
 
 

University of Birmingham

Reveal the invisible secret
Xu, Zhuang; Pemberton, Owen; Oswald, David; Zheng, Zhiming

DOI:
10.1007/978-3-031-25319-5_12

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Xu, Z, Pemberton, O, Oswald, D & Zheng, Z 2023, Reveal the invisible secret: chosen-ciphertext side-channel
attacks on NTRU. in International Conference on Smart Card Research and Advanced Applications: CARDIS
2022: Smart Card Research and Advanced Applications. Lecture Notes in Computer Science, vol. 13820,
Springer, pp. 227–247, 21st Smart Card Research and Advanced Application Conference, Birmingham, United
Kingdom, 7/11/22. https://doi.org/10.1007/978-3-031-25319-5_12

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/978-3-031-25319-5_12. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of
use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1007/978-3-031-25319-5_12
https://doi.org/10.1007/978-3-031-25319-5_12
https://birmingham.elsevierpure.com/en/publications/6d70ef20-af18-45b3-bdf3-c5385163e8b9


Reveal the Invisible Secret: Chosen-Ciphertext
Side-Channel Attacks on NTRU

Zhuang Xu1, Owen Pemberton2, David Oswald2, and Zhiming Zheng3,4,5

1 School of Mathematical Sciences and Shenyuan Honors College, Beihang
University, Beijing, China, xu_zhuang@buaa.edu.cn

2 School of Computer Science, University of Birmingham, Birmingham, U.K.
o.m.pemberton@pgr.bham.ac.uk, d.f.oswald@bham.ac.uk

3 Institute of Artificial Intelligence, LMIB, NLSDE and Beijing Advanced Innovation
Center for Future Blockchain and Privacy Computing, Beihang University, China

4 Peng Cheng Laboratory, Shenzhen, China
5 Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai,

China, zzheng@pku.edu.cn

Abstract. NTRU is a well-known lattice-based cryptosystem that has
been selected as one of the four key encapsulation mechanism finalists in
Round 3 of NIST’s post-quantum cryptography standardization. This pa-
per presents two succinct and efficient chosen-ciphertext side-channel at-
tacks on the latest variants of NTRU, i.e., NTRU-HPS and NTRU-HRSS
as in Round 3 submissions. Both methods utilize the leakage from the
polynomial modular reduction to recover the long-term secret key. For
the first attack, although the side-channel leakage does not directly reveal
the secret polynomial f , we recover differences between adjacent coeffi-
cients using appropriately chosen ciphertexts, and finally reconstruct f
through linear algebra. The second attack is based on the inherent rela-
tion between the secret key and the public key in NTRU-HPS: we first
reveal the “invisible” secret polynomial g with chosen ciphertexts and
then use g and the public polynomial h to compute f . In theory, these
attacks only need 4 and 2 ciphertexts, respectively. We then practically
apply those attacks on all reference implementations of four instances in
the PQClean library and show that the accuracy of secret-key recovery
can reach 100% with only few traces (4 to 24 and 2 to 6, respectively).
We also observe similar leakage in optimized implementations in the pqm4
library and propose an according analysis scheme.

Keywords: Lattice-based cryptography · NTRU · Chosen-ciphertext
attack · Side-channel analysis.

1 Introduction

When will a practical quantum computer that can break current Public-Key
Cryptography (PKC) based on RSA or elliptic curve cryptography be available?
Quantum computing experts anticipate that it might take 10 to 15 years. But
one thing is for sure: we need cryptographic algorithms that are secure even in



2 Z. Xu et al.

the context of quantum computing to replace current PKC schemes. This kind
of cryptography is also known as Post-Quantum Cryptography (PQC).

There are several proposals for PQC schemes relying on lattice-based, code-
based, hash-based, isogeny-based and multivariate polynomial-based problems.
To select sound successors, the National Institute of Standards and Technology
(NIST) held a public competition-like PQC standardization project in 2016 [2].
After two rounds of competition, four Key Encapsulation Mechanisms (KEMs)
and three signature schemes have been chosen as finalists in Round 3 [1]. Out of
the four KEMs, three are lattice-based schemes: CRYSTALS–Kyber [7], Saber [9]
and NTRU [8]. The security of the first two are based on the hardness of Learning
with Errors (LWE) problem variants, i.e., the Module-LWE problem and the
Module Learning with Rounding problem; while that of NTRU is based on the
Shortest Vector Problem, a different assumption. As the one with the longest
history among them, NTRU has stood the test of time, i.e., NTRU-based schemes
had been widely studied in theoretical and implementation security. Therefore,
it is a very competitive finalist. Recently, NIST published the report on the third
round. Although currently NTRU is not considered for future standardization
as per the evaluation and selection results, NIST stated that NTRU may replace
Kyber as a standard if the patent issue on Kyber is not resolved by the end of
2022 [3]. So, it is still significant to study the latest variants of NTRU in depth.

Theoretical security, performance and characteristics (in terms of algorithm
and implementation) are core evaluation criteria in the first two rounds [1]. The
implementation security of finalists is also a key criterion in Round 3. A deeper
understanding of the threats to the implementation can help designers create
more effective countermeasures to mitigate such attacks. In this paper, we focus
on Side-Channel Analysis (SCA), a classic threat exposing the relation between
secret intermediate values and side-channel leakage when the cryptographic algo-
rithm runs on a specific hardware/software platform. More specifically, we focus
on Simple Power Analysis (SPA) [18] using chosen ciphertexts for the NTRU
KEM. To our knowledge, this is the first attempt to apply this kind of analysis
on NTRU instances in Round 3.

1.1 Related Work

SCA on NTRU. There are many side-channel attacks [4,6,19,29] targeting the
early version of NTRU. Most attacks exploit the leakage from the polynomial
multiplication which involves the secret polynomial and a controllable/known
polynomial. But these attacks cannot be directly applied to the latest NTRU
instances that use Toom-Cook and Number Theoretic Transform (NTT) tech-
niques to optimize the multiplication process in the PQClean and pqm4 [16] li-
brary respectively, instead of “multiply and accumulate” approach in early NTRU
implementations. Recently, Mujdei et al. [20] exploited the leakage from poly-
nomial multiplication through Toom-Cook and NTT strategies and mounted
successful correlation power analysis.

In addition to multiplication, other operations have also been targeted to
mount SCA. In [17], Karabulut et al. showed the vulnerability of the sorting



Chosen-Ciphertext Side-Channel Attacks on NTRU 3

algorithm in the key generation step of NTRU. Askeland et al. [5] performed
a partial key recovery by utilizing the leakage from the unpacking operation
and the Z3 to Zq mapping in a single-trace setting. They then applied the Block
Korkin-Zolotarev (BKZ) lattice reduction algorithm to find the remainder of the
secret key. Ueno et al. [26] presented a deep-learning-based SCA on the Fujisaki-
Okamoto transformation and its variants and demonstrated that the scheme
can be applied to most candidates in Round 3 (including NTRU). In [22], Ravi
et al. proposed several chosen-ciphertext collision attacks on the NTRU family
of KEMs through side-channel-based oracles. Their method is inspired by a
Chosen-Ciphertext Attack (CCA) [15] on early versions of NTRU.

There are also attacks which target the session key instead of the long-term
secret key. For example, Sim et al. [24] utilized the leakage from message encoding
in encapsulation to recover the secret shared message which can be used to
calculate the shared session key.

Chosen-Ciphertext SPA on Other Lattice-Based Schemes. As lattice-
based KEMs share a common characteristic—the coefficients of the secret poly-
nomial are sampled from a small value range (e.g., {−1, 0, 1} in NTRU)—they
are vulnerable under chosen-ciphertext-assisted SPA which can take advantage
of this feature to recover the secret key using a small number of traces. This
kind of attack becomes more practical when an attacker cannot collect enough
traces to mount Differential Power Analysis (DPA) [18] or template attacks.

Park et al. [21] proposed the first chosen-ciphertext SPA targeting Ring-LWE
encryption on an 8-bit microcontroller. In [13], several power analysis techniques
were applied to NTRU Prime by Huang et al. One of them is a chosen-input SPA
targeting the polynomial multiplication. With the assistance of chosen cipher-
texts, an adversary can recover the key according to special patterns in the trace.
Xu et al. [27] devised an efficient SPA on Montgomery reduction in the reference
implementation of Kyber. With four traces from different crafted ciphertexts,
they achieved a high accuracy of secret-key recovery.

1.2 Contributions

In this paper, we explore the feasibility of chosen-ciphertext SCA on all NTRU
instances in Round 3. We also determine a lower bound of the required number
of traces, exploiting a unique property in three NTRU-HPS instances.

Concretely, we extend the chosen-ciphertext SPA method from [27] to Round-
3 NTRU. Interestingly, the relation between the public key and the secret key
in NTRU-HPS simplifies this kind of attack. Our main contributions are:
1) We identify a leaky function, the Rq to S3 polynomial modular reduction

in decryption in the decapsulation phase, which leaks the Hamming Weight
(HW) of a secret-dependent intermediate value.

2) We mount chosen-ciphertext Electro-Magnetic (EM) SCA on the reference
implementations of all instances (i.e., ntruhps2048509, ntruhps2048677,
ntruhps4096821 and ntruhrss701) in PQClean, and recover the core secret
polynomial f successfully with 4 ciphertexts supported by 4 to 24 traces.



4 Z. Xu et al.

3) We propose a more efficient attack utilizing an inherent property of NTRU-
HPS—for that, we first recover the “invisible” secret polynomial g with 2
ciphertexts (2 to 6 traces) and then compute f from h and g.

4) We discuss the extension of our analysis to implementations from the opti-
mized pqm4 library.
Compared to several previous SCA schemes on NTRU [20,22,26], our schemes

need less queries from the victim device. A stronger leakage point (compared
to [5]) is exploited, so no additional lattice reduction is required.

1.3 Organization

The remainder of this paper is structured as follows: in Sect. 2, we introduce the
necessary notations, background, and adversary model. In Sect. 3, we present
our two types of chosen-ciphertext SPA on reference implementations of NTRU.
Next, we propose an analysis strategy on optimized implementations in Sect. 4.
Finally, we conclude in Sect. 5.

2 Preliminaries

2.1 Notation

Let q be a positive integer. Centered modular reduction is represented as r′ =
r mod q where r′ ∈ [−q/2, q/2− 1] when q is even or r′ ∈ [−(q − 1)/2, (q − 1)/2]
when q is odd. The non-negative modular reduction r′ = r mod+q means
r′ ∈ [0, q − 1]. Here, Zq is the ring of integers modulo q with centered modular
reduction. A polynomial is represented by a bold-font lowercase letter, e.g., a, its
i-th coefficient is represented as ai, and then a =

∑
i aix

i. Polynomial multiplica-
tion is denoted using the · operator, whereas for scalar multiplication, the oper-
ator is omitted. We define Φ1 = x−1, Φn = (xn−1)/(x−1), for some integer n.
The quotient rings of polynomials are Rq := Zq[x]/(x

n−1) = Z[x]/(q, Φ1 ·Φn),
Sq := Zq[x]/(Φn). The polynomial multiplication of a and b in the above rings
is represented by a · b mod (q, Φ1 · Φn) and a · b mod (q, Φn), respectively.
Φ1 ·Φn = 0 (or Φn = 0) is applied to terms which have a degree greater than
or equal to n (or n− 1). We refer to the side-channel measurement (i.e., trace)
as p (t), where t is discretized time in sample points.

2.2 NTRU in NIST PQC Round 3

NTRU is one of the most-studied lattice-based schemes. Several variants have
been proposed since it was first proposed by Hoffstein in 1996 [11]. As our tar-
gets are the latest variants that have advanced to Round 3 in the NIST PQC
standardization, we refer the reader to [23] for more information about the com-
parisons among different variants.

The submission of NTRU KEM in Round 3 is a merge of NTRU-HPS [12]
and NTRU-HRSS [14]. Here, we briefly describe the core algorithms; for a full
description, please refer to [8].



Chosen-Ciphertext Side-Channel Attacks on NTRU 5

Algorithm 1 NTRU.PKE.KeyGen (seed) [8]
1: (f , g) = Sample_fg(seed)
2: fp = (1/f) mod (p, Φn) /* p = 3 */
3: fq = (1/f) mod (q, Φn)
4: h = (3g · fq) mod (q, Φ1 ·Φn)/*HPS*/ or (3g ·Φ1 · fq) mod (q, Φ1 ·Φn)/*HRSS*/
5: hq = (1/h) mod (q, Φn)
6: sk = Pack_S3(f) ∥ Pack_S3(fp) ∥ Pack_Sq(hq)
7: pk = Pack_Rq0(h)
8: return (sk, pk)

Algorithm 2 NTRU.PKE.Enc (pk, packed_rm) [8]
1: (r, m) = Unpack_S3(packed_rm)
2: m′ = Lift(m)
3: h = Unpack_Rq0(pk)
4: c = (r · h+m′) mod (q, Φ1 ·Φn)
5: return ct = Pack_Rq0(c)

Algorithm 3 NTRU.PKE.Dec (sk, ct) [8]
1: c = Unpack_Rq0(ct)
2: (f , fp, hq) = Unpack(sk)
3: v = (c · f) mod (q, Φ1 ·Φn) /* Target step in this paper */
4: m = (v · fp) mod (p, Φn) /* p = 3 */
5: m′ = Lift(m)
6: r = ((c−m′) · hq) mod (q, Φn)
7: packed_rm = Pack_S3(r) ∥ Pack_S3(m)
8: if (r, m) ∈ Lr × Lm, fail = 0
9: else fail = 1

10: return (packed_rm, fail)

The NTRU KEM with Indistinguishability under Chosen-Ciphertext At-
tack (IND-CCA) is built by a generic transformation from a deterministic NTRU
Public-Key Encryption (PKE) scheme. The deterministic PKE consists of Algo-
rithms 1 to 3. All elements and corresponding computations are in three rings:
Rq, Sq and Sp, where q varies for different instances but p = 3 for all schemes.
The specific parameters are shown in Table 1. f , g, r and m are polynomials in
S3, i.e., ternary polynomials of degree at most n− 2. The specific sample spaces
are different: in NTRU-HPS, g and m have exactly (q/16− 1) coefficients equal

Table 1. Parameters for different NTRU instances

NTRU NTRU-HPS NTRU-HRSS
ntruhps2048509 ntruhps2048677 ntruhps4096821 ntruhrss701

n 509 677 821 701
q 2048 2048 4096 8192



6 Z. Xu et al.

Algorithm 4 NTRU.KEM.KeyGen (seed) [8]
1: (sk, pk) = NTRU.PKE.KeyGen (seed)
2: s←$ {0, 1}256
3: return ((sk, s) , pk)

Algorithm 5 NTRU.KEM.Encaps (pk) [8]
1: coins←$ {0, 1}256
2: (r, m) = Sample_rm(coins)
3: packed_rm = Pack_S3(r) ∥ Pack_S3(m)
4: ct = NTRU.PKE.Enc (pk, packed_rm)
5: K = H1 (packed_rm) /* Shared Key */
6: return (ct, K)

Algorithm 6 NTRU.KEM.Decaps ((sk, s) , ct) [8]
1: (packed_rm, fail) = NTRU.PKE.Dec (sk, ct)
2: K1 = H1 (packed_rm) ,K2 = H2 (s, ct)
3: if fail = 0 return K1 /* Shared Key */
4: else return K2 /* Random Key */

to 1 and (q/16−1) coefficients equal to −1; in NTRU-HRSS, f and g satisfy the
non-negative correlation property [14]. As the polynomial g only appears in the
key generation step and is not a component of the secret key sk, we call it the
“invisible” secret polynomial in this paper. The transformations between polyno-
mial and bytes are implemented by the Pack and Unpack functions. Lift(m) = m
for NTRU-HPS, but equal to Φ1 · (m/Φ1 mod (3, Φn)) in NTRU-HRSS.

The main steps of the IND-CCA NTRU KEM are shown in Algorithms 4
to 6. A successful key exchange will let two communication parties share a same
session key, otherwise a random key will be generated. s and coins are strings
of uniform random bits. H1 and H2 are hash functions.

2.3 Threat Model

Target. The adversary’s target is to obtain the secret key sk. Although it is
recommended that applications do not reuse the secret key, in many scenarios
(e.g., resource-constrained embedded devices), sk will be reused or stored locally.
Once the long-term secret key is leaked, the attacker can intercept KEM session
involving the victim and other party and then recover the shared session key.
Moreover, the attacker can impersonate the victim. The secret key of NTRU
consists of three parts: f , fp and hq, where hq can be computed using the public
key. If one can recover f , the other components can be computed accordingly.
Therefore, the ternary polynomial f in the decryption phase during decapsulation
becomes the core target of our analysis.



Chosen-Ciphertext Side-Channel Attacks on NTRU 7

Attacker Capabilities. We assume a standard side-channel attacker who can
initiate a KEM process with the victim, and further:
1) Encapsulate maliciously chosen ciphertexts and send them to the victim;
2) Has physical access to EM traces collected from the victim device while it

executes the decapsulation algorithm.

Experimental Setup. For all experiments, we compile target implementations
using ARM GCC version 10.3-2021.10 with the default (maximum) optimiza-
tion -O3 and run on an STM32F407G discovery development board. The STM32
chip runs at a clock frequency of 168 MHz. We made minimal modifications to the
source code to perform our experiments: we raise a General Purpose I/O (GPIO)
pin to trigger our oscilloscope, output the randomly generated secrets f and g
over serial to confirm our results, and add functions which can change the cipher-
text as required in encryption step. A Langer RF-U 5-2 H-field probe is placed
at a fixed position over microcontroller as shown in Fig. 1. The probe is con-
nected to a Langer PA 306 preamplifier to amplify the signal by 30 dB. We use
a PicoScope 6404C digital oscilloscope to sample traces at 1.25 GHz, which are
then downsampled to 625 MHz before analysis. In some cases, we average across
multiple traces of the same ciphertext to reduce the impact of measurement
noise, as detailed in our attack discussion.

All experiments for the reference implementation and ARM-optimized imple-
mentation of NTRU use the PQClean library commits 964469d and pqm4 library
commits 0b50e72, respectively. We provide our data sets and code under the
following link: https://mega.nz/folder/DFBTlb4A#oMeh9Z8DgNSxUHyzgYYjCA

Fig. 1. Hardware setup

3 SPA on NTRU Reference Implementation

In this section, we discuss an SPA on implementations of NTRU in the PQClean
library. We start with a preliminary idea and then propose two types of prac-
tical chosen-ciphertext attacks, exploiting the leakage from polynomial modular
reduction. The first attack is applicable to all the four NTRU instances. The

https://mega.nz/folder/DFBTlb4A#oMeh9Z8DgNSxUHyzgYYjCA


8 Z. Xu et al.

second attack utilizes an inherent property of NTRU-HPS, so it can only be
applied to three NTRU-HPS instances.

3.1 A Preliminary Idea

Our first intuition was to recover f from the leakage of the output in line 3
in Algorithm 3 following the method from [27]—when the ciphertext is generated
in the encryption of the encapsulation phase, if we choose the polynomial c so
that it consists only of a nonzero constant term c0, then the coefficient of c · f
only has three possible values: {−c0, 0, c0}. If we can find a difference in power
consumption between these values during computation, then we can recover the
coefficients of f . However, there is an implicit restriction:

c ≡ 0 (mod (q, Φ1)), (1)

which means c(1) =
∑n−1

i=0 ci ≡ 0 (mod q). We thus cannot simply set c = c0.

3.2 Attack 1: Recovering Differences Between Adjacent Coefficients

In order to overcome the above restriction, we can choose the polynomial c with
the following Type-I structure:

Type-I : c = c0 + (q − c0)x, c0 ∈ {1, 2, . . . , q − 1}. (2)

In the decryption step, the coefficient of v (before modq) is:

vi = c0(fi − f(i−1) mod +n) mod+q ∈ {−2c0, −c0, 0, c0, 2c0} mod+q. (3)

As Eq. (3) shows, there are at most five possible values for each coefficient. If
side-channel leakage can be used to distinguish these values, then we can recover
all differences between adjacent coefficients, i.e., δi = fi − f(i−1) mod +n. The
equations are written in matrix form as follows:

δn−1

δn−2

...
δ1
δ0

 =


1 −1

1 −1
. . .

. . .
1 −1

−1 1




fn−1

fn−2

...
f1
f0

. (4)

Because f ∈ S3, fn−1 = 0, we have:
δn−2

...
δ1
δ0

 =


1 −1

. . .
. . .
1 −1

1




fn−2

...
f1
f0

, (5)


fn−2

...
f1
f0

 =


1 1 · · · 1

. . .
. . .

...
1 1

1




δn−2

...
δ1
δ0

. (6)

We can then recover each coefficient by computing fi =
∑i

j=0 δj .



Chosen-Ciphertext Side-Channel Attacks on NTRU 9

Target after the First Polynomial Multiplication. A question remains
of whether we can find leakage suitable as a classifier. In the reference imple-
mentation from the PQClean library, we find a function1 immediately after the
multiplication between c and f that has significant leakage related to vi. Our
target is the iteration over coefficients (lines 4–8) in Listing 1.1.

1 void PQCLEAN_NTRUHPS2048509_CLEAN_poly_Rq_to_S3(poly *r, const poly *a) {
2 int i; uint16_t flag;
3 //1. Translation: non -negative integer ==> representative in [-q/2,q/2)
4 for (i = 0; i < NTRU_N; i++) {
5 r->coeffs[i] = MODQ(a->coeffs[i]);
6 flag = r->coeffs[i] >> (NTRU_LOGQ - 1);
7 r->coeffs[i] += flag << (1 - (NTRU_LOGQ & 1));
8 }
9 //2. Reduce mod (3, Phi)

10 PQCLEAN_NTRUHPS2048509_CLEAN_poly_mod_3_Phi_n(r);
11 }

Listing 1.1. Polynomial reduction from Rq to S3 in reference C implementation

After the call to modular reduction MODQ() in line 5, each coefficient is in
{0, 1, . . . , q − 1}. The code in lines 6–7 then implements the centered modular
reduction (i.e., modq): if the output of line 5 is less than q/2, then the conse-
quent two computations do not change its value, or else (−q) mod+3 (i.e., 1 for
q = 2048, 8192; 2 for q = 4096) will be added. As the coefficient of a polynomial
is non-negative in the implementation setting, −q is taken modulo 3 in advance
to avoid the output becoming a negative number and also make sure that the
result after modulo 3 is correct. From experimental observation, one can find a
periodic pattern in the trace where the target code runs. We choose the local
downward peak in each small interval as Point of Interest (PoI) (in total n PoI
corresponding to n intermediate values), as it is related to the HW of the output
in line 7 (see Fig. 2). From the result in Fig. 2, we conclude that:

Fig. 2. p (PoI) vs. Hamming Weight of intermediate value in PQClean (1000 PoI for
each HW value, red line indicates median, red “+” indicates outliers).

1 https://github.com/PQClean/PQClean/blob/964469d/crypto_kem/ntruhp
s2048509/clean/owcpa.c#L139

https://github.com/PQClean/PQClean/blob/964469d/crypto_kem/ntruhps2048509/clean/owcpa.c#L139
https://github.com/PQClean/PQClean/blob/964469d/crypto_kem/ntruhps2048509/clean/owcpa.c#L139


10 Z. Xu et al.

|p (PoIi)| ∝ h(vi) =

{
HW(vi) , if vi < q/2;

HW (vi + (−q) mod+3) , otherwise.
(7)

This means that a significant difference in the HWs of intermediate values can
be observed in the corresponding sub-traces. Next, we choose a special c0 to
distinguish different possible values of δ via the HW leakage.

Precomputation. For our chosen ciphertext c = c0+(q−c0)x, the correspond-
ing vi is in {(−2c0)mod+q, (−c0)mod+q, 0, c0mod+q, 2c0mod+q}. By going
through all the possible values of c0, we establish a data set (h vs. (c0, δ)) by
evaluating the function h () for the above five values (denoted by hδ when c0
is fixed). A partial data set is shown below. From Fig. 3, we know that when
c0 = 1, we can distinguish −2 from {−1, 0, 1, 2}, because the corresponding h
is substantially larger.

Fig. 3. Selected h
(
(c0 × δ) mod+q

)
vs. c0 (dotted box indicates our chosen c0).

As mentioned in [27], the task to find appropriate c0 can be considered as a
constrained clustering problem [25]. To some degree, more clusters reduces the
distance between different clusters in our scenario. In order to achieve better
separation in real traces with measurement noise, we only use c0 which can
divide five possible values of δ into two clusters according to high and low
hδ values (represented by “H” and “L”). This ensures that points within any
one cluster are similar and the difference between clusters is big. Specifically,
for i, j ∈ {−2, −1, 0, 1, 2}, we define the similarity within any one cluster B
as SB = max

i,j∈B
(|hi − hj |) and the distance between two clusters H and L as

DH-L = min
i∈H,j∈L

(|hi − hj |). We first run a hierarchical clustering on the data set

for different c0 individually to separate all the five possible values into two clus-
ters. We then refine the process of selecting the best c0: for the same partition,
i.e., each cluster has exactly the same elements, we choose the c0 which has the
highest value of DH-L − 0.5(SH + SL).



Chosen-Ciphertext Side-Channel Attacks on NTRU 11

Actual Analysis. In our actual analysis, we only use the best c0 for good sepa-
rability. For example, in the analysis of ntruhps2048509, we choose four Type-I
ciphertexts where c0 = 1, 2, 2046, 2047. Following the notation of “partition with
HW feature tags” in [27], we can acquire four different partitions:

{H : {−2}, L : {−1, 0, 1, 2}}, when c0 = 1;

{H : {−2, −1}, L : {0, 1, 2}}, when c0 = 2;

{H : {2, 1}, L : {−2, −1, 0}}, when c0 = 2046;

{H : {2}, L : {−2, −1, 0, 1}}, when c0 = 2047.

(8)

Based on these partitions, we can build a decision tree (see Fig. 4). Next,
we send the chosen ciphertexts to the victim and collect traces while it runs
the decapsulation. After locating the section of each trace related to our target
function, we find the n PoI and use k -means clustering to separate them into
two clusters (H and L) according to the amplitude. With the knowledge of the
clustering results under four ciphertexts and the decision tree, we can recover δ.
This process is visually illustrated in Fig. 5.

{−2,−1, 0, 1, 2}

{−2,−1} {0, 1, 2}

{−2} {−1} {1, 2} {0}

{2} {1}

c0 = 2: H L

c0 = 1: H L c0 = 2046: H L

c0 = 2047: H L

Fig. 4. Decision tree for recovery of δi.

However when analyzing the traces, we found it hard to correctly classify the
first PoI (corresponding to δ0). Consequently, instead of focusing on the recovery
of the top (n − 1) δi, we turned to aim at the recovery of all δi except δ0, i.e.,
δ1, δ2, . . . , δn−1. From Eq. (4), δ0 can be calculated using the remaining δi, i.e.,
δ0 = −

∑n−1
i=1 δi. We can then recover the secret polynomial f from Eq. (6). As all

instances of NTRU call this reduction function, our analysis scheme is universal.
The chosen ciphertexts for the other three instances are provided in our data
sets (see URL in Sect. 2.3).

Experimental Results. We apply the analysis strategy to all the four NTRU
instances. We examine the success rate of recovery of δ for 16 randomly generated
key pairs. For ntruhps2048509, in a single-trace setting (i.e., one trace for each
chosen ciphertext), we can recover all 508 δi for 13 out of 16 tests. This means



12 Z. Xu et al.

(a) Single trace under c0 = 2

(b) Partial traces under c0 = 1, 2046, 2047

Fig. 5. Traces used to recover δi; yellow (or purple) triangle indicates the corresponding
δi is clustered to “H” (or “L”).

we can reveal the secret polynomial f with just 4 traces. In the remaining 3
cases, the success rate is 507/508 ≈ 99.80%, and can be improved by averaging
corresponding PoI of multiple traces from the same challenge. The results for
the remaining instances are given in Table 2.

In one test for ntruhps4096821 (marked with ⊥ in Table 2), noise prevented
recovery of both δ0 and δ1 even after averaging 10 repeated traces. Since more
than one δi was incorrect we could not use Eq. (4) to reconstruct f . To solve this
issue, we altered ciphertext Type-I to rotate the PoI as shown below:

Type-IB : c = (c0 + (q − c0)x) · xj , c0 ∈ {1, 2, . . . , q − 1}, j ∈ {0, 10}. (9)

For each chosen c0, we send a Type-IB ciphertext (j = 0) and a Type-IB cipher-
text with shifted PoI (j = 10). We then replace p (PoI0) and p (PoI1) of (j = 0)
with p (PoI10) and p (PoI11) of (j = 10), and perform clustering to recover δ.
Although 4 more ciphertexts were used, the success rate can reach 100% without
averaging, i.e., 4 + 4 = 8 traces can recover δ, thus infer a correct f .



Chosen-Ciphertext Side-Channel Attacks on NTRU 13

Table 2. Keys with 100% success rate and lower success rate for all NTRU instances,
the number after percentage indicates the needed number of traces in averaging for
each ciphertext in order to improve the SR to 100%

Instance #δi #SR=100% #SR<100% SR in <100% cases

ntruhps2048509 508 13 3 99.80% (2), 99.80% (4), 99.80% (5)
ntruhps2048677 676 16 0 -
ntruhps4096821 820 13 3 99.88% (4), 99.88% (6), 99.88% (⊥)
ntruhrss701 700 15 1 99.86% (2)

In summary, our method is effective on the reference implementations of all
the four NTRU instances. In the best situation (also the most common case),
the secret key can be recovered with only 4 traces, while the worst case (one test
in ntruhps4096821) requires at least 6 traces per ciphertext, meaning 4×6 = 24
traces in total. As the target function runs coefficient-wise, we can handle all n
PoI together, and thus the complexity will not increase as n increases.

3.3 Attack 2: Recovery of the “Invisible” Secret Polynomial

In the previous subsection, we have shown that as few as four chosen ciphertexts
could recover the secret key. The question arises of whether four is the lower
bound for the chosen-ciphertext SCA. In this section, we propose a more efficient
attack using an inherent property of NTRU that succeeds with fewer ciphertexts.

Analysis of NTRU-HPS. Firstly, we target the NTRU-HPS variant. We con-
sider the polynomial c with the following structure:

Type-II : c = r0h, r0 ∈ {1, 2, . . . , q − 1}. (10)

Type-II-like ciphertext have been discussed in several CCA-based mismatch
analysis schemes [10, 28]: the idea of these techniques is to send a ciphertext
c = r · h with carefully chosen coefficients of r and utilize a decryption-failure
oracle to recover the polynomial g. Unfortunately this oracle is unavailable in
CCA-secure NTRU KEM, as the chosen polynomial r in those schemes cannot
pass the validation test (line 8 in Algorithm 3) in the decryption phase. Without
depending on a decryption-failure oracle, we only leave the constant term of
r and reveal the coefficients of the “invisible” polynomial g via the leakage of
polynomial modular reduction. Inspired by the formula derivation in [10,28], we
make the following proposition:

Proposition 1. For NTRU-HPS, given the chosen ciphertext c = r0h, each co-
efficient of the intermediate polynomial v only has three possible values: {−3r0, 0,
3r0}.
Proof.

v = c · f mod(q, Φ1 ·Φn)

= r0h · f mod(q, Φ1 ·Φn)

= 3r0g · fq · f mod(q, Φ1 ·Φn)

(11)



14 Z. Xu et al.

Since fq · f ≡ 1 (mod (q, Φn)), fq · f = 1 + k · Φn mod q, where k ∈ Zq[x]
and degk = deg fq + deg f − (n − 1). As key generation in NTRU-HPS forces
g ≡ 0 (mod (q, Φ1)), we can write it as g = g∗ · Φ1 mod q, where g∗ ∈ Zq[x]
and deg g∗ = deg g − 1. Then we have:

v = 3r0g · (1 + k ·Φn) mod(q, Φ1 ·Φn)

= 3r0g + 3r0g · k ·Φn mod(q, Φ1 ·Φn)

= 3r0g + 3r0k · g∗ ·Φ1 ·Φn mod(q, Φ1 ·Φn)

= 3r0g mod(q, Φ1 ·Φn).

(12)

⊓⊔

From Proposition 1, we know vi only has three possible values: {(−3r0)mod+q,
0, 3r0mod+q}. Utilizing the same HW leakage and strategy of choosing appro-
priate ciphertexts as in Sect. 3.2 (but on a different data set (h vs. (r0, gi)), we
can recover g with only 2 chosen ciphertexts.

Next, we take the analysis of ntruhps2048509 as an example to explain the
process of recovery of secret polynomials g and f . The chosen r0 and correspond-
ing partitions are shown below:

{H : {1}, L : {−1, 0}}, when r0 = 682;

{H : {−1}, L : {0, 1}}, when r0 = 1366.
(13)

With these two partitions, we can build a decision tree (see Fig. 6) to reveal each
coefficient of g.

The actual analysis process with the PoI in the traces is shown in Fig. 7. As g
has a fixed type that (q/16−1) coefficients are equal to 1 and another (q/16−1)
coefficients equal to −1, we can use a sorting algorithm instead of clustering to
find the highest (q/16− 1) |p (PoIi)|, then the corresponding gi will be assigned
to 1 when r0 = 682 (or −1 when r0 = 1366).

Proposition 2. For NTRU-HPS, with the knowledge of g and the relation 3g =
f · h mod (q, Φ1 ·Φn), one can recover f by computing 3g · hq mod (q, Φn).

Proof. From the above relation, we know that for some t ∈ Zq[x], deg t =
deg f + degh− n, the following equation holds:

3g − f · h ≡ t ·Φ1 ·Φn (mod q). (14)

{−1, 0, 1}

{1} {−1, 0}

{−1} {0}

r0 = 682: H L

r0 = 1366: H L

Fig. 6. Decision tree for recovery of g.



Chosen-Ciphertext Side-Channel Attacks on NTRU 15

(a) Single trace under r0 = 682

(b) Single trace under r0 = 1366

Fig. 7. Traces used to recover the secret ternary polynomial g; yellow (or purple)
triangle indicates the corresponding gi is clustered to “H” (or “L”).

So after modular computation, we have:

3g − f · h ≡ 0 (mod (q, Φn)),

i.e., f · h ≡ 3g (mod (q, Φn)).
(15)

Furthermore, h · hq ≡ 1 (mod (q, Φn)). Finally, we get the following formula:

f ≡ 3g · hq (mod (q, Φn)). (16)

⊓⊔

As h is a public polynomial, it is easy to compute its inverse. Based on the
formula in Proposition 2, we can recover the secret polynomial f .

Analysis on NTRU-HRSS. The above strategy cannot be directly applied to
NTRU-HRSS, because the term Φ1 disturbs the recovery of g. More specifically,



16 Z. Xu et al.

if we choose c = r0h, then v = 3r0g · Φ1 mod (q, Φ1 · Φn). As the coefficient
of g · Φ1 is in {−2, −1, 0, 1, 2}, the complexity of recovery of g is the same
as that of f . Therefore, we do not provide a similar, more efficient strategy for
NTRU-HRSS here.

Experimental Results. We apply the second analysis strategy to three NTRU-
HPS instances. The chosen ciphertexts and corresponding partitions for the other
two instances are provided in our data sets (please refer to the URL in Sect. 2.3).
We again examine the success rate of recovery of g on 16 randomly generated
key pairs. For ntruhps2048509, in a single-trace setting, we can recover all gi
correctly in all 16 cases. This means we can reveal the secret polynomial f with
just 2 traces. The results for the remaining instances are shown in Table 3. In
the worst case (with respect to the number of traces used), i.e., in one test in
ntruhps2048677, we note that we could improve the success rate from 99.70% to
100% by averaging the corresponding PoI of three traces from the same challenge,
i.e., 2× 3 = 6 traces are needed.

Table 3. Keys with 100% success rate and lower success rate for all NTRU-HPS
instances (cause gn−1 = 0, #gi = n − 1), the number after percentage indicates the
needed number of traces in averaging for each ciphertext in order to improve the SR
to 100%

Instance #gi #SR=100% #SR<100% SR in <100% cases

ntruhps2048509 508 16 0 -
ntruhps2048677 676 15 1 99.70% (3)
ntruhps4096821 820 14 2 99.51% (2), 99.76% (2)

4 Applicability to pqm4

We also checked if the same or similar vulnerability exists in pqm4 [16] imple-
mentations which have been optimized for ARM processors. In this library, the
function that transfers an element in Rq to S3

2 is slightly different from the one
in the PQClean library (see Listing 1.2).

1 void poly_Rq_to_S3(poly *r, const poly *a) {
2 int i;
3 //1. Translation: integer in [0,q) ==> representative in [3q-q/2,3q+q/2)
4 for (i = 0; i < NTRU_N; i++) {
5 r->coeffs[i] = ((a->coeffs[i] >> (NTRU_LOGQ - 1)) ^ 3) << NTRU_LOGQ;
6 r->coeffs[i] += a->coeffs[i];
7 }
8 //2. Reduce mod (3, Phi)
9 ...

10 }

Listing 1.2. Polynomial reduction from Rq to S3 in pqm4 implementation

2 https://github.com/mupq/pqm4/blob/0b50e72/crypto_kem/ntruhps2048509/m4f
/owcpa.c#L150

https://github.com/mupq/pqm4/blob/0b50e72/crypto_kem/ntruhps2048509/m4f/owcpa.c#L150
https://github.com/mupq/pqm4/blob/0b50e72/crypto_kem/ntruhps2048509/m4f/owcpa.c#L150


Chosen-Ciphertext Side-Channel Attacks on NTRU 17

We found that the local upward peak (i.e., PoI) in the EM trace is related
to the HW of the output in line 6 in Listing 1.2. From Fig. 8, we assume the
following HW leakage model:

|p (PoIi)| ∝ h′(vi) =

{
HW(3q + vi) , if vi < q/2;
HW (2q + vi) , otherwise.

(17)

Fig. 8. p (PoI) vs. Hamming Weight of intermediate value in pqm4 (1000 PoI for each
HW value, red line indicates median, “+” indicates outlier).

4.1 Direct Recovery of f

We first tried to apply the recovery of δ in Sect. 3.2 to pqm4. The same ciphertext
(i.e., c = c0+(q− c0)x) was chosen. However, the two different implementations
of polynomial reduction cause different effects on our analysis. In the reference
implementation in PQClean, based on our leakage model, we could find c0 to dis-
tinguish between positive numbers {1, 2}, negative numbers {−1, −2} and zero.
Furthermore, some c0 can be used to distinguish 2 from 1, and −1 from −2. In
the pqm4 implementation, it is possible to find c0 to distinguish positive num-
bers, negative numbers, and zero through the leakage model. Yet, for arbitrary
c0 ∈ {1, 2, . . . , q − 1}, we have:∣∣h′ ((2c0) mod+q

)
− h′ ((c0) mod+q

)∣∣ ≤ 1,∣∣h′ ((−2c0) mod+q
)
− h′ ((−c0) mod+q

)∣∣ ≤ 1.
(18)

It will be impractical to distinguish 2 from 1, and −2 from −1 in actual analysis.
However, the ability to distinguish between positive, negative, and zero is

sufficient to recover f . According to Eq. (4) and fn−1 = 0, we can find the
following pair of equations: {

f0 = δ0

fn−2 = −δn−1.
(19)



18 Z. Xu et al.

There are just three possible values for δ0 and δn−1. It is feasible to find two c0
that form two partitions like Eq. (13). By observing the clustering result of the
PoI in the first sub-trace and the last sub-trace, we can reveal f0 and fn−2 by
two chosen ciphertexts with the following structure:

T̃ype-I : c(i) = c0 + (q − c0)x
i, (20)

where c0 ∈ {1, 2, . . . , q − 1} and i ∈ {1, 2, . . . , (n− 1)/2}.
As mentioned, ciphertexts like c(1) can help recover f0 and fn−2. In a similar

way, ciphertexts like c(2) can help recover f1 and fn−3. Using ciphertexts with
the structures c(1), c(2), . . . , c((n−1)/2), we can recover all coefficients of f . The
number of ciphertexts needed is 2 × (n − 1)/2 = n − 1. Notably, this analysis
scheme applies to both NTRU-HPS and NTRU-HRSS.

4.2 Recovery via g

As the leakage can still be used to distinguish between zero, positive, and nega-
tive numbers, an approach similar to the strategy in Sect. 3.3 can be applied to
pqm4 implementation of NTRU-HPS. Only two ciphertexts with the structure
of Eq. (10) are needed to launch the attack. However, note that the number of
required traces may be much larger than 2, because the amplitude of variation of
p (PoI) against HW of intermediate value is not as significant as that in PQClean
implementations. We leave an experimental evaluation of this for future work.

5 Conclusion

In this paper, we proposed two chosen-ciphertext SCA schemes on the latest
versions of NTRU. Targeting the HW leakage from the polynomial modular
reduction—which is an essential component in NTRU—we first used four Type-I
ciphertexts to exploit the differences between contiguous coefficients (i.e., δ) of
the core secret polynomial f . Combining the inherent property of NTRU-HPS,
we put forward a more efficient second strategy—first revealing the “invisible”
secret polynomial g via 2 Type-II ciphertexts, then recovering f from Eq. (16).
In practical experiments, we found the required number of traces to be low,
from two to 24. We also pinpointed similar leakage in the optimized pqm4 imple-
mentations. As the above two analysis strategies are succinct and efficient, an
effective countermeasure is required to mitigate the side-channel leakage when
one uses NTRU with a long-term secret key. We plan to investigate appropriate
countermeasures like masking and shuffling in a future work.

Acknowledgements. This work is partially supported by the National Key
Research and Development Program of China (2020YFB1005700) and by the
Engineering and Physical Sciences Research Council (EPSRC) under grants
EP/R012598/1 and EP/V000454/1. We thank the anonymous reviewers for the
valuable comments and Sitong Zong for her helpful proofreading advice.



Chosen-Ciphertext Side-Channel Attacks on NTRU 19

References

1. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., et al.:
Status report on the second round of the NIST post-quantum cryptography stan-
dardization process. Rep. NISTIR 8309, US Department of Commerce, NIST (July
2020). https://doi.org/10.6028/NIST.IR.8309

2. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu, Y.K., et al.:
Status report on the first round of the NIST post-quantum cryptography standard-
ization process. Rep. NISTIR 8240, US Department of Commerce, NIST (January
2019). https://doi.org/10.6028/NIST.IR.8240

3. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., et al.: Status
report on the third round of the NIST post-quantum cryptography standardization
process. Tech. Rep. NISTIR 8413, US Department of Commerce, NIST (July 2022).
https://doi.org/10.6028/NIST.IR.8413

4. An, S., Kim, S., Jin, S., Kim, H., Kim, H.: Single trace side channel analysis
on NTRU implementation. Applied Sciences 8(11) (2018). https://doi.org/10.
3390/app8112014

5. Askeland, A., Rønjom, S.: A side-channel assisted attack on NTRU. Cryptology
ePrint Archive, Paper 2021/790 (2021), https://eprint.iacr.org/2021/790

6. Atici, A.C., Batina, L., Gierlichs, B., Verbauwhede, I.: Power analysis on NTRU
implementations for RFIDs: First results. In: RFIDSec 2008 (2008)

7. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., et al.:
CRYSTALS–Kyber: A CCA-secure module-lattice-based KEM. In: 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). pp. 353–367 (2018).
https://doi.org/10.1109/EuroSP.2018.00032

8. Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck, J.M., et al.:
NTRU: Algorithm specifications and supporting documentation. Tech. rep., NIST
(2020), https://csrc.nist.gov/Projects/post-quantum-cryptography/post-q
uantum-cryptography-standardization/round-3-submissions

9. D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) Progress in Cryptology – AFRICACRYPT 2018. pp.
282–305. Springer International Publishing, Cham (2018)

10. Ding, J., Deaton, J., Schmidt, K., Vishakha, Zhang, Z.: A simple and efficient key
reuse attack on NTRU cryptosystem. Cryptology ePrint Archive, Paper 2019/1022
(2019), https://eprint.iacr.org/2019/1022

11. Hoffstein, J.: NTRU: A new high speed public key cryptosystem. presented at the
rump session of Crypto 96 (1996)

12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. LNCS, vol. 1423, pp.
267–288. Springer (1998). https://doi.org/10.1007/BFb0054868

13. Huang, W.L., Chen, J.P., Yang, B.Y.: Power analysis on NTRU Prime. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 123–151 (November 2019). https:
//doi.org/10.13154/tches.v2020.i1.123-151

14. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsu-
lation from NTRU. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware
and Embedded Systems – CHES 2017. LNCS, vol. 10529, pp. 232–252. Springer
(2017). https://doi.org/10.1007/978-3-319-66787-4_12

15. Jaulmes, É., Joux, A.: A chosen-ciphertext attack against NTRU. In: Bellare,
M. (ed.) Advances in Cryptology – CRYPTO 2000. LNCS, vol. 1880, pp. 20–35.
Springer (2000). https://doi.org/10.1007/3-540-44598-6_2

https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.3390/app8112014
https://doi.org/10.3390/app8112014
https://doi.org/10.3390/app8112014
https://doi.org/10.3390/app8112014
https://eprint.iacr.org/2021/790
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2019/1022
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.1007/978-3-319-66787-4\_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/3-540-44598-6\_2
https://doi.org/10.1007/3-540-44598-6_2


20 Z. Xu et al.

16. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

17. Karabulut, E., Alkim, E., Aysu, A.: Single-trace side-channel attacks on ω-
small polynomial sampling: With applications to NTRU, NTRU Prime, and
CRYSTALS–Dilithium. In: 2021 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST). pp. 35–45. IEEE (2021). https://doi.org/10.
1109/HOST49136.2021.9702284

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology – CRYPTO’ 99. LNCS, vol. 1666, pp. 388–397. Springer
(1999). https://doi.org/10.1007/3-540-48405-1_25

19. Lee, M., Song, J.E., Choi, D., Han, D.: Countermeasures against power analysis
attacks for the NTRU public key cryptosystem. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences E93.A(1), 153–163
(2010). https://doi.org/10.1587/transfun.E93.A.153

20. Mujdei, C., Beckers, A., Mera, J.M.B., Karmakar, A., Wouters, L., Verbauwhede,
I.: Side-channel analysis of lattice-based post-quantum cryptography: Exploiting
polynomial multiplication. Cryptology ePrint Archive, Paper 2022/474 (2022), ht
tps://eprint.iacr.org/2022/474

21. Park, A., Han, D.G.: Chosen ciphertext simple power analysis on software 8-bit
implementation of Ring-LWE encryption. In: 2016 IEEE Asian Hardware-Oriented
Security and Trust (AsianHOST). pp. 1–6 (2016). https://doi.org/10.1109/As
ianHOST.2016.7835555

22. Ravi, P., Ezerman, M.F., Bhasin, S., Chattopadhyay, A., Roy, S.S.: Will you cross
the threshold for me? generic side-channel assisted chosen-ciphertext attacks on
NTRU-based KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 722–
761 (2022). https://doi.org/10.46586/tches.v2022.i1.722-761

23. Schanck, J.M.: A comparison of NTRU variants. Cryptology ePrint Archive, Paper
2018/1174 (2018), https://eprint.iacr.org/2018/1174

24. Sim, B., Kwon, J., Lee, J., Kim, I., Lee, T., Han, J., et al.: Single-trace attacks on
message encoding in lattice-based KEMs. IEEE Access 8, 183175–183191 (2020).
https://doi.org/10.1109/ACCESS.2020.3029521

25. Tizpaz-Niari, S., Cerný, P., Trivedi, A.: Data-driven debugging for functional side
channels. In: 27th Annual Network and Distributed System Security (NDSS) Sym-
posium, San Diego, California, USA, February 23-26, 2020. The Internet Society
(2020). https://doi.org/10.14722/ndss.2020.24269

26. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-
encryption: A generic power/EM analysis on post-quantum KEMs. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022(1), 296–322 (November 2021). https://do
i.org/10.46586/tches.v2022.i1.296-322

27. Xu, Z., Pemberton, O.M., Sinha Roy, S., Oswald, D., Yao, W., Zheng, Z.: Magni-
fying side-channel leakage of lattice-based cryptosystems with chosen ciphertexts:
The case study of Kyber. IEEE Transactions on Computers 71(9), 2163–2176
(2022). https://doi.org/10.1109/TC.2021.3122997

28. Zhang, X., Cheng, C., Ding, R.: Small leaks sink a great ship: An evaluation of key
reuse resilience of PQC third round finalist NTRU-HRSS. In: Gao, D., Li, Q., Guan,
X., Liao, X. (eds.) Information and Communications Security. LNCS, vol. 12919,
pp. 283–300. Springer (2021). https://doi.org/10.1007/978-3-030-88052-1_17

29. Zheng, X., Wang, A., Wei, W.: First-order collision attack on protected NTRU
cryptosystem. Microprocessors and Microsystems 37(6), 601–609 (2013). https:
//doi.org/10.1016/j.micpro.2013.04.008

https://github.com/mupq/pqm4
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1007/3-540-48405-1\_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1587/transfun.E93.A.153
https://doi.org/10.1587/transfun.E93.A.153
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/474
https://doi.org/10.1109/AsianHOST.2016.7835555
https://doi.org/10.1109/AsianHOST.2016.7835555
https://doi.org/10.1109/AsianHOST.2016.7835555
https://doi.org/10.1109/AsianHOST.2016.7835555
https://doi.org/10.46586/tches.v2022.i1.722-761
https://doi.org/10.46586/tches.v2022.i1.722-761
https://eprint.iacr.org/2018/1174
https://doi.org/10.1109/ACCESS.2020.3029521
https://doi.org/10.1109/ACCESS.2020.3029521
https://doi.org/10.14722/ndss.2020.24269
https://doi.org/10.14722/ndss.2020.24269
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1007/978-3-030-88052-1\_17
https://doi.org/10.1007/978-3-030-88052-1_17
https://doi.org/10.1016/j.micpro.2013.04.008
https://doi.org/10.1016/j.micpro.2013.04.008
https://doi.org/10.1016/j.micpro.2013.04.008
https://doi.org/10.1016/j.micpro.2013.04.008

