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Impact of COVID-19 on Stock Index

Volatility: Long-Memory Persistence,

Structural Breaks, or Both?

Abstract

The onset of the COVID-19 pandemic has increased volatility in finan-
cial markets, motivating researchers to investigate its impact. Some use
the GARCH family of models to focus on long-memory persistence, while
others use Markov chain models to better identify structural breaks
and regimes. However, no study has addressed the occurrence of these
two phenomena in a unified framework. Since both are important fea-
tures of the data, to ignore one or the other could lead to poorly
specified models. The outcome would be incorrect risk measurement,
with implications for risk management, Value at risk, portfolio deci-
sions, forecasting, and option pricing. This paper aims to fill this gap in
the literature. We assemble an international dataset for 16 stock mar-
ket indices in three continents over the period from August 1, 2019 to
February 18, 2022, totalling 669 business days. Using R, we estimate
80 GARCH family models, 16 pure Markov-Switching models, and 900
combined GARCH/ Markov-Switching models using daily stock market
log-returns. We allow for two volatility regimes (low and high). We also
measure and incorporate News Impact Curves, which show how past
shocks affect contemporaneous volatility. Our main finding, across esti-
mated models, is that COVID-19 affected both long-memory persistence
and volatility regimes in most markets. To describe the specific impact
in each market, we report News Impact Curves. Lastly, the first wave of
COVID-19 had a much greater impact on volatility than did subsequent
waves linked to the emergence of new variants.

Keywords: COVID-19, Statistical Models, Volatility, Stock Indices

1 Introduction

Since the emergence of COVID-19 in December 2019, its wide-ranging effects
on society have been investigated by a large scientific literature. Much of this
research uses data science techniques, such as data mining, machine learning
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and big data [1, 2]. Among the many impacts suffered by populations world-
wide, one important shock has been an increase in the volatility of financial
markets around the world. While markets have largely recovered from the ini-
tial crash in early 2020, they have remained riskier and more unpredictable
than before [3].

There are two main strands in the emerging literature on COVID-19 and
volatility. First, most of the early studies used standard GARCH models to
show increases in volatility persistence [4–15]. These papers have much in
common : (1) They applied univariate GARCH models to the first wave of
COVID-19; (2) They tested a small number of models using results from pre-
vious third-party studies; (3) They looked at specific stock market indices; (4)
They used dichotomous variables to capture the effect of the pandemic; or (5)
They estimated models by dividing the full sample in two, namely before and
during the COVID-19 crisis. These papers found that COVID-19 increased
stock market volatility, that volatility is persistent (i.e., displays long mem-
ory), is time-varying and that the leverage effect is confirmed. The second
wave of COVID-19 contagion and spike in cases occurred in the winter (sum-
mer) months of 2020-21 in the Northern (Southern) Hemisphere [16]. New
studies examined the impact of these new waves on financial markets [17–19].
Using similar methods as the earlier literature, they found that subsequent
COVID-19 waves have had less of an impact on volatility than the first wave.

The second strand of the literature has described the impact of COVID-
19 as causing structural breaks in the time series of volatility. That is, there
is a change in the model coefficients describing the data-generating pro-
cess for volatility. For instance, [20] analyzed the S&P 500 index volatility
using Markov-Switching Autoregressive models (MS-AR), while [21, 22] used
Markov-Switching GARCH models (MS-GARCH) to examine the volatility of
stock market indexes. These studies identified the start of the COVID-19 pan-
demic as an important contributor to structural breaks in volatility. However,
they only looked at the first wave and did not examine subsequent waves.

In light of these results, the question becomes: How best to measure the
impact of COVID-19 on stock market volatility? The papers in this litera-
ture use different models but provide little or no comparisons between them.
Moreover, the estimated models are usually fairly standard and do not allow
for as much flexibility as the data could require. Answering this question is
fundamental[24] to stakeholders such as investors, portfolio managers, finan-
cial analysts and risk managers. Indeed, accurate volatility modeling provides
investors with a better understanding of financial market dynamics. In addi-
tion, it helps investors to value assets correctly and find the best potential
diversification opportunities. It also improves portfolio management practice
by suggesting the most appropriate models for conditional volatility dynam-
ics. Lastly, this can lead to improved hedging strategies by choosing the most
suitable derivative instruments and correctly estimating their Value at Risk
(VaR) and Expected Shortfall (ES).
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The purpose of this paper is therefore (1) to determine, out of a large
universe of potential models, the best one(s) to describe the impact of COVID-
19 on stock market index volatility; and (2) to assess whether the impact has
affected long-memory persistence, structural breaks in the process, or both.
To our knowledge, this type of empirical analysis has been done for Bitcoin
volatility [24–27] but not for international stock market indices, especially
accounting for the effect of COVID-19’s multiple waves.

This paper considers a volatility modelling framework that allows for
long memory (e.g., a hyperbolic rather than geometric rate of decay), differ-
ent potential distributions for innovations (errors), and a Markov-switching
framework to capture regime changes in volatility. To this end, we tested 80
univariate models from the GARCH family as well as 916 Markov-Switching
models for two regimes. We estimate these models using time series data for
16 of the most important stock market indices in the world, representing more
than two-thirds of the global market capitalization (in value).

The main contribution of this paper is to significantly expand upon the
number of models tested on stock indices worldwide, which helps shed new
light on the models’ ability to explain in-sample volatility (e.g., tracking) as
well as downside risk measures (VaR and ES) for major stock indices before
and during the COVID-19 period.

Lastly, the objectives of this paper also align with the concept of Big
Data Analytics and Data Mining techniques [28–31]. We apply algorithms for
nonlinear regression models to the analysis of a considerable amount of data
acquisition and processing. Moreover, the empirical approach uses statisti-
cal models for knowledge discovery and data visualization (e.g., News Impact
Curves from GARCH models) in order to enhance the stakeholders’ decision-
making, problem-solving and data learning outcomes concerning stock index
volatility.

2 Theoretical Support

2.1 Nested GARCH family

Since the seminal works of [32] and [33], a large family of models has grown to
to explain the stylized facts established by the financial econometrics literature
on economic and financial time series, such as volatility clustering, asymmetry,
long memory and fat tails.

The GARCH family of models is the leading econometric framework to
model volatility because it provides a parsimonious approximation of the pro-
cess generating asset return volatility dynamics [34–36]. While this family has
grown considerably, [37] proposed a model encompassing some of the most
useful GARCH models (ALLGARCH). This model can be represented as in
function (1). As for the number of lags, we have chosen the GARCH(1,1)
specification because it is the most common and because research finds that
additional lags typically do not improve performance [38].
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σλ
t − 1

λ
= ω + ασλ

t−1 [|Zt−1 − η2| − η1 (Zt−1 − η2)]
δ
+ β

(
σλ
t−1 − 1

λ

)
(1)

Equation (1) is a Box-Cox transformation of the conditional volatility σt,
where ω is the intercept and α and β are the persistence of the standardized
lagged shocks Zt−1 and the conditional volatility, respectively. Moreover, λ
determines the shape of the function and δ transforms the absolute value
function. For the latter, η1 and η2 control the rotations and shifts.

Table 1 Possible GARCH models nested in the ALLGARCH model

Coefficient constraints Resulting equation Effects on NIC References

λ = δ = 2; η1 = η2 = 0; β = 0 ARCH No shift/rotation [32]
λ = δ = 2; η1 = η2 = 0 GARCH No shift/rotation [33]
λ = δ; η1 = η2 = 0 NGARCH No shift/rotation [39]
λ = δ = 2; η1 = 0 NAGARCH Shift [40]
λ = 0; δ = 1; η2 = 0 EGARCH Rotation [41]
λ = δ = 2; η2 = 0 GJR-GARCH Rotation [42]
λ = δ; η2 = 0; |η1| ≤ 1 APARCH Rotation [43]
λ = δ = 1; η2 = 0; |η1| ≤ 1 TGARCH Rotation [44]
λ = δ = 1; |η1| ≤ 1 AVGARCH Shift and Rotation [45]
λ = δ ALLGARCH Shift and Rotation [37]

Source: authors following the framework in [37].

Table 1 shows ten possible GARCH model specifications that can be
obtained from equation (1), depending on the specific constraints on the λ, δ, η1
and η2 coefficients. Note that the ARCH model is a special case of the GARCH
model when β is zero. The table also summarizes how each GARCH specifi-
cation yields particular effects on the News Impact Curve (NIC), essentially
showing how past shocks affect present volatility. Depending on the model, the
effects can be to shift (small shocks) or rotate (large shocks) the NIC [40, 46].
Thus, NIC is an invaluable graphical tool to display how volatility incorporates
new information (shocks).

max ln (Z, σ) = max

T∑
t=1

ln

(
1

σt
f(Zt)

)
(2)

We obtain the coefficients of equation (1) by maximizing the log-likelihood
function (2), where Zt = ϵt/σt is the shock ϵt standardized by σt. For flexi-
bility, we allow f(Zt) to be drawn from a broad set of univariate probability
distributions, as seen in Table 2.

As a result, the specifications in Tables 1 and 2 can be combined to provide
80 different model specifications to investigate long memory effects in stock
index volatility.
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Table 2 Probability Distributions Functions (PDF’s) for Zt

Function Equation

Normal (norm) f(Zt) =
e−0.5Z2

t

√
2π

Student-t (std) f(Zt, ν) =
Γ(

ν + 1

2
)√

(ν − 2)πΓ( ν
2
)

(
1 +

Z2
t

ν−2

)−(ν + 1)

2

Generalized Error Distribution (ged) f(Zt, ν) =
νe−0.5(|κZt|)ν

κ2(1+1/ν)Γ(1/ν)
; κ =

√
2(−2/ν)Γ(1/ν)

Γ(3/ν)

Skewed Normal (snorm) See [47], equation 1

Skewed Student-t (sstd) See [47], equation 1

Skewed ged (sged) See [47], equation 1

Generalized Hyperbolic (ghyp) See [48]

Johnson’s reparametrized SU (jsu) See [49]

Source: summary by the authors.

2.2 Markov-Switching models

The emerging popularity and widespread use of GARCH models to estimate
conditional volatility in financial markets soon led to questions about the
degree of persistence in the volatility process. That is, how much does past
volatility explain the present? Early empirical results suggested that persis-
tence in GARCH models was high. This led [50] to confirm that GARCH model
coefficients can vary over time, thus explaining high persistence. To capture
this, the literature has considered structural breaks: following large-scale events
in the market, the structure of the time series process changes significantly.
For instance, the market may switch from a low-volatility to a high-volatility
environment. Locating the structural break becomes a fundamental question
[51].

A useful framework to deal with this issue is the pure Markov-Switching
model (MSwM) of variance proposed by [52]. To describe this model, first
consider the log-return (shocks) yt of any financial asset at time t, with mean
zero and no autocorrelation. This model can be represented by the following
set of equations under the assumption of two volatility regimes:

yt = N(0, σ2
t ) (3)

σ2
t = σ2

1S1t + σ2
2S2t (4)

σ2
1 < σ2

2 (5)

Skt = 1, if St = k; otherwise, Skt = 0, k = 1, 2 (6)

p(St = 1|St−1 = 1) = p11; p(St = 2|St−1 = 1) = 1− p11 (7)
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p(St = 2|St−1 = 2) = p22; p(St = 1|St−1 = 2) = 1− p22 (8)

max ln (y, θ) = max

T∑
t=1

2∑
i=1

ln

[
pii√
2πσ2

i

exp

(
−(yt − µi)

2

2σ2
i

)]
(9)

In this model, variance is persistent: earlier values continue to affect
later values. This occurs because there is a change in the variance regime,
which is defined by the latent variable St, a first-order ergodic homogeneous
Markov chain with transition probabilities described by equations (6) to (8).
For instance, p12 is the transition probability of going from state 1 (low
volatility) to state 2 (high volatility). While a larger number of distinct volatil-
ity regimes could be considered, this is generally not necessary to obtain
well-performing models in financial time series. In this setting, parsimony
is preferable. P ’s transition probability matrix is constructed using p11 and
p22 to calculate the 1-step ahead regime. To estimate the coefficient vector
θ ≡

(
µ1, µ2, σ

2
1 , σ

2
2 , p11, p22

)
we maximize the log-likelihood equation (9) using

numerical methods. Finally, note that variance is constant within each regime
when using this approach.

The other approach we consider consists of Markov-Switching GARCH
Models (MS-GARCH), where variance is time-varying in each regime. Here,
there is persistence in shocks as well as in regime changes persistence. The
general MS-GARCH expression is [53, 54]:

yt| (St = k, It−1) ∼ D (0, hk,t, ξk) (10)

hk,t ≡ h (yt−1, hk,t−1, θk) (11)

where D (0, hk,t, ξk) is a density (PDF) with a zero mean, time-varying
variance hk,t and additional shape coefficients (see Table 2) contained in the
vector ξk. Similar to MSwM, the latent variable St is also a first-order ergodic
homogeneous Markov chain defined on the discrete space k = 1, 2, with p11
and p22 belonging to the transition probability matrix P. The information set
available as of period t − 1 is represented by the vector It−1 ≡ (yt−i, i > 0),
and hk,t is the variance of yt conditional on the realization of St and It−1

as described by a GARCH family model. This conditional variance hk,t is
defined by equation (11), with a regime-dependent vector of coefficients θk that
was previously described in equation (1) and in Table 1 (different GARCH
specifications).

max lnL (ψ|I) ≡ max

T∑
t−1

ln f (yt|ψ, It−1) (12)

Lastly, let ψ ≡ (θ1, θ2, ξ1, ξ2, P ) be the vector of model coefficients for two
regimes. These are estimated by maximizing the log-likelihood equation (12)
using numerical methods, where f (yt|ψ, It−1) is the conditional density of yt
given the vector of coefficients ψ and past observations contained in It−1.
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3 Data and Methods

We collected our main data from Yahoo! Finance. The sample period runs
from August 1st 2019 to February 18th 2022. The reason why the sample
begins in 2019 is to allow for a pre-COVID-19 “normal” period, which we use
to estimate the volatility models and obtain “baseline” results prior to the
impact of COVID-19. With the up-to-date series, we can estimate new models
that account for the impact of COVID-19.

This data sample consists of 669 daily observations of the stock market
level for each of the 16 stock indices over three continents. In total, there
are 10,704 observations. For this task, we used the pdfetch R library [55]. As
shown in Table 3, these stock indices account for nearly 70% of global stock
market capitalization (by value). Using a spline interpolation procedure from
the imputeTS R library, we filled the missing values in these time series [56].
Finally, we computed the daily price log-returns for all stock indices and report
their descriptive statistics in Table 4.

Table 3 Selected stock markets and their corresponding stock indices from Yahoo! Finance

Continent Region Symbol Index Name Index Symbol

Europe England UK FTSE 100 FTSE
Eurozone Euro EURO STOXX 50 STOXX50E
Norway NOR Oslo Exchange All Share Index OSEAX
Germany DEU DAX Performance Index GDAXI
Spain ESP IBEX 35 IBEX
Swiss CHE Swiss Stock Market Index SSMI

Asia Australia AUS All Ordinaries AORD
China CHN Shanghai Composite Index SSEC
Hong Kong HK Hang Seng Index HSI
India IND NIFTY 50 NSEI
Korea KOR KOSPI Composite Index KS11
Japan JPN Nikkei 225 N225

America Brazil BRA BVSP BOVESPA Index BVSP
Canada CAN S&P/TSX Composite Index GSPTSE
United States US S&P 500 GSPC
Mexico MEX IPC Mexico MXX

Source: Liu et al.[57].

Combinations of the equations presented in Tables 1 and 2 lead to a total
of 80 models. We estimated the coefficients of these models using the rugarch
R library [58]. Moreover, the pure Markov-Switching models described by
equations (3) – (9) generate a total of 16 models, whose coefficients were esti-
mated using the MSwM R library [59]. Lastly, the coefficients of the models
described by equations (10) – (12) were estimated using the MSGARCH R
library [60]. For this last library, we selected the ARCH, GARCH, TGARCH,
EGARCH, GJR-GARCH models and the Normal, Student-t, and GED PDFs
(as well as their asymmetric versions). With the starting point being the esti-
mation of a two-regime model, the outcome was the generation of 900 models
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resulting from different combinations. The algorithm written for this analysis
is available in the supplementary materials, for researchers aiming to reproduce
the results presented below.

4 Results and discussion

4.1 Descriptive statistics

Table 4 presents descriptive statistics for price log-returns in each of the 16
stock market indices. The indices are ranked in descending order according
to their 1% empirical VaR. Overall, these results indicate that (1) means are
usually positive and very close to zero; (2) standard deviations (SD) are larger
than means; and return distributions are (3) left-skewed and (4) leptokurtic.
Next, we apply Jarque-Bera normality and Phillips-Perron unit root tests.
For each test, the null hypothesis is rejected for all stock market indices (p-
value < 0.01). Therefore, price log-returns for all indices are stationary with
innovations than are not distributed as Normal.

Table 4 Descriptive statistics for price log-returns in 16 stock market indices

Index Mean(%) SD(%) Skewness Kurtosis VaR 5% VaR 1% Min(%) Max(%)

BVSP 0.0158 1.96 -1.65 22.14 -2.45 -5.44 -15.99 13.02
GSPC 0.0590 1.50 -1.08 20.03 -2.02 -4.52 -12.77 8.97
GSPTSE 0.0385 1.38 -1.93 37.18 -1.42 -4.39 -13.18 11.29
GDAXI 0.0329 1.48 -1.04 18.18 -2.10 -4.25 -13.05 10.41
STOXX50E 0.0296 1.46 -1.42 18.29 -2.12 -4.24 -13.24 8.83
AORD 0.0131 1.29 -1.49 15.38 -1.97 -4.24 -10.01 6.35
NSEI 0.0681 1.42 -2.02 22.17 -1.85 -4.21 -13.90 6.41
KS11 0.0461 1.31 -0.19 10.96 -1.93 -3.95 -8.77 8.25
FTSE -0.0009 1.31 -1.26 17.41 -2.00 -3.88 -11.51 8.67
OSEAX 0.0463 1.29 -1.53 14.16 -1.89 -3.86 -9.83 5.84
HSI -0.0159 1.27 -0.31 4.88 -2.14 -3.85 -5.72 4.92
IBEX -0.0062 1.53 -1.58 21.52 -2.21 -3.75 -15.15 8.23
N225 0.0345 1.28 0.06 7.91 -2.06 -3.60 -6.27 7.73
MXX 0.0400 1.18 -0.57 6.41 -1.78 -3.51 -6.64 4.18
SSMI 0.0312 1.09 -1.43 19.42 -1.62 -3.34 -10.13 6.78
SSEC 0.0263 0.99 -0.17 6.00 -1.61 -2.73 -4.60 5.55

Source: computed by the authors from Yahoo! Finance data.

It is worth pointing out here that if we look at risk measures across stock
indices, the BVSP (São Paulo, Brazil) is the stock index with the highest values
(e.g., greatest risk) whether expressed as standard deviation, maximum drop
(i.e., minimum value), or empirical VaR (1% and 5%). On the other hand,
the SSEC (Shanghai, China) is the least risky index, measured in terms of
standard deviation , maximum drop, or 1% empirical VaR.
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4.2 Results for volatility models from the GARCH family

In this section, we work with the assumption that the potential impact of
COVID-19 on stock market volatility is through long-memory persistence only.
Having verified that the series of daily log-returns are stationary, it is appro-
priate to fit each of the 80 possible model combinations from Tables 1 and
2 to the 16 stock market indices. As a result, there is a total of 1,280 esti-
mated models. Then, to determine which model best explains the evolution of
volatility in a given stock market index, we use the following filtering protocol:

1. All coefficients must be statistically significant at a 5% level, and the half-life
of shocks to variance (i.e., persistence) [50] must be less than 100 days;

2. The null (H0) should not be rejected for all VaR and ES tests [unconditional
and conditional coverage, duration of time between violations and the mean
of the shortfall violations] using in-sample data [61–64];

3. The model with the lowest Bayesian Information Criterion value is selected
[65], to avoid overfitting the data.

Figure 1 shows the daily log-return time series for each of the 16 stock
indices and also reports the best GARCH model for each market. The purple
dashed line is the 5% conditional VaR. Periods of high volatility (in red) are
the outliers obtained via Box-plot statistics. Dates when the first documented
samples of COVID-19 Variants of Concern [VoC] [23] were reported are identi-
fied using the symbols [alpha (α), beta (β), gamma (γ), delta (δ), omicron (o)].
The start of the pandemic (i.e., March 11, 2020) is identified by the symbol ©.

Fig. 1 Time series of log-returns and best GARCH model for each of the stock indexes for
the period including COVID-19. Note: The ©symbol indicates the beginning of the COVID-
19 pandemic (March 11, 2020). The (α), (β), (γ), (δ), and (o) symbols indicate the dates
when the first documented samples of COVID-19 Variants of Concern were reported.

Table 5 reports our results for the estimated long-memory models. The
columns show which model combination is optimal for a given stock index



Springer Nature 2021 LATEX template

10 Impact of COVID-19 on Stock Index Volatility ...

(GARCH model and PDF), the degree of persistence in volatility shocks (with
a value of 1 indicating that shocks are permanent), half-life (measured in days),
BIC, low and high annualized volatility, and the number of days of low and
high volatility. Details on the computation of persistence and half-life for each
GARCH model are given by Ghalanos [58].

Table 5 Results for the long-memory models, for each stock index in our sample

Index Model-PDF Pers. H2L BIC lowVol highVol Days low Days high

AORD tgarch-jsu .971 23.6 -6.6 14.3% 57.8% 622 46
BVSP nagarch-jsu .972 24.6 -5.7 21.1% 99.2% 630 38
FTSE tgarch-jsu .982 37.8 -6.4 15.9% 53.0% 620 48
GDAXI tgarch-jsu .980 33.9 -6.2 18.6% 60.4% 626 42
GSPC avgarch-jsu .977 29.3 -6.5 16.0% 72.7% 626 42
GSPTSE avgarch-sstd .977 30.3 -7.1 11.4% 68.9% 617 51
HSI nagarch-ged .878 5.3 -6.0 18.8% 39.5% 636 32
IBEX nagarch-sstd .984 43.1 -6.0 19.3% 67.1% 632 36
KS11 nagarch-snorm .933 10.0 -6.3 16.6% 49.2% 618 50
MXX garch-norm .959 16.7 -6.3 15.7% 37.6% 612 56
N225 nagarch-std .968 21.1 -6.1 17.3% 47.3% 628 40
NSEI tgarch-jsu .970 22.8 -6.3 16.8% 60.7% 623 45
OSEAX egarch-jsu .978 31.8 -6.3 16.3% 52.7% 626 42
SSEC garch-ged .936 10.5 -6.5 14.3% 27.4% 614 54
SSMI nagarch-jsu .988 57.9 -6.8 13.2% 47.3% 627 41
STOXX50E tgarch-jsu .980 33.8 -6.3 18.3% 59.2% 625 43

Note: Pers. and H2L denote Persistence and Half-Life of volatility, respectively.

Source: computed by the authors from Yahoo! Finance data.

Overall, the main message from the results shown in Figure 1 and Table 5
is as follows:

• While no single model is optimal for all markets, some are clearly more
useful than others. The TGARCH-jsu model best captures the volatility
in five stock indices, implying that volatility in several markets is fairly
similar. The NAGARCH model fits the data best for six stock indices, but
five different types of PDFs are used. The jsu distribution best captures
innovations (errors) in nine markets: Across markets, it is the distribution
that is most often optimal to describe innovations.

• The models that are optimal for our sample of indices are often different than
those reported in the prior literature (see Section 1), where the most common
ones are GARCH, EGARCH, and GJR-GARCH models using the Normal
distribution. Since asset log-returns tend to be skewed and leptokurtic, using
the Normal distribution in the maximum likelihood function could lead to an
incorrectly specified model, given that it fails to capture these two important
stylized facts;
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• We estimate the mean persistence to be .965 [SD = .028], with a mean half-
life of 27 days [SD = 13.3 days]. That is, once the shock occurs, it takes
on average almost a month for half of the effect to dissipate. The SSMI
and IBEX stock indices in Europe have the highest values, while the lowest
values are found for the HSI, KS11, and SSEC indices in Asia;

• Low annualized volatility is 16.5% [SD=2.5%] on average across indices,
while high annualized volatility is 56.2% [SD=16.6%] on average. The
GSPTSE Canadian stock index has the lowest value of “low annualized
volatility”, while the BVSP Brazilian stock index has the highest “high
annualized volatility”;

• Since the beginning of the pandemic, the 16 stock indices have recorded
more low-volatility days [mean = 623.9; SD = 6.5] than high-volatility days
[mean = 44.1; SD = 6.5]. Days with high volatility are clustered between the
beginning of the pandemic (©) and the emergence of the beta (β) variant
[in May 2020]. This result goes beyond what is presented in earlier studies
(Section 1), as it shows that the emergence of other VoC did not have much
effect on the volatility of the 16 stock indices.

Figure 2 shows, for each stock index, the News Impact Curve obtained
from the estimated GARCH models discussed above. The NIC illustrates the
effects of past positive and negative shocks εt−1 on the estimate of variance
σ2
t . The shape of the NIC is determined by which GARCH model is found to

fit the data best, and by the model parameters that are estimated.

Fig. 2 News Impact Curve obtained from GARCH models for 16 indices in our sample
during the COVID-19 period

The NIC is symmetrical in only two cases, the MXX and SSEC indices. This
means negative and positive past shocks have the same impact on present-day
conditional variance. For the other 14 indices, the effects are asymmetrical. In
the case of TGARCH and EGARCH models (e.g, AORD, OSEAX), the NIC
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is rotated clockwise due to the positive η1 coefficient, which implies that neg-
ative shocks have a greater impact on conditional variance than do positive
shocks. NAGARCH models (e.g., BVSP, HSI) always have a positive η2 coeffi-
cient, which shifts the NIC to the right. That is, negative shocks have a greater
effect on variance than do positive shocks. For AVGARCH models (e.g., GSPC,
GSPTSE), the effect on the rotation of the curve can vary. There is a clock-
wise rotation for the GSPTSE (i.e., bigger effects from negative shocks) but a
counterclockwise rotation for GSPC (bigger effects from positive shocks).

Table 6 Estimated GARCH model coefficients for each stock index in our sample

Index ω α β η1 η2 skew shape

AORD .000321 .114 .886 .743 - -1.056 1.797
BVSP .000009 .131 .785 - .658 -1.237 2.605
FTSE .000204 .077 .925 1.000 - -.516 1.604
GDAXI .000344 .129 .887 1.000 - -.471 1.406
GSPC .000435 .306 .718 -.300 1.104 -1.168 1.958
GSPTSE .000283 .198 .794 .118 .586 .697 8.096
HSI .000019 .075 .711 - 1.102 - 1.329
IBEX .000006 .118 .771 - .899 .827 5.490
KS11 .000012 .220 .667 - .453 .862 -
MXX .000005 .109 .851 - - - -
N225 .000006 .088 .794 - .988 - 6.976
NSEI .000437 .094 .899 .953 - -.968 1.878
OSEAX -.190702 .109 .978 1.554 - -.862 1.931
SSEC .000006 .089 .847 - - - 1.325
SSMI .000003 .077 .666 - 1.788 -.825 1.882
STOXX50E .000338 .128 .886 1.000 - -.685 1.540

Note: the skew and shape are the PDF coefficients, as appropriate.

Source: computed by the authors from Yahoo! Finance data.

Finally, Table 6 presents estimated coefficients for the best-fitting GARCH
models [equation 1] for each stock index, while respecting the restrictions of
each model as described in Table 1 and the probability distribution functions
in Table 2.

4.3 Results for the pure Markov-Switching models

In this section, we assume that the impact of COVID-19 on volatility is only
through structural breaks and not long memory. In this framework, volatility
is constant in each regime (MSwM model), as shown in equations (3)-(9). To
determine the best fit, we estimate 16 pure Markov-Switching models for each
stock index. The selection criteria are simply that the null the H0 cannot be
rejected for all VaR and ES tests applied to the in-sample data.

Figure 3 shows that the estimated models meet the selection criteria in
only 11 out of 16 stock indices. Thus, using a pure Markov-Switching model
cannot explain volatility in five stock markets. The purple dashed line is the
5% conditional VaR. This is a piecewise function since volatility is constant in
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each of the two regimes. Unlike Figure 1, here the results suggest that periods
of high volatility occurred not only with the beginning of the pandemic, but
also with the emergence of subsequent VoC. This is mainly the case for the
stock indices STOXX50E, GDAXI, GSPC, FTSE, and OSEAX. However, the
intensity is lower than for the first wave of contagion.

Fig. 3 Time series of log-returns and best pure Markov-Switching model for each of the
stock indexes for the period including COVID-19. Note: In five stock indices, no MSwMmeets
the selection criteria. The ©symbol indicates the beginning of the COVID-19 pandemic
(March 11, 2020). The (α), (β), (γ), (δ), and (o) symbols indicate the dates when the first
documented samples of COVID-19 Variants of Concern were reported.

Note that no country had yet started vaccinating their populations at that
time (September to November 2020). The United States were the first country
to initiate such a campaign, on December 14, 2020 [66].

Table 7 presents the results of the MSwM models. The table highlights the
low and high annualized volatility, as well as the respective number of days in
each regime. Also reported are the estimated values of remaining in the low
(p11) and high (p22) volatility regimes once they start, and the BIC.

Comparing the results of Tables 5 and 7, we can see that:

• The BIC values for the estimated MSwM models are much smaller than are
those for the long-memory models, suggesting that they better explain the
evolution of conditional volatility. This result would suggest that COVID-
19 had a greater impact on the volatility regimes than on long-memory
persistence;

• The average for low annual volatility is 12.9% [SD=3.0%], while for high
annual volatility it is 43.3% [SD=19.9%]. Compared with long-memory mod-
els, estimated volatility in MSwM models is lower on average but standard
deviations are higher. The STOXX50E European stock index has the lowest
value of “low annual volatility”, while the BVSP Brazilian stock index has
the highest value of “high annual volatility”;
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Table 7 Results of the pure Markov-switching models for 11 stock indices in our sample

Index low Vol high Vol p11 p22 Days low Days high BIC

BVSP 20.2% 102.2% 99.5% 91.7% 632 36 -3,754.4
FTSE 11.5% 38.7% 96.2% 87.0% 539 129 -4,182.6
GDAXI 10.6% 37.7% 93.5% 87.2% 457 211 -4,037.6
GSPC 10.8% 43.6% 97.3% 91.8% 507 161 -4,168.2
KS11 13.9% 43.5% 98.2% 89.7% 589 79 -4,119.9
MXX 14.7% 35.9% 99.8% 98.6% 587 81 -4,169.8
N225 14.3% 36.9% 97.2% 87.2% 571 97 -4,064.6
OSEAX 13.5% 40.0% 98.7% 94.2% 562 106 -4,142.0
SSEC 12.1% 29.3% 98.1% 89.0% 594 74 -4,359.7
SSMI 10.8% 35.1% 98.5% 93.2% 571 97 -4,423.3
STOXX50E 9.0% 33.9% 91.5% 88.6% 396 272 -4,047.8

Source: computed by the authors from Yahoo! Finance data.

• There are considerably more low volatility days [mean = 545.9; SD = 68.4]
than high volatility days [mean = 122.1; SD = 68.4] in MSwM models, even
considering the lower average value compared to long memory models.1.

However, it is important to note that the MSwM models do not work for
all stock indices. Indeed, we fail to find a suitable MSwM model for five out of
16 markets. Thus, a combination of Markov-switching and long memory seems
to be appropriate in order to obtain the best possible model.

4.4 MS-GARCH models results

In this section, we consider the possibility that COVID-19 has had an impact
on volatility through structural breaks and/or long memory persistence. We
do not restrict the possible impact to just one or the other, but rather we let
the data lead to the best fitting model. This leads to a total of 900 possible
combinations as explained in Section 3. We estimate the 900 models for each
of the 16 stock indices, which generates a total of 14,400 estimated model
outcomes.

To determine the best model to explain volatility in each stock index, we
apply the following filtering protocol:

1. All coefficients must be statistically significant at a 5% level;
2. The number of low-volatility days must be greater than or equal to the

number of high-volatility days, to be consistent with the evidence shown in
subsections 4.2 and 4.3;

3. The null (H0) for all VaR and ES tests should not be rejected using in-
sample data;

1This difference in mean values is a consequence of the use of the first order homogeneous ergodic
Markov chain, which can better capture the regime-switching moments throughout the historical
series than the identification of outliers via Box-plot statistics, as with the long memory models
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4. The annual volatilities for both regimes must not be 0, and the annual
volatility of the first regime (“low”) must be less than that of the second
regime (“high”);

5. The probabilities of staying in the original regime, p11 and p22, must be
higher than 85%;

6. The half-life of volatility persistence should be less than 100 days, and the
volatility half-life of the first regime must be less than that of the second
regime;

7. The model with the highest mean (p11, p22) should be selected because
the higher this value, the more persistent the regime. Otherwise, regime-
switching might occur too often, which would not be plausible for MS-
GARCH models, as even a single-regime GARCH model could perform
better to explain periods of high and low volatility in stock indices [67];

Figure 4 shows the best-fitting models that meet the filtering protocol for
each of the 16 stock indices. The purple dashed line is the 5% conditional VaR.
The sub-figure headers show that the eGARCH model often performs best
(n = 16), as does the sstd distribution for innovations (n = 10). As with Figure
3, there are periods of high volatility with the emergence of the alpha, delta,
and gamma VoC for some of the the stock indices (AORD, FTSE, GDAXI,
KS11, NSEI, and SSMI). However, the intensity of the volatility spike is less
than the spike caused by the first wave of the contagion.

Fig. 4 Time series of log-returns and best Markov-Switching-GARCH combination model
for each of the stock indexes for the period including COVID-19. Note: Two GARCH spec-
ifications are reported for each stock index, one for each volatility regime. The ©symbol
indicates the beginning of the COVID-19 pandemic (March 11, 2020). The (α), (β), (γ), (δ),
and (o) symbols indicate the dates when the first documented samples of COVID-19 Vari-
ants of Concern were reported.

Figure 4 also shows that there is no high volatility regime that is recorded
after the emergence of the omicron variant, except for the GSPTSE and NSEI
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indices (and once more, with lower intensity). For all stock indices except one
(GSPTSE), the best-fitting GARCH model for low volatility is different than
the best model for high volatility.

Figure 5 shows the News Impact Curves obtained for each stock index. In
each sub-figure there are two curves, one for the low-volatility regime and one
for the high-volatility regime. The NIC displays the effects of past positive
and negative shocks εt−1 on the conditional variance estimate σ2

t . Based on
the same estimation results, Table 8 reports details for the models that best
fit the data for each stock index. [68] provides details on how to calculate the
results in the table.

Fig. 5 News Impact Curve obtained from MS-GARCH models for 16 indices in our sample
during the COVID-19 period

The shape and curvature of the NIC are determined by the the
persistence/half-life of each model and the coefficients described in equation
(1). In particular, we should look at coefficients that capture the effects of sign
(η1) and magnitude (α) on volatility since their interpretation varies according
to the selected function.

If we consider persistence/half-life as shown in Table 8, the values for low
volatility regimes are lower than those for high volatility regimes for all stock
indices. This is as expected given the restrictions of the filtering protocol.
Moreover, negative shocks cause more significant impacts on volatility than
do positive shocks, except for models that stipulate symmetrical shock effects
(sARCH and sGARCH).

Interestingly, the intensity of shocks is not always more significant in high
volatility regimes. In the case of AORD stock index, for instance, the best
model for both regimes is the eGARCH. Here, negative shocks are more impor-
tant in the low volatility regime. However, the half-life of these shocks is almost
six times smaller than shocks in the high volatility regime. Results are similar
for the FTSE, GSPC, and SSMI indices.
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Table 8 Estimated results and coefficients for the MS-GARCH models for all stock
indices in our sample

Index Model-PDF Pers. H2L ω α β η1 skew shape BIC P

AORD
egarch-sstd .888 5.9 -1.099151 .114 .888 1.725 .663 8.312

-4,365.3 0.997
egarch-snorm .980 34.5 -0.178424 -.062 .980 3.166 .697 -

BVSP
gjrgarch-sged .963 18.2 0.000007 .020 .880 1.617 .804 1.591

-3,774.0 0.977
gjrgarch-snorm .989 64.9 0.000019 .127 .628 1.156 .552 -

FTSE
egarch-sstd .879 5.4 -1.150173 .022 .879 13.621 .804 3.738

-4,236.6 0.997
egarch-ged .970 23.0 -0.254639 -.146 .970 .402 - 1.211

GDAXI
sarch-sstd .332 0.6 0.000063 .332 - - .805 4.915

-4,073.2 0.997
egarch-sstd .980 34.1 -0.161594 -.086 .980 2.179 1.013 3.069

GSPC
egarch-snorm .864 4.7 -1.276956 .289 .864 .910 .683 -

-4,287.8 0.993
egarch-sstd .956 15.2 -0.353842 -.210 .956 1.544 .873 4.334

GSPTSE
sgarch-sstd .935 10.4 0.000004 .062 .874 - .766 7.626

-4,666.9 0.986
sgarch-sstd .989 64.9 0.000006 .610 .380 - .553 7.052

HSI
gjrgarch-ged .813 3.3 0.000024 .040 .738 1.002 - 1.311

-3,970.2 0.994
egarch-snorm .922 8.5 -0.687551 -.266 .922 1.460 .373 -

IBEX
sarch-std .173 0.4 0.000099 .173 - - - 4.769

-3,963.9 0.996
egarch-snorm .920 8.4 -0.609117 -.248 .920 .622 .845 -

KS11
tgarch-std .757 2.5 0.001346 .101 .757 1.000 - 99.336

-4,134.7 0.996
egarch-sged .840 4.0 -1.341366 .443 .840 .513 .787 1.479

MXX
tgarch-snorm .036 0.2 0.009100 .022 .003 -.995 .990 -

-4,106.6 0.997
sarch-sstd .966 19.8 0.000316 .966 - - .971 5.003

N225
gjrgarch-sged .532 1.1 0.000055 .079 .383 1.000 .909 1.492

-4,066.6 0.994
egarch-snorm .978 31.2 -0.197241 -.010 .978 23.279 .999 -

NSEI
egarch-sged .921 8.5 -0.743769 .148 .921 1.486 .928 1.931

-4,180.8 0.979
gjrgarch-sstd .964 18.9 0.000006 .030 .914 1.042 .484 5.416

OSEAX
sgarch-ged .908 7.2 0.000008 .066 .842 - - 1.249

-4,155.6 0.992
egarch-norm .919 8.3 -0.627279 -.185 .919 1.150 - -

SSEC
gjrgarch-std .894 6.2 0.000008 .039 .819 1.002 - 7.897

-4,304.1 0.980
gjrgarch-sged .980 34.3 0.000024 .000 .753 402.016 .921 0.725

SSMI
egarch-sstd .817 3.4 -1.792510 .077 .817 4.151 .740 8.069

-4,476.2 0.995
egarch-std .983 40.0 -0.166350 .037 .983 7.331 - 4.777

STOXX50E
tgarch-std .845 4.1 0.000493 .182 .845 1.000 - 4.336

-4,126.4 0.994
egarch-std .955 14.9 -0.367268 -.194 .955 0.029 - 19.837

Note: for all columns except Index and BIC, top/bottom models stands for low/high volatility

models. Pers, H2L and P means Persistence, Half-Life and Probability mean (p11, p22).

Source: computed by the authors from Yahoo! Finance data.

Some care is required to properly interpret the different models. For
eGARCH models, if we multiply |α| by −η1, we obtain the θ coefficient of the
original model due to [41], which captures the effect of the signal on volatil-
ity. Thus, for the SSMI stock index, the low volatility regime [-.321] causes a
more significant impact than the high volatility regime [-.273] when the return
is negative. Results are similar for the AORD and FTSE indices.

As for the GSPC index, although η1 is smaller in the low volatility regime,
its |α| is more significant than in the high volatility regime. This result indicates
that a shock has a greater impact on volatility in the low-volatility regime for
log-returns below -5%. However, it has a half-life that is about three times
shorter than for shocks under high-volatility.
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In the case of the N225 index, we can use the expression α (1 + η1)
2
to

obtain the g1+g2 coefficient found in the original model due to [42] when εt < 0.
The leverage effect in low volatility [.317] is stronger than in high volatility [-
.230], where the EGARCH model fits the data better, but the half-life is about
28 times shorter.

To conclude, averaging across markets, low-regime volatility is 15.6%
[SD=2.8%] with 508.6 days [SD=96.9] low-volatility days. In contrast, high-
regime volatility is 37.9% [SD=16.3%] on average with 159.4 high-volatility
days [96.9]. The BIC values of the MS-GARCH models are also much smaller
than those for the long-memory models, which supports the earlier finding that
a Markov-Switching component is important to model stock market volatility,
and that COVID-19 had an impact on volatility through the probabilities and
intensities of the two regimes.

4.5 Which model should we choose?

Since the Markov-Switching (MS) models have a much smaller BIC than do
the models from the long-memory GARCH family, it is fair to conclude that
they perform better to explain the volatility of stock indices. The next step is
to choose the best MS model for each stock index, by comparing the results
shown in Tables 7 and 8.

If we adopt the BIC as a decision criterion, the MSwM is the best model
for the MMX and SSEC indices, while the MS-GARCH model is the best for
the other 14 indexes. On the other hand, if we use as a criterion the mean
(p11, p22), then the MS-GARCH model is the best for all indices. Also note that
while there was at least one MS-GARCHmodel specification that respected the
filtering protocol for all stock indices, the MSwM failed to yield an acceptable
model for five of the indices. Therefore, MS-GARCH models seem to be the
best at explaining the fundamental structure of stock index volatility during
the COVID-19 period.

4.6 The relationship between COVID-19 cases and stock
index volatility

Figures 6 and 7 show the evolution in confirmed COVID-19 cases for each of
the 16 countries in our sample (as shown in Table 3) for 2020 and 2021-2022,
respectively. We collected the data using the tidycovid19 R library [69]. We
split the data in two for purposes of generating the figures, because the scale
of transmission was higher in 2021-2022 due to the high transmissibility of the
omicron variant [70].

In the case of the Eurozone (Stoxx50E index), we build the curve represent-
ing the growth in COVID-19 cases by aggregating data from the 19 countries
that compose it.2

2The countries are: Belgium, Germany, Ireland, Spain, France, Italy, Luxembourg, the Nether-
lands, Austria, Portugal, Finland, Greece, Slovenia, Cyprus, Malta, Slovakia, Estonia, Latvia, and
Lithuania.
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Fig. 6 Confirmed COVID-19 cases and stock index volatility regime in 2020

In each sub-figure, the curve representing the growth in COVID-19 cases is
colored black or red depending on the stock market index volatility regime (low
or high), as determined by the MS-GARCHmodels presented in subsection 4.4.
As before, we mark with a symbol the date of the first documented samples
of each Variant of Concern [VoC] [23].3

A visual inspection makes it clear that the relationship between COVID-19
cases and volatility regimes was quite different in 2020 as opposed to 2021-2022.

In 2020, many stock indices were in the high volatility regime for most of
the year as the number of new cases increased (AORD, GDAXI, NSEI, KS11,
SSMI, and FTSE). Yet, most stock indices were in the low volatility regime

3These VoC are [alpha (α), beta (β), gamma (γ), delta (δ), omicron (o)], and the beginning of
the pandemic (March 11, 2020) is identified by the symbol ©.

Fig. 7 Confirmed COVID-19 cases and stock index volatility regime between January 2021
and February 2022
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most the year, despite the emergence of new VoC and increasing cases of
COVID-19 (BVSP, GSPTSE, SSEC, STOXX50E, HSI, N225, MXX, OSEAX,
IBEX, and GSPC). Thus, countries with distinct social structures, lifestyles,
and cultural backgrounds tend to adopt different policies to delay the spread
of COVID-19, trying to balance their culture and policy [71].

Between January 2021 and February 2022, vaccination rates advanced in
all countries in our sample. All stock indices stayed in the low volatility regime
most of the year or the entire year, despite the high transmissibility of the
omicron variant that initiated a new wave of contagion. In only two countries,
Canada [GSPTSE] and India [NSEI], do we see a link between the omicron
variant and a high volatility state. In Australia [AORD] and South Korea
[KS11], there are brief periods of a high volatility regime early in 2021, but
these do not coincide with omicron.

Overall, the results shown in Figures 6 and 7 strengthen the evidence from
Figure 4, namely that the greatest occurrence of high volatility regimes across
stock indices happened between the time of the emergence of the COVID-19
pandemic and the appearance of the Beta variant. In contrast, the emergence
of new variants had a much smaller impact on stock market volatility.

5 Final remarks

The purpose of this study was to find, for each of 16 countries, the best
model to describe the impact of COVID-19 on stock index volatility. Our
empirical approach allows for flexibility to assess whether the impact caused
long-memory persistence, structural breaks, or both.

To our knowledge, this is the most comprehensive empirical study to date
on the impact of COVID-19-related shocks to financial market volatility, in
terms of scope (number of country stock indices) and model flexibility (num-
ber of specifications allowing for different volatility processes and innovation
distributions). In particular, our approach allows for combining long memory
persistence with Markov-switching for different volatility regimes. We find that
both features are empirically important in our sample.

First, for each market index we fit price log-return time series data to the
best individual GARCH model (out of many possible candidates). We find the
best model using three steps: statistical significance, tests that ensure that we
respect Value at risk and Expected shortfall exceedance rates, and attaining
the lowest Bayesian Information Criterion value.

We find that while no single GARCH specification best captures volatil-
ity in all 16 stock indices, ten stock indices are well described by either the
Threshold GARCH (TGARCH) or the NAGARCH model. As for innovations,
for nine stock indices the best assumption is the Johnson reparameterized SU
distribution, which is a transformation of the Normal distribution that allows
for greater kurtosis.

For most stock indices, volatility is persistent with a half-life of shocks
around 20-40 days (i.e., 1-2 months). A notable exception is the HSI (Hong
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Kong) with a half-life of only 5.3 days. In general, volatility is more persistent
in European markets and less persistent in Asian markets.

In addition, we find that high volatility is clustered in the period between
the beginning of the COVID-19 pandemic and the emergence of the Beta
variant. Indeed, other variants of concern did not have sizable impacts on
volatility. We obtain News Impact Curves from the different GARCH models
to assess the impact of past shocks on volatility. For 14 of 16 stock indices, this
curve is asymmetrical, implying that negative shocks increase volatility more
than do positive shocks.

The Markov-switching models allow for sharp breaks in volatility, thus
distinguishing between regimes. Among our findings, the BVSP (Brazil) index
has the highest overall volatility but interestingly, spends the most time in
the low-volatility regime and the fewest days in the high-volatility regime. In
contrast, the STOXX50E (Euro zone) index has the lowest overall volatility,
but spends the most days in the high-volatility regime and the fewest in the
low-volatility regime.

Therefore, the results showed that COVID-19 affected long-memory persis-
tence as well as regime-switching in the volatility of major world stock indices.
The impacts on volatility differed between stock indices, which required specific
model-distribution configurations to better capture the stylized facts described
in the literature.

To this end, we combine the two frameworks. We find that the EGARCH
specification is best suited for most markets (16 indices), as is the skewed
student-t distribution (10 indices). As in the baseline GARCH analysis, the
NIC is asymmetrical for most indexes, with negative shocks having a more
significant impact on volatility than positive shocks.

Moreover, we show that the News Impact Curves are quite different in high
and low volatility regimes. In all indices, the NIC is steeper in one regime than
the other. Interestingly, it is not always steeper in the high volatility regime.
For nine markets, the NIC is steeper in the high regime, but in seven markets,
it is steeper in the low volatility regime. Overall, the combined MS-GARCH
model performs better than using only a MSwM or single GARCH model.

We find that the main impact of COVID-19 on stock index volatility
occurred in the first wave of contagion. Although there is some evidence of
other effects of COVID-19 on stock index volatility linked to the emergence of
new variants, they were less intense or even hardly detectable.

In methodological terms, our study also contributes by presenting new
filtering protocols, written in freely available software. They allow for broader,
more sophisticated, and efficient model selection to apply to different assets
such as stock indices.
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