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Point Spread Function Analysis for
GNSS-Based Multistatic SAR

Fabrizio Santi, Michail Antoniou, and Debora Pastina

Abstract—This letter presents an analysis of the multistatic
point-spread function (MPSF) for passive synthetic aperture radar
(SAR) with navigation satellites as opportunity transmitters and a
stationary receiver. It is shown that a noncoherent combination
of bistatic SAR images, obtained by multiple, spatially separated
satellites, can yield multistatic imagery that may be essentially
improved in terms of resolution when compared with a single
bistatic SAR image. The MPSF is derived analytically, for an
arbitrary number of bistatic acquisitions and for any bistatic
topologies. Analytical results are confirmed using both simulated
and experimental data. The obtained result could be applied for
the analysis of spatial resolution in multistatic real time radar, thus
enabling the adaptive selection of the more suitable opportunity
transmitters.

Index Terms—Bi/multistatic synthetic aperture radar (SAR),
generalized ambiguity function (GAF), global navigation satellite
system (GNSS)-based SAR, point-spread function (PSF).

I. INTRODUCTION

VER the last years, the bistatic synthetic aperture radars
(BSARs) have been the focus of increasing research
activity, [1]. A BSAR system uses spatially separated antennas
for signal transmission and echo reception. Several bistatic
configurations have been proposed, involving different com-
binations of transmitters and receivers either on moving plat-
forms (spaceborne and airborne) [2]—-[5] or stationary [6], [7].
The majority of such BSARs involve a radar system as the
transmitter. Another possibility is to configure a passive system
using satellite illuminators as transmitters of opportunity, and a
receiver that could be moving or stationary on the ground. One
such system uses global navigation satellite system (GNSS)
as transmitters, such as Global Positioning System, GLObal
NAvigation Satellite System (GLONASS), or the forthcoming
Galileo and Beidou [8]. The feasibility of this system has been
experimentally demonstrated for both moving and stationary
receivers [9], [10]; however, this letter considers the stationary
receiver case only.
The motivation for using GNSS as transmitters lies in the
structure of the GNSS constellations. At any time of the day,
there are 6-8 satellites in a single constellation (24-32 when
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all 4 GNSS systems are fully operational), illuminating any
point on earth from different angles. All of these signals can
be received and processed separately or jointly using a single
receiver, essentially forming a multistatic passive radar system.
This feature has a number of advantages. First of all, it provides
the potential for persistent area monitoring anywhere in the
world. In addition, images obtained from the same scene, but
with different satellite illumination angles, may aid in terrain
classification [11]. Furthermore, images obtained from different
satellites may be fused to increase the amount of information in
a given area.

The main drawback in using GNSS is that they were not
designed for radar applications and therefore lack the power
budget and resolution capabilities of dedicated SARs. Images
with a suitable signal-to-noise ratio and azimuth resolution
(34 m for the stationary receiver case) can be obtained by
considering long dwell times on target (typically 4-5 min).
However, the range resolution is defined by the GNSS ranging
signal bandwidth. For example, the Galileo E5bQ signal has
a bandwidth of approximately 10 MHz (perhaps the broadest
bandwidth GNSS signal), offering a resolution of 15m in the
quasi-monostatic case. Furthermore, range resolution degrades
rapidly as the bistatic angle increases [8]. Therefore, until now,
as a bistatic system, GNSS-based SAR was found appropriate
only for applications where a coarse resolution is acceptable.

This letter considers the noncoherent combination of mul-
tiple BSAR images to provide multistatic imagery with im-
proved resolution capabilities. Some initial considerations on
this topic can be found in [12]. The idea is that different bistatic
topologies yield point-spread functions (PSFs) with different
orientations. Therefore, after their combination, a single mul-
tistatic PSF (MPSF) can be formed that is the intersection of
all the individual PSFs. By appropriate selection of the bistatic
topologies we may expect a dramatically improved resolution.

This letter is organized as follows: after recalling the bistatic
PSF for BSAR in Section II, we define and analytically derive
the MPSF in Section III; in Section IV, some simulated case
studies are presented in order to show the potentialities of the
system, and in Section V, the simulated analysis is confirmed
by experimental data sets. Finally, some conclusions are drawn
in Section VI.

II. BisTATIC PSF

We consider a ground-based stationary receiver collecting
the signals emitted from a GNSS transmitter and reflected by
a stationary scene. The 2-D bistatic resolution cell of such a
system is fully described by the generalized ambiguity func-
tion (GAF) [14], [15]. In the hypothesis of narrowband signal
and narrow synthetic aperture, it is given by the product of
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Fig. 1. BSAR geometry.

two normalized functions, p(-) and m4(+). The former is the
matched filter output of the ranging signal and the latter is the
inverse transform of the normalized received signal magnitude
pattern

<|X(A,A)=1 (1

|X(A,B)| ~p

where A is the vector position of the desired point reflector
to be evaluated, vector B is an arbitrary position of another
reflector in the vicinity of A and » = B — A (see Fig. 1); g
is the bistatic angle, and © is a unit vector in the direction of
its bisector; wg and = are referred to as the equivalent angular
speed and the equivalent motion direction (since a monostatic
SAR moving in the direction = with angular speed wg would
exhibit similar Doppler-based resolution characteristics); and ¢
is the speed of light and A the wavelength.

In a BSAR the range resolution depends on the signal band-
width B and the bistatic angle

c

A= ar 2B cos (%)

(@)

being «, a factor accounting the shape of p(-); since the
transmitted signal from a GNSS satellite is a pseudorandom
code, the matched filter output can be approximated with a
triangle function, and therefore, for the cut of —3 dB, a,. =
0.586. Range resolution direction is specified by ®. Azimuth
resolution, which direction is specified by =, depends on the
dwell time on target T,; and the equivalent angular speed

AA = a,

2w ETd (3)
being «, a factor accounting the shape of m(+); because of
the long dwell times, the received signal magnitude pattern
can be accurately modeled as a rectangular function and, as a
consequence, m 4 () is a sinc function and therefore, for the cut
of —3 dB, a, = 0.886.

The projection of (1) onto the ground plane gives rise to
a resolution cell that is approximately an ellipse (resolution
ellipse), which can be evaluated using both numerical [12]
and analytical methods. It is characterized by its orientation
¢, being function of the range and azimuth resolutions and of
the angle v between their directions projected onto the ground
plane, ©, and =, respectively. Since in a bistatic system range
and azimuth are generally not orthogonal, ~ differs from 90°.
It should be also noted that according to their definition [8],
the range and azimuth resolutions are indicators of a system’s

E  direction

®u direction

y axis [m]
o

.80 N " " " N
80 60 40 20 0 20 40 60 80
x axis [m]

Fig. 2. Simulated bistatic PSF (intensity, log scale).

resolution capability, but their directions are not the ones where
the spatial resolution is the worst. For example, Fig. 2 shows
a simulated PSF for a scatterer in the scene center and a
GLONASS satellite (having a bandwidth of 5.11 MHz);
is about 71°, and wg is 0.005°/s; the dwell time is 200 s
(therefore a linear trajectory of the satellite can be assumed
[13]). The mutual positions of the receiver and the transmitter
entail v ~ 34.2° and the orientation of the resulting resolution
ellipse is ¢ =~ 122°. The resolutions in the range and azimuth
directions projected onto the ground plane, AR, and AA,,
respectively, are defined along ©, and =,. However, the worst
spatial resolution, d,,,x, is along the major axis (green line) of
the PSF, whereas the best one, d,,in, is along the minor axis
of the PSF, being very close to =,. Parameters duin and dmax
will be used to characterize the spatial resolution capability of
this system hereafter, since they represent its lower and upper
bounds [12]. In this example, the area of the resolution cell and
the resolutions d,,, and d.,;, (evaluated at the —3 dB contour
hereafter) are about 163 m?, 44.5 m (whereas AR, is25.80 m)
and 4.7 m (slightly better than AA, = 5.12 m), respectively.

III. MPSF
A. MPSF Using Noncoherent Addition

As previously stated, the use of GNSS transmitters makes
possible long dwell times, on the order of 5 min or higher,
allowing azimuth resolutions of 3-4 m, considerably greater
than the range ones limited by the small signal bandwidth and,
as follows from (2), by the bistatic angle. The coarse range
resolution entails wide resolution cell areas, and this is made
worse by the nonortoghonality between the azimuth and range
resolution directions (v # 90°). The most critical value is along
the direction of the orientation of the resolution ellipse, ¢.
In previous research [13], it was experimentally shown that
using very long dwell times (10 min or more) provides some
improvement in the resolution along ¢, as well as azimuth;

however, the improvement factor was not sufficiently high.
In order to improve the resolution capability of the system,

we derive a multistatic scheme formed by several bistatic
couples, where the same receiver fixed on the ground collects
the signals from different GNSS satellites, separates them by
using frequency or coding division approaches, and combines
all bistatic images obtained from them into a single, multistatic
one. The idea is that different satellite positions and trajectories
result in different bistatic PSF parameters: the nth bistatic PSF
(1) is characterized by specific directions of range and azimuth
resolutions and different values of the bistatic angle (2) and the
equivalent angular speed (3). Different ®,, and =,, result in a
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TABLE 1
SIMULATED ANALYSIS PARAMETERS

Acquisition | SAtellite | g o) “E Talsl | AReIm] | AAg[m] | Omax[m] | Omin[ml | ¥ Ideg] | & [deg) | AT

i (Cosmos) [deg/s] ar’ 2 8 max mmn g g [m?|

Al 744 6224 | 0.0045 300 22.74 3.98 67.23 3.62 19.46 79.91 18921

A 736 102.64 | 0.0048 250 43.00 114 49.10 385 5933 37.64 14437

As 732 73.68 | 0.0048 200 26.74 197 26.88 1383 80.64 954 9391

different angle ,,, whereas different 3,, and wg,, in different ‘- o

values of the range and azimuth resolutions AR,, and AA,,.
Finally, different v,,, AR,,, and AA,, result in different PSF
orientations ¢,,. Therefore, a noncoherent combination of the
individual PSFs, with their different orientations, results in a
MPSEF, whose resolution cell area is the overlapping segment
of the single bistatic PSFs, and therefore may be essentially
reduced. As a first step, the noncoherent addition method is
considered, as it is a linear operation. We define as MPSF, the
noncoherent addition of N > 2 PSFs

1 M. [2cos Ba)eT(r) Yom =
MPSF: " (%) .mA( L "(’")) @)

— c A

Similar combination strategies have been considered in the
past for obtaining a multistatic radar system with improved per-
formance; in [16] has been proved that different performance
optimization criteria lead to different weightings of the several
bistatic links. However, here we equally weight all the bistatic
links, assuming a calibration step already performed so that all
the bistatic channels can be considered affected by the same
free space attenuation.

B. Approximated Version of the MPSF

One of the features of the single-channel PSF represented by
the GAF in (1) is that it is given by the product of two functions
separately pertaining to the range and Doppler domain: even
if the range and Doppler directions are not orthogonal their
domains are still separable. For the MPSF in (4), this cannot be
done since the summation and the modulus operator. However,
it can be approximated as

MPSF ~ pm 5)
being
N N 2 cos (5) @T(r)
1 1 2 n
D —— n = = 6
P=xN ;p N ;p . (6)
N N —_T
1 1 2wg, Z; (1)
m:NZmAn = NZmA ()\) . ()

n=1

In this expression, the range and Doppler domains are again
separated. This approximation can be easily proven setting
Pn & p, true in a wide zone around the mainlobe of the MPSF:
since each p,,(-) function has a very wide mainlobe, due to the
bistatic geometry, the limited bandwidth and the elevation angle
of the satellite [8], the differences between the several p,, (-) can
be assumed negligible, despite their different orientations.

IV. SIMULATED RESULTS

Potentially, the noncoherent addition method can be applied
to images obtained from different satellites, belonging to differ-

y axis [m]
y axis [m]

x axis [m]

y axis [m]

X axis [m]

Fig.3. Simulatedbistatic PSFs (intensity,logscale).(a) A1, (b) A2, and (c) As.

ent navigation satellite constellations. However, in this analysis,
satellites from the same GLONASS constellation are consid-
ered, being the constellation used for the experimental results
verification [15]. Assume N = 3 bistatic geometries formed by
GLONASS transmitters and a receiver fixed on the ground. The
parameters of the simulation are reported in Table I along with
the parameters of the resulting PSF, shown in Fig. 3. The worst
resolution case has been found for Acquisition 1 (A;) that,
despite the best ground range and azimuth resolutions (due to
the smallest 3 and longest 7};), has the minor angle -, whereas
the best one for A3, where v ~ 90°.

In Fig. 4, we show the MPSF achievable by combining two
bistatic channel [A; and Aj, Fig. 4(a)] and all the three bistatic
PSFs [see Fig. 4(b)] using the same color scale as in Fig. 3.
Comparing the bistatic PSFs in Fig. 3 and the MPSFs in Fig. 4,
the reduction of the resolution cell area compared with the
single PSFs is evident for NV = 2. Increasing the number of
combined channels, the main effect is the reduction of sidelobe
levels around the peak, whereas the mainlobe region remains
approximately the same as the one achieved by integrating two
channels, as long as the transmitters positions entail different
PSFs orientations. The cell sizes of the MPSFs are reported
in Table II. Comparing the entries here to those of Table I, an
improvement of the worst spatial resolution is achieved, and
as a consequence a reduction of the resolution cell area of
about five times can be seen between the bistatic and multistatic
cases. Fig. 4(c) and (d) shows the approximated version of
the MPSF achieved from (5) for the same cases in Fig. 4(a)
(A; + As3) and Fig. 4(b) (A; + Az + A3). A good agreement
between the nominal and the approximated version of the
MPSF can be observed, particularly around the mainlobe. The
error of the approximation can be calculated as the absolute
difference between the real and approximated values of the
MPSF, weighted pixel by pixel for the value. Fig. 5 shows
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Fig. 4. Simulated MPSFs and their approximated version (intensity, log
scale). (a) A1 + As, (b) A1 + Az + As, (c) A1 + Az (approximated), and
(d) Ay + Ag + As (approximated).

TABLE II
SIMULATED MPSF RESOLUTION CELL AREA
MPSF A+A, A+A; ArtA; A+As+AS
Omax[M] 10.25 7.03 9.30 7.45
Omin|m] 4.12 523 4.84 4.74
Area [m’] 36.33 28.79 38.77 29.61
<40 35 30 25 20 -15 -10 -5 0

y axis [m]
y axis [m]

oo -50 o 50 100
x axis [m]

x axis [m]

Fig. 5. Error of the MPSF approximation (intensity, log scale). (a) A1 + A3
and (b) A1 + As + As.

the errors for the approximated MPSF for the cases in Fig. 4,
showing a negligible error in the mainlobe of the function and
a limited error (below —20 dB) around it.

As in the bistatic case the minimum area is achieved when
v~ 90° in the multistatic case for N =2 we expect the
minimum value to be observed when A¢ = ¢ — ¢ =~ 90°.
For example, in the previous analysis, the smallest area for
the multistatic case was found combining A; (with the poorest
resolution) and As, since the two PSFs are nearly orthogonal. In
order to show the resolution improvement as a function of the
difference in PSF orientation, the following simulation scenario
was carried out: a real GLONASS satellite trajectory 3-h long
was considered, with satellite elevation angles greater than
45° throughout. In real situation, this would allow a low-gain
antenna pointed toward the sky to record the GLONASS direct
signal for the whole acquisition time without the need to steer
it in the satellite’s direction. The whole trajectory was then
divided in K frames, each one being 7T; s long. Each frame
can yield a PSF whose orientation depends on the satellite
position and direction during the frame interval. Therefore,

1000

Multistatic PSF area [m”]

0
0

10 20 30 40 50 60
Difference in the bistatic PSFs orientation A¢ [deg]

Fig. 6. MPSF area as a function of the difference in bistatic PSF orientation.

Fig. 7. Receiving hardware.

different frames have an angular separation A¢. Specifically
the resulting PSF concerning frame 1 is combined following
(4) with the PSFs from all the other frames, so A¢ = ¢, — @1,
h =1,..., K.Fig. 6 shows the area of the MPSF as a function
of A¢. We can observe how for all the considered frame times
the area greatly decreases with the increase of A¢, moving from
values around 500-1000 m? for A¢ ~ 0° (where A¢ = 0° is
the single PSF case) up to 50-100 m? when A¢ =~ 90°.

V. EXPERIMENTAL RESULTS

Data acquisitions using GLONASS satellites were conducted
to confirm the proposed techniques. The experimental
hardware, developed at the University of Birmingham,
comprises a superheterodyne receiver with two channels. The
first uses a low-gain antenna to collect the direct signal from
the satellite, which is used for the synchronization providing
the propagation delay and phase reference for image formation
(heterodyne channel [HC]) [17]; the second uses a high-gain
antenna receiving the signal reflections from the target area
(radar channel [RC]). In this context, we are interested in
experimentally obtaining the MPSF and compare it with
theoretical results. Since in BSAR the use of passive point-like
scatterers such as corner reflectors is not recommended, in
order to emulate a point-like target both RC and HC antennas
were pointed toward the satellite using low-gain antennas and
we use the direct signals to generate the bistatic PSFs [13]. The
experimental setup is shown in Fig. 7. The parameters of the
acquisitions are reported in Table III; the experimental bistatic
PSFs are shown in Fig. 8(a) and (c), along with the correspond-
ing simulated ones [Fig. 8(b) and (d)], so that we can appreciate
the very good accordance between simulated and experimental
single-channel results. We observe that the two satellite
trajectories result in two nearly orthogonal PSFs and therefore,
according with the results in Fig. 6, we expect a considerably
great improvement factor in the resolution cell area.
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TABLE III
EXPERIMENTAL ANALYSIS—ACQUISITION AND BISTATIC PSFs PARAMETERS
Acquisition | Satellite B [deg] o [deg/s| Ty [s| AR, [m] AA, [m] [deg] ¢ [deg]
A (Cosmos) 2 e [deg d ARe g Y [deg 2
A 717 85.45 0.0049 31.28 3.25 62.78 43.77
B 716 100.14 0.0050 39.39 4.80 69.08 122.62
25 -20 -15 -10 -5 0

y axis [m]

y axis [m]

3 20 40
X axis [m]

y axis [m]
y axis [m]

\\

o 20 40

X axis [m] X axis [m]

y axis [m]
y axis [m]

o 20

X axis [m] x axis [m]

Fig. 8. Bi/MPSFs (intensity, log scale). (a) PSF A (experimental), (b) PSF
A (simulated), (c) PSF B (experimental), (d) PSF B (simulated), (¢) MPSF
(experimental), and (f) MPSF (simulated).

TABLE IV
EXPERIMENTAL Bi/MPSF PARAMETERS
PSFA | PSFB MPSF
Sy [M] 32.38 40.49 7.26
Sypin [M] 3.00 4.67 438
Area [m?] 62.30 107.92 25.54

The resulting MPSF is shown in Fig. 8(e), with a good
coincidence with the theoretical expectations [Fig. 8(f)]. In
addition, Table IV reports the cell sizes of the Bi/MPSFs both
for simulated and experimental results. It can be seen that the
MPSF presents the worst spatial resolution that is improved of
about four times with respect to worst resolution in the bistatic
case, and the multistatic resolution cell area is approximately
2.5 and 4 times better than in data acquisitions A and B,
respectively.

VI. CONCLUSION AND FUTURE WORKS

This letter puts forward a multistatic SAR system using
GNSS satellites as transmitters of opportunity and a receiver
fixed on the ground. The use of such a technology is cost effec-
tive since only the development of the receiver is required and
can be potentially used for persistent local area monitoring. The
work here presented shows the theoretical analysis of the MPSF

achieved combining the single images resulting from several
GNSS satellites transmissions. Such a system has the poten-
tiality to considerably improve the resolution cell with respect
to the single bistatic channel case properly selecting satellites
positions and trajectories. The theoretical analysis was verified
by both simulations and experimental results. It is worth to
notice that all the results are applicable for the configuration
using a moving receiver, where a Doppler resolution less than
1 m is expected; therefore, in such a configuration, a resolution
cell of about 1 m? could be achieved. The next step is to move
from the point target analysis to the real images, in order to eval-
uate the full potential and challenges of the proposed technique.

REFERENCES

[1] N.J. Willis, Bistatic Radar. Boston, MA, USA: Artech House, 1991.

[2] G. Krieger et al., “TanDEM-X: A satellite formation for high-resolution

SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11,

pp- 3317-3341, Nov. 2007.

I. Walterscheid, A. R. Brenner, and J. H. G. Ender, “Results on bistatic

synthetic aperture radar,” Electron. Lett., vol. 40, no. 19, pp. 1224-1225,

Sep. 2004.

P. Dubois-Fernandez et al., “ONERA-DLR bistatic SAR campaign: Plan-

ning, data acquisition, and first analysis of bistatic scattering behaviour of

natural and urban targets,” Proc. Inst. Elect. Eng.—Radar Sonar Navigat.,

vol. 153, no. 3, pp. 214-223, Jun. 2006.

[5] M. Rodriguez-Cassola, S. V. Baumgartner, G. Krieger, and A. Moreira,

“Bistatic TerraSAR-X/F-SAR spaceborne-airborne SAR experiment: De-

scription, data processing and results,” IEEE Trans. Geosci. Remote Sens.,

vol. 48, no. 2, pp. 781-794, Feb. 2010.

F. Balke, “Field test of bistatic forward-looking synthetic aperture radar,”

in Proc. IEEE Radar Conf., May 2005, pp. 423-429.

J. Sanz-Marcos, P. Lopez-Dekker, J. J. Mallorqui, A. Aguasca, and

P. Prats, “SABRINA:A SAR bistatic receiver for interferometric appli-

cations,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 307-311,

Apr. 2007.

[8] M. Cherniakov and T. Zeng, “Passive bistatic SAR with GNSS trans-
mitters,” in Bistatic Radar: Emerging Technology, M. Cherniakov, Ed.
New York, NY, USA: Wiley, 2008.

[9] M. Antoniou and M. Cherniakov, “GNSS-based SAR: A signal processing
view,” EURASIP J. Adv. Signal Process., vol. 2013, no. 1, pp. 98:1-98:16,
May 2013.

[10] M. Antoniou, Z. Zeng, L. Feifeng, and M. Cherniakov, “Experimental
demonstration of passive BSAR imaging using navigation satellites and a
fixed receiver,” IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 477—
481, May 2012.

[11] Z. Zeng, M. Antoniou, Q. Zhang, M. Hui, and M. Cherniakov, “Multi-

perspective  GNSS-based passive BSAR: Preliminary experimental

results,” in Proc. 14th Int. Radar Symp., Jun. 2013, pp. 467-472.

F. Daout, F. Schmitt, G. Ginolhac, and P. Fargette, “Multistatic and mul-

tiple frequency imaging resolution analysis—Application to GPS-based

multistatic radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 4,

pp. 3042-3057, Oct. 2012.

[13] F. Liu, M. Antoniou, Z. Zeng, and M. Cherniakov, “Point spread function
analysis for BSAR with GNSS transmitters and long dwell times: Theory
and experimental confirmation,” /[EEE Geosci. Remote Sens. Lett., vol. 10,
no. 4, pp. 781-785, Jul. 2013.

[14] T.Zeng, M. Cherniakov, and T. Long, “Generalized approach to resolution
analysis in BSAR,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 2,
pp. 461-474, Apr. 2005.

[15] M. Cherniakov and T. Zeng, “Space-surface bistatic SAR,” in Bistatic
Radar: Emerging Technology, M. Cherniakov, Ed. New York, NY, USA:
Wiley, 2008.

[16] I. Bradaric, G. Capraro, D. D. Weiner, and M. C. Wicks, “Multistatic
radar systems signal processing,” in Proc. IEEE Conf. Radar, Apr. 2006,
pp. 106-113.

[17] R. Saini, R. Zuo, and M. Cherniakov, “Problem of syncronisation in space-
surfarce bistatic SAR based on GNSS emissions—Experimental results,”
IET Radar, Sonar Navigat., vol. 4, no. 1, pp. 110-125, Feb. 2010.

[3

[t

[4

=

[6

=

[7

—

[12




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


