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Supplementary video 1. UVA activation of thiol/alkene/CaproGlu hybrid network. 22 
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Supplementary video 2. Sample cut for lap shear adhesion test and scratch test demonstration 25 

after UVA activation of thiol/alkene/CaproGlu hybrid network.  26 
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 35 

Figure S1. 3-component thiol/alkene/CaproGlu hybrid polymer network (SH1/Ene2/Dz; 36 

Table 1) sample preparation for FTIR and SEM analysis: (A) sample fixed with needle 37 

between 2 UVA diodes (100 mW.cm-2); (B) diodes turned ON simultaneously for 100 sec to 38 

deliver 10 J.cm-2 to each side of the sample; (C) sample after UVA curing. 39 

 40 

 41 

 42 

 43 
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 44 

Figure S2. Digital photographs of crosslinked 3-component thiol/alkene/CaproGlu hybrid 45 

polymer network samples in ambient conditions 24 h after mixing (no UVA activation; bar = 46 

1 cm): (A-C) SH2/Ene2/Dz, SH1/Ene2/Dz and SH1/Ene1.5/Dz (nomenclature and 47 

composition: Table 1) respectively.  48 

 49 

 50 

Figure S3. Photographs of samples prepared for peel test: (A) SH1/Ene2 (no CaproGlu) 51 

control; (B-D) HPN samples with compositions outlined in Table 1.  52 

 53 

 54 

 55 
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 56 

Figure S4. Peel test experimental design for samples placed between 2 collagen sheets: (A) 57 

Glass slide/cyanoacrylate/Collagen/HPN/Collagen structure fixed with paper clips after UVA 58 

activation (20 J.cm-2: 10 J.cm-2 from either side of the sample); (B) Collagen/HPN/Collagen 59 

structure mounted on the sample holder for peel strength test. 60 

 61 
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 70 

Figure S5. 1-step light-activated crosslinking of pure CaproGlu analyzed with photorheometry 71 

– dynamic change of storage (G’) and loss (G’’) moduli over time (bottom) and absorbed 72 

energy dose (top’ J.cm-2) with indicated gelation point (G’ = G”) upon light activation (diode 73 

wavelength range = 320-500 nm; diode power = 100 mW.cm-2). 74 

 75 

 76 

Figure S6. Photorheological profiles of 3-component thiol/alkene/CaproGlu hybrid polymer 77 

networks (Table 1) SH2/Ene2/Dz and SH1/Ene1.5/Dz (A and B respectfully) with dynamic 78 

change of storage (G’) and loss (G’’) moduli upon 2-step light activation at 405 nm and 365 79 

nm (light diode power: 100 mW.cm-2) over time (bottom) and absorbed energy dose (top; J.cm-80 

2).  81 

 82 
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Table S1. Dynamic (storage) modulus (G’) of hybrid networks and controls recorded 1 min 83 

after the light diodes are turned off (see Fig. 3; Fig. S3) and gelation points expressed as light 84 

energy (J) dose required to reach G’ = G’’ value.    85 

 

Hybrid network 

composition 

 

G’ (405 nm; kPa) 

 

G’ (365 nm; kPa) 

 

Gel. Point (J.cm-2) 

CaproGlu (Control-1) - 170 2 

SH/Yne (Control-2)* - 5750* 6 

SH2/Yne2/Dz* - 500* 4 

SH/Ene (Control-3) 1520 1530 - 

SH2/Ene2/Dz 16 410 - 

SH1/Ene2/Dz 28 920 - 

SH1/Ene1.5/Dz 7 630 - 
*Measured upon 1-step activation at polychromatic light: 320-500 nm; 30 J. 86 

 87 

 88 

Figure S7. Magnified region of normal force vs light activation time (405 nm; the full range is 89 

displayed in Figure 3D in main text); the thiol-acrylate (SH-Ene) crosslinking causes polymer 90 

volume shrinking as evident from drop in normal force, in comparison to pure CaproGlu 91 

(control-1).  92 
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 95 

Figure S8. Degree of alkene conversion (DC %) calculated from absorbance value at 810 cm-96 

-1 normalized to carbonyl peak of PEGDA (Ene; 1721 cm-1): (Left) FTIR representative spectral 97 

region with data readings (R) used to calculate absorbances (A) normalized to carbonyl peaks; 98 

(Right) DC (%) calculated for SH1/Ene2/Dz after mixing and exposure to ambient light for 24 99 

h (mark as “Neat” – without UVA activation).    100 
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 101 

Figure S9. Peel strength vs displacement curves of CaproGlu (control; n = 3) and HPN (n = 3) 102 

samples after activation with UVA light (20 J.cm-2): (A-C) CaproGlu; (D-F): SH2/Ene2/Dz. 103 

Vertical lines indicate the peel strength data range used to calculate the average values for each 104 

sample.  105 
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 106 

Figure S10. Peel strength vs displacement curves of HPN (n = 3) samples after activation with 107 

UVA light (20 J.cm-2): (A-C) SH1/Ene2/Dz; (D-F): SH1/Ene1.5/Dz. Vertical lines indicate the 108 

peel strength data range used to calculate the average values for each sample.  109 
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 111 

Figure S11. Peel strength vs displacement curves of HPN (n = 3) samples without UVA 112 

activation: (A-C) SH1/Ene2/Dz. Vertical lines indicate the peel strength data range used to 113 

calculate the average values for each sample.  114 

 115 
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Table S2. 3-component thiol/alkene/CaproGlu hybrid network SH1/Ene2/Dz (Table 1) 121 

composition – 7 samples measured prior to UVA activation and lap shear adhesion experiment; 122 

the density is calculated from sample weight and dimensions: ρ = (1.1 ± 0.1) g.cm-3.  123 

 124 
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 131 

Figure S12. Lap shear adhesion test and representative mechanical profile of 3-component 132 

thiol/ene/CaproGlu hybrid network – SH1/Ene2/Dz (n = 7): (A) experimental design for 133 

crosslinking of SH1/Ene2/Dz sample in PMMA/hybrid network/PET sandwich structure by 134 

crosslinking the network from 2 sides through light-transparent substrates (PMMA-bottom; 135 

PET-top) by using 2 UVA diodes – each side of SH1/Ene2/Dz sample absorbed the UVE 136 

energy = 10 J.cm-2 (total absorbed dose = 20 J.cm-2); (B) representative lap shear adhesion 137 

stress vs strain data recorded for SH1/Ene2/Dz (inset showing cohesive failure of SH1/Ene2/Dz 138 

at yield point); (C) modulus vs strain with indicated maximum value at 197 kPa (dashed arrow 139 

indicates the modulus drop to initial value at 140 kPa); (D) modulus of toughness calculated as 140 

area under stress vs strain curves (n = 7; individual curves for each measured sample are shown 141 

in Supporting Information; ANOVA; interquartile range (IQR): 25th to the 75th percentile). 142 

 143 

 144 
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 145 

Figure S13. Lap shear adhesion stress vs strain profile measured for PMMA-hybrid network 146 

(SH1/Ene2/Dz)-PET sandwich structure: (A) data collected for 7 samples and average value of 147 

ultimate adhesion strength for SH1/Ene2/Dz; (B) pure CaproGlu (CG; control-1) data collected 148 

from 6 samples measuring lap shear adhesion stress vs strain PMMA-CaproGlu-PET structure 149 

and average value of ultimate adhesion strength; (C) photography of measured samples after 150 

mechanical lap shear failure demonstrating cohesive adhesion.  151 
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