrix is invariant over stimulus 

c s-specific induced effects, let us return to the result of Appendix B and now 

d

𝐵

ill be used to model induced effects. We assume that 𝑃 ( ̃𝜀 |𝑌 ) is independent 

o  two components (corresponding to the cases 𝑌 = 1 and 𝑌 = −1 ) and equal 

c

𝑃

n covariance given by 𝑆 as well as some stimulus-specific covariance given 

b er we instead obtain an upper bound by observing that 𝐵̃ is a linear function 

o

𝐼

W les 𝐵 and 𝜀̃ . We shall now obtain an expression for the mutual information 

b al distribution is given by: 

𝑃

 

|| 𝑒 
− 1 2 ( B+ 𝜇+ 𝑚 ) 

𝑇 𝑆 −1 ( B+ 𝜇+ 𝑚 ) − 1 2 𝜀̃ 
𝑇 U −1 1 𝜀̃ 

+ 

|U 1 ||U −1 | 𝑒 −2 ( B−μ) T Σ−1 ( 𝜇+ 𝑚 ) − 1 2 𝜀̃ 𝑇 
(
U −1 −1 −U 

−1 
1 

)
𝜀̃ 

2 

⎞ ⎟ ⎟ ⎟ ⎠ 
g for the entropy: 

𝐻

 ) ) 

⎛ ⎜ ⎜ ⎜ ⎝ 
1 + 

|U 1 ||U −1 | 𝑒 −2 ( B−μ) T Σ−1 𝑚 − 1 2 𝜀̃ 𝑇 
(
U −1 −1 −U 

−1 
1 

)
𝜀̃ 

2 

⎞ ⎟ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎟ ⎠ 

 

 −1 

] ) ) 

⎛ ⎜ ⎜ ⎜ ⎝ 
1 + 

|U −1 ||U 1 | 𝑒 2 ( B−μ) T Σ−1 𝑚 − 1 2 𝜖𝑇 
(
U −1 1 −U 

−1 
−1 

)
𝜀̃ 

2 

⎞ ⎟ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎟ ⎠ 

 

||
 

|| 𝑒 −2 ( B−μ) T Σ−1 𝑚 − 
1 
2 𝜀̃ 

𝑇 
(
U −1 −1 −U 

−1 
1 

)
𝜀̃ 
) 

U −1 1 −U 
−1 
−1 

)
𝜀̃ 
) 

 

||
 

|| 𝑒 −2 ( B−μ) T Σ−1 𝑚 − 
1 
2 𝜀̃ 

𝑇 
(
U −1 −1 −U 

−1 
1 

)
𝜀̃ 
) 

I
 𝑚 − 1 2 𝜖

𝑇 
(
U −1 −1 −U 

−1 
1 

)
𝜀̃ 
) 

 

(
U −1 1 −U 

−1 
−1 

)
𝜀̃ 
) 
. Mutual information for a Gaussian mixture model with differen

The modelling above assumes that the induced response (i.e. the ch

istribution over both stimulus conditions. This corresponds to an ass

onditions. To explore how our results generalise to the case of stimulu

efine a new random variable 𝐵̃ of dimension 𝑃 × 1 as follows: 

̃
 = 𝐵 + ̃𝜀 

Where the new residual terms have distribution 𝑃 ( ̃𝜀 |𝑌 ) = 𝑁( 0 , U 𝑌 ) w
f 𝑃 ( ̃𝐵 |𝑌 ) . We previously defined 𝐵 as a Gaussian mixture model with

ovariances; thus the new random variable has a distribution given by: 

 

(
𝐵̃ |𝑌 ) = 𝑁 

(
𝜇 + 𝑌 m , S + U 𝑌 

)
Which corresponds to a Gaussian mixture model with some commo

y 𝑈 𝑌 . The mutual information for this variable is not tractable, howev

f 𝐵 and 𝜖, therefore the data processing inequality tells us that: 

 

(
Y , 𝐵̃ 

) ≤ 𝐼 ( 𝑌 , [ 𝐵; ̃𝜀 ] ) 

here [ 𝐵; ̃𝜀 ] is the vector obtained by concatenating the random variab

etween this new term and the stimulus labels 𝑌 . Note that the margin

 ( [ 𝐵; ̃𝜀 ] ) = 𝑃 ( 𝑌 = 1 ) 𝑃 ( [ 𝐵; ̃𝜀 ] |𝑌 = 1 ) + 𝑃 ( 𝑌 = −1 ) 𝑃 ( [ 𝐵; ̃𝜀 ] |𝑌 = −1 ) 

= 

1 

2 
√ 

2 𝜋|𝑆 |||𝑈 1 || 𝑒 
− 1 2 ( B− 𝜇− 𝑚 ) 

𝑇 𝑆 −1 ( B− 𝜇− 𝑚 ) − 1 2 𝜀̃ 
𝑇 U −1 1 𝜀̃ + 

1 

2 
√ 

2 𝜋|𝑆 |||U −1

= 

1 √ 

2 𝜋
|||||𝑆 0 
0 𝑈 1 

|||||
𝑒 

− 1 2 

⎛ ⎜ ⎜ ⎝ 
⎡ ⎢ ⎢ ⎣ 
B 

𝜀̃ 

⎤ ⎥ ⎥ ⎦ − 
⎡ ⎢ ⎢ ⎣ 
𝜇 + 𝑚 

0 
⎤ ⎥ ⎥ ⎦ 
⎞ ⎟ ⎟ ⎠ 
𝑇 ⎛ ⎜ ⎜ ⎝ 
𝑆 0 
0 𝑈 1 

⎞ ⎟ ⎟ ⎠ 
−1 ⎛ ⎜ ⎜ ⎝ 

⎡ ⎢ ⎢ ⎣ 
B 

𝜀̃ 

⎤ ⎥ ⎥ ⎦ − 
⎡ ⎢ ⎢ ⎣ 
𝜇 + 𝑚 

0 
⎤ ⎥ ⎥ ⎦ 
⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎝ 

1 

Following the same approach of Appendix B , we obtain the followin

 ( [ 𝐵; ̃𝜀 ] ) = − ∫ 𝑃 ( [ 𝐵; ̃𝜀 ] ) log 𝑃 ( [ 𝐵; ̃𝜀 ] ) 𝑑 [ 𝐵; ̃𝜀 ] 

= − 

1 
2 
𝔼 
𝑁 

⎡ ⎢ ⎢ ⎣ 
B 

𝜖

⎤ ⎥ ⎥ ⎦ |
⎡ ⎢ ⎢ ⎣ 
𝜇 + 𝑚 

0 
⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝑆 0 
0 𝑈 1 

⎤ ⎥ ⎥ ⎦ 

⎛ ⎜ ⎜ ⎜ ⎝ log 
( 

𝑁 

( [ 
B 

𝜀̃ 

] |[ 𝜇 + 𝑚 

0 

] 
, 

[ 
𝑆 0 
0 𝑈 1 

]

− 

1 
2 
𝔼 
𝑁 

⎡ ⎢ ⎢ ⎣ 
B 

𝜖

⎤ ⎥ ⎥ ⎦ |
⎡ ⎢ ⎢ ⎣ 
𝜇 − 𝑚 

0 
⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝑆 0 
0 𝑈 −1 

⎤ ⎥ ⎥ ⎦ 

⎛ ⎜ ⎜ ⎜ ⎝ log 
( 

𝑁 

( [ 
B 

𝜀̃ 

] |[ 𝜇 − 𝑚 

0 

] 
, 

[ 
𝑆 0
0 𝑈

= log 2 − 𝐻 ( [ 𝐵; ̃𝜀 ] |𝑌 ) − 

1 
2 
𝔼 
𝑁 

⎡ ⎢ ⎢ ⎣ 
B 

𝜀̃ 

⎤ ⎥ ⎥ ⎦ |
⎡ ⎢ ⎢ ⎣ 
𝜇 + 𝑚 

0 
⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝑆 0 
0 𝑈 1 

⎤ ⎥ ⎥ ⎦ 
log 

( 

1 + 

||U 1||U −1

− 

1 
2 
𝔼 
𝑁 

⎡ ⎢ ⎢ ⎣ 
B 

𝜀̃ 

⎤ ⎥ ⎥ ⎦ |
⎡ ⎢ ⎢ ⎣ 
𝜇 − 𝑚 

0 
⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝑆 0 
0 𝑈 −1 

⎤ ⎥ ⎥ ⎦ 
log 

( 

1 + 

||U −1 ||||U 1 || 𝑒 
2 ( B−μ) T Σ−1 𝑚 − 1 2 𝜖

𝑇 
(

= log 2 − 𝐻 ( [ 𝐵; ̃𝜀 ] |𝑌 ) − 

1 
2 
𝔼 
𝑁 

⎡ ⎢ ⎢ ⎣ 
B 

𝜀̃ 

⎤ ⎥ ⎥ ⎦ |
⎡ ⎢ ⎢ ⎣ 
𝜇 + 𝑚 

0 
⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝑆 0 
0 𝑈 1 

⎤ ⎥ ⎥ ⎦ 
log 

( 

1 + 

||U 1||U −1

Applying the chain rule we have: 

 ( 𝑌 , [ 𝐵; ̃𝜀 ] ) = log 2 − 

1 
2 
𝔼 
𝑁 

⎡ ⎢ ⎢ ⎣ 
B 

𝜀̃ 

⎤ ⎥ ⎥ ⎦ |
⎡ ⎢ ⎢ ⎣ 
𝜇 + 𝑚 

0 
⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝑆 0 
0 𝑈 1 

⎤ ⎥ ⎥ ⎦ 
log 

( 

1 + 

||U 1 ||||U −1 || 𝑒 −2 ( B−μ) T Σ−1

− 

1 
2 
𝔼 
𝑁 

⎡ ⎢ ⎢ ⎣ 
B 

𝜖

⎤ ⎥ ⎥ ⎦ |
⎡ ⎢ ⎢ ⎣ 
𝜇 − 𝑚 

0 
⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝑆 0 
0 𝑈 −1 

⎤ ⎥ ⎥ ⎦ 
log 

( 

1 + 

||U −1 ||||U 1 || 𝑒 
2 ( B−μ) T Σ−1 𝑚 − 1 2 𝜀̃ 

𝑇

18 



C. Higgins, M.W.J. van Es, A.J. Quinn et al. NeuroImage 260 (2022) 119462 

tations over B and 𝜖 can be separated as they are independent, we can apply 

J

I  𝐼 𝑃 

) ) 

 

 𝑓 ( 𝛼) to the following: 

𝑓

𝐼

w 1 = 

|U 1 ||U −1 | 𝑒 − 
1 
2 𝑇 𝑟 ( U 

−1 
−1 U 1 − 𝐼 𝑃 ) and 𝜌2 = 

|U −1 ||U 1 | 𝑒 − 
1 
2 𝑇 𝑟 ( U 

−1 
1 U −1 − 𝐼 𝑃 ) . 

H d effects 

duced effects as follows: 

𝑍

W Note this is the same form as the model given in Appendix G , by substituting: 

𝑚

𝑆

𝑈

𝐼

W  both constant with respect to time, and 𝑐 𝜔 , 𝑟 𝜔 and 𝜉𝜔 are the same terms 

s ociated with condition-dependent evoked and induced effects has an upper 

b narrowband signal frequency (i.e. a slightly modified function of the same 

d ts are stimulus-dependent). 

I ffects 

uced effects as follows: 

𝑋

𝑚

𝑆

𝑈

𝐼

W the case of Appendix E where only evoked effects were modelled), 

𝑐 d the new terms 𝜌1 = 

|∑Ω
𝜔 =0 Λ1 , 𝜔 ||∑Ω
𝜔 =0 Λ−1 , 𝜔 | 𝑒 

− 1 2 𝑇 𝑟 ( ( 
Ω∑

𝜔 =0 
Λ−1 , 𝜔 ) 

−1 

( 
Ω∑

𝜔 =0 
Λ1 , 𝜔 )− 𝐼 ) 

and 𝜌2 = 

o time. 
Now noting that log ( 1 + 𝑒 − 𝑋 ) is a convex function, and that the expec

ensen’s inequality to the expectation over 𝜖 terms to obtain: 

 ( 𝑌 , [ 𝐵; ̃𝜀 ] ) ≤ log 2 − 

1 
2 
𝔼 𝑁(B |𝜇+ 𝑚,𝑆) log 

( 

1 + 

||U 1 ||||U −1 || 𝑒 −2 ( B−μ) T Σ−1 𝑚 − 
1 
2 𝑇 𝑟 

(
U −1 −1 U 1 −

− 

1 
2 
𝔼 𝑁(B |𝜇− 𝑚,𝑆) log 

( 

1 + 

||U −1 ||||U 1 || 𝑒 
2 ( 𝐵− 𝜇) T Σ−1 𝑚 − 1 2 𝑇 𝑟 

(
U −1 1 U −1 − 𝐼 𝑃 

) )

Let us now define a generalisation of the previously defined function

 𝜌( 𝛼) = log 2 − ∫
1 

2 
√
𝜋𝛼

𝑒 
− 1 4 𝛼 ( 𝑢 − 𝛼) 

2 
log ( 1 + 𝜌𝑒 − 𝑢 ) 𝑑𝑢 

This allows us to write the information content upper bound as: 

 

(
𝑌 , 𝐵̃ 

) ≤ 

𝑓 𝜌1 ( α) + 𝑓 𝜌2 ( α) 
2 

here 𝛼 is the same term specified in Appendix B , and the new terms 𝜌

. Upper bound for narrowband information content with induce

Let us now model the narrowband signal with stimulus dependent in

̃
 𝑛,𝑡,𝜔 = 𝑍 𝑛,𝑡,𝜔 + ̃𝜀 𝜔,𝑡 

here the new residual terms have distribution 𝑃 ( ̃𝜀 𝜔,𝑡 |𝑌 ) = 𝑁( 0 , Λ𝑌 , 𝜔 ) . 

 = 𝐴 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)
 = Σ𝜔 

 𝑌 = Λ𝑌 , 𝜔 

From Appendix G , we deduce the following: 

 

(
𝑌 , 𝑍̃ 𝑛,𝑡,𝜔 

) ≤ 

𝑓 𝜌1 

(
𝑐 𝜔 + r ω cos 

(
2 𝜔𝑡 + 𝜉𝜔 

))
+ 𝑓 𝜌2 

(
𝑐 𝜔 + r ω cos 

(
2 𝜔𝑡 + 𝜉𝜔 

))
2 

here 𝜌1 = 

|Λ1 ,𝜔 ||Λ−1 ,𝜔 | 𝑒 − 
1 
2 𝑇 𝑟 ( Λ

−1 
−1 ,𝜔 Λ1 ,𝜔 − 𝐼 ) and 𝜌2 = 

|Λ−1 ,𝜔 ||Λ1 ,𝜔 | 𝑒 − 
1 
2 𝑇 𝑟 ( Λ

−1 
1 ,𝜔 Λ−1 ,𝜔 − 𝐼 ) are

pecified in Appendix D . Thus, the narrowband information content ass

ound which is a sinusoidal function translated to double the original 

ynamics previously characterised for the case where only evoked effec

. Upper bound for broadband information content with induced e

Let us now model the broadband signal with stimulus dependent ind

̃
 𝑡 = 𝜇𝑡 + 

Ω∑
𝜔 =0 

𝑍̃ 𝜔,𝑡 

This is equivalent to the model of Appendix G by substituting: 

 = 

Ω∑
𝜔 =0 

𝐴 𝜔 cos 
(
𝜔𝑡 + 𝜙𝜔 

)
 = 

Ω∑
𝜔 =0 

Σ𝜔 

 𝑌 = 

Ω∑
𝜔 =0 

Λ𝑌 , 𝜔 

We therefore deduce that: 

 

(
𝑌 , 𝑋̃ 𝑛,𝑡 

) ≤ 

𝑓 𝜌1 ( α) + 𝑓 𝜌2 ( α) 
2 

here 𝛼 = 𝑐 𝐵 + 

Ω∑
𝜔 

𝑟 𝐵,𝜔 cos ( 2 𝜔𝑡 + 𝜉𝐵,𝜔 ) + h(t) , (i.e. the same as in 

 𝐵 , 𝑟 𝐵,𝜔 , 𝜉𝐵,𝜔 and h(t) are all as specified in Appendix E , an

|∑Ω
𝜔 =0 Λ−1 , 𝜔 ||∑Ω Λ1 , 𝜔 | 𝑒 

− 1 2 𝑇 𝑟 ( ( 
Ω∑

𝜔 =0 
Λ1 , 𝜔 ) 

−1 

( 
Ω∑

𝜔 =0 
Λ−1 , 𝜔 )− 𝐼 ) 

are both constant with respect t

𝜔 =0 
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