
 
 

University of Birmingham

The Curvature – Energy Relations in Buckling Analysis
of Tubular Wind Turbine Towers
Ma, Yang; Martinez‐vazquez, Pedro; Baniotopoulos, Charalampos

DOI:
10.1002/cepa.1802

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Ma, Y, Martinez‐vazquez, P & Baniotopoulos, C 2022, 'The Curvature – Energy Relations in Buckling Analysis of
Tubular Wind Turbine Towers', ce/papers, vol. 5, no. 4, pp. 643-652. https://doi.org/10.1002/cepa.1802

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1002/cepa.1802
https://doi.org/10.1002/cepa.1802
https://birmingham.elsevierpure.com/en/publications/16dff512-e326-45b7-99ff-176859268064


    

The Curvature – Energy Relations in Buckling 
Analysis of Tubular Wind Turbine Towers 

Yang Ma1, Pedro Martinez-Vazquez1, Charalampos Baniotopoulos1 

 

 1 Introduction 

The high demand for wind energy requires optimised productivity 
from wind power plants fuelled by technological improvements. 
This inserts in a production chain that is not exempt from errors or 
omissions, as discussed in previous studies [1]. The most common 
reasons for wind turbine tower collapses relates to extreme wind 
hence careful consideration has to be made when quantifying this 
type of loading. Derived from such critical conditions, researchers 
have identified buckling types affecting the tower shell 
components across its circumference and length. In mathematical 
terms this could be explained in terms of wavenumbers that set at 
specific ranges. 

The buckling phenomenon remains to be fully understood. While 
there is consensus on the fact that torsional and shear effects are 
negligible in comparison with axial effects [1-5], knowledge gaps 
still reflect on discrepancies between theoretical and experimental 
studies. That is one of the causes for which a perfect shell section 
for wind turbine towers has not been determined. At the microscale  

1. University of Birmingham, Birmingham, UK. 

  

imperfections are usually found on the surface of steel shells. This 
is relevant as such initial imperfections are determinant of how 
buckling develops [4, 6-11]. This and other aspects of performance 
have been highlighted through experimental work undertaken on 
cylindrical shell structures, often building upon a comprehensive 
shell-buckling experiment carried out by NASA in the 1960s [12]. 
In that study, the following regression model for the lower bound 
was put forward, 𝛼 represents the knock-down factor based on the 
theoretical ideal buckling capacity: 

𝛼 = 1 − 0.901(1 − 𝑒−√(𝑅/𝑡)/16)                                                     (1) 

Von Karman [13] first introduced the curvature issue as a 
controlling parameter of shell buckling. That work already 
highlighted discrepancies between laboratory tests and classical 
buckling theory. Following, Koiter [14] (English version available 
from 1967) identified buckling load threshold in relation to stability 
and added explanations around differences between test results 
and theoretical values. They accepted wall imperfections on 
cylindrical shells as a key factor to unchain instability [15,16]. Other 
experimental studies identified boundary conditions, load 
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alignment, and material non-linearities, as sources of analytical 
error [17-19].  

In Eq. (1) the radius to thickness ratio (R/t) relates to the curvature 
of cylinder shells. In the literature we find the Gaussian curvature, 
K, as a practical expression that intervenes the imperfection 
parameter. If K is positive, the shell shape is typically spherical or 
arced, and sensitive to imperfection when loaded, especially 
external pressures [20-23].  When K is negative, the shell surface 
adopts an inward form, which is not significantly sensitive to initial 
imperfections on its surface [24]. Wu [25] has studied negative 
Gaussian curvature in steel and hyperbolic cooling towers. Their 
studies report that K equal to zero locates the structure in the 
interval between sensitive spherical and the insensitive inward shell 
prone to undergo complex sensitive behaviour related to 
imperfections [9, 10, 16, 26]. Furthermore, Khamlichi [27] 
investigated localised axisymmetric imperfections and revisited the 
analytical solutions (shell equations) by Von Karman-Donnell. They 
concluded that the buckling load could be up to twofold lower than 
that indicated by the general defects.  

2 Curvature Analysis and Energy Methods on Buckling 
Analysis 

Energy methods applied to buckling can be traced to Von Karman 
and Tsien [28], who further developed equations of nonlinear 
buckling after Donnell [29]. Energy methods consider multiple 
equivalent buckling paths near the bifurcation point, through a 
series of unstable equations The well-known Ritz energy method 
enables nonlinear elastic buckling analysis of cylindrical shells under 
compression loads while permits mode-jumping performances as 
experimentally observed in postbuckling stages [30]. Recently, the 
authors simplified the framework of energy methods for buckling 
analysis of wind turbine towers under combined loads [31], and this 
research lays out extended work. 

More generally, if there exists the horizontal strain term 𝜖𝑦 , a 
general form of local curvature K would be: 

𝐾 = −
∂2𝜖𝑦

∂𝑥2 +
∂2𝛾𝑥𝑦

∂𝑥 ∂𝑦
−

∂2𝜖𝑥

∂𝑦2                                                                               (2) 

In the case of wind turbine towers, the Gaussian curvature of 
cylindrical shell is equal to zero, thus, the local curvature is equal to 
zero at any point on the shell, if buckling fails to occur, whether 
local buckling or overall buckling, then this can be expressed as: 

∂2𝜖𝑦

∂𝑥2 −
∂2𝛾𝑥𝑦

∂𝑥 ∂𝑦
+

∂2𝜖𝑥

∂𝑦2 = 0                                                                           (3) 

This equilibrium, referred to as plane-strain compatibility condition, 
provides us with a criterion to determine whether buckling has 
taken place. After shell buckling develops, changes in the local 
Gaussian curvature can be written as: 

∂2𝜖𝑦

∂𝑥2 −
∂2𝛾𝑥𝑦

∂𝑥 ∂𝑦
+

∂2𝜖𝑥

∂𝑦2 = Δ𝐾𝑖                                                                           (4) 

Furthermore, the local Gaussian curvature can be expressed in 
terms of the principal radii of curvature R1R2 according to principal 
directions X and Y, as in [32]: 

𝐾 =
1

𝑅1𝑅2
                                                                                                (5) 

while the Cartesian coordinate interconnection could be written as: 

𝑍 = (𝑋2/2𝑅1) + (𝑌2/2𝑅2)                                                                           (6) 

In these equations, 𝜅1, 𝜅2 represent the change of curvature in the 
principal directions X, Y, namely, 1, 2, at a certain local point. The 
differential on Equation (5) would then provide the change of local 
curvature Δ𝐾𝑖 as follows: 

Δ𝐾𝑖 =
𝜅1

𝑅2
+

𝜅2

𝑅1
= −

∂2𝜖𝑦

∂𝑥2 +
∂2𝛾𝑥𝑦

∂𝑥 ∂𝑦
−

∂2𝜖𝑥

∂𝑦2                                                          (7) 

Equation (7) as it establishes a relationship between displacements 
and curvature changes, becomes the foundation for the estimation 
of membrane effects [33, 34]. 

According to this, it is possible to revisit the initial circumferential 
displacement of the shell surface, to be expressed as: 

𝑓 = −𝐶0𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
+ 𝑎𝜁cos 2𝜃                                                                   (8) 

where, n is half-wavenumber,  𝜁 is dimensionless length, L is the 
length of cylindrical shell, and a and 𝐶0 are constant parameters. 
While this function highlights a relation between shell length and 
radial displacement, should be periodic throughout the 
circumference hence prone to be modelled through trigonometric 
functions. 

By considering the well-developed manufacturing performance for 
modern wind turbine towers, the axisymmetric imperfection type is 
found regularly due to the steel shell is made by revolution, 
although another type of imperfection, asymmetric shape, is more 
frequently observed on-site owing to transportation and 
installation. The shape change (namely the curvature change) 
brought about by imperfection in a perfect shell reduces the 
membrane action significantly, while the membrane part plays a 
dominant role in shell-stress carryings. Imperfection sensitivity 
relates to membrane effect on initial post-buckling behaviour for 

cylindrical shells, as curvature changes affect the pre-buckling path 
that principally determines post-buckling behaviour [16, 33]. It is 

explained in EN 1993-1-6 that when the imperfection amplitude is 
less than 10% from the perfect shape, the verification should be 
done particularly due to the small imperfection ratio does not yield 
a lower value for the reduction ratio in GMNIA. It could be observed 
from the review by Teng and Rotter of the four experiment results, 
that for the axisymmetric imperfection, the buckling stress drops 
dramatically half of the entire asymptote amount in the first 10 % 
of the imperfection amplitude followed by another half in the next 
90 % 𝑤0/𝑡 [34]. As the imperfection is rarely large in modern wind 
turbine industry, and according to the geometrical imperfection 
tolerance by design codes, 0.1 of the first axisymmetric eigenmode 
in the dimension of shell thickness for initial geometry imperfection 
is relatively appropriate and practical in this case. When considering 
the asymmetric imperfection, such as the second modal shape and 
third modal shape, this research referred to the review by Teng and 
Rotter [34] about the non-symmetric buckling to the imperfect 
shells showing that the asymmetric imperfection amplitude in the 
range of -0.05 to 0.05 reveals the most noticeable variations. 
Therefore, 5% for the second modal shape and 2.5% for the third 
modal shape have been selected in this research for obtaining the 
lower value of buckling capacity [31]. In total, this setting 
introduces a superposition imperfection at 17.5 % according to the 
dimension of shell wall thickness and this figure falls into the range 
between the minimum 10 % by EN 1993-1-6 and the maximum 
tolerance 40 %. These insensitive modal shapes after the third 
eigenvalue are neglected in the following FEM analysis. 
Geometrical imperfections are estimated with a combination of 
eigenvalues weighed with amplitude parameters. The 
dimensionless amplitude parameter 𝑤0/𝑡 were fixed to 0.1, 0.05, 
and 0.025, respectively for the target eigenvalues, where 𝑤0is the 
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amplitude of initial geometric imperfection. This combination has 
been found reliable for the study of wind turbine towers, especially 
in the extreme-case scenarios when wind power plants operate [1, 
31]. Based on this, a sinusoidal shape function 𝑓0 can be used to 
deform the perfect shell based on the eigenvalues referred above: 

𝑓0 = 0.1 sin (
𝜋𝑥

𝑙1
) sin (

𝜋𝑦

𝑏1
) + 0.05 sin (

𝜋𝑥

𝑙2
) sin (

𝜋𝑦

𝑏2
) 

+0.025 sin (
𝜋𝑥

𝑙3
) sin (

𝜋𝑦

𝑏3
)                                               (9) 

In Eq. (9), 𝑙1, 𝑏1derive from the first eigenvalue while 𝑙2, 𝑏2, 𝑙3 and 
𝑏3 are derived from the second and third eigenvalues, respectively. 

Before now based on energy methods, the total internal strain 
energy equals the sum of strain energies due to axial compression 
and bending, which is represented as: 

𝛿𝑈 = 𝛿𝑈(𝑎𝑥𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) + 𝛿𝑈(𝑏𝑒𝑛𝑑𝑖𝑛𝑔) 

= 𝛿[𝑈𝑏 + 𝑈𝑚](𝑎𝑥𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 

 +𝛿𝑈[𝑈𝑏 + 𝑈𝑚](𝑏𝑒𝑛𝑑𝑖𝑛𝑔)                                    (10) 

The two strain energy components use the same approximation to 
determine curvature and mid-surface deformation, which are 
consistent with continuity conditions for a cylindrical shell section. 

3 Modelling Details and Assumptions in Finite Element 
Analysis 

In this investigation we target the secondary bottom which is the 
part most vulnerable to buckling failure. For the secondary bottom 
section, especially for a cylindrical shell structure under combined 
loads, a pure shell section is the best choice for a buckling 
mechanism investigation due to the variations of stiffening 
configurations that can influence the buckling behaviour 
comprehensively. In terms of tower geometry, the buckling 
behaviour of a pure cylindrical shell section depends on diameter, 
wall thickness, and cylinder length, hence in this study we use the 
ratios between these geometry configurations to parametrically 
analyse the failure process. It is widely accepted that the spatial 
extent of shell geometry has no relation to buckling behaviour i.e., 
shells of different proportion but with the same L/R and R/t ratios 
exhibit the same buckling responses [16, 23, 29, 31, 34, 35]. 

Modern cylindrical steel towers used for wind energy harvesting 
comprise numerous prototypes being the NREL 5 MW baseline 
wind turbine the most widely adopted for manufacture, hence for 
the FEM presented here [36]. Table 1 provides details of the 
adopted prototype. The diameter of the tower is fixed to 6.0 m 
while its wall thicknesses changes in 3 mm increments, overall 
ranging between 24 mm and 36 mm. Shell lengths are 9.0 m, 12.0 
m, 15.0 m and 20.0 m, with the ratios L/R and R/t ratios listed in 
the table. 

Table 1 Model geometry size adopted for the FEM analysis 

No. Diameter D Length L Thickness t L/R R/t 

1 6000 20,000 24 6.66 125 

2 6000 15,000 24 5 125 

3 6000 12,000 24 4 125 

4 6000 9000 24 3 125 

5 6000 20,000 27 6.66 111.11 

6 6000 15,000 27 5 111.11 

7 6000 12,000 27 4 111.11 

8 6000 9000 27 3 111.11 

9 6000 20,000 30 6.66 100 

10 6000 15,000 30 5 100 

11 6000 12,000 30 4 100 

12 6000 9000 30 3 100 

13 6000 20,000 33 6.66 90.91 

14 6000 15,000 33 5 90.91 

15 6000 12,000 33 4 90.91 

16 6000 9000 33 3 90.91 

17 6000 20,000 36 6.66 83.33 

18 6000 15,000 36 5 83.33 

19 6000 12,000 36 4 83.33 

20 6000 9000 36 3 83.33 

 

The parametric study is based on three load types: axial 
compression, bending, and combined bending and axial effects. The 
model geometries induced 100 shell prototypes that yield 20 linear 
buckling models and 80 specific load configurations. The boundary 
conditions applied to axial compression are, fixed support at the 
base but free to rotate and displace at the top edge.  About bending 
and combined bending-axial effects, we restricted the horizontal 
displacement and rotations with respect to the x and y axis at the 
base keeping the top edge free to rotate and displace. Tie 
constraints applied along the circumferential directions according 
to a reference point at the centre of the edge circles simulating the 
action of flange and ring stiffeners.  

Following the above, the S4R element [37] was chosen for 
ABAQUS buckling analysis using the Riks method, which controls 
force and displacement upon specification of the load 
proportionality factor (LPF). Linear elastic analyses yield linear 
eigenvalue which may suffice engineering purposes but is unable to 
reveal the post-buckling behaviour we were aiming for here. The 
Riks method is suitable for tracking post-buckling paths via a static 
analysis procedure, which reduces the calculation load for a 
dynamic analysis. The Riks increments implemented in ABAQUS 
thus approach the failure state until the fixed 1000 steps are 
completed, otherwise the job is aborted to prevent a lack of 
convergence. The thickness integration point was set to 7 and the 
maximum curvature control was 0.1, to provide additional post-
buckling accuracy. The optimum mesh size shown in Table 2 that 
resulted from a mesh sensitivity test on 20 m length shell with 27 
mm wall thickness. When the mesh size falls below 200mm, stress 
variations become meaningless, although the number of elements 
and nodes surge together with the CPU time and RAM occupation, 
which prevent the workstation to carry parallel calculations 
efficiently for handful of jobs filed up in ABAQUS. Hence a grid 200 
mm × 200 mm was adopted for meshing each cylindrical shell 
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model. The elastoplastic parameterisation of material and stress–
strain information correspond to S355 steel. This data constructed 
an 11-point curve characterised by a Poisson ratio of 0.3. 

Table 2 Mesh sensitivity analysis results. 

Mesh 
size 
(mm) 

Von 
Mises 
Stress 
(MPa) 

Max 
Principal 
Stress 
(MPa) 

Arc 
Length 

(500th 
step) 

Number 
of 
Element
s 

Meshing 
examples 

50 437.35 502.53 0.042801 150,800 

 

100 437.34 502.44 0.042924 37,412 

 

150 437.31 502.27 0.043121 16,758 

 

200 437.02 502.01 0.043751 9,306 

 

250 434.72 498.77 0.045035 5,925 

 

300 428.10 486.95 0.157736 4,158 

 
 

The first step was to obtain the first three linear buckling 
eigenmodes for the models listed in Table 1. Classical theory 
predicts the first mode to be axisymmetric and the following two 
modes to be asymmetric. The initial imperfection discussed in 
previous sections was implemented in ABAQUS via keyword 
editing in GUI section. Figure 1 shows examples of the first three 
vibration modes of the shell section. Each segment is 20 m long and 
30 mm thick as depicted in Figure 1. By combining the first three 
modes with the weighing coefficients of 10% (first mode), 5% 
(second mode), and 2.5% (third mode), we achieved the intended 
asymmetric initial geometry imperfection for each cylinder [14, 34]. 
It is to note that the first modal shape represented in the 
visualisation of ABAQUS is a function of surface displacement 
along the longitudinal direction, showing deviations from the 
original perfectly flat shell surface.  

A section of the displacement curve, 35% of the length to the left 
end, has been selected for curve fitting. The best curve fitting 
results were carried out in MATLAB by using a function which 
transform a sine function to sine and cosine combinations. Figure 2 
shows the fitted curve.  

 

Figure 1 An illustration of the first three modes of the 20 m shell section at 30 
mm thickness. The combination of modal shapes resulted in the asymmetric 
geometry imperfection. 

 

Figure 2 The curve fitting example by the sum of sinusoidal functions with two 
terms. The displacement function f(x) shares the convertible form; coefficients 
𝑎𝑖, 𝑏𝑖 were shown by the right side. 

By substituting the coefficients depicted in Figure 2 in the equation 
systems reported in [31], we obtained a linear buckling load that 
enabled validation of results, as shown in Figure 3. With reasonable 
limits, the simulation showed consistency with theoretical results 
on different thickness cylinders. The discrepancy between 
theoretical and FEM results, in terms of both magnitude and shape, 
are attributed to the initial shape function adopted for the 
simulation. When we introduce the curve-fitted sinusoidal 
functions to the curve of the left 35% shell section, the phase 
diversifies leading to sine and inverted sine curves that switch 
trajectories. We reproduced the curve fitting function as 𝑓(𝑥) =

0.2747 sin(108.6x − 1.159) + 0.3094 sin (117.1𝑥 + 1.814) . 
Meanwhile, the replaced initial shape function induced magnitude 
variances with respect to theoretical results, with discrepancies 
ranging between those obtained by using an ideal initial imperfect 
function and the curve fitting function. Along these lines, the 
magnitude of buckling load factors varied reasonably from 39.13% 
to 7.32% yet showing stable convergence. These results enabled to 
conclude that shape functions have a higher effect on shells with 
smaller wall thickness than on thicker shell surfaces.  

 

Figure 3 Linear buckling load in ABAQUS vs. buckling load using linear theory, in 

accordance with cylinders of various wall thickness. 

4 Finite Element Results 

4.1 Buckling Behaviour under Axial Compressions 

The buckling behaviour of different segment lengths was compared 
using different L/R ratios. We compared the longest 20 m shell 
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section with the shortest 9 m models under axial compression on 
perfect shells. Buckling displacements generally vary. For example, 
the 9 m shell tends towards the ‘elephant foot’-shaped at each end, 
while the 20 m shell has a one-sided asymmetric buckle point 
around the mid-length. On the other hand, it was found that the 
circumferential wavelength has less influence on the axial 
compression buckling, especially for longer cylinders [38]. Figure 4 
shows how the longitudinal wavenumber changed along the 
extreme fibre on the compression side, which depicts local 
curvature evolution of the upper 2/3 of its length. The local 
curvature changed dramatically with the increase of the 
compression load: the wavenumber dropped in the early steps and 
maintained a long interval until the entire shell collapsed. In the 
meantime, circumferential curvature changes as illustrated in 
Figure 5. 

Figure 4 Shell (20 m at 24 mm) extreme fibre wavenumber change under axial 
compressive load. 

Figure 5 Shell (20 m at 24 mm) circumferential fibre curvature change under axial 
compressive load. 

In Figure 5, blue arrows indicate inward curvature changes whereas 
red arrows represent outward curvature changes on the shell 
surface. The vectors indicate tendency of curvatures at each 
increment step. Moreover, the thick orange arrows follow the peak 
value of displacement i.e., the biggest deviation point. Those 
highlighted circumferential flow trends captured by the shape 
Equation (8), which changes with the angular coordinate 𝜃. Figure 
6 shows how the circumferential curvature of the 9 m cylinder, 
remains less disturbed by the stress flow. The initial curvature 
presents an even distribution, although after few steps led to the 
‘elephant foot’ type of bulge buckling near both ends. 

 

Figure 6 Shell (9 m at 24 mm) circumferential fibre curvature change under axial 
compressive load. 

4.2 Buckling Behaviour under Bending 

The main concern around pure bending effects in a wind turbine 
tower shell is the change of curvature, both longitudinal and 
circumferential. The distortion in the longitudinal direction would 
be expected to develop near the mid-span [8, 39] while the cross 
section undergoes the Brazier’s effect of ovalisation [40]. These 
effects have been plotted for shell prototypes of 20 m long at 30 
mm (L/R = 6.66) and 9 m at 30 mm (L/R = 3). The surface 
deformations and stress distributions are shown in Figure 7 and 
Figure 8. 

 

Figure 7 Shell (20 m at 30 mm) surface deformation and stress distribution under 
bending moment. 

 

Figure 8 Shell (9 m at 30 mm) surface deformation and stress distribution under 
bending moment. 

It is noticeable that both shell segments show buckle points locate 
near the mid-span on the compression side of the shell being the 9 
m shell model more dependent on the boundary conditions as the 
secondary buckle point emerged on the bottom of opposite side. 
The stress arrangement along the shell surface has been affected, 
as it has less material length for energy dissipation. In the early 
stage of the pre-buckling process, wave-like displacements are 
observed along the shell length but concentrated rapidly at the mid-
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span area, like a beam member. The cut-out view of the extreme 
fibre on the compression side on the 20 m shell model is illustrated 
in Figure 9. 

 

 

Figure 9 Shell (20 m at 30 mm) extreme fibre wavenumber change under bending. 

At the third time increment of our simulations, the shell surface was 
adopted a wave-like shape. We selected this partial stage to run a 
curve-fitting manipulation using MATLAB, with the form of the sum 
of sinusoidal functions. The displacement function could not be 
validated by fewer than six parameters when including edge points, 
apparently due to the large deviation taking place near the end 
supports of the shell. We also observed that bending–buckling 
relies more heavily on the boundary conditions which contrast with 
the equivalent performance under axial compression. The 
significance of boundary conditions should be dealt with more in 
detail via complex displacement functions informed by some 
physical modelling. 

In terms of circumferential curvature change, we used the cross 
section of the shell to scrutinise the ovalisation, for which we 
amplified the circumferential displacements shown in Figure 10, by 
a factor of 100 at steps 16 and 21. At step 16, the ovalisation 
emerged as a combined elliptical function involving multiple 
parameters, which proved that the simple ovalisation function may 
not be precise enough to represent the pre-buckling stage. At that 
point one sees an extremely rapid rate of change of local curvature, 
as demonstrated with increment steps 18 and 26. In those 
screenshots the inward dents are more noticeable than the bulge-
shape outward displacement observed in the post-buckling 
process. Past increment step 26, the wavenumber maintained, and 
the failure became driven by the inward dents without any 
following bifurcation paths manifesting. The comparison between 
20 m and 9 m shells of same wall thickness highlights the L/t ratio 
as weak parameter controlling of the buckle point location, whereas 
the position of the extension of buckled material depends highly on 
the supporting boundary conditions of the shells.  

 
Figure 10 The cut-out view of the circumferential curvature change on 20 m at 
30 mm shell under a bending moment. 

Shell models with equivalent lengths and different thickness were 
selected for the analysis of the influence of the ratio R/t. Figure 11 
shows a typical buckling sequence for the 20 m at 24 mm model. 
Notably, a similar type of buckling occurred on the shell of 24 mm. 
In that case, the buckle point emerged in the mid-span area, with 
more prominence than that observed on the 30 mm shell. The 
stress concentration led to one buckle point with a smaller adjacent 
area than the one of the shells shown in Figure 7. The single buckle 
point sustained for a longer period and the wavenumber 
progressions occurred in the late post-buckling stage, both 
circumferential and longitudinal. After the failure of the shell wall, 
less area was affected in the thin model than that of the thicker 
tube. The thinner shell buckling under bending also showed less 
wavenumber evolution, with a highly condensed buckle point 
emerging at the mid-span surface; this is due to the lower in-plane 
bending resistance capacity of thinner shells while the thicker shell 
showed better strain energy dissipation capacity. The loss of 
membrane effect in the buckled area resulted in the concentration 
of stress in its neighbourhood seemingly due to the large and rapid 
local curvature change on the shell surface. Figure 11 (b) illustrates 
the circumferential curvature change on the cross-section, 
including its ovalisation , recorded at increment steps 15 and 17. At 
increment step 19, we observed how the flattened region on the 
compression side abruptly buckled forming a single inward dent. 
This asymmetric buckling mode allowed more strain energy 
draining to the area and, after comprehensive evolutions, allow a 
secondary buckle point to emerge mainly due to the membrane 
effect loss in its adjacent area. These results reveal that the R/t ratio 
has significant effects on bending buckling sensitivity. 

 

(a) 
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(b) 

Figure 11 (a) Shell (20 m at 24 mm) surface deformation and stress distribution 
under the pure bending moment; (b) The cut-out view of circumferential curvature 
change on the 20 m at 24 mm shell under bending moments. 

4.3 The Curvature – Energy Relations in Typical Buckling 

Induced Failure under Combined Loading Conditions 

For combined loading we selected for scrutiny our models of 15 m 
and 12m long with 24 mm wall thickness (R/t = 125, L/R = 5 and 4). 
Figure 12 illustrates the shell model performance including 
increment steps of a typical buckling progression. Figure 12 (a) 
illustrates how, under the combined loading condition, the in-plane 
strain energy emerged in the outline (as in axial compression 
scenarios) revealing longitudinal wavenumbers starting at step 54 
that align with the pre-buckling shape function captured with a 
periodic trigonometric function. At increment step 61 and 100, 
during the transient buckling stage, a decrease of the longitudinal 
wavenumber resulted in mid-length strain energy concentration 
which balanced out with the increase of the circumferential 
wavenumber. This induced a buckle dent at the compression side 
with 2 wavenumbers above and 3 wavenumbers below the extreme 
fibre. From the increment step 168 to step 826 (post-buckling 
stage), the buckling gradually concentrated around one point and in 
turn lessened the in-plane strain energy in other shell parts. 
However, large displacements took place past this point, which 
activated the abrupt decrease of load bearing capacity that in turn 
limited the serviceability of the wind turbine tower.  

According to Figure 12 (b), during the early stage of combined 
loading of the shell, changes of the inward circumferential 
curvature tended to accumulate on the compression side while a 
negligible outward curvature emerged on the tension side. At the 
increment step 100, three spots appeared along the half circle 
subject to compression, which anticipated how buckling would 
develop. Naturally, changes of curvature follow the distribution of 
strain energy. In this case, the circumferential curvature led to the 
ovalisation of the cross section already observed under pure 
bending effects. Under combined action, such distortion of the 
cross section maintains a significant contribution to buckling 
behaviour. 

 

(a) 

 

(b) 

Figure 12 (a) Shell (15 m at 24 mm) surface deformation and in-plane strain energy 
distribution under combined load; (b) The cut-out view of circumferential 
curvature changes. 

Following, as the load incremented reached the interval of steps 
168 to 347, the curvature redistribution characterised with four 
spots, associated to the buckling jumping mode. At the same time, 
the inward curvature changing tendency switched to its outward 
equivalent. The evolution of curvature largely associated to axial 
compression throughout the transient and post-buckling stages. As 
the process evolved to reach curvature increment steps 499 to step 
826, the buckling jumping mode localised in relatively smaller 
sectors of the tower shell. Further to the evolution of curvature 
changes and in-plane strain energy distributions for varying shell 
length shown in Figure 13, the 12 m long shell model underwent 
fewer alternative curvature paths, most likely due to less material 
dissipation routes and stronger influence of its boundary 
conditions. 
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(a) 

 

(b) 

Figure 13 (a) Shell (12 m at 24 mm) surface deformation and in-plane strain energy 
distribution under combined load; (b) The cut-out view of circumferential 
curvature changes on the 12 m with 24 mm wall thickness shell under combined 
load. 

 

4.4 Bending – Compression Ratios and Imperfections  

To further investigate bending-axial interactions, we scrutinise the 
parametric study of 20 m shell models with five wall thicknesses. 
The combined loading was applied through a sequence batch of 
jobs in ABAQUS. The ratio of bending to compression was treated 
as non-dimensional unit progressively applied through magnitude 
increments of 0.05, covering the range 0 to 1.5. In this case, the 
buckling load factor refers to the theoretical result, which has been 
used in the knockdown factor study discussed in [12]. The best-fit 
curves of shells with different wall thicknesses have been drawn in 
Figure 14. 

 

Figure 14 The curves of the bending/compression ratio to buckling load factor for 
shell structure, under combined loading conditions with different wall thickness. 

As illustrated in the figure, the reference value for axial 
compression is 0.65 [12], being the 36 mm shell the only one 
exceeding this lower bound, as a result of initial geometry 
imperfections. The thinnest 24 mm shell reported a rapid drop with 
the increase of the bending moment, suggesting that thinner shells 
have lower bearing capacity against bending effects. The 27 mm 
and 30 mm shells exhibited a similar trend under higher bending 
moment ratios, although with a milder decrease. Shells with thicker 
walls displayed better performance against the increased bending 
moment because of better energy dissipation routes and stronger 
interactions between longitudinal and circumferential curvatures. 

The imperfection sensitivity under combined loading condition 
presented similar buckling performance than those seen for axial 
compression scenarios. Notwithstanding, buckling paths evolved 
faster due to shell imperfections that induced a rapid concentration 
of stress around weak areas; clearly, bending effects tended to 
accelerate such concentration. The buckling analysis under 
combined load considering initial imperfection thus establishes the 
most unfavourable conditions for a wind turbine tower in extreme 
wind events. It is therefore suggested that in this scenario, the 
obtained relations between bending and compression, and buckling 
behaviour investigations, are suggested to be used as 
enlightenment for future wind turbine tower design, either by 
means of energy methods or detailed numerical simulations. 

 

5 Conclusions 

This paper addresses a series of 100 numerical shell models based 
on the prototype NREL 5MW wind turbine tower, underpinned by 
the known Riks Method for buckling analysis. It enables the scrutiny 
of shell elements under axial load, bending moment, and combined 
load. Within the proposed framework of curvature–energy analysis 
in pre-buckling, transient, and post-buckling stages, the numerical 
result unveils buckling-predictable changes of local surface 
curvature and energy flows with multiple longitudinal and 
circumferential wavenumbers taking place during the process. 
Wavenumbers and curvature changes induce the energy magnitude 
changes and buckling mode jumping: the circumferential 
wavelength has less influence on the axial compression buckling; 
other than the sensitivity of L/R ratio under axial compression, the 
R/t ratio and supporting boundary condition have significant 
effects on bending buckling sensitivity; the circumferential 
curvature changes stimulated by bending part have a remarkable 
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contribution to the buckling behaviour under axial-bending load. In 
combined loading conditions, the buckling behaviour sees a faster 
and more convergence result with higher bending moments, and 
the bending moments do more contributions to circumferential 
curvature changes and strain energy concentration, whereas the 
axial loads play more decisive role in longitudinal curvature 
evolution. The diversity of the final buckling mode largely 
determined by the variance of shell geometry, boundary conditions 
and compression–bending ratio. 
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