
 
 

University of Birmingham

Conditional patch-based domain randomization
Ani, Mohammad; Basevi, Hector; Leonardis, Ales

DOI:
10.1109/IROS47612.2022.9981381

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ani, M, Basevi, H & Leonardis, A 2022, Conditional patch-based domain randomization: improving texture
domain randomization using natural image patches. in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE, Kyoto, Japan, pp. 1979-1985, 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2022, Kyoto, Japan, 23/10/22. https://doi.org/10.1109/IROS47612.2022.9981381

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. May. 2024

https://doi.org/10.1109/IROS47612.2022.9981381
https://doi.org/10.1109/IROS47612.2022.9981381
https://birmingham.elsevierpure.com/en/publications/2fb44ec0-e1b0-4127-be69-1eabe84d814f


Conditional Patch-Based Domain Randomization: Improving Texture
Domain Randomization Using Natural Image Patches

Mohammad Ani1, Hector Basevi2, Aleš Leonardis2

Abstract— Using Domain Randomized synthetic data for
training deep learning systems is a promising approach for
addressing the data and the labeling requirements for super-
vised techniques to bridge the gap between simulation and
the real world. We propose a novel approach for generating
and applying class-specific Domain Randomization textures by
using randomly cropped image patches from real-world data. In
evaluation against the current Domain Randomization texture
application techniques, our approach outperforms the highest
performing technique by 4.94 AP and 6.71 AP when solving
object detection and semantic segmentation tasks on the YCB-
M [1] real-world robotics dataset. Our approach is a fast and
inexpensive way of generating Domain Randomized textures
while avoiding the need to handcraft texture distributions
currently being used.

I. INTRODUCTION

Data-driven deep learning approaches have been highly
beneficial for a wide range of robotics tasks, particularly
when using computer vision systems as part of the pipeline
[2], [3], [4]. Typically, such systems rely on access to vast
quantities of annotated data to train a model capable of
understanding a scene [5], [6]. A significant hurdle with
training such systems is access to high-quality labeled data
which describes where and what each object of interest is
for a scene. Synthetic data is increasingly being used as
an alternative to gathering and annotating real-world data
to train deep learning-based vision systems. In particular,
Domain Randomization (DR) is a popular approach that
has been shown to bridge the gap between simulation and
the real world in various robotics tasks using vision [7],
[8]. The approach randomizes simulator parameters, such
as the texture of an object of interest, their positions, or
backgrounds, to generate highly varied scenes to train vision
systems capable of transfer to the real world. In a typical
DR approach, we must manually define distributions for
simulator parameters to sample values from. For example,
to generate textures, one would manually define distributions
for simulator parameters to sample the colors or patterns to
generate textures to apply to objects of interest. Suppose we
wanted to generate DR textures for a cereal box. The most
common approach is to sample a random color, sometimes
patterns, and apply that to the object [7], [2], [4]. This
approach does not account for visually relevant features that
may be beneficial during the training process, such as text,
barcodes, or nutritional information on the cereal box.

1 This work was done while at the School of Computer Science, University
of Birmingham, Birmingham, UK, mxa563@alumni.bham.ac.uk.
2 School of Computer Science, University of Birmingham, Birmingham, UK
{h.r.a.basevi, a.leonardis}@bham.ac.uk.

Fig. 1. We present an approach for synthesizing Domain Randomized
synthetic images using textures based on real-world image patches for
solving detection and segmentation tasks. Natural images provide complex
features that are more difficult to attain with artificially created ones, while
conditionally applying textures based on the objects of interest adds visually
relevant information.

The appearance of manufactured objects, such as the
presence or absence of text elements and choice of colors,
is partially determined by object function and construction.
We take advantage of the presence of these characteristics in
natural images in a way that existing DR techniques do not.

Previous work has shown that the application of DR
textures in object localization and detection does impact task-
based performance [9], [10]. However, there is a wide range
of texture synthesis techniques currently explored in the DR
literature. These types of textures may include using a single



shade of color (flat RGB), a color gradient (gradient RGB),
patterns such as checkerboard, zig zag, or striped, or adding
additional noise patterns [11], [7], [2], [4], [9]. It is unclear
which of these DR texture generation approaches would be
the most suitable for a particular task.

This paper introduces Conditional Patch-Based Domain
Randomization (CPDR), an approach for synthesizing and
applying more visually relevant textures for solving vision
and robotics tasks using DR synthetic data as shown in
Fig. 1. We do so by taking real-world images of objects
and randomly sampling from those images, patches to use
as the textures in the DR process as shown in Fig. 2. For
example, we would apply cropped patches from random real-
world images of boxes instead of using flat RGB as the
textures for a cereal box when generating the DR synthetic
data. This strategy enables us to apply textures that contain
more visually relevant features from natural images such as
patterns or text that often represent objects of that class.
Assuming we know the types of objects, but not their exact
appearance, we may employ CPDR for generating more
applicable DR textures for solving a task, and outperform
the existing DR systems used in the current literature. In
scenarios where we do not know the types of objects, we
find that unconditional application of patch-based textures
from real-world images still outperforms the existing DR
techniques. Our contributions are as follows:

• We present a novel approach for generating DR tex-
tures by sampling random patches from natural images
containing real-world objects.

• We propose another method for generating DR textures
by conditionally sampling image patches from real-
world images during the DR process.

• We show that conditional application of patch-based
textures similar to objects in the target dataset further
improves performance compared to the unconditional
application of randomly sampled patches.

• We show that our proposed approach using condi-
tional class-specific patch-based textures outperforms
the highest performing DR system through experimen-
tation by 4.94 average precision (AP) and 6.71 AP
in object detection and semantic segmentation tasks,
respectively. We also outperform the existing methods
by 2.85 AP on the detection task, and 4.30 AP on the
segmentation task using patch-based textures applied
unconditionally.

II. RELATED WORK

A. Synthetic Image Generation

Existing literature widely explored synthesizing images,
particularly using generative adversarial networks (GANs)
[12]. More recently, researchers have made progress towards
generating higher quality and higher resolution images using
improvements to generative models [13], [14], [15]. The
methods have shown significant improvements in image
quality, particularly at higher resolutions. Generally, these
approaches to synthesizing synthetic images rely on systems

Fig. 2. Synthetic images were generated using poses from YCB-M [1]
and textures synthesized using CDPR (a), flat RGB (b), and the true object
texture (c). The CPDR approach applies textures visually more similar to
object classes in the target dataset. The real-world image with the same
poses is shown in d.

trained on a significant amount of real-world data, such as the
case with Brock et al. [14], which required training a GAN
with 300M real-world images labeled with 18K categories.

While the above recent approaches in image generation
techniques result in high-fidelity synthetic images, it is
more challenging to generate a specific scene explicitly.
For example, we could not generate more complex scenes
such as a tabletop scene containing precisely n amount of
objects from a specific camera angle and under specific
illumination conditions as we would using a traditional
renderer. Furthermore, we would not have access to labeled
data that describes the scene using this particular approach
to generating synthetic data.

B. Domain Randomization

Commonly, DR approaches use a variety of textures to
generate DR images for solving vision and robotics tasks.
These textures are programmatically defined as a distribution
of colors or patterns that we can sample our textures from.
For example, while most works use simple textures such as
shades or gradients of a color, some works also incorpo-
rate more complex patterned textures such as checkerboard,
striped, or zig zag patterns [11], [16], [2], [7], [17], [10],
[9] which recent work has shown to be more beneficial in
increasing task-based performance [9].

While existing approaches have used real-world images
as part of the randomization process [11], [3], [18], these
are typically used to randomize the backgrounds, such as
the work by Tremblay et al. [11]. Approaches may also use
real-world images to supplement DR data, as is the case with
Bousmalis et al. [3], where they used 9.4 million unlabeled
real-world images to develop a generative model to improve
grasping performance. We propose to instead use real-world
images as sources of image patches, which can be used as



object textures. We hypothesize this procedure would im-
prove task-based performance due to complex features with
natural images that are more difficult to attain with artificially
created ones. Such features include patterns, text, or barcodes
from boxes, metallic surfaces for cans, or wooden grains for
a wooden block.

III. METHOD

This section details the proposed method for generating
textures from real-world image patches. We also describe
the real-world datasets used to generate these patches, the
datasets to generate the DR synthetic data used to train
the deep learning models, and the real-world test set which
would be used to evaluate the performance of the trained
models.

A. Approach Overview

The proposed approach is a simple, fast, and effective
method of producing complex patterned textures via random
sampling of image patches from real-world images. Fig. 1
shows an overview of the approach:

1) Collect images: Start by collecting a set of real-world
object-centric images. In our scenario, we assume we
have access to images with object-centric viewpoints,
which occupy most of the image frame.

2) Generate patches: Given a set of real-world images,
uniformly sample image patches of the desired size.

3) Data augmentation: Perform data augmentation on
the previously generated image patches. We perform
random rotations and random flips to further increase
image patches diversity.

4) Scene generation: Apply the previously generated set
of patches to the synthetic object meshes, and use
additional parameters such as poses, backgrounds, and
illumination to generate DR synthetic data using a
renderer.

B. Synthetic Training Datasets

1) Image Collection: Our approach uses patches gener-
ated from a collection of real-world images that would be
similar to the target dataset. For example, using household
items when solving object detection on a kitchen countertop.
In our experiments, we use two distinct real-world image
datasets. The first dataset is a set of images containing
household objects primarily used for training object detection
systems [19]. Fig. 3 shows the collection of household
objects in the dataset on the top, which contains 166 RGB
images with 13 different object classes. Each image is of
size 3264x1836 and contains annotations for 2D bounding
boxes for each of the objects visible in a scene. The textures
generated from this set of images are referred to as Patches
A.

The second image dataset is a custom object-centric house-
hold dataset, which serves as a basis for our experiments’
conditional application of textures. This dataset would allow
us to investigate the scenario where we know the class of
objects that would appear in the target dataset. This dataset

Patches A

Patches B

Fig. 3. All objects used for the Patches A [19] dataset on the top, and
subset of objects used for Patches B on the bottom

contains additional household object classes that are more
similar to the target objects, assuming we have access to the
categories in the target dataset. The bottom of Fig. 3 shows
several samples of the original images from this dataset,
which contains 274 images with 7 object classes. As seen
in Fig. 3, we position the objects over a white background
around the center of the camera frame, ensuring each object
occupies the majority of the image. Each image is of size
3024x4032 and contains class labels. The 7 object classes
are: ‘bottles’, ‘boxes’, ‘cans’, ‘fruits’, ‘pens’, ‘dishware’,
and ‘tools’. To supplement this dataset, a collection of 15
real-world images of wood grain is added from Image*After
[20]. These categories were selected such that they would
be similar to the classes in the target dataset. The textures
generated from this dataset will be referred to as Patches B.

2) Generating Patches: We uniformly sample across a set
of given images to generate patches of size nxn. In the case
of patches for Patches A, we use the provided 2D bounding
boxes to ensure that each patch generated is contained around
the object and not the background. A sample of the image
patches of size 128x128 from this dataset is in Fig. 4.

Patches B did not require bounding box positions before
cropping, as the dataset was collected to ensure the majority
of the object is visible in the frame. Therefore, we uniformly
sample the random image patches across the set of images
for Patches B. Fig. 4 shows a sample of the textures of size
128x128, after being resized from the crops of size 512x512,
generated using this method. The approach to generating



Patches A

Patches B

Fig. 4. Sample patches used for Patches A [19] dataset on the top, and
sample conditional patches for Patches B on the bottom.

patches outlined above ensures we capture visually relevant
patches for objects in a scene. The necessity of first cropping
at 512x512 was due to the object occupying the majority of
a high-resolution image. The initial crops at 512x512 ensure
the visual features we desire are visible.

3) DR Textures: To compare the performance of our
method against existing DR texture generation approaches,
we also generate the types of DR textures used within
the existing literature [11], [16], [2], [7], [17], [10], [9].
We reproduce the different textures currently used in the
literature such as selecting a random RGB value (flat RGB),
two random RGB values for a gradient (gradient RGB), num-
ber, size, and colors for the checkerboard patterns, striped
patterns, and zig zag patterns. As is commonly practiced
within the DR literature, the textures are created by sampling
uniformly. Fig. 5 shows several samples from these textures.

4) Generating DR Synthetic Scenes: To evaluate the in-
fluence of DR texture selection, we apply each of the 14
available texture methods we are using to synthetic object
meshes to render a synthetic scene. We fix object poses,
illumination, backgrounds, and camera positions while gen-
erating a dataset per texture method we are investigating. To
do this, we replicated scenes from the YCB-M [1] robotics
benchmark dataset, which contains a subset of 20 objects
from the YCB object dataset [21] in tabletop scenarios.
The YCB-M dataset contains images of the same scene
configurations from multiple cameras. We use the scenes

Fig. 5. Sample DR textures that have been reproduced from the existing
literature.

from the viewpoint of an Intel RealSense R200 camera from
the YCB-M dataset, as the images from this viewpoint and
camera resulted in one of the highest performances when
the authors evaluated the data on a pose estimation task
compared to the other RGB images from the other cameras.

We use the annotations provided by the YCB-M dataset
to reproduce the scenes, to generate a total of 14 synthetic
datasets. Ten of the datasets use the current DR texture
application techniques in the existing literature, three are
using our approach, and the last dataset is the synthetic
real textured dataset, which contains the original textures
of the objects as provided by YCB [21]. The synthetic
real textured dataset would give us an understanding of
performance when the textures of the objects are known. Fig.
2 shows image samples from three synthetic datasets where
we fix object poses, illumination, backgrounds, and camera
positions across the datasets. We manually estimate the
positions of the lights for each scene in the YCB-M dataset,
as lighting information was not provided in the annotations.
The backgrounds used to generate the DR synthetic scenes
are backgrounds from the Active-Vision real-world dataset
[22], as this has shown to be beneficial in aiding transfer
from synthetic to real-world domains [23], [24], [11]. To
ensure fairness across the different DR datasets, we used the
same backgrounds for each scene within a particular dataset,
such that the only difference between each image is the
texture applied. For example, the backgrounds for the scenes
generated using flat RGB would be the same backgrounds
for the scenes generated using CPDR. To render the DR
synthetic scenes, we built upon the tools by To et al. [25],
which is an Unreal Engine [26] program to create DR images
and annotations. We generate 3935 synthetic images for each
of the DR textures applied for the training sets.

5) Real-world Test Dataset: The real-world test dataset
consists of scenes from the YCB-M robotics benchmark
dataset [1]. We use the RGB images from the Intel RealSense
R200 camera from the YCB-M dataset, for the reasons
previously mentioned above. We test on an 837 image subset
from the YCB-M dataset, taken from 5 held-out scene
configurations. We do so to ensure the training and test
scene contents are disjoint, and that the test scenes contain
all object classes present in the training set to evaluate the
model’s performance for solving the object detection and



semantic segmentation tasks. Samples of the training sets
and test sets are shown in Fig. 6.

Fig. 6. Samples from the training datasets and test dataset.

C. Training Implementation

We train a widely adopted network architecture for solving
object detection and semantic segmentation tasks [27]. We
use Mask-RCNN with a ResNet-50 backbone, where features
are extracted after the fourth convolutional block. Ensuring
a fair comparison across previous experiments, we use the
same hyperparameters across all experiments, which uses
images of size 640x480, a batch size of 4, and an RTX Titan
GPU. The models were trained using the SGD optimizer,
with a base learning rate of 0.00025, a linear warmup factor
of 0.001, weight decay of 0.0001, and momentum 0.9.
All networks backbones were initialized using pre-trained

MSCOCO weights [28] and fined-tuned on the DR datasets
for 25k iterations. We adopt the framework provided by Wu
et al. [29] to train our models.

IV. EXPERIMENTS

We compare our approach to generating DR textures to
the existing DR texture methods in object detection and seg-
mentation tasks. The goals of our experiments are twofold: to
evaluate if applying non-class-specific (unconditional) patch-
based textures from natural images can improve task-based
performance over the existing DR texture methods and if
the conditional application of these textures is necessary.
For completeness, we also include the results of training
the models on the equivalent real-world images, and with
a synthetic dataset containing the original object textures
provided by the scans from YCB [21]. This gives us an
understanding of performance when training on real-world
images from the same domain, and performance when the
synthetic objects’ textures are known.

A. Evaluation Metrics

We evaluate the performance of the detection and seg-
mentation tasks using the network architecture and setup
described in Section III-C on standard COCO metrics, re-
porting average precision (AP) over IoU. Specifically, we use
the primary challenge COCO metric where AP are averaged
over 10 IoU thresholds between [0.5 : 0.95] in increments
of 0.05 [28]. We also report the conventional requirement
for AP at IoU 0.5 (AP50), based on the PASCAL Visual
Object Classes (VOC) challenge [30], which defines a correct
prediction when the IoU between a prediction and ground
truth exceeds 0.5 (50%). We also report IoU at 0.75 (AP75),
which is considered a strict threshold [28].

B. Unconditional Real-World Image Patches

We apply patches generated from Patches A and B un-
conditionally, meaning the textures applied to an object
do not correspond to a particular category. This method
of texture application helps us investigate the application
of textures that are randomized without enforcing class-
specific information. For example, we can place patches from
boxes on cans. Tables I and II show the results for the
object detection and segmentation tasks, in the rows labeled
‘Unconditional’.

We achieve an improvement of 0.98 AP and 2.85 AP over
the highest performing DR system in the detection task when
using the unconditional Patches A, and unconditional Patches
B, respectively. We show an even larger improvement over
the most widely used DR system (flat RGB) by 4.17 AP
and 6.04 AP when using the unconditional Patches A and
unconditional Patches B, respectively.

We observe a similar set of results when solving the
segmentation task, outperforming the current literature’s best
DR system by 1.60 AP and 4.30 AP using the unconditional
Patches A and unconditional Patches B, respectively.

One possible explanation for the difference in performance
between Patches A and B is the types of objects that are



present in the two datasets. For example, Patches B contains
fruits, wooden grains, tools, and dishware, which is not
present in the Patches A dataset. Similar objects from these
categories do appear in the real-world test set, and could
explain the increase in performance, as they contain more
visually relevant features.

TABLE I
RESULTS ON 837 REAL-WORLD IMAGE SUBSET OF 5 SCENES FROM THE

YCB-M DATASET [1] FOR THE OBJECT DETECTION TASK, SORTED BY

LOWEST TO HIGHEST AP SCORES.

Dataset AP AP50 AP75
Flat RGB Perlin 11.96 25.45 10.30
Zig Zag Perlin 12.20 28.68 8.03
Gradient RGB Perlin 12.22 25.63 9.87
Checkerboard Perlin 12.47 27.50 9.63
Flat RGB 13.16 27.44 11.36
Striped 13.44 28.05 11.81
Striped Perlin 13.51 30.05 10.75
Gradient RGB 14.05 27.75 12.75
Checkerboard 14.74 31.73 12.62
Zig Zag 16.35 34.34 13.94
Unconditional Patches A 17.33 36.48 14.42
Unconditional Patches B 19.20 41.58 15.18
Conditional Patches B 21.29 42.42 19.11
Synthetic Real Textured 29.81 58.45 26.94
Real World 39.40 72.90 39.07

TABLE II
RESULTS ON 837 REAL-WORLD IMAGE SUBSET OF 5 SCENES FROM THE

YCB-M DATASET [1] FOR THE OBJECT SEGMENTATION TASK, SORTED

BY LOWEST TO HIGHEST AP SCORES.

Dataset AP AP50 AP75
Flat RGB Perlin 8.11 17.09 6.79
Gradient RGB Perlin 8.71 18.98 7.66
Flat RGB 8.95 18.16 7.95
Striped Perlin 9.20 19.53 8.40
Zig Zag Perlin 9.26 19.62 8.28
Checkerboard Perlin 9.58 19.66 9.42
Striped 9.69 19.18 9.67
Gradient RGB 10.12 19.92 8.48
Checkerboard 11.18 23.04 10.49
Zig Zag 12.77 25.54 11.88
Unconditional Patches A 14.37 27.32 13.39
Unconditional Patches B 17.07 32.38 15.67
Conditional Patches B 19.48 35.87 18.58
Synthetic Real Textured 26.53 46.07 25.50
Real World 37.20 63.17 36.72

Here, we showed that our approach using natural image
patches as the textures during the DR process outperforms
the existing DR systems in both the detection and segmen-
tation tasks. Despite applying textures from one type of
object onto a different type of object, using patches from
real-world images as the textures within the DR process can
be a quick and easy way to integrate into existing systems
to increase performance. This approach would not require
devising complex artificial texture distributions to sample
DR textures, as is currently the case with commonly used
DR techniques, making it an appealing alternative. Although
we achieved the highest performance when using Patches
B, Patches A also outperformed the existing DR systems.
This result indicates that we are still able to achieve an

improvement over the existing techniques, without the need
of collating custom image datasets.

Following this set of unconditional application of patches
experiments, we now investigate the effectiveness of ap-
plying the patches conditionally. Meaning, applying patches
from one object onto a similar type of object.

C. Conditional Real-World Image Patches

We have previously seen that using patches from real-
world images as the textures when performing DR increases
task-based performance, outperforming current implemen-
tations. This experiment examines the addition of class-
specific information as part of the randomization process.
For example, we would only be using patches of boxes on
synthetic boxes or using patches of cans on synthetic cans. To
investigate using class-specific information, we use textures
generated from the Patches B dataset. Note that the Patches
B dataset was gathered such that it contains similar object
categories to the target dataset, assuming we have access to
this prior information. While there is no direct mapping from
each class in Patches B to the target real-world data from
the YCB-M dataset, the classes are similar. For example,
the patches used for the Cheez-it box, sugar box, pudding
box, and gelatin box corresponding to objects in the YCB-
M dataset, would be sampled from the ‘box’ category. Fig.
4 shows a subset of the different available classes in the
Patches B dataset.

Referring back to Tables I and II we see the results when
applying the image patches generated from Patches B con-
ditionally, which inject additional visually relevant features
into the training set. Conditional application of Patches B
outperforms the existing DR methods by a greater margin
than the unconditional application in detection and segmenta-
tion tasks, as shown in the row labeled ‘Conditional’. When
applying Patches B conditionally, we outperform the best
DR system by 4.94 AP and 6.71 AP for the detection and
segmentation tasks, respectively. Furthermore, when com-
paring Patches B applied conditionally and unconditionally,
we see a performance increase from 19.20 AP to 21.29 AP
for the detection task and 17.07 AP to 19.48 AP for the
segmentation task. This result suggests that additional class-
specific information when performing DR is beneficial.

V. CONCLUSION

In this paper, we presented a novel approach for generating
textures for DR using textures generated from real-world
image patches for solving object detection and segmentation
tasks. We show that applying these textures unconditionally,
meaning non-class specific textures, outperforms all existing
DR texture randomization techniques that we evaluated on
real-world data. We also show that conditionally apply-
ing the textures further increases performance compared
to unconditional application. Functionally, the method is a
fast, simple, and high-performing solution to generating DR
textures, eliminating the need to devise suitable artificial
texture distributions to sample DR textures as is the typical
approach in the current literature.



While our approach outperforms the existing methods, we
have utilized object-centric images to generate the patch-
based textures, which are similar to our target dataset. In
future work, we plan to explore generating patch-based
textures from dissimilar sources. Furthermore, an area for
improvement is to incorporate consistency between object
poses and image backgrounds, allowing the placement of
objects more naturally in a scene.

VI. ACKNOWLEDGEMENT

We acknowledge MoD/Dstl and EPSRC for providing the
grant to support the UK academics involvement in a Depart-
ment of Defense funded MURI project through EPSRC grant
EP/N019415/1. The research in this paper was supported
in part by the Engineering and Physical Sciences Research
Council (grant number EP/S032487/1).

REFERENCES

[1] T. Grenzdörffer, M. Günther, and J. Hertzberg, “Ycb-m: A multi-
camera rgb-d dataset for object recognition and 6dof pose estimation,”
International Conference on Robotics and Automation (ICRA), pp.
3650–3656, 2020.

[2] S. James, A. J. Davison, and E. Johns, “Transferring End-to-End
Visuomotor Control from Simulation to Real World for a Multi-Stage
Task,” Conference on Robot Learning (CoRL), 2017.

[3] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
V. Vanhoucke, “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” International Conference on
Robotics and Automation (ICRA), pp. 4243–4250, 2018.

[4] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training
Deep Networks with Synthetic Data: Bridging the Reality Gap by
Domain Randomization,” in Conference on Computer Vision and
Pattern Recognition (CVPR) Workshop on Autonomous Driving, 2018.

[5] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in Robotics: Science and Systems (RSS), 2018.

[6] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[7] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” 2017 International Conference on
Intelligent Robots and Systems (IROS), pp. 23–30, 2017.

[8] F. Sadeghi and S. Levine, “CAD2RL: real single-image flight without
a single real image,” in Robotics: Science and Systems XIII, N. M.
Amato, S. S. Srinivasa, N. Ayanian, and S. Kuindersma, Eds., 2017.

[9] M. Ani, H. Basevi, and A. Leonardis, “Quantifying the use of domain
randomization,” in International Conference on Pattern Recognition
(ICPR), 2021, pp. 6128–6135.

[10] J. Borrego, A. Dehban, R. Figueiredo, P. Moreno, A. Bernardino, and
J. Santos-Victor, “Applying domain randomization to synthetic data
for object category detection,” arXiv:1807.09834, 2018.

[11] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep Object Pose Estimation for Semantic Robotic Grasping of
Household Objects,” in Conference on Robot Learning (CoRL), 2018.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems (NeurIPS), 2014,
pp. 2672–2680.

[13] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” International
Conference on Learning Representations (ICLR), 2018.

[14] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training
for high fidelity natural image synthesis,” in International Conference
on Learning Representations (ICLR), 2019.

[15] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila,
“Training generative adversarial networks with limited data,” in Ad-
vances in neural information processing systems (NeurIPS), 2020.

[16] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
“Asymmetric Actor Critic for Image-Based Robot Learning,” in
Robotics: Science and Systems XIV, 2018.

[17] S. Pouyanfar, M. Saleem, N. George, and S.-C. Chen, “ROADS :
Randomization for Obstacle Avoidance and Driving in Simulation,”
in Computer Vision and Pattern Recognition Workshops, 2019.

[18] M. Yan, I. Frosio, S. Tyree, and J. Kautz, “Sim-to-Real Transfer
of Accurate Grasping with Eye-In-Hand Observations and Contin-
uous Control,” Advances in Neural Information Processing Systems
(NeurIPS) Workshop on Acting and Interacting in the Real World:
Challenges in Robot Learning, 2017.

[19] D. D. R. Meneghetti, P. H. S. Domingues, B. de Freitas Vece Perez,
T. S. B. Meyer, K. K. G. Cardoso, A. M. de Lima, M. Y. Gonbata,
F. de Assis Moura Pimentel, and P. T. A. Junior, “Annotated image
dataset of household objects from the robofei@home team,” in IEEE
Dataport. IEEE Dataport, 2020.

[20] Image*After, “Wooden textures,” http://www.imageafter.com/
category.php?category=woods, 2019.

[21] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa,
P. Abbeel, and A. M. Dollar, “Yale-CMU-Berkeley dataset for robotic
manipulation research,” International Journal of Robotics Research,
vol. 36, no. 3, pp. 261–268, 2017.

[22] P. Ammirato, P. Poirson, E. Park, J. Kosecka, and A. C. Berg, “A
dataset for developing and benchmarking active vision,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2017.

[23] D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Surpris-
ingly easy synthesis for instance detection,” in International Confer-
ence on Computer Vision (ICCV), 2017, pp. 1310–1319.

[24] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for CNN: Viewpoint
estimation in images using CNNs trained with rendered 3D model
views,” in International Conference on Computer Vision (ICCV), 2015,
pp. 2686–2694.

[25] T. To, J. Tremblay, D. McKay, Y. Yamaguchi, K. Leung, A. Balanon,
J. Cheng, W. Hodge, and S. Birchfield, “NDDS: NVIDIA deep
learning dataset synthesizer,” 2018, https://github.com/NVIDIA/
Dataset Synthesizer.

[26] U. Engine. [Online]. Available: https://www.unrealengine.com/
[27] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in

International Conference on Computer Vision (ICCV), 2017, pp. 2961–
2969.

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects
in context,” in European Conference on Computer Vision (ECCV),
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., 2014, pp.
740–755.

[29] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[30] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The pascal visual object classes challenge:
A retrospective,” International Journal of Computer Vision (ICCV),
vol. 111, no. 1, pp. 98–136, 2015.


