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integration paradigms) leads to increased signal strength. Of
course, it is possible to argue, as Clark does, that this is due to a
cancellation of the activity in error units and subsequent enhance-
ment of the signal coding the contour or shape. However, it is not
clear how these competing hypotheses could be pitted against
each other in a definitive study.

Consistent with Clark’s view, evidence exists that, for example,
as random orientational jitter is applied to disconnected contour
elements, increases in fMRI BOLD signal are observed (Silver-
stein et al. 2009). Clark’s view is also consistent with Weber’s
(2002) view that much of our direct understanding of visual
forms results from perception of “metamorphoses of geometry”
or topological (isotopic) alterations of basic forms, a view consist-
ent with evidence that topological invariants are the primitives to
which our visual system responds most strongly (Chen 2005).
However, it is also the case that compared to a non-informative
background of randomly oriented Gabors, perception of a
contour is associated with increased activity (Silverstein et al.
2009). Clarifying the extent to which these two forms of signal
increase represent functioning of different circuits is an important
task for future research. Until this is clarified, Clark’s view appears
to be most appropriate for understanding signaling of objects in
the environment, as opposed to brain activity involved in creating
representations of those objects. This is relevant for schizo-
phrenia, as it is characterized by a breakdown in coordinating pro-
cesses in perception and cognition (Phillips & Silverstein 2003;
Silverstein & Keane 2011). A challenge for Clark’s view is to
account for these phenomena, which have been previously under-
stood as reflecting a breakdown in Hebbian processing, and
reduced self-organization at the local circuit level, involving
reduced lateral (and re-entrant) excitation.

Clark notes that while perceptual anomalies alone will not typi-
cally lead to delusions, the perceptual and doxastic components
should not be seen as independent. However, there are several
syndromes (e.g., Charles Bonnet Syndrome, Dementia with
Lewy Bodies, Parkinson’s Disease Dementia) where visual hallu-
cinations are prominent and delusions are typically absent (Sant-
house et al. 2000). Moreover, it would appear to be difficult to
explain the well-formed hallucinations characteristic of these syn-
dromes as being due to prediction error, given their sometimes
improbable content (e.g., very small people dressed in Victorian
era attire), and apparent errors in size constancy (ffytche &
Howard 1999; Geldmacher 2003) that argue against Bayes-
optimal perception in these cases. There are also many cases of
schizophrenia where delusions are present without hallucinations.
Finally, while evidence of reduced binocular depth inversion illu-
sions in schizophrenia (Keane et al., in press; Koethe et al. 2009)
provides evidence, on the one hand, for a weakened influence of
priors (or of the likelihood function) (Phillips 2012) on perception,
this evidence also indicates more veridical perception of the
environment. Therefore, these data suggest that, rather than pre-
diction error signals being falsely generated and highly weighted
(as Clark suggests), such signals appear not to be generated to a
sufficient degree, resulting in a lack of top-down modulation,
and bottom-up (but not error) signals being strengthened.
Indeed, this is exactly what was demonstrated in recent studies
using dynamic causal modeling of ERP and fMRI data from a
hollow-mask perception task in people with schizophrenia
(Dima et al. 2009; 2010). A developing impairment such as this
would lead to subjective changes in the meaning of objects and
the environment as a whole, and of the self –which, in turn, can
spawn delusions (Mattusek 1987; Sass 1992; Uhlhaas & Mishara
2007), even though the delusional thoughts are unrelated to the
likelihood functions and beliefs that existed prior to the onset of
the delusion.

Finally, Clark’s view of hallucinations is similar to many models
of schizophrenia, in that it is based on computational consider-
ations only. But, as noted, delusions often grow out of phenomen-
ological changes and emotional reactions to these (see also Conrad
1958), and this cascade is typically ignored in computational

models. It also must be noted that the delusions that patients
develop are not about random events, but typically are framed
in reference to the self, with appreciation of the statistical struc-
ture of the rest of the world being intact. Similarly, auditory hal-
lucinations often involve negative comments about the self, and
it has been suggested, due to the high prevalence of histories of
childhood physical and sexual abuse in people with schizophrenia
(Read et al. 2005), that voices are aspects of memory traces associ-
ated with the abuse experience that have been separated from
other aspects of the memory trace due to hippocampal impair-
ment secondary to chronic cortisol production (Read et al.
2001) (as opposed to being due to top-down expectancy driven
processing). A purely computational theory of hallucinations
and/or delusions is like a mathematical theory of music – it can
explain aspects of it, but not why one piece of music creates a
strong emotional response in one person yet not in another. Psy-
chotic symptom formation must be understood within the context
of personal vulnerability and emotional factors, and these are not
well accounted for by a Bayesian view at present.
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Abstract: The approach Clark labels “action-oriented predictive
processing” treats all cognition as part of a system of on-line control.
This ignores other important aspects of animal, human, and robot
intelligence. He contrasts it with an alleged “mainstream” approach that
also ignores the depth and variety of AI/Robotic research. I don’t think
the theory presented is worth taking seriously as a complete model, even
if there is much that it explains.

Clark’s paper deserves far more than 1,000 words, but I have to
be brief and dogmatic. Characterizing brains as predicting
machines ignores many abilities produced by evolution and devel-
opment,1 including mathematical discovery and reasoning, using
evolved mechanisms (perhaps) shared by several species
capable of the “representational redescription” postulated in Kar-
miloff-Smith (1992) and the meta-configured competences
suggested in Chappell & Sloman (2007), including (largely unstu-
died) discoveries of “toddler theorems” (Sloman 2010). The
“action-oriented predictive processing” approach treats every-
thing as on-line control (Powers 1973), like “enactivist” theorists
who usually ignore competences required to make predictions
true and processes generating and choosing (sometimes uncon-
sciously) between goals, plans, designs (for houses, machines,
etc.), preferences, explanations, theories, arguments, story plots,
forms of representation, ontologies, grammars, and proofs. Predic-
tive processing doesn’t explain termite cathedral building.
(Compare Chittka & Skorupski 2011).
Simultaneous localisation and mapping (SLAM) robotic tech-

niques, partly inspired by things animals do, create useful (topolo-
gical, metrical, and possibly logical) representations of enduring
extended environments. That’s not learning about mappings
between inputs and outputs. It’s a special case of using actions,
percepts, and implicit theories to derive useful information
about the environment. Another is producing a theory of chemical
valency.
Systematically varying how things are squeezed, stroked,

sucked, lifted, rotated, and so forth, supports learning about
kinds of matter, and different spatial configurations and pro-
cesses involving matter (Gibson 1966). Predicting sensory
signals is only one application. Others include creating future
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structures and processes in the environment, and understanding
processes. Choosing future actions often ignores sensory and
motor details, since a different ontology is used (e.g., choosing
between a holiday spent practising French and a music-
making holiday, or choosing insulation for a new house). For
more on “off-line” aspects of intelligence ignored by many
“enactivist” and “embodied cognition” enthusiasts, see Sloman
(1996; 2006; 2009). Even for on-line control, the use of servo-
control with qualitative modifications of behavior responding
to changing percepts reduces the need for probabilistic predic-
tion: Head for the center of the gap, then as you get close
use vision or touch to control your heading. Choosing a
heading may, but need not, involve prediction: it could be a
reflex action.

Predicting environmental changes need not use Bayesian infer-
ence, for example when you predict that two more chairs will
ensure seats for everyone, or that the gear wheel rotating clock-
wise will make the one meshed with it rotate counter-clockwise.
And some predictions refer to what cannot be sensed, for
example most deep scientific predictions, or a prediction that a
particular way of trying to prove Fermat’s last theorem will fail.

Many things humans use brains for do not involve on-line intel-
ligence, for example mulling over a conversation you had a week
ago, lying supine with eyes shut composing a piano piece, trying to
understand the flaw in a philosophical argument, or just day-
dreaming about an inter-planetary journey.

I don’t deny that many cognitive processes involve mixtures of
top-down, bottom-up, middle-out (etc.) influence: I helped
produce a simple model of such visual processing decades ago,
Popeye (Sloman 1978, Ch. 9), and criticized over-simple theories
of vision that ignored requirements for process perception and on-
line control (Sloman 1982; 1989). David Hogg, then my student,
used 3-D prediction to reduce visual search in tracking a human
walker (Hogg 1983). Sloman (2008) suggests that rapid perception
of complex visual scenes requires rapid activation and instantiation
of many normally dormant, previously learnt model fragment
types and relationships, using constraint propagation to rapidly
assemble and instantiate multi-layered percepts of structures
and processes: a process of interpretation, not prediction
(compare parsing). Building working models to test the ideas
will be difficult, but not impossible. Constraint propagation
need not use Bayesian inference.

“Thus consider a black box taking inputs from a complex exter-
nal world. The box has input and output channels along which
signals flow. But all it ‘knows’ about, in any direct sense, are the
ways its own states (e.g., spike trains) flow and alter….The brain
is one such black box” (sect. 1.2). This sounds like a variant of
concept empiricism, defeated long ago by Kant (1781) and
buried by philosophers of science.

Many things brains and minds do, including constructing
interpretations and extending their own meta-cognitive mechan-
isms, are not concerned merely with predicting and controlling
sensory and motor signals.

Evolutionary “trails”, from very simple to much more complex
systems, may provide clues for a deep theory of animal cognition
explaining the many layers of mechanism in more complex organ-
isms. We need to distinguish diverse requirements for information
processing of various sorts, and also the different behaviors and
mechanisms. A notable contribution is Karmiloff-Smith (1992).
Other relevant work includes McCarthy (2008) and Trehub
(1991), and research by biologists on the diversity of cognition,
even in very simple organisms. I have been trying to do this this
sort of exploration of “design space” and “niche space” for many
years (Sloman 1971; 1978; 1979; 1987; 1993; 1996; 2002; 2011a;
2011b).

Where no intermediate evolutionary steps have been found, it
may be possible to learn from alternative designs on branches
derived from those missing cases. We can adopt the designer
stance (McCarthy 2008) to speculate about testable mechanisms.
(It is a mistake to disparage “just so” stories based on deep

experience of struggling to build working systems, when used to
guide research rather than replace it.) This project requires study-
ing many types of environment, including not only environments
with increasingly complex and varied physical challenges and
opportunities, but also increasingly rich and varied interactions
with other information processing systems: predators, prey, and
conspecifics (young and old). Generalizing Turing (1952), I call
this the “Meta-morphogenesis project” (Sloman 2013).

Clark compares the prediction “story” with “mainstream com-
putational accounts that posit a cascade of increasingly complex
feature detection (perhaps with some top-down biasing)” (sect.
5.1). This fits some AI research, but labelling it as “mainstream”
and treating it as the only alternative, ignores the diversity of
approaches and techniques including constraint-processing,
SLAM, theorem proving, planning, case-based reasoning,
natural language processing, and many more. Much humanmotiv-
ation, especially in young children, seems to be concerned with
extensions of competences, as opposed to predicting and acting,
and similar learning by exploration and experiment is being inves-
tigated in robotics.

A minor point: Binocular rivalry doesn’t always lead to alternat-
ing percepts. For example look at an object with one eye, with
something moving slowly up and down blocking the view from
the other eye. The remote object can appear as if behind a tex-
tured window moving up and down.

Clark claims (in his abstract) that the “hierarchical prediction
machine” approach “offers the best clue yet to the shape of a
unified science of mind and action”. But it unifies only the
phenomena its proponents attend to.

NOTE
1. For more details, see http://www.cs.bham.ac.uk/research/projects/

cogaff/12.html#1203.

Distinguishing theory from implementation in
predictive coding accounts of brain function
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Abstract: It is often helpful to distinguish between a theory (Marr’s
computational level) and a specific implementation of that theory
(Marr’s physical level). However, in the target article, a single
implementation of predictive coding is presented as if this were the
theory of predictive coding itself. Other implementations of predictive
coding have been formulated which can explain additional
neurobiological phenomena.

Predictive coding (PC) is typically implemented using a hierarchy
of neural populations, alternating between populations of error-
detecting neurons and populations of prediction neurons. In the
standard implementation of PC (Friston 2005; Rao & Ballard
1999), each population of prediction neurons sends excitatory
connections forward to the subsequent population of error-
detecting neurons, and also sends inhibitory connections back-
wards to the preceding population of error-detecting neurons.
Similarly, each population of error-detecting neurons also sends
information in both directions; via excitatory connection to the fol-
lowing population of prediction neurons, and via inhibitory con-
nections to the preceding population of prediction neurons.
(See, for example, Figure 2 in Friston [2005], or Figure 2b in
Spratling [2008b]). It is therefore inaccurate for Clark to state
(see sects. 1.1 and 2.1) that in PC the feedforward flow of infor-
mation solely conveys prediction error, while feedback only
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