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Paracrine-Mediated Neuroprotection and Neuritogenesis
of Axotomised Retinal Ganglion Cells by Human Dental
Pulp Stem Cells: Comparison with Human Bone Marrow
and Adipose-Derived Mesenchymal Stem Cells
Ben Mead1,2*, Ann Logan1, Martin Berry1, Wendy Leadbeater1.", Ben A. Scheven2."

1 Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom, 2 School of

Dentistry, University of Birmingham, Birmingham, United Kingdom

Abstract

We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone
marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat
retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC.
Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the
presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and
PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured
hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the
hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that
hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC,
an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various
growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and
identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC
neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial
paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for
retinal nerve repair.
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Introduction

The axons of retinal ganglion cells (RGC) transmit action

potentials along the optic nerve to the superior colliculus (SC) and

lateral geniculate nucleus (LGN) that are relayed onwards to the

visual cortex. Axotomised RGC die [1,2] so that blindness ensues

after traumatic (crush or transection) [3] optic nerve injury. RGC

loss is caused by a failure in the supply of neurotrophic factors

(NTF; including neurotrophins), retrogradely transported from the

SC/LGN neurons, that act as survival signals, ensuring the

functional integrity of RGC connections [4–6].

As well as protecting RGC from death, NTF have the potential

to promote the regeneration of transected axons and establish re-

connection with their targets. The paucity of NTF in the central

nervous system (CNS) is one explanation for the lack of axon

regeneration compared to the peripheral nervous system (PNS)

[2,7] in which successful and functional axon regeneration occurs,

largely promoted by Schwann cell-derived NTF [8]. Attempts to

promote long distance axon regeneration by the transplantation of

peripheral nerve grafts into the CNS have met with some success

[9]. For example, grafting a peripheral nerve into the vitreous

body after optic nerve crush [8] promotes more RGC axon

regeneration in the transected optic nerve than occurs after the

removal of Schwann cells before transplantation, suggesting that

axotomised RGC regenerate their axons when provided with a

constant supply of NTF. However, single NTF supplementation

[7], or single dose treatments of NTF such as BDNF [10,11], have

proven unsuccessful and sustained delivery of multiple NTF to

RGC over extended periods of time is difficult to achieve.
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The vitreous is a relatively accessible immunoprivileged

transplantation site [12] that lies directly adjacent to the RGC

layer of the retina, allowing diffusion or transport of NTF across

the inner limiting membrane to the RGC. Previously, we used

intravitreally transplanted genetically modified fibroblasts express-

ing FGF-2, BDNF and NT-3 to promote RGC survival and axon

regeneration after optic nerve crush [7]. Since the translational

potential of genetically modified cells is limited, mesenchymal stem

cells (MSC), which secrete a large array of NTF, have gained

credence as a potential cell therapy for diseased and injured CNS

neurons. Human bone marrow-derived mesenchymal stem cells

(hBMSC) protect RGC from death in both optic nerve crush [13]

and glaucoma experimental models [14–16] through the produc-

tion of NTF (e.g. platelet-derived growth factor (PDGF) [15]),

without differentiation of hBMSC into replacement RGC/RGC-

like cells.

We recently demonstrated that rat dental pulp stem cells

(DPSC) protected adult rat RGC from death in an optic nerve

crush model [17,18]. This effect was significantly greater than that

achieved by rat BMSC and mediated through nerve growth factor

(NGF), brain-derived neurotrophic factor (BDNF) and neurotro-

phin 3 (NT-3) via, TrKA, B and C receptor signalling. Our

findings were consistent with previous studies showing significant

expression [19,20] and secretion of NGF, BDNF and NT-3 by

hDPSC [21]. The neuroprotective and axogenic properties of

DPSC [17,18] and BMSC [14,15,22] can also be found in other

MSC types, in particular adipose-derived mesenchymal stem cells

(AMSC) that also secrete multiple NTF [22,23] and promote

functional recovery after CNS trauma including spinal cord injury

[22,24], stroke [25] and light induced photoreceptor damage

[26,27]. However, AMSC have not been tested in a model of

RGC death. Comparative analyses of different human MSC is still

Figure 1. Effects of hDPSC, hBMSC and hAMSC on axotomised RGC in culture. The number of RGC (A), percentage of surviving RGC
bearing neurites (B) and the length of the longest RGC neurite (C) in both untreated retinal cultures and after coculture with hDPSC, hBMSC, hAMSC,
with or without added exogenous neurotrophins. Black lines indicate significant difference at P,0.05. The effects of Fc-TrKA, -B, -C, Fc-GDNFr, Fc-
VEGFr, Fc-PDGFAr and Fc-PDGFBr inhibitors on RGC survival (A) and neuritogenesis (B, C) in hDPSC, hBMSC and hAMSC cocultures are also shown
(values marked with an asterisk indicate significant difference from uninhibited cultures at P,0.05).
doi:10.1371/journal.pone.0109305.g001
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lacking although important for the determination of the most

efficacious paracrine-mediated therapy for the injured retina.

Thus, the aim of this study was to evaluate and compare the

neuroprotective and neuritogenic effects of hDPSC, hBMSC and

hAMSC and to define the stem cell NTF secretome using ELISA

and PCR microarray analysis.

Materials and Methods

All reagents were purchased from Sigma (Poole, UK) unless

otherwise specified.

DPSC/BMSC/AMSC cultures
hDPSC were purchased from AllCell LLC (Berkeley, CA) and

both hBMSC and hAMSC from Lonza (Slough, UK), and each

represented pooled samples from 3 donors. The CD29+/CD44+/

CD73+/CD90+/CD452 (confirmed by supplier) stem cells were

seeded into T25/T75 flasks (Corning, Amsterdam, NL) in both a

total volume of 5 ml/15 ml DMEM containing 1% penicillin/

streptomycin and 10% foetal bovine serum (FBS; Hyclone

Laboratories, Logan, UT) and at a density of 16106 cells/

26106 cells, respectively. Cultures were maintained at 37uC in 5%

CO2, the supplemented medium was changed every 3 d and the

cells were passaged when 80% confluent using 0.05% trypsin/

EDTA to lift them from their surface attachment.

Animals
Nine adult male Sprague-Dawley rats weighing 170–200 g

(Charles River, Kent, UK) were housed under Home Office

guidelines in conditions of 21uC and 55% humidity under a 12 h

light and dark cycle, given food/water ad libitum and were under

constant supervision from trained staff. Animals were killed by

‘‘Schedule 1 Methods’’ i.e. rising concentrations of CO2 before

extraction of retinae. Ethical approval by the University of

Birmingham ethical review Sub-Committee for this study was not

required due to the in vitro nature of the experiment.

Retinal cell coculture
Cell culture 24-well plates (BD Biosciences, Oxford, UK) were

pre-coated with 100 mg/ml poly-D-lysine for 60 min and then

with 20 mg/ml laminin for 30 min. After culling and ocular

dissection, the retinae of nine male Sprague-Dawley were minced

in 1.25 ml of papain (20 U/ml; Worthington Biochem, Lakewood,

NJ; as per manufacturer’s instructions) containing 50 mg/ml of

DNase I (62.5 ml; Worthington Biochem) and incubated for

90 min at 37uC. The retinal cell suspension was centrifuged at

3006g for 5 min and the pellet resuspended in 1.575 ml of Earle’s

balanced salt solution (Worthington Biochem) containing 1.1 mg/

ml of reconstituted albumin ovomucoid inhibitor (150 ml;

Worthington Biochem) and 56 mg/ml of DNase I (75 ml). After

adding to the top of 2.5 ml of albumin ovomucoid inhibitor

(10 mg/ml) to form a discontinuous density gradient, the retinal

cell suspension was centrifuged at 706g for 6 min and the cell

pellet resuspended in 1 ml of supplemented Neurobasal-A (25 ml

Neurobasal-A (Life Technologies, Gibco, Paisley, UK), 1X

concentration of B27 supplement (Life Technologies, Invitrogen,

Paisley, UK), 0.5 mM of L-glutamine (62.5 ml; Invitrogen) and

50 mg/ml of gentamycin (125 ml; Invitrogen)) and seeded at a

density of 125,000 cells/800 ml/well in a 24 well plate. Previous

immunocytochemical analysis of these cultures in our lab

demonstrates that 60% of these retinal cells are neurons

(neurofilament+/bIII-tubulin+), of which 10% are Thy1+ RGC

[28].

hDPSC, hBMSC and hAMSC were used at passage 2–4 and

plated at a density of 50,000 cells/200 ml onto a 0.4 mm porous

cell culture insert (Millipore, Watford, UK) that was placed into

each of the 24 wells containing retinal cells to give a total volume

of 1 ml of medium/well. Particular wells containing retinal cell

cultures were treated either singly or in combination with 5 mg/ml

Fc-TrKA, Fc-TrKB and/or Fc-TrKC (R&D Systems, Abingdon,

UK) as well as Fc-VEGFr, Fc-GDNFr, Fc-PDGFAr and Fc-

PDGFBr fusion protein inhibitors [29] (R&D Systems) which are

highly specific inhibitors for the corresponding cognate neuro-

trophic factor receptors (NTFR). A combination of recombinant

human NGF, BDNF and NT-3 was also added to some retinal cell

cultures at 60 ng/ml as a positive control. Particular wells

containing retinal cells were treated with 0.1 mm, 1 mm and

10 mm of VGF (R&D Systems) instead of hDPSC/hBMSC/

hAMSC.

Cocultures were incubated for 3 d at 37uC before immunocy-

tochemical staining of RGC with bIII-tubulin. For this study, large

spherical bIII-tubulin+ retinal cells [30] cultured after neuronal

isolation from retinae, are referred to as RGC. bIII-tubulin is a

reliable and relatively specific marker for RGC [30], although

cross reactivity with amacrine cells has been suggested [31].

However, it should be emphasised, that the isolation procedure

and growth medium used preferentially selects and yields

populations of neuronal cells, we are confident that our findings

accurately reflect RGC numbers. All experiments were repeated

on 3 separate occasions. Each of the treatment groups in each of

the 3 experimental runs comprised 3 replicate wells containing

retinal cells harvested from one animal.

Immunocytochemistry
Retinal cells in 24 well plates (BD Biosciences) were fixed in 4%

paraformaldehyde (PFA) in phosphate-buffered saline (PBS) for

10 min, washed for 3610 min of PBS, blocked in blocking

solution (0.5% bovine serum albumin (g/ml), 0.3% Tween-20,

15% normal goat serum (Vector Laboratories, Peterborough, UK)

in PBS) for 20 min and incubated with primary antibody (anti-rat

bIII-tubulin, raised in mouse, #T8660 diluted at 1:500 in

antibody diluting buffer (ADB; 0.5% bovine serum albumin,

0.3% Tween-20 in PBS) for 1 h at room temperature. Cells were

then washed for 3610 min in PBS, incubated with the secondary

antibody (anti-mouse IgG Fluor 488, raised in goat, 1:400, #A-

11001; Life Technologies, Molecular Probes, Paisley, UK) diluted

in ADB for 1 h at room temperature, washed for 3610 min in

PBS, mounted in Vectorshield mounting medium containing

DAPI (Vector Laboratories) and stored at 4uC.

Microscopy and analysis
For immunocytochemistry, all bIII-tubulin+ RGC, with or

without neurites, were counted in each well of the 24 well plates,

recording the total number of RGC and the number of RGC with

Figure 2. Immunocytochemical staining of RGC after retinal coculture with hDPSC, hBMSC and hAMSC in transwell inserts. In vitro
RGC cultured either alone (A), with exogenous neurotrophins (B), with hAMSC (with or without TrK inhibitors (C, D, respectively)), with hBMSC (with
or without TrK inhibitors (E, F, respectively)) or with hDPSC (with or without TrK inhibitors (G, H, respectively). All images are representative of the
entire culture, nine separate culture wells/treatment, with every three wells using a different animal (scale bars: 50 mm), cell nuclei were stained with
DAPI.
doi:10.1371/journal.pone.0109305.g002
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neurites. Neurite outgrowth was measured in images taken at 20X

magnification using an Axiocam HRc camera (Carl Zeiss Ltd,

Hertfordshire, UK). Each well was divided into 9 equal sectors and

the length of the longest neurite of each RGC in each sector was

measured using Axiovision software (Carl Zeiss Ltd). Fluorescently

stained cells were analysed by an operator blinded to treatment

groups, using a Zeiss Axiovert fluorescent microscope (Carl Zeiss

Ltd).

NTF ELISA
To quantify the growth factors and NTF produced by hDPSC,

hBMSC and hAMSC, conditioned medium was collected from

cultures at passage 2 and 5 after 48 h in culture and assayed using

a duoset ELISA kit for human NGF, BDNF and NT-3, VEGF,

GDNF, platelet-derived growth factor (PDGF-AA) and PDGF-

AB/BB according to the manufacturer’s instructions (R&D

Systems). Briefly, a standard curve was constructed using NTF

standards and test samples of conditioned medium at increasing

dilutions, run in duplicate with NTF concentrations extrapolated

from the standard curve. Values were normalized to the number

of cells in the flask (manually counted via haemocytometer) and

the volume of medium, and corrected for analyte found in the

medium/serum.

Human NTF and NTFR PCR array
The expression of 84 NTF and NTFR genes by hDPSC,

hBMSC and hAMSC (passage 2) was assayed using quantitative

RT-PCR profiler arrays (PAMM-031) by a commercially run

service (Sabiosciences, Qiagen, Hilden, Germany). Housekeeping

genes (b2m and hprt1) were used to normalize the data and the
–DCt compared between cell types and expressed as + or - fold

changes. Samples contained one million cells and were run in

triplicate.

Statistics
All statistical tests were performed using SPSS 17.0 (IBM SPSS,

Inc., Chicago, IL) and data presented as mean 6 standard error of

the mean (SEM). The Shapiro-Wilkes test was used to ensure all

data were normally distributed before parametric testing using a

one-way analysis of variance (ANOVA) with a Tukey post-hoc test.

Statistical differences were considered significant at p values ,

0.05. For the qRT-PCR, data were compared by a Student’s t test

and statistical significance set at p,0.001.

Results

hDPSC promoted significantly greater paracrine-
mediated neuroprotection and neuritogenesis than
hBMSC/hAMSC

hDPSC, hBMSC and hAMSC all promoted a significant

increase (p,0.05) in the survival of cocultured RGC (282.7617.1

cells/well; 219628.4 cells/well; 200.0610.2 cells/well; respec-

tively) compared with retinal cells cultured alone (100.769.5 cells/

well); hDPSC, hBMSC and hAMSC neuroprotection was similar

to the level obtained after retinal cell culture with recombinant

NGF/BDNF/NT-3 (239.7615.4 cells/well; Figs. 1, 2.). The

increase in survival of RGC in hDPSC-treated retinal cultures

was significantly greater (p,0.05) than that achieved in cocultures

with hAMSC (p,0.05) but not significantly greater than that seen

in cocultures with hBMSC.

Coculture of retinal cells with hDPSC, hBMSC and hAMSC

significantly increased (p,0.05) the percentage of surviving RGC

bearing tubulin+ neurites (64.864.0%, 51.162.1%, 42.264.3%,
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respectively), as well as the length of neurites (236.7 mm627.6 mm,

150.7 mm624.1 mm, 101.1 mm612.1 mm, respectively) compared

with retinal cells cultured alone (18.264.6%; 32.8 mm61.4 mm;

Fig. 1, 2.). Coculture with hDPSC promoted a significant increase

(p,0.05) in the number of neurite-bearing RGC as well as neurite

length when compared with cocultures with hBMSC and hAMSC,

or with retinal cultures exposed to recombinant NGF, BDNF and

NT-3. These data confirm that hDPSC, hBMSC and hAMSC

have paracrine-mediated neuroprotective and neuritogenic prop-

erties, with hDPSC promoting the most significant effects.

NTFR Fc-receptor blockers for multiple NTFR attenuated
the neuroprotective and neuritogenic effect of hDPSC/
hBMSC/hAMSC

The NTFR blockers Fc-TrKA, Fc-TrKB, Fc-TrKC, Fc-TrKA/

B/C, Fc-GDNFr, Fc-VEGFr, Fc-PDGFAr and Fc-PDGFBr

significantly attenuated hDPSC mediated neuroprotection and/

or neuritogenesis of cocultured RGC (Table. 1; Fig. 1, 2.)

compared to uninhibited hDPSC/retinal cell cocultures. Fc-

TrKA, Fc-TrKB, Fc-TrKC, Fc-TrKA/B/C, Fc-PDGFAr and

Fc-PDGFBr significantly attenuated hBMSC mediated neuropro-

tection and/or neuritogenesis of cocultured RGC compared to

uninhibited hBMSC/retinal cell cocultures. Fc-TrKA/B/C, Fc-

PDGFAr and Fc-PDGFBr significantly attenuated hAMSC

mediated neuroprotection and/or neuritogenesis of cocultured

RGC compared to uninhibited hAMSC/retinal cell cocultures.

These data demonstrate that the neuroprotective and neuritogenic

effects afforded by each of the stem cell types are mediated

through a variety of different NTF.

hDPSC, hBMSC and hAMSC have distinct NTF expression
profiles

The PCR array detected 84 NTF and NTFR genes differen-

tially expressed by hDPSC, hBMSC and hAMSC. For example,

hDPSC express $4 fold higher cd40, crhbp, grpr, il1r1, ntrk1,
ptger2 and vgf than hBMSC and $4 fold higher bdnf, gdnf, grpr,
nt-3, ptger2, tacr1 and vgf than hAMSC (Fig. 3.). hDPSC express

$4 fold lower cckar, fgf9, gfra1, hspb1, il1b, il6, ngfr, ntrk2,
ntsr1, stat1, stat4 and tgfa than hBMSC and $4 fold lower

adcyap1r1, bcl2, cxcr4, fgf9, gfra1, il1b, il6, ntrk2, ppyr1, stat1,
tgfa than hAMSC. Significant differences (p,0.001) are high-

lighted in the graph (Fig. 3). These data confirm that, despite

hDPSC, hBMSC and hAMSC all being designated as mesenchy-

mal stem cells, the NTF secretome is distinct between each stem

cell phenotype.

hDPSC secrete multiple NTF at higher levels than hBMSC/
hAMSC

The levels of secretion by hDPSC, hBMSC and hAMSC of

NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA, PDGF-AB/BB

and CNTF, at passage 2 and 5, are detailed in Table 2, and

presented as pg/100,000 cells/48 h. CNTF and PDGF-AB/BB

were undetectable in hDPSC/hBMSC/hAMSC conditioned

media, while BDNF and NT-3 were undetectable in hAMSC

conditioned medium. The hDPSC secreted significantly greater

(p,0.05) titres of NGF, BDNF and VEGF than hBMSC/hAMSC

(Table. 2; Fig. 4.). These data confirm that the hBMSC, hAMSC,

and in particular, hDPSC secrete a variety of different NTF.

VGF was neuroprotective for RGC
The differentially and significantly greater transcription of vgf

in hDPSC compared to hBMSC/hAMSC (Fig. 3.) led to

investigation of the neuroprotective and/or proregenerative

properties of VGF. VGF promoted a significant increase (p,

0.05) in the survival of cultured RGC at concentrations of 1 mM

(255.5629.4 cells/well) and 10 mm (263.5624.4 cells/well), but

not at 0.1 mM (148.3633.1 cells/well), compared to untreated

controls (118.7618.7 cells/well; Fig. 5.).

By contrast, the percentage of surviving RGC bearing neurites

in cultures of axotomised retinal neurons did not significantly

change after treatment with 0.1 mM (15.861.4%), 1 mM

(10.061.9%) or 10 mM (10.961.9%) when compared to untreated

controls (17.361.3%). The data suggest that VGF is a novel

Figure 3. Expression of NTF and NTFR genes by hDPSC, hBMSC and hAMSC. RT-PCR array analysis of 84 genes encoding NTF and NTFR
expressed by hDPSC, displayed as fold regulation in comparison to either hBMSC (black bars) or hAMSC (grey bars). The horizontal dotted lines
represent fold-changes of 61 (no difference). Significant differences between hDPSC and hBMSC (*) and hDPSC and hAMSC ({) at p,0.05 are labelled
on the x axis.
doi:10.1371/journal.pone.0109305.g003
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DPSC-derived neuroprotective, but not neuritogenic, factor for

RGC at the optimal dose of 1 mm.

Discussion

We have previously shown that rat DPSC promoted neurotro-

phin-mediated neuroprotection and neuritogenesis/axogenesis of

axotomised RGC, both in vitro and in vivo [17]. Interestingly, rat

DPSC promoted significantly greater neuroprotection and axon

regeneration than rat BMSC, which reportedly protect RGC from

death in models of optic nerve crush and glaucoma [14,17]. We

aimed to determine if the more potent neurotrophic properties

were replicated by hDPSC, when compared to hBMSC and

hAMSC and confirm that, like rat DPSC, hDPSC secreted

multiple neuroprotective and axogenic NTF that protected RGC

from death and promoted the growth of their neurites to a

significantly greater extent than either hAMSC or hBMSC, which

both have distinct NTF profiles as determined by RT-PCR and

ELISA. Thus, we conclude that hDPSC may constitute an

effective paracrine-mediated cellular therapy for retinal, and

potentially other CNS injuries [17].

To determine the neuroprotective and neuritogenic effects of

hDPSC-, hBMSC- and hAMSC- derived NTF, we cultured these

human-derived stem cells with RGC. Similar to our previous

results using rat stem cells [17], hDPSC and hBMSC stimulated

RGC survival and neuritogenesis to levels greater than those seen

in untreated control retinal cultures. Moreover, hDPSC were

more neuroprotective and neuritogenic than hBMSC (although

the former measure did not reach statistical significance), which

corroborates our previous findings [17] as well as those of others

showing greater functional restoration when hDPSC, as opposed

to hBMSC, were transplanted into spinal cord lesion sites [32].

The neuroprotective and neuritogenic properties of hAMSC were

significantly less than hDPSC and this was correlated with lower

secreted levels of NGF, BDNF, NT-3, VEGF and GDNF observed

by ELISA.

We used Fc-NTFR fusion protein blockers to examine the

mechanism of the hDPSC-, hBMSC- and hAMSC-mediated

neuroprotection and neuritogenesis. The neuroprotective effect of

hDPSC was significantly reduced after the addition of each

individual Fc-NTFR, confirming the contribution of stem cell-

derived NGF, BDNF, NT-3, GDNF, VEGF and PDGF-AA/AB/

BB. Similar observations were seen with hBMSC, suggesting that

the mechanisms for neuroprotection/neuritogenesis are similar

and that the reduced neuroprotective effect of hBMSC compared

to hDPSC is explained by the reduced neurotrophic profile.

Moreover, hAMSC had a similar RGC protective/regenerative

potency to hBMSC yet, owing to a lack of BDNF secretion, Fc-

TrKB had no effect on hAMSC-mediated RGC survival or

neuritogenesis. Interestingly, Fc-PDGFBr reduced hDPSC2/

hBMSC2/hAMSC-mediated neuroprotection despite no

PDGF-AB/BB being detected in conditioned media by ELISA.

This might be explained by the previous observation that PDGF-

AB/BB was secreted at very low levels by hBMSC (40-fold ,

PDGF-AA) [15] and therefore expected to fall below the

detectable range for the ELISA used. Thus, the efficacy of Fc-

PDGFBr could be attributable either to the potency of low levels of

PDGF-AB/BB or to PDGF-AB/BB secreted by glia present in the

retinal cultures in response to hDPSC2/hBMSC2/hAMSC-

derived growth factor stimulation.

The secretion of multiple NTF by hDPSC confirms previous

findings showing NTF gene expression by hDPSC [19,20,32] as

well as NTF secretion by rat-derived DPSC [17,33] and

neurotrophins by hDPSC [21]. In concert with our findings using
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rat DPSC [17], hDPSC secreted significantly more NGF and

BDNF than hBMSC. Interestingly, compared to previous data on

rat DPSC, hDPSC secreted higher titres of NGF but lower titres of

BDNF [17]. Our results confirmed those in the literature on the

extensive NTF secretory profile of hBMSC including NGF,

BDNF, NT-3 and GDNF [17,34–36], adding VEGF to the list of

known secreted factors but failed to detect CNTF [32]. hAMSC

secrete NGF, BDNF, NT-3, GDNF and VEGF [22,23]. However

in the present study, we have not detected the secretion of BDNF

and NT-3, possibly because the titre was below the detectable

range of the ELISA or that none was secreted in this study. Our

results also support the findings of recent studies by others showing

that hBMSC secrete PDGF-AA [15] and extend this observation

to show that hDPSC and hAMSC share this property.

To further elucidate the relative neurotrophic activities of

hDPSC, hBMSC and hAMSC, we conducted a RT-PCR array of

84 NTF/NTFR genes. The data showed that all three stem cell

types have distinct NTF gene expression profiles. In particular, we

found that hDPSC expressed prostaglandin E2 receptor (ptger2) at

6 and 10 fold higher than both hBMSC and hAMSC, respectively.

Ptger2 stimulates the synthesis and release of neurotrophins from

multiple cell types [37–39]. hDPSC also expressed over 100-fold

lower interleukin-6 (il6) than hBMSC and hAMSC. The cytokine

IL6 is neuroprotective after binding to the gp130 receptor [40]

Figure 4. NGF, BDNF, NT-3, CNTF, VEGF, GDNF, PDGF-AA and PDGF-AB/BB titres by ELISA in hDPSC, hBMSC and hAMSC. hDPSC-,
hBMSC- and hAMSC-conditioned media (passage 2 and 5) collected after 48 h of cell culture. (n = 3; asterisks indicate significant
differences from all other samples/black lines indicate significant difference between specific samples at p,0.05). CNTF and PDGF-AB/BB were
undetectable in all samples.
doi:10.1371/journal.pone.0109305.g004

Figure 5. The effects of VGF on RGC in retinal cultures. The total number of surviving RGC as well as the percentage of RGC bearing neurites
either cultured alone, or with 0.1 mM, 1 mM and 10 mM VGF (A). Asterisks indicate significant difference from other treatment groups at p,0.05. RGC
cultured either alone (Bi) or with 1 mm VGF (Bii). All images are representative of the entire culture, nine separate culture wells/treatment with every
three wells using different animals (scale bars: 100 mm), cell nuclei were stained with DAPI.
doi:10.1371/journal.pone.0109305.g005
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and promotes axon regeneration after activating the JAK/STAT3

pathway [41]. As a pro-inflammatory cytokine it is likely there are

other IL6-mediated effects not fully realised in our in vitro
paradigm. Finally, hBMSC express 6-fold higher fibroblast growth

factor-9 (fgf9) than hDPSC, whereas hAMSC express over 700-

fold higher fgf9 than hDPSC. FGF9, unlike other FGF isoforms,

stimulates the survival of RGC by binding to FGF receptor-3 [42],

possibly highlighting a distinct mechanism for hAMSC-induced

RGC neuroprotection. These data reinforce the notion that the

stem cell origin is critical in determining their selection and

application as cellular therapies for the treatment of particular

neurological conditions.

NTF analyses by ELISA corresponded well with the RT-PCR

microarray data, a point particularly well illustrated by the

correlative BDNF and GDNF protein and mRNA data. Interest-

ingly NGF values for protein and mRNA were paradoxical;

demonstrating lower levels of NGF gene expression in hDPSC

compared to hBMSC/hAMSC, while the titres of NGF protein in

the conditioned medium from hDPSC cultures was significantly

higher than that in the medium from hBMSC/hAMSC. These

findings underline some discrepancies between gene expression

and NTF protein secretion, which may be explained by differences

in either the timing of sampling (PCR reflecting a snap-shot event

while protein levels are cumulative) or an abundance of pre-

existing stores of NGF in hDPSC.

The results presented here support the assertion that the RGC

survival effects of the MSC are mediated in part by PDGF-AA

[15]. Interestingly, inhibitors to the PDGFr did not significantly

reduce RGC neuritogenesis, suggesting that MSC-derived PDGF

is important for neuroprotection but not neuritogenesis in RGC.

RGC neurite outgrowth appeared to be particularly dependent

on hDPSC-, hBMSC- and hAMSC-derived NGF. Thus, consid-

ering the enhanced secretion of NGF by hDPSC, may explain why

hDPSC are more neuritogenic than hBMSC and hAMSC. BDNF

and NT-3 are also neuritogenic for RGC, since neurite outgrowth

was suppressed by the cognate Fc-TrK inhibitors. Noteworthy,

hAMSC promoted very little neuritogenesis, although the response

was significantly reduced when all three TrK receptors were

simultaneously blocked.

Finally, this study is the first to identify VGF as a novel factor

expressed at higher levels (.4 fold) in hDPSC than in hBMSC or

hAMSC. VGF is a peptide present in the CNS and PNS [43] that

protects motor neurons in animal models of amyotrophic lateral

sclerosis [44] and increases the survival of cerebellar granule cells

after serum deprivation [45]. We also showed that VGF was active

in the retinal culture model at a concentration similar to that

previously reported as active in other models of CNS injury [45].

In particular, VGF was significantly RGC neuroprotective, but

not neuritogenic, suggesting that VGF may be involved in

hDPSC-mediated RGC neuroprotection. Thus we propose that

VGF may be a novel therapeutic NTF for RGC neuroprotection.

In conclusion, our results show that hDPSC is a more potent

stem cell type for paracrine-mediated neuroprotection and

regeneration of RGC than either hBMSC or hAMSC. The

hDPSC-mediated neuroprotection and neuritogenesis is achieved

through the paracrine effect of multiple secreted NTF, including

PDGF (neuroprotection) and NGF (axon regeneration). Moreover,

VGF is identified as a novel RGC neuroprotective factor

expressed by hDPSC. hDPSC may represent an effective and

advantageous cellular therapy for retinal nerve protection and

repair.
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