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Lipschitz constant log n

almost surely suffices for

mapping n grid points onto a cube.

Michael Dymond

29th October 2020

In 2018, the author, Kaluža and Kopecká showed in [3], that the best
Lipschitz constant for mappings taking a given nd-element set in the integer
lattice Z

d, with n ∈ N, surjectively to the regular n times n grid {1, . . . , n}d
may be arbitrarily large. However, there remains no known, non-trivial
asymptotic bounds, either from above or below, on how this best Lipschitz
constant grows with n. We approach this problem from a probabilistic point
of view. More precisely, we consider the sequence space of all possible se-
quences in which the nth term is a configuration of nd points inside a given
finite lattice. Equipping such spaces with their natural probability measure,
we establish almost sure, asymptotic upper bounds of order log n on the best
Lipschitz constant of mappings taking the nth element of the set sequence,
that is an nd-element subset of the given finite lattice, surjectively to the
regular n times n grid {1, . . . , n}d.

1 Introduction

Fix a dimension d ≥ 2. For each n ∈ N, we define a mapping Fn :
(
Zd

nd

)
→ (0,∞) by

Fn(S) = min
{
Lip(f) : f : S → {1, . . . , n}d surjective

}
, S ∈

(
Z
d

nd

)
.

The quantity Fn(S) can be thought of as a quantification of how much the set S differs
from the regular n × n grid. In the 1990’s Feige asked the question of whether the
sequence

Fn := sup
S∈(Z

d

nd)

Fn(S), n ∈ N, (1.1)

The author acknowledges the support of Austrian Science Fund (FWF): P 30902-N35.
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is bounded. In other words, Feige’s question asks whether there is some absolute constant

L > 0 so that for any n ∈ N and any set S ∈
(
Z
d

nd

)
there exists a bijection S → [n]d with

Lipschitz constant at most L.
The paper [3] of the author, Kaluža and Kopecká provides a negative answer to Feige’s

question, proving that lim supn→∞Fn = ∞. However, [3] fails to impose any non-trivial
asymptotic bounds on the Feige sequence (Fn). This provides the motivation for the
present work.

In order to prove that lim supn→∞Fn = ∞, [3] uses a strategy introduced by McMul-
len [5] and Burago and Kleiner [1] which allows for the translation of discrete Lipschitz
problems to the continuous setting. The aforementioned authors developed this strategy
in order to answer a long standing open question of Gromov [4], namely whether every
two separated nets in Euclidean space are bilipschitz equivalent. McMullen [5] and
Burago and Kleiner [1] introduce methods of encoding measurable density functions
ρ : [0, 1]d → (0,∞) as separable nets in R

d and use these to prove that Gromov’s ques-
tion about separated nets is equivalent to the question of whether every bounded density
ρ : [0, 1]d → (0,∞) admits a bilipschitz solution f : [0, 1]d → R

d to the pushforward
equation

f♯ρL|[0,1]d = L|f([0,1]d). (1.2)

McMullen [5] and Burago and Kleiner [1] then resolve Gromov’s question negatively by
constructing ρ for which (1.2) has no bilipschitz solutions. For the negative answer to
Feige’s question, the authors and Kopecká constructed ρ so that (1.2) additionally has
no solutions in the larger class of Lipschitz mappings f : [0, 1]d → R

d. Moreover, in a
recent paper [2], the author and Kaluža find densities ρ for which (1.2) has no solutions
in the class of homeomorphisms f : [0, 1]d → R

d for which both f and f−1 have modulus

of continuity bounded above by ω(t) = t log
(
1
t

)ϕ0(d) where ϕ0(d) → 0 as d → ∞.
The latter result hints towards an asymptotic lower bound of the form

Fn ≥ (log n)ϕ0(d) (1.3)

on the Feige sequence (Fn). In [2] the author and Kaluža observe that if ρ may ad-
ditionally be constructed so that (1.2) has no solutions f in the larger class of map-
pings where the homeomorphism condition (and the condition on f−1) is dropped,
i.e. the class of mappings [0, 1]d → R

d with modulus of continuity bounded above by

ω(t) = t log
(
1
t

)ϕ0(d), then the asymptotic bound (1.3) is valid along a subsequence of the
Feige sequence (Fn).

In this note we identify certain types of discrete set sequences (Sn) ∈ ∏∞
n=1

(
Z
d

nd

)

for which we are able to provide a non-trivial asymptotic upper bound on (Fn(Sn)).
Furthermore, we show that these sequences (Sn) occur with high probability, in a sense
to be made precise shortly. We hope that this could be a step towards establishing
bounds on the Feige sequence (Fn). Note that the latter requires bounding the growth

of (Fn(Sn)) for a general sequence (Sn) ∈
∏∞

n=1

(
Zd

nd

)
.

To determine the n-th Feige number Fn, observe that it suffices to consider only sets

S ∈
(
Z
d

nd

)
which lie inside the finite cubic grid

{
1, . . . , nd

}d
of side length nd. Put dif-

ferently, the supremum in (1.1) remains unchanged if the integer lattice Z
d is replaced
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by the finite grid
{
1, . . . , nd

}d
. This holds because any set S ∈

(
Zd

nd

)
may be mapped

via a 1-Lipschitz, injective mapping to a subset of
{
1, . . . , nd

}d
: simply take out empty

hyperplanes, contract and translate. Thus, to establish asymptotic bounds on the Feige
sequence (Fn) it suffices to provide asymptotic bounds on Fn(Sn) for an arbitrary se-

quence (Sn) belonging to the sequence space
∏∞

n=1

({1,...,nd}d

nd

)
.

Restricting our attention to configurations of nd points inside a finite cubic grid, instead
of inside the entire the integer lattice, naturally invites a probabilistic approach. We can
think of each possible configuration of the nd points in the finite cubic grid as occurring

with equal probability. Taking large cubic grids, such as the grid
{
1, . . . , nd

}d
discussed

above, we would expect to see configurations of nd points being very spread out with
high probability, leading to Fn being uniformly bounded independent of n with high
probability. Thus it makes sense to consider the problem in all smaller cubic grids of
side length cn for all c > 1. Hence, the family of all viable sequence spaces in which it
makes sense to study the probabilistic growth of Fn(Sn) for a random sequence (Sn) can
be described by

G(cn) :=

∞∏

n=1

({1, . . . , ⌊cn · n⌋}d
nd

)
, (1.4)

for sequences (cn) of real numbers with cn ≥ 1 for all n. Note that for all sequences (cn)
with 1 < inf cn ≤ sup cn < ∞, the methods of [3] establish that there are sequences (Sn) ∈
G(cn) for which lim supn→∞ Fn(Sn) = ∞. Whilst our current methods do not allow for a
non-trivial bound on the asymptotic growth of Fn(Sn) for the general sequence (Sn) ∈
G(cn), we do obtain a bound which holds ‘almost surely’ in spaces G(cn) corresponding to
any sequence cn ≥ 1 which does not converge to 1 too quickly, in a specific sense. More
generally, there is less known in the case of sequences (cn) converging to one. It is not
known for which sequences cn ց 1 the sequence space G(cn) contains a sequence (Sn)
such that lim supn→∞ Fn(Sn) = ∞.

The notion of ‘almost surely’ refers to the uniform probability measure on the sequence
space G(cn). In the present work we only consider one type of probability space, namely
that given by a product of finite sets equipped with the uniform probability measure. If
X is a finite set, we consider the uniform probability measure on (X, 2X ) defined by

PX(A) =
|A|
|X| , A ⊆ X, (1.5)

where |−| denotes the cardinality. Secondly, if Y =
∏∞

n=1Xn, where each Xn is a finite
set, we define the uniform probability measure on Y by

PY :=
∞∏

n=1

PXn . (1.6)

Since it will always be clear from the context which probability space we are working
in, we will always just write P (without a subscript) to denote the uniform probability
measure.
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We are now ready to state the main result1 of this note:

Theorem 1.1. Let d ∈ N with d ≥ 4 and (cn) be a sequence of positive real numbers

cn ≥
(
1 + 2d+5

log n

)1/d
. For each n ∈ N, let the mapping Fn :

(
Zd

nd

)
→ (0,∞) be defined by

Fn(S) = min
{
Lip(f) : f : S → {1, . . . , n}d surjective

}
, S ∈

(
Z
d

nd

)
.

Then a random sequence in the probability space G(cn), defined by (1.4), (1.5) and (1.6),
satisfies

P

[
lim sup
n→∞

Fn(Sn)(log n)
−1 < ∞

]
= 1.

In addition, we identify certain real sequences (cn) for which Theorem 1.1 may be
improved. For these sequences, we establish a stronger, almost sure, asymptotic upper
bound on Fn(Sn) of order (log n)α/d, which we emphasise is dependent on the dimension
d. Moreover, the inequality (1.7) in the following statement indicates, that such sequences
cn ≥ 1 may be chosen, in a sense, asymptotically equivalent to any given sequence en ≥ 1.

Theorem 1.2. Let d ∈ N with d ≥ 2 and (en) be a sequence of positive real numbers
en ≥ 1. Then there exists a sequence (cn) of positive real numbers cn satisfying

|cn − en| ≤
2d+8

(log n)1/d
, (1.7)

such that the following statement holds: For each n ∈ N, let the mapping Fn :
(
Zd

nd

)
→

(0,∞) be defined by

Fn(S) = min
{
Lip(f) : f : S → {1, . . . , n}d surjective

}
, S ∈

(
Z
d

nd

)
.

Then a random sequence in the probability space G(cn), defined by (1.4), (1.5) and (1.6),
satisfies

P

[
lim sup
n→∞

Fn(Sn)(log n)
−α
d < ∞

]
= 1

for all α > 3.

Roughly speaking, Theorem 1.2 tentatively supports the conjecture of an upper bound
of order say (log n)4/d on the Feige sequence (Fn). This is interesting because it coincides
in form with the conjectured lower bound of order (log n)ϕ(d), where limd→∞ ϕ(d) = 0,
coming from the completely independent results of [2].

1We actually prove a slightly more general, but more technical statement which covers dimensions 2

and 3; see Theorem 5.1.
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2 Preliminaries, Convention and Notation.

Let us quickly summarise some basic notation which may not be completely standard.
The dimension d of the Euclidean space R

d in which we work will be considered fixed
throughout the whole paper. Thus, all objects defined in the paper should be thought of
as having a suppressed subindex d; for example Fn = Fn,d and G(cn) = G(cn),d. For a set

A and k ∈ N we let
(A
k

)
denote the set of all subsets of A with precisely k elements. Given

t ≥ 0 we write ⌊t⌋ for the integer part of t and [t] for the set of integers {1, 2, . . . , ⌊t⌋}.
The symbol L will denote the Lebesgue measure. Since powers of 2 arise frequently in
the calculations we take, for convenience, the logarithm function log with base 2. We
will also write exp(x) to denote 2x.

Given a measure µ on [0, 1]d, we call a collection T of subsets of [0, 1]d a µ-partition
of [0, 1]d if µ

(
[0, 1]d \⋃ T

)
= 0 and µ(T ∩ T ′) = 0 for all T, T ′ ∈ T with T 6= T ′. For

each k ∈ N we let

Tk =

{
d∏

i=1

(
pi
k
,
pi + 1

k

]
: p1, . . . , pd ∈ {0, 1, . . . , k − 1}

}
, (2.1)

Note that each Tk is, in particular, an L-partition of [0, 1]d.
The next lemma is our main mechanism for relating measures to the question of best

Lipschitz constants for mappings of finite sets.

Lemma 2.1. Let µ, ν be Borel probability measures on the unit cube [0, 1]d. Let n ∈ N,
T be a finite µ-partition of [0, 1]d, c > 1 and

X ⊆ 1

cn
Z
d ∩
⋃

T , Y ⊆ 1

n
Z
d ∩ [0, 1]d

be finite sets such that

µ(T ) ≥ 1

nd
|X ∩ T | , for every T ∈ T , and (2.2)

ν(E) ≤ 1

nd

∣∣∣∣
{
y ∈ Y : d∞(y,E) ≤ 1

n

}∣∣∣∣ for every ν-measurable E ⊆ [0, 1]d, (2.3)

where d∞ denotes the distance induced by the norm ‖−‖∞. Let f : [0, 1]d → [0, 1]d be
a Lipschitz mapping with f♯µ = ν. Then there exist a constant Λ = Λ(d) > 0 and an
injective mapping g : X → Y with

Lip(g) ≤ Λmax {1,Lip(f)} c
(
n ·max

T∈T
diamT + 1

)
.

Proof. For a point x ∈ X we denote by T (x) a choice of set T ∈ T which contains x. We
further define a set valued mapping R : X → 2Y by

R(x) =

{
y ∈ Y : d∞(y, f(T (x))) ≤ 1

n

}
.
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In what follows we obtain an injective mapping g : X → Y with the property that

g(x) ∈ R(x), x ∈ X. (2.4)

We may then complete the proof in the following way. For points x, x′ ∈ X we observe
that

∥∥g(x′)− g(x)
∥∥
2
≤
∥∥g(x′)− f(x′)

∥∥
2
+
∥∥f(x′)− f(x)

∥∥
2
+ ‖f(x)− g(x)‖2

Now, from condition (2.4) we have

‖g − f‖∞ ≤ max
T∈T

diam f(T ) +

√
d

n

≤ Lip(f)
√
dmax

T∈T
diamT +

√
d

n

≤
√
dmax {1,Lip(f)}

(
max
T∈T

diamT +
1

n

)
.

Hence, using ‖x′ − x‖2 ≥ 1
cn , we obtain

∥∥g(x′)− g(x)
∥∥
2
≤ 2

√
dmax {1,Lip(f)}

(
max
T∈T

diamT +
1

n

)
+ Lip(f)

∥∥x′ − x
∥∥
2

≤ 3
√
dmax {1,Lip(f)} c

(
n ·max

T∈T
diamT + 1

)∥∥x′ − x
∥∥
2
.

It only remains to verify the existence of the mapping g. To do this we will adopt a
similar strategy to that employed in [5, Theorem 4.1]. By Hall’s Marriage Theorem it
suffices to verify that |A| ≤ |R(A)| for any set A ⊆ X.

Let A ⊆ X, T1, . . . , Tp be an enumeration of {T (x) : x ∈ A} and E :=
⋃

j∈[p] f(Tj).
Then {

y ∈ Y : d∞(y,E) ≤ 1

n

}
= R(A).

Therefore, by (2.3),

ν



⋃

j∈[p]

f(Tj)


 ≤ 1

nd
· |R(A)| . (2.5)

On the other hand, using f♯µ = ν and (2.2) we may derive

ν



⋃

j∈[p]

f(Tj)


 ≥

∑

j∈[p]

µ(Tj) ≥ 1

nd

∑

j∈[p]

|X ∩ Tj | ≥ 1

nd
· |A| . (2.6)

Combining (2.5) and (2.6) we get

|A| ≤ |R(A)| ,

as required.
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3 Well-distributed sets.

In this section we derive an upper bound on the best Lipschitz constant Fn(S) for sets

S ∈
([cn]d

nd

)
which are ‘well-distributed’ in the sense that the points are quite evenly spread

relative to the grid partition coming from Tm.

Lemma 3.1. Let m,n, l ∈ N with m = 2l ≤ n, 0 < θ < a < b < 1
θ , c > 1 and

S ⊆ Z
d ∩ [0, cn]d be a finite set with |S| = nd and

and

md
≤ |S ∩ (cn · T )| ≤ bnd

md

for all T ∈ Tm, where Tm is defined by (2.1). Then there exists a bijection g : S → [n]d

and constants Λ := Λ(d), ∆ := ∆(d, θ) with

Lip(g) ≤ Λ2logn−l(1−∆(b−a)).

Let us begin working towards a proof of Lemma 3.1. The bound will be established
by applying Lemma 2.1 in the case that ν is the Lebesgue measure on [0, 1]d and µ has
the form µ = ρL, where ρ is of the form considered in the next lemma.

Lemma 3.2. Let l ∈ N, θ ∈ (0, 1), Tk be defined by (2.1) for each k ∈ N, and ρ : [0, 1]d →
(0,∞) be a function such that ρ|T is constant for each T ∈ T2l,

∫
[0,1]d ρ dL = 1 and

θ ≤ min ρ ≤ max ρ ≤ 1
θ . Then there exists a Lipschitz mapping f : [0, 1]d → R

d and a
constant ∆ = ∆(d, θ) > 0 such that

f♯ρL = L|[0,1]d ,

and
Lip(f) ≤ (1 + ∆(max ρ−min ρ))l.

The proof of Lemma 3.2 is due to Rivieré and Ye [6]. However, there the argument is
used to prove a more general statement and Lemma 3.2 is not stated or proved explicitly.
The proof is based on the following lemma.

Lemma 3.3 ([6, Lemma 1]). Let D = [0, 1]d, A = [0, 1]d−1 ×
[
0, 12
]

and B = [0, 1]d−1 ×[
1
2 , 1
]
. Let α, β ≥ 0 be such that α+β = 1 and let η > 0 be such that η ≤ α ≤ 1−η. Then

there exists a Lipschitz homeomorphism Φ: [0, 1]d → [0, 1]d and a constant ∆ = ∆(η) such
that

(i) Φ|∂[0,1]d = id∂[0,1]d,

(ii) Jac(Φ)(x) =

{
2α if x ∈ A,

2β if x ∈ B,
for a.e. x ∈ [0, 1]d,

(iii) Lip(Φ− id) ≤ ∆ |1− 2α|.

7



Since we only require the argument of Rivieré and Ye [6] for a particular special case,
the following restricted version of the argument is more convenient for the reader.

Proof of Lemma 3.2. For each k = (k1, . . . , kd) ∈ ({0} ∪ [2i − 1])d and each i ∈ N we let

C(k, i) :=
∏

1≤j≤d

[
kj
2i
,
kj + 1

2i

]
,

define a labelling of the cubes in Tm. We define a homeomorphism Φi : [0, 1]
d → [0, 1]d

by prescribing it on each cube C(k, i).
Fix k = (k1, . . . , kn) ∈ ({0} ∪ [2i − 1])d. For each p ∈ [d] and ε = (ε1, . . . , εd) ∈ {0, 1}d

let

Ap
i (ε) =

p−1∏

1=j

[
kj
2i
,
kj + 1

2i

]
×
[
kp
2i
,
2kp + 1

2i+1

]
×

d∏

j=p+1

[
kj
2i

+
εj
2i+1

,
kj
2i

+
εj + 1

2i+1

]
,

Bp
i (ε) =

p−1∏

1=j

[
kj
2i
,
kj + 1

2i

]
×
[
2kp + 1

2i+1
,
kp + 1

2i

]
×

d∏

j=p+1

[
kj
2i

+
εj
2i+1

,
kj
2i

+
εj + 1

2i+1

]
,

αp
i (ε) =

∫
Ap

i (ε)
ρ dL

∫
Ap

i (ε)∪B
p
i (ε)

ρ dL , βp
i (ε) =

∫
Bp

i (ε)
ρ dL

∫
Ap

i (ε)∪B
p
i (ε)

ρ dL .

Note that, for each fixed p, the sets Ap
i (ε), B

p
i (ε) indexed by ε ∈ {0, 1}d form a partition

of C(k, i). More precisely, these sets have pairwise disjoint interiors their union is C(k, i).
For each j ∈ [d] we define a homeomorphism Φj

i : [0, 1]
d → [0, 1]d as follows: For

each ε = (ε1, . . . , εd) ∈ {0, 1}d define Φj
i |Aj

i (ε)∪B
j
i (ε)

as the homeomorphism given by

the conclusion of Lemma 3.3 applied with D = Aj
i (ε) ∪ Bj

i (ε), A = Aj
i (ε), B = Bj

i (ε),

α = αj
i (ε) and β = βj

i (ε). Note that here we have to use Lemma 3.3 in combination with
suitable affine transformations. Further, the parameter η in Lemma 3.3 may be taken as
η = θ2

1+θ2
and we have

|1− 2αp
i (ε)| ≤

1

2θ
(max ρ−min ρ), p ∈ [d], ε ∈ {0, 1}d .

Hence, this application of Lemma 3.3 provides a Lipschitz homeomorphism

Φj
i : A

j
i (ε) ∪Bj

i (ε) → Aj
i (ε) ∪Bj

i (ε)

with properties (i)–(iii), where (iii) translates to

Lip(Φj
i − id) ≤ ∆(max ρ−min ρ), j ∈ [d],

for a constant ∆ = ∆(θ) > 0. Due to property (i), we can glue all of these homeomorph-
isms together to obtain a homeomorphism Φj

i : [0, 1]
d → [0, 1]d with the same Lipschitz

constant. Finally set

Φi := Φd
i ◦ Φd−1

i ◦ . . . ◦ Φ1
i ,

fq := Φ1 ◦ Φ2 ◦ . . .Φq for q ∈ [l], and f := fl.

8



By induction, it is readily verified that Jac(fq)(x) = 1
L(T )

∫
T ρ dL for a.e. x ∈ T and

T ∈ T2q . Hence Jac(f)(x) = ρ(x) for a.e. x ∈ [0, 1]d and accordingly f♯ρL = L|[0,1]d.
Moreover, we have

Lip(f) ≤
l∏

q=1

Lip(Φq) ≤
l∏

q=1

d∏

j=1

Lip(Φj
q)

≤ (1 + ∆(max ρ−min ρ))ld ≤ (1 + ∆(max ρ−min ρ))l,

where in the final expression the constant ∆(θ) becomes ∆(d, θ).

Proof of Lemma 3.1. Define ρ : [0, 1]d → (0,∞) in L∞([0, 1]d) by

ρ|T ≡ md

nd
· |S ∩ (cn · T )| , T ∈ Tm.

Thus, ρ is constant on each T ∈ Tm and a ≤ ρ ≤ b. By Lemma 3.2 there exists a Lipschitz
mapping f : [0, 1]d → [0, 1]d and a constant ∆ = ∆(d, θ) such that f♯ρL = L|[0,1]d and

Lip(f) ≤ (1 + ∆(b − a))l. We may now apply Lemma 2.1 to µ = ρL, ν = L|[0,1]d , n,

T = Tm, c, X = 1
cnS, Y = 1

n [n]
d and f to get a bijective mapping g̃ : 1

cn · S → 1
n [n]

d and
a constant Λ = Λ(d) with

Lip(g̃) ≤ Λmax {Lip(f), 1} c n
m

≤ Λc2log n−l(1 + ∆(b− a))l

= Λc exp (log n− l(1− log(1 + ∆(b− a)))) ≤ Λc exp (log n− l(1−∆(b− a))) .

Finally, we define g : S → [n]d by

g(x) = n · g̃
( x

cn

)
, x ∈ S.

4 Random sequences.

In this section we show that for C > 1 and large n, a random set S ∈
([C1/dn]d

nd

)
is

well-distributed in the sense of Section 3 with high probability.

Calculating probabilities in the space
([C1/dn]d

nd

)
will inevitably lead to expressions in-

volving large binomial coefficients. To estimate these numbers, we will use the following
standard lemma which follows easily from Stirling’s approximation of the factorial.

In what follows H denotes the binary entropy function

H(t) = −t log t− (1− t) log(1− t), t ∈ [0, 1].

Later on we will use certain important properties of the binary entropy function H,
namely that it is strictly convex, differentiable and that its derivative is given by

H ′(t) = − log

(
t

1− t

)
, t ∈ (0, 1).

9



Lemma 4.1. There is an absolute constant Λ > 0 such that




Λ−1
√

p
2πq(p−q) · 2

pH
(

q
p

)

≤
(
p
q

)
≤ Λ

√
p

2πq(p−q) · 2
pH

(

q
p

)

if q ∈ [p− 1] \ {0} ,

Λ−12
pH

(

q
p

)

≤
(p
q

)
≤ Λ2

pH
(

q
p

)

if q ∈ {0, p} .
, p ∈ N.

Note that the inequalities of Lemma 4.1 for the case q ∈ {0, p} are trivial, because(p
0

)
=
(p
p

)
= 1. We write them here because we wish to treat the case q ∈ {0, p} together

with the case q ∈ [p− 1] later on.

Proof of Lemma 4.1. By Stirling’s Approximation of n! (see for example [?]), the quant-
ities

α := min
n∈N

n!√
2πn

(
n
e

)n > 0,

and

β := max
n∈N

n!√
2πn

(
n
e

)n < ∞,

are absolute constants. Let p ∈ N and q ∈ [p− 1] \ {0}. Then,
(
p

q

)
=

p!

q!(p − q)!
≤ β

α2
·
√

p

2πq(p− q)
· pp

qq(p− q)p−q
=

β

α2
·
√

p

2πq(p − q)
· 2pH

(

q
p

)

,

and similarly (
p

q

)
≥ α

β2
·
√

p

2πq(p − q)
· 2pH

(

q
p

)

.

Now let p ∈ N and q ∈ {0, p}. Then, H
(
q
p

)
= 0 and

(
p

q

)
= 1 = 2

pH
(

q
p

)

.

Therefore, we may take Λ =
max{β,β2}
min{α,α2} .

Lemma 4.2. Let I ⊆ R be an open interval, f : I → (0,∞) be a differentiable, concave
and strictly increasing function and let s, t ∈ I with s < t and let λ ∈ (0, 1). Then

f((1− λ)s + λt) ≤ f ′(s)

f ′(t)
· ((1− λ)f(s) + λf(t))) .

Proof. If the inequality holds for the function g(u) := f(u) − f(s) in place of f then it
also holds for f . This is readily verified using the concavity and positivity of f . Thus,
we may assume that f(s) = 0. This allows us to write

f((1− λ)s+ λt)

(1− λ)f(s) + λf(t)
=

∫ (1−λ)s+λt
s f ′(u) du

λ
∫ t
s f

′(u) du
≤ f ′(s)

f ′(t)
.
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Lemma 4.3. Let δ ∈ [0, 12), N ∈ N, M > 1, 1
2 < a < 1 − δ, 1 + 2δ < b < 2, X be a

finite set with |X| > bN and Y ⊆ X be a set with

(1− δ) |X|
M

≤ |Y | ≤ (1 + δ) |X|
M

. (4.1)

Then, there is an absolute constant Γ > 0 such that a random set S ∈
(X
N

)
satisfies

P

[
|S ∩ Y | ≤ aN

M

]

≤ Γ ·
√

|X| −N

|X|
(
1− 2

M

)
−N

· N
3/2

M
· exp

(
−(1− (a+ δ))2N(|X| −N)

ΓM(|X| − (a+ δ)N)

)
(4.2)

and

P

[
|S ∩ Y | ≥ bN

M

]

≤ Γ ·
√

|X| −N

|X|
(
1− 2

M

)
−N

·N3/2 · exp
(
−(b− 2δ − 1)2N(|X| − (b− 2δ)N)

ΓM(|X| −N)

)
. (4.3)

Proof. The probabilities considered in (4.2) and (4.3) are bounded above by

(|X|
N

)−1∑

k

(|Y |
k

)(|X| − |Y |
N − k

)
,

where the sum is taken over 0 ≤ k ≤ aN
M for (4.2) and over bN

M ≤ k ≤ min {N, |Y |} for
(4.3). Our first aim is to establish an upper bound for the quantity

(|X|
N

)−1(|Y |
k

)(|X| − |Y |
N − k

)
(4.4)

for 0 ≤ k ≤ min {N, |Y |}.
Fix 0 ≤ k ≤ min {N, |Y |} and define

Vk :=

{√
|Y |

k(|Y |−k) if k /∈ {0, |Y |} ,
1 if k ∈ {0, |Y |} ,

Wk :=

{√
|X|−|Y |

(N−k)(|X|−|Y |−N+k) if N − k /∈ {0, |X| − |Y |} ,
1 if N − k ∈ {0, |X| − |Y |} .

Then, we may use Lemma 4.1 to bound the product in (4.4) above by

Λ ·
(√

|X|
N(|X| −N)

)−1

VkWk · exp (− |Y | γk) , (4.5)

11



where Λ > 0 is an absolute constant and

γk :=
|X|
|Y |H

(
N

|X|

)
−H

(
k

|Y |

)
−
( |X|
|Y | − 1

)
H

(
N − k

|X| − |Y |

)
. (4.6)

The product
(√

|X|
N(|X|−N)

)−1

VkWk in (4.5) may be bounded above by

√
|Y |

|Y | − 1
·
√

N

N − (N − 1)
·
√

|X| −N

|X| −N − |Y | ≤
√
2
√
N

√
|X| −N

|X| −N − |Y | .

Therefore, we obtain an absolute constant Γ > 0 such that

(|X|
N

)−1(|Y |
k

)(|X| − |Y |
N − k

)
≤ Γ

√
N(|X| −N)

|X| −N − |Y | · exp (− |Y | γk) . (4.7)

Our task is now to establish a lower bound on γk. To this end, we rewrite the for-
mula (4.6) for γk as

γk = H

(
N

|X|

)
−H

(
k

|Y |

)
−
( |X|
|Y | − 1

)(
H

(
N − k

|X| − |Y |

)
−H

(
N

|X|

))

= H

(
N

|X|

)
−H

(
k

|Y |

)
−
(

N

|X| −
k

|Y |

)
H ′(ξk)

for some ξk lying in the interval with endpoints N
|X| and N−k

|X|−|Y | . From the bounds on

|Y |, a and b given by the hypothesis of the lemma, we have

k

|Y | <
N

|X| ≤ ξk ≤ N − k

|X| − |Y | if 0 ≤ k ≤ aN

M
, (4.8)

N − k

|X| − |Y | ≤ ξk ≤ N

|X| <
k

|Y | if
bN

M
≤ k ≤ min {N, |Y |}. (4.9)

Assume first, that 0 ≤ k ≤ aN
M . Then (4.8), together with that fact that H is strictly

concave, allows us to write

γk =

∫ N
|X|

k
|Y |

H ′(t)−H ′(ξk) dt ≥
∫ N

|X|

(a+δ)N
|X|

H ′(t)−H ′

(
N

|X|

)
dt

≥ H

(
N

|X|

)
−H

(
((a+ δ)N

|X|

)
− (1− (a+ δ))N

|X| H ′

(
N

|X|

)

= − N

|X| log
(

N

|X|

)
−
(
1− N

|X|

)
log

(
1− N

|X|

)
+

(a+ δ)N

|X| log

(
(a+ δ)N

|X|

)

+

(
1− (a+ δ)N

|X|

)
log

(
1− (a+ δ)N

|X|

)
+

(1− (a+ δ))N

|X| log

(
N
|X|

1− N
|X|

)

=

(
1− (a+ δ)N

|X|

)
log

( |X| − (a+ δ)N

|X| −N

)
+

(a+ δ)N

|X| log(a+ δ).

12



Finally, we apply Lemma 4.2 to I = (0∞), f = log, s = a and t = |X|−(a+δ)N
|X|−N in order

to bound the latter expression below by

log′
(
|X|−(a+δ)N

|X|−N

)

log′(a+ δ)
log

(
1 +

(1− (a+ δ))2N

|X| −N

)
≥ (1− (a+ δ))2N(|X| −N)

2 |X| (|X| − (a+ δ)N)
, (4.10)

where the latter inequality is derived by applying the inequality log(1 + x) ≥ x
1+x .

Similarly, if bN
M ≤ k ≤ min {N, |Y |}, we use (4.9) and the strict concavity of H to derive

γk =

∫ k
|Y |

N
|X|

H ′(ξk)−H ′(t) dt ≥
∫ (b−2δ)N

|X|

N
|X|

H ′

(
N

|X|

)
−H ′(t) dt

≥ (b− 2δ − 1)N

|X| H ′

(
N

|X|

)
−
(
H

(
(b− 2δ)N

|X|

)
−H

(
N

|X|

))

≥ −(b− 2δ − 1)N

|X| log

(
N
|X|

1− N
|X|

)
+

(b− 2δ)N

|X| log

(
(b− 2δ)N

|X|

)

+

(
1− (b− 2δ)N

|X|

)
log

(
1− (b− 2δ)N

|X|

)

− N

|X| log
(

N

|X|

)
−
(
1− N

|X|

)
log

(
1− N

|X|

)

=
(b− 2δ)N

|X| log(b− 2δ) +

(
1− (b− 2δ)N

|X|

)
log

( |X| − (b− 2δ)N

|X| −N

)

≥ log′(b− 2δ)

log′
(
|X|−(b−2δ)N

|X|−N

) · log
(
1 +

(b− 2δ − 1)2N

|X| −N

)

≥ (b− 2δ − 1)2N(|X| − (b− 2δ)N)

2 |X| (|X| −N)
. (4.11)

Finally, we substitute the lower bounds (4.10) and (4.11) for γk into (4.7), to acquire
upper bounds on the product in (4.4) in the cases 0 ≤ k ≤ aN

M and bN
M ≤ k ≤ min {N, |Y |}

respectively. Moreover, in both cases these upper bounds are independent of k. Thus,
by summing the relevant upper bounds over 0 ≤ k ≤ aN

M and bN
M ≤ k ≤ min {N, |Y |}

respectively and additionally applying the bounds on |Y | from (4.1), we establish (4.2)
and (4.3). In case of possible future relevance, we point out that the factor N3/2 in (4.3)
may be replaced by N1/2 ·min {N, |Y |}. This comes from keeping the term min {N, |Y |}
when summing over bN

M ≤ k ≤ min {N, |Y |}, rather than bounding it above by N , as we
do, for simplicity, to get (4.3).

Lemma 4.4. Let d, n,m ∈ N and C, q ∈ R with

n

2(log n)q
≤ m ≤ 2n

(log n)q
, C ≥ 1 +

2d+7

log n
,

{
q ≥ 1 if C1/dn

m /∈ Z

q > 0 if C1/dn
m ∈ Z

. (4.12)
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Let Tm be defined by (2.1). Then there exists a constant Γ = Γ(d) > 0 such that a random

set S ∈
([C1/dn]d

nd

)
satisfies

P


∃T ∈ Tm s.t.

∣∣∣S ∩
(
C1/dn · T

)∣∣∣ ≤

(
1− Γ

logn

)
nd

md




≤ ΓnΓ exp

(
−(log n)qd−2

Γ

)
(4.13)

and

P


∃T ∈ Tm s.t.

∣∣∣S ∩
(
C1/dn · T

)∣∣∣ ≥

(
1 + Γ

logn

)
nd

md




≤ ΓnΓ exp

(
−(log n)qd−2

Γ

)
. (4.14)

Proof. In the present proof, Γ will always denote a (large) constant which may depend
only on d and whose value is allowed to increase in each occurence. So, to give an example
of the use of this convention, we would write the inequality Γnd + dn ≤ Γnd for n ∈ N

instead of writing Γnd+ dn ≤ (Γ+ d)nd. Moreover, we point out that it suffices to verify
the conclusions (4.13) and (4.14) of the lemma with an additional assumption that n is
larger than some threshold depending only on d. The finitely many remaining n ∈ N

can then be treated by adjusting the constant Γ = Γ(d) if necessary. Therefore, in the
present proof, every inequality involving n should be read with an additional condition
that n is sufficiently large, where the sufficiently large condition depends only on d.

Fix T ∈ Tm and let X := [C1/dn]d and Y :=
(
C1/dn · T

)
∩X. Then,

Cnd

(
1− 2d

n

)
≤ |X| ≤ Cnd, and

Cnd

md

(
1− 2dm

n

)
≤ |Y | ≤ Cnd

md

(
1 +

2dm

n

)
.

These inequalities imply
(
1− 2dm

n

)
|X|

md
≤ |Y | ≤

(
1 + 2d+2m

n

)
|X|

md
.

In the special case that C1/dn
m ∈ Z, we note that |Y | = Cnd

md = |X|
md .

Set N = nd, M := md and δ :=

{
2d+2m

n if C1/dn
m /∈ Z

0 if C1/dn
m ∈ Z

, so that (4.1) is satisfied and

2d+1

(log n)q
≤ δ ≤ 2d+3

(log n)q
, if

C1/dn

m
/∈ Z. (4.15)
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We apply Lemma 4.3 to δ, N , M , a := 1− 2d+5

logn , b = 1+ 2d+5

logn , X and Y . After applying
the bounds or substituting the values for the parameters, the probability inequalities
(4.2) and (4.3) given by Lemma 4.3 become

P



∣∣∣S ∩

(
C1/dn · T

)∣∣∣ ≤

(
1− 2d+5

log n

)
nd

md


 ≤ Γnd/2(log n)qd exp

(
−(log n)qd−2

Γ

)
, (4.16)

and

P



∣∣∣S ∩

(
C1/dn · T

)∣∣∣ ≥

(
1 + 2d+5

logn

)
nd

md


 ≤ Γn3d/2 exp

(
−(log n)qd−2

Γ

)
. (4.17)

To aid in the verification of (4.16) and (4.17) we list the following utilised bounds on
terms from (4.2) and (4.3):

|X| −N

|X|
(
1− 2

M

)
−N

≤ 2, (4.18)

|X| −N

|X| − (a+ δ)N
≥ 1

2
, (4.19)

|X| − (b− 2δ)N

|X| −N
≥ 1

2
, (4.20)

We presently explain how to verify each of the bounds (4.18)–(4.20): For (4.18), first
note that

|X| −N

|X| (1− 2
M )−N

≤ (C − 1)

C
(
1− 2d

n

) (
1− 2

M

)
− 1

≤ C − 1

(C − 1)− C
(
2d

n + 2
M

) ,

and then observe that
2d

n
+

2

M
<

1

log n
<

C − 1

2C
.

For (4.19), observe that

|X| −N

|X| − (a+ δ)N
≥

C
(
1− 2d

n

)
− 1

C − (a+ δ)
,

and the inequality
C
(

1− 2d

n

)

−1

C−(a+δ) ≥ 1
2 is equivalent to

C ≥ 1− (a+δ)
2

1
2 − 2d

n

= 1 +

2d+4

logn − δ
2 + 2d

n

1
2 − 2d

n

,

which evidently holds, in light of (4.12) and (4.15). The verification of (4.20) can be
done similarly to that of (4.19).

Having established (4.16) and (4.17), we obtain (4.13) and (4.14) by summing (4.16)

and (4.17) over T ∈ Tm and applying the bound |Tm| = md ≤ 2dnd

(logn)qd
.
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5 Proof of Main Results.

To finish this note, we give a proof of Theorems 1.1 and 1.2. In the case of Theorem 1.1, we
will actually prove a slightly more general statement which includes dimensions d = 2 and
d = 3. Since this makes the formulation of the statement somewhat more cumbersome,
we decided to state Theorem 1.1 in the introduction only for dimensions d ≥ 4.

Theorem 5.1. [Slightly stronger than Theorem 1.1] Let d ∈ N with d ≥ 2, (cn) be a

sequence of real numbers cn ≥
(
1 + 2d+7

logn

)1/d
and q ∈ R with q ≥ 1 and q > 3/d. For

each n ∈ N, let the mapping Fn :
(
Zd

nd

)
→ (0,∞) be defined by

Fn(S) = min
{
Lip(f) : f : S → {1, . . . , n}d surjective

}
, S ∈

(
Z
d

nd

)
.

Then a random sequence in the probability space G(cn), defined by (1.4), (1.5) and (1.6),
satisfies

P

[
lim sup
n→∞

Fn(Sn)(log n)
−q < ∞

]
= 1.

For the reader’s convenience, we repeat the statement of Theorem 1.2:

Theorem 1.2. Let d ∈ N with d ≥ 2 and (en) be a sequence of positive real numbers
en ≥ 1. Then there exists a sequence (cn) of positive real numbers cn satisfying

|cn − en| ≤
2d+8

(log n)1/d
, (1.7)

such that the following statement holds: For each n ∈ N, let the mapping Fn :
(
Zd

nd

)
→

(0,∞) be defined by

Fn(S) = min
{
Lip(f) : f : S → {1, . . . , n}d surjective

}
, S ∈

(
Z
d

nd

)
.

Then a random sequence in the probability space G(cn), defined by (1.4), (1.5) and (1.6),
satisfies

P

[
lim sup
n→∞

Fn(Sn)(log n)
−α
d < ∞

]
= 1

for all α > 3.

Proof of both Theorems 5.1 and 1.2. In this proof we will adopt the same convention
with the constant Γ as used in the proof of Lemma 4.4, see the start of the proof of
Lemma 4.4 for an explanation. We provide an argument which simultaneously provides
a proof of both Theorems 5.1 and 1.2. The objects q and (cn) should be understood
differently, depending on which statement the reader wishes to verify.

Fix α > 3. For the proof of Theorem 1.2, we take q = α
d . For the proof of Theorem 5.1,

q is given by the statement of the theorem.
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Set ln := ⌊log n−q log log n⌋ and mn := 2ln for all n ∈ N starting at a certain threshold
so that all expressions make sense. For the finitely many remaining n we define mn in
the same way, but set ln = 1.

For the proof of Theorem 5.1, (cn) is already defined by the statement of the theorem.
For the proof of Theorem 1.2, we define (cn) as follows: Note that n

mn
≥ (log n)q for all

n ∈ N. Therefore, for each n ∈ N, every interval I of length at least (log n)−q contains a
number t ∈ I such that tn

mn
∈ Z. This allows us to choose a sequence (cn) with

cn ∈
[
en +

2d+7

(log n)1/d
, en +

2d+7 + 1

(log n)1/d

]
and

cnn

mn
∈ Z

for each n ∈ N. Observe that this sequence (cn) satisfies the condition (1.7) of The-
orem 1.2.

From this point on, the proof reads identically for both Theorems 5.1 and 1.2. Let
S = (Sn) ∈ G(cn) be a random sequence. It suffices to show that there is a constant
Υ = Υ(d) > 0 such that

P [Fn(Sn) > Υ(log n)q] ≤ Υn−2 (5.1)

for all n ∈ N. Indeed, this will establish that

∞∑

n=1

P [Fn(Sn) > Υ(log n)q] < ∞.

The assertion of the theorem is then verified by applying the Borel-Cantelli Lemma.
We set Cn := cdn. The conditions of Lemma 4.4 are satisfied for d, n, m = mn, C = Cn

and q. Applying Lemma 4.4, we deduce that there is a constant Γ = Γ(d) > 0 such that

P




(
1− Γ

logn

)
nd

md
n

≤
∣∣∣S ∩

(
C1/d
n n · T

)∣∣∣ ≤

(
1 + Γ

logn

)
nd

md
n

for all T ∈ Tm




≥ 1− ΓnΓ exp

(
−(log n)qd−2

Γ

)
≥ 1− Γn−2, (5.2)

for all n ∈ N. Let Λ = Λ(d) > 0 and ∆ = ∆(d, 12) be the constants given by the
conclusion of Lemma 3.1. Then, combining (5.2) and Lemma 3.1, we conclude that

P

[
Fn(Sn) > Λexp

(
log n− ln

(
1− 2∆Γ

log n

))]
≤ Γn−2,

for all n ∈ N. To finish the proof, it only remains to observe

exp

(
log n− ln

(
1− 2∆Γ

log n

))
≤ exp

(
log n− (log n− q log log n− 1) ·

(
1− 2∆Γ

log n

))

= exp

(
2∆Γ + (q log log n+ 1)

(
1− 2∆Γ

log n

))
≤ Υ(log n)q,

for some constant Υ = Υ(d) > 0.
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