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ABSTRACT
This paper utilizes Visible Infrared Imaging Radiometer Suite
(VIIRS) nightlights to model damage caused by earthquakes,
floods and typhoons in five South East Asian countries (Indonesia,
Myanmar, the Philippines, Thailand and Vietnam). For each type
of hazard we examine the extent to which there is a difference in
nightlight intensity between affected and non-affected cells based
on (i) case studies of specific hazards; and (ii) fixed effect regres-
sion models akin to the double difference method to determine
any effect that the different natural hazards might have had on
the nightlight value. The VIIRS data has some shortcomings with
regards to noise, seasonality and volatility that we try to correct
for with new statistical methods. The results show little to no sig-
nificance regardless of the methodology used. Possible explana-
tions for the lack of significance could be underlying noise in the
nightlight data and measurements or lack of measurements due
to cloud cover. Overall, given the lack of consistency in the
results, even though efforts were made to decrease volatility and
remove noise, we conclude that researchers should be careful
when analyzing natural hazard impacts with the help of VIIRS
nightlights.
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1. Introduction

Natural hazards and the damages caused by them has seen an increase in media
coverage, partly due to the overall focus on climate and climate change, but also due
to the larger economic damages compared to previous decades. The latter point is
explained through a growing global population and the increasing economic value in
settled places. With this value increase comes a need for updated local data on where
people live and the economic activity there. This is particularly true in the wake of a
devastating natural hazard when it can be difficult to assess damages quickly
and accurately.
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Recently, remotely sensed data is often used to assess damages and economic activ-
ity. The modelling and measurement of natural hazards has been extensively covered
in the literature for different hazard types such as earthquakes (De Groeve, et al.
2008), typhoons (Emanuel 2011) and floods (Wu et al. 2014) to name a few.
Additionally, nightlight intensity is a common proxy for economic activity, exempli-
fied through numerous studies such as Henderson et al. (2012), Gillespie et al.
(2014), Skoufias et al. (2017), Hodler and Raschky (2014), Michalopoulos and
Papaioannou (2013) and World Bank (2017).

Some articles combining different methodologies from the two fields to estimate
the extent and economic damage caused by natural hazards have also been published
(Strobl 2012, Bertinelli and Strobl 2013, Klomp 2016, Del Valle et al. 2018, Nguyen
and Noy 2020). These prior studies have primarily relied on nightlights from the
Defense Meteorological Satellite Program (DMSP), which has been discontinued since
2013. At the end of the DMSP, a new, more spatially and temporally detailed data set
for nightlights, the Visible Infrared Imaging Radiometer Suite (VIIRS) product from
the National Oceanic and Atmospheric Administration (NOAA) has been published.
Only a few articles have used this data set for natural hazard damage detection,
namely Zhao et al. (2018) who employed it on a number of select case studies and
Mohan and Strobl (2017) who show the short term impact of tropical cyclone Pam.
More recently one has also seen its use for the Nepal earthquake in 2015 (Gao et al.
2020) and hurricanes Irma and Maria in Puerto Rico (Zhao, Liu, et al. 2020). These
latter articles use different statistical techniques based on seasonal and trend decom-
position using Loess (STL) to remove elements related to background noise, seasonal-
ity and trends that is present in the VIIRS data (Levin 2017, Zhao, Hsu, et al. 2017).

The production of the monthly VIIRS data follows the work of Elvidge et al.
(2017), whereas the daily data, more commonly known as the Black Marble data, is
produced following the work of Rom�an et al. (2018). Both products have numerous
advantages over the DMSP. Firstly, they have a higher resolution, 15 arcseconds by
15 arcseconds (463 metre by equator) compared to 30 arcseconds for the DMSP.
Furthermore, the VIIRS data is used to produce both monthly and daily products
compared to the annual DMSP data, making it possible to compare shorter temporal
effects of natural hazards. Finally, the DMSP data is normalized and capped at an
upper bound, whereas the VIIRS data has no upper limit. However, the VIIRS data
exhibits a lot more noise than what is found in the DMSP data. Part of this is due to
stray light corrections that can lead to negative light values for some time periods.
Another problem – particularly in the tropics - is the many days with cloud cover,
which is prevalent in both nightlight data sets. As a matter of fact, several months
have no days with a cloud free measurement. Despite these shortcomings, both the
DMSP and the VIIRS data have shown a strong correlation with local GDP (World
Bank 2017, Henderson, Storeygard and Weil 2012, Chen and Nordhaus 2015) and
this paper will take advantage of this to use VIIRS data as a proxy for eco-
nomic activity.

The aim of this paper is to develop a general methodology where we combine the
VIIRS and natural hazard damage indices to estimate the economic impact of events
at a large temporal and spatial level. Due to the large areas covered and the long time
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series, we will only use the monthly data as it is not feasible from a computational
point of view to conduct the analysis based on daily data. Additionally, we try differ-
ent methods for removing noise and seasonality from the VIIRS data to make it
more robust for estimation use. The models used to construct the damage indices
build upon the work done in Skoufias et al. 2017. The novelty compared to prior
studies in the area lies primarily in the added temporal and spatial details provided
by the VIIRS data. Additionally, whereas prior studies have focussed on selected case
studies, the methodology here can be used to assess numerous events across large
areas and it also attempts to find a general methodology for assessing and cleaning
the VIIRS data. Furthermore, the damage and economic impact estimates are
improved by utilizing detailed settlement layers. The use of secondary data to
improve recognition of human activity has previously been done in the areas of pov-
erty (Jean, et al. 2016) and urban extent (Baragwanath, et al. 2019). In this study,
settlement layers are used to: 1) remove nightlight cells with zero population to
reduce the impact that non-inhabited cells could have on the analysis and 2) distin-
guish between urban and rural areas as the asset exposure of these may be different.
The settlement layers included in the analysis are from Worldpop (WorldPop 2013,
Worldpop 2016) and CIESIN (Facebook Connectivity Lab and Center for
International Earth Science Information Network - CIESIN - Columbia University
n.d.). Both data sets are high resolution layers that show population density through
a combination of satellite images and census data.

We model damage indices for three hazard types - earthquakes, typhoons and
floods – by following the methodology from Skoufias et al. (2017) for the former
and the latter and Strobl (2012) for typhoons. The indices are all based on physical
and objectively measured data to avoid endogenously determined and/or subjective
damage measures. This differs from other common methods used for disaster loss
assessment and measuring impact of damage (see for example Charles, et al. 2006),
since we do not rely on local data on vulnerability and exposure, but primarily on
the physical attributes for damage estimation and nightlights as a proxy for exposure.
The main caveat is that local vulnerability is not sufficiently taken into account. The
reason being that – to our knowledge - high quality, spatially disaggregated vulner-
ability data does not exist for our countries. For the indices in this paper, a damage
estimate for all points is obtained first, then the estimate is combined with the settle-
ment and nightlight data to weight damage with asset exposure. Finally, two types of
analysis are performed on the combined estimate.

The first analysis is a case study for each hazard type, namely typhoon Haiyan,
which hit the Philippines in 2013, the 2016 Aceh Earthquake and the 2017 floods in
Southern Thailand. All three hazards caused significant local damage and were for
the most part spatially and temporally separate from other events. The case studies
consist of a simple graph showing the difference in mean nightlight values for the
nightlight cells that were hit by the hazard and the cells that were not hit over a
period starting 12months before the hazard and until 12months after. The second
analysis focuses on the national level and hazards that occurred between June 2012
and March 2018. By using panel fixed effect regressions with 12 monthly lags, we
investigate any short and medium-term impacts that each hazard type has.
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We have chosen five countries in South East Asia as studies due to their general
lack of local level economic data and prevalence of different natural hazards:
Indonesia, Myanmar, the Philippines, Thailand and Vietnam. These countries repre-
sent a large portion of the total GDP, population and area of the region.
Furthermore, they experience earthquakes, typhoons and floods to a varying degree,
arguably making them ideal countries to use as examples.

Overall, the results do not exhibit much significance for either analysis. Two case
studies of typhoons in the Philippines had the strongest results, where one displayed
a sharp drop in mean nightlight during the month that Haiyan struck and similarly a
sharp drop when Rammasun struck in July 2014. However, the overall volatility in
the VIIRS data makes it difficult to confidently draw any conclusions. The issue of
noise in the underlying monthly data has been well illustrated in Hu and Yao (2019),
where the monthly VIIRS data showed much lower correlation with GDP than
annual VIIRS and DMSP data1. The results were similar even when comparing VIIRS
means that had been decomposed using STL.

The fixed effects regressions were similarly inconclusive, as there was little if any
significance across hazard types and months. Several methods were tried to correct
for the noise causing the volatility: 1) dropping any negative light values, 2) setting
any value below a certain threshold to zero (both for absolute and real values), 3)
running regressions only for cells with populations above a certain threshold and 4)
logaritmic hyberbolic sine transformations of the nightlight values. Despite the
attempted corrections, the results were consistently insignificant, which could have
several causes such as the inherent noise in the VIIRS data, a large percentile of very
small or negative measurements, cloud cover or regression methodology.

2. Materials and methods

2.1. Population data

To accurately capture economic activity through nightlights it is important to identify
areas where there are people, hence avoiding stray lights or other sources of light that
are not connected to human activity. For example, Baragwanath et al. (2019) used
daily MODIS data as a second data source to more corretly identify the extent of
urban markets in India. To find areas with human activity, we utilize human settle-
ment layers from two different sources.

For Indonesia, the Philippines and Thailand high resolution settlement layers
(HRSL) from Facebook Connectivity Lab and Center for International Earth Science
Information Network - CIESIN - Columbia University was used to identify settle-
ments. These layers are produced at a spatial resolution of 1 arcsecond (�30 metres).
The underlying data is based on 2015 and combines census data with satellite images
from DigitalGlobe. The population is allocated according to subdivision censuses
once settlements have been identified from the satellite images.

The Worldpop datasets have been used to identify settlement areas in Myanmar
and Vietnam (WorldPop 2013, Worldpop 2016). These datasets have a spatial gridcell
resolution of approximately 100 metres at the equator and estimate the number of
persons per square. Estimates are provided for 2010, 2015 and 2020. To ensure
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similarity with the other countries, we utilize 2015. To construct the population files,
national totals have been adjusted to match UN population estimates. The adjustment
is performed by using a Random Forest model to construct a weighted population
density layer, which is then used as a basis to place the population as closely as pos-
sible to its real geographical distribution.

In addition to helping identify areas with economic activity and hence the hazard
exposure of an area, the settlement layers will be used to distinguish rural and urban
areas based upon population density.

2.2. Nightlights data

The main source used to find and identify areas with economic activity and their
exposure to natural hazards will be satellite images of nighttime lights. We utilize
these as a proxy due to the highly localized nature of natural hazards and how they
affect economic activity within populated areas. In an optimal scenario, one would
prefer highly spatially disaggregated economic data, but lacking this, one can use
nightlights. This methodology has been used in several papers with significant results
(Henderson, Storeygard and Weil 2012, Gillespie, et al. 2014, Hodler and Raschky
2014, Michalopoulos and Papaioannou 2013). Henderson et al. (2012) show that fol-
lowing the Asian financial crisis in the late 1990s one can use nightlights to capture
the economic downturn in Indonesia. Furthermore, they show that swings in GDP
change can generally be captured. Nevertheless, one must account for factors such as
cultural differences in light usage, latitude and gas flares in particular when compar-
ing across countries. This study only performs intra-country comparisons and hence
the results are unlikely to be affected by any cross-country differences.

All the previously mentioned studies use a prior iteration of nightlight images, the
DMSP satellite images. The approximate cell grid size of these images is 1 by 1 kilo-
metre at the equator (30 arcseconds) and the data provided is annual. In contrast,
this study utilizes a newer nightlight data set, the VIIRS Day/Night Band (DNB) pro-
vided by The Earth Observations Group (EOG) at NOAA/NCEI. The data is pro-
duced following the methodology of Elvidge et al. (2017) and it is provided starting
in April 2012 and go till present, making the time series much shorter than the
DMSP data which start in 1992 and go through 2013. However, the VIIRS DNB
images from EOG are monthly, whereas the DMSP data is annual. Furthermore, the
VIIRS images consist of 15 arcseconds grids (463 meters at the equator) compared to
the 30 arcseconds of DMSP. However, even though the data used in this study is at
this resolution, the underlying data used to construct it are sampled at a resolution of
750m by 750m. Hence, any resampling can introduce noise in the re-sampled data.
The VIIRS coverage spans from 75N latitude to 65S around the entire globe, mean-
ing that the entirety of South East Asia is included.

The VIIRS data has also seen usage in the economics and natural hazard literature.
Firstly, Chen and Nordhaus (2015) have done an analysis finding promising results
for VIIRS as an economic and population indicator, also relative to the DMSP prod-
uct. Secondly, Zhao et al. (2018) used the underlying NPP-VIIRS DNB Daily Data to
analyze selected natural hazards and found that the images were useful for detecting
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damages and power outages, but that cloud coverage was a major limitation in the
assessment. In this paper, we would also have preferred to use the daily data, since
the shock caused by a natural hazard usually may last only very shortly, and subse-
quent aid flowing in over the next days or weeks will lead to an underestimation of
both the negative effect of the shock and the positive effect of the aid. However, using
the daily data was not computationally feasible as the goal was to study long term
effects across large areas, meaning that daily observations would have created billions
of data points. This would have made statistical analysis unfeasible for most common
access to computing power. More recent research utilizing the VIIRS nightlights also
point to the limitation of monthly VIIRS in the detection of GDP and urban markets.
Hu and Yao (2019) shows how monthly VIIRS data has very low correlation for low
income countries2. The overall correlation is significantly better for middle income
countries and when utilizing annual, corrected data. Even when using annual mean
of monthly data, the results are worse than for annual VIIRS and DMSP.

The nightlight data output consists of two variables: the average light radiance
from DNB and the number of cloud free days. In the case of South East Asia – and
the tropics in general - one will find months with no cloud free days and hence no
radiance measurement. To account for months with no radiance value, we have inter-
polated between the month before and after. Furthermore, for cells with little light,
one often finds negative light values due to airglow contamination (Uprety, et al.
2019). There are also problems with seasonality and noise (Levin 2017, Zhao, Hsu,
et al. 2017). There is no established standard for how to interpret and correct these
measurements, albeit Gao et al. (2020) and Zhao et al. (2020) have tried to use differ-
ent methodologies related to trend decompositions to get more consistent values. To

Figure 1. VIIRS Value Distribution for VIIRS values below 2. Source: Authors’ estimates based on
VIIRS and population layer data (see text for details).
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try to correct for the negative values and the noise, we used different methodologies.
Firstly, we performed a simplified version of the steps described in Gao et al. (2020),
where STL was used on the radiance values to decompose them into a seasonal, a
trend and a remainder component, with the latter two values being used in our
regression analysis. Secondly, assuming that negative values are due to errors or faulty
measurements, we experimented by setting any negative values to zero. Finally,
assuming that any absolute value below a certain threshold is either too low to be
correctly measured or erroneously measured, we set the value to 0. This was done for
several different thresholds ranging from 0 and up to 0.5 to try to identify any differ-
ences in the pattern.

To provide some further details into the volatility and distribution of the VIIRS
data, Figures 1 and 2 show the distribution of VIIRS values below 23 for all countries
and their populated areas and the number of cloud free days per month. Looking at
Figure 1, one sees a clustering on both sides of 0, with the bin containing 0 and very
small values constituting more than 15 percent. Furthermore, more than 13 percent
of the total points have a negative value and 46 percent more have a value between 0
and 0.3, meaning that almost 60 percent of all points have negative or very small val-
ues. It should be noted that these are only points that have been identified as being
populated, meaning that they should be relatively free of disturbance from non-
human sources. Despite this, there are still very small deviations from 0.

Even when limiting the light to cells with population over 50 (approximately 30
percent of populated cells), the distribution stays similar with 85 percent of light val-
ues being below 2, 75 percent below 1, 46 percent below 0.3 and 5 percent being

Figure 2. Days with No Cloud Cover in a Month. Source: Authors’ estimates based on VIIRS and
population layer data (see text for details).
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negative. This distribution pattern follows through to high population numbers.
When looking at population numbers above 1,000 (less than 12 percent of the total)
17 percent of the points still have nightlight values below 0.3 albeit only 0.3 percent
of points have values below 0. The cause of why the values are so low is not known,
but it could be due to the algorithm used to determine the stray light correction. The
question will then be if VIIRS is only useful for very urbanized areas, if at all.

Figure 2 provides an overview of the distribution of cloud free days. The first thing
of note is that there are no points or months that have more than 20 cloud free days,
meaning that no month has used more than 2/3 of the days to get a monthly mean
value. The median is 4 days and the mean is 6, and in almost 11 percent of months
there were no cloud free days. Overall, the implication is that the monthly values in
reality consist of a rather small subsample of the potential days. Additionally, the
cloud free days could be clustered towards either end of a month, essentially intro-
ducing “noise” in the temporal trend. It might not matter much for a non-climate
related hazard such as earthquakes, but for a flood, which is highly correlated with
clouds, it might mean that the mean value is based on values before or long after the
event has occurred.

2.3. Constructing the damage indices

2.3.1. Earthquakes
To construct damage indices for earthquakes, this paper uses the same methodology
as in Skoufias et al. (2017), which in turn is based on damage modelling from con-
tour maps generated by seismological ground stations (GeoHazards International and
United Nations Centre for Regional Development 2001, De Groeve, et al. 2008).

In short, these contour maps are ShakeMaps from USGS, which are automatically
generated maps providing several key parameters following an earthquake. The
parameters peak ground acceleration (PGA), peak ground velocity (PGV) and modi-
fied Mercalli intensity (MMI) are used as a base for localized impact. More specific-
ally, the ShakeMaps use data from seismic stations that is interpolated using an
algorithm which is similar to kriging. To model the intensity in each coordinate, the
model also takes into account ground conditions and the depth of the earthquake.
The ShakeMaps are interpolated grids with point coordinates spaced approximately
1.5 kilometres apart (0.0167 degrees). The different measures are largely interchange-
able, and in the GeoHazards International and United Nations Centre for Regional
Development 2001 report PGA is used to measure damage since PGA, unlike MMI,
is an objective measure, implying that MMI is not easy to obtain reliably across the
globe. It is assumed that damage starts at a PGA of 3.9 percent of gravity (g).

The construction of the damage index uses two types of data; the intensity data -
expressed as PGA - and building inventory data. The building type data stems from
the USGS building inventory for earthquake assessment, which provides estimates of
the proportions (based on total number of buildings) of building types observed by
country; see Jaiswal and Wald (2008). Without any other information available, we use
this as an indication of the distribution of building types and mass, but, necessarily,

388 E. SKOUFIAS ET AL.



assume that the distribution is homogenous within urban and rural areas. In essence, the
building type is a proxy for how vulnerable the countries are to earthquakes.

Damage curves by building type are derived from the curves constructed by the Global
Earthquake Safety Initiative (GESI) project; see GeoHazards International and United
Nations Centre for Regional Development (2001). We assume that building quality is
homogenous across building type and construct eight different damage curves with differ-
ent quality rating scenarios (ranging from 0 to 7). Initial analysis showed a minor impact
depending on the chosen quality, but lacking information we decided to use a mean qual-
ity assumption of 4 across the countries.

To model estimated damage caused by a particular earthquake event the data from
the ShakeMaps and GESI are used. Then, one identifies the value of peak ground
acceleration that each nightlight cell experiences by matching each earthquake point
with its nearest nightlight cell. If the cell is further away than 1.5 kilometres or if it
experiences shaking (PGA) of less than 0.05 g the value is set to 0. In order to derive
a cell i specific earthquake damage index, ED, the following equation is applied:

EDi, q, t ¼ DR
pgak, q
i, k, t q ¼ 0, :::, 7

where DR is the damage ratio according to the peak ground acceleration, pga, and
the urban-rural qualification k of cell i, defined for a set of 8 different building qual-
ity q categories.

2.3.2. Typhoons
To model typhoons, a damage index from Emanuel (2011) is used. It assumes that a
fraction of property is lost or damaged when wind speeds surpass a threshold in a
cubic manner.4 Formally our damage index is given by:

f ¼ v3n
1þ v3n

where f is the fraction of property lost or damaged and vn is:

vn � max V � Vthresh, 0½ �
Vhalf � Vthresh

where V is the wind speed, Vthresh is the wind speed at and below which no damage
occurs (set at 92.6 km/h) and Vhalf is the wind speed at which half the property is
destroyed (set at 203.7 km/h).

The wind speed data we use follows Strobl (2012), which in turn is based on a
wind field model developed by Boose et al. (2004) and based on Holland (1980). The
base equation is given as:

V ¼ G � F Vm � S 1� sin Tð Þð ÞVh

2

� �
Rm

R

� �B
exp 1� Rm

R

� �B !" #1=2
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where V is the wind speed at point P, Vm is the maximum sustained wind velocity
anywhere in the hurricane, T is the clockwise angle between the forward path of the
hurricane and a radial line from the hurricane centre to the point of interest (the cen-
troid of a Parish), P, Vh is the forward velocity of the hurricane, Rm is the radial
distance from the centre of the hurricane to point P, and G is the gust wind factor
(water ¼ 1.2, land ¼ 1.5). Finally, F is a scaling parameter for surface friction (water
¼ 1.0, land ¼ 0.8), S is the asymmetry due to the forward motion of the hurricane
(1.0) and B is the shape of the wind profile curve (1.2). These parameter values have
been verified in Boose et al. (2001) and Boose et al. (2004).

The source for the localized wind speeds is the IBTrACS database that provides
the strength and tracks every 6 hours of all typhoons that affected South East Asia
during the period. A potential caveat of using this model is that it has not been vali-
dated in terms of the level of vulnerability and exposure one might expect in the
countries in this study. This could lead to an under- or overestimation of the damage
depending on the local conditions. However, our choice of damage curve used in line
with what has been used in the Caribbean, which yielded significant impacts on
nightlights (Bertinelli et al. 2016).

2.3.3. Floods
The modelling of floods in this paper is done by using rainfall as a proxy. The daily
precipitation data used are from the 3-hourly data set from the Tropical Rainfall
Measurement Mission Project (TRMM), which is aggregated up to daily data.5 This
has been used in several flood related publications before, such as Wu et al. (2012),
Wu et al. (2014), Harris et al. (2007), Rahman et al. (2012) and Yuan et al. (2019).

To construct a flood proxy from the TRMM data, we define when a flood event is
happening. Both Wu et al. (2012) and Wu et al. (2014) use runoff estimates to define
thresholds. However, due to the lack of runoff estimates in our data, we modify their
runoff model and define the following flood threshold:

Ra > P95 þ r

where Ra is the rainfall in millimetres, P95 is the 95th percentile value and r is the
standard deviation of the rainfall.

The flood data set contains daily data, which is aggregated up to monthly values
and combined with the nightlight data. When aggregating we constructed two flood
proxy variables: 1) A simple count variable that counted number of days that
breached the flood threshold. 2) Total rainfall in millimetres above the flood thresh-
old. Overall, this methodology is relatively rudimentary and does not take into
account local exposure or vulnerability.

2.4. General empirical strategy

The goal is to analyze the effect that natural hazards might have on the economic
activity in an area. To try to correctly identify any such effect, a data set was con-
structed for each natural hazard type. These sets contain localized nightlight values
and damage indices for each hazard type, the total population in each light cell and
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administrative boundary data linking each nightlight cell to different administrative
levels. The general methodology can be seen in Figure 3.

The approach we have chosen to construct the data sets is somewhat similar to what
was done in Skoufias et al. (2017), where the authors constructed damage indices,
weighted with nightlights and aggregated up to annual values at a province or municipal-
ity level. However, there are also significant differences between the methods.

Firstly, the nightlight data used as a proxy for economic activity is monthly – and
not yearly – providing more accurate temporal data, in particular in the short term.
Furthermore, the spatial resolution is much higher, with the VIIRS data providing
details down to 450 metre square cells at the equator compared to 1 kilometre
squares for the DMSP.

Figure 3. Flow chart for methodology.
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Secondly, by using high resolution population layers to identify areas with eco-
nomic activity one aims to remove noise from adjacent non-economic areas. By
excluding non-inhabited cells, we essentially remove radiance values from stray lights
and other non-economic light sources such as forest fires, and one can correctly iden-
tify change in nightlight values due to an increase or decrease in economic output.
One potential caveat of removing cells with no or very low population numbers is
that some agricultural land or assets will not be included in the analysis and hence
we might underestimate the damage, especially if these areas are more vulnerable
than the areas included in the analysis. However, the assumption is that the asset
exposure is closely correlated with how densely populated an area is and that the
population density is linked to the radiance values, meaning that the overall damage
in low-populated areas is very small compared to densely populated areas. Normally,
to be able to set a population threshold one would have to rely on local data, but
given the large spatial areas analyzed in this paper, we will run the analysis with sev-
eral different thresholds to analyze the impact on the final results. In case the results
significantly change, we will try to identify a more accurate threshold based on avail-
able local data. Finally, instead of aggregating up to a provincial or municipality level,
the data is kept at a cell level.

More specifically with regards to the methodology, one starts with localized dam-
age data modelled from actual intensity measures. These values were matched with
any intersecting VIIRS cell and assigned to the corresponding month. For light cells
that intersected several damage cells a mean value was used. As earthquake damage
estimates were modelled based on centroids, only the centroid intersection
was used.

Once the nightlight and damage data had been merged, population data was
included. The population data sets were aggregated up to the same cell size as the
VIIRS data and then matched to find the total population in each nightlight cell. Due
to slight differences between the HRSL and Worldpop data sets, two different cut-offs
for populated cells were utilized. As HRSL specifically provide settled areas and set
other areas to having 0 population, any VIIRS cell with no settled areas in it, would
be excluded from the final data set. As for the WorldPop data, any VIIRS cell with
less than 5 people in it was considered essentially unpopulated.

Following the construction of the data sets, a simple case study on a large singular
event is performed. The case studies are done on the Aceh earthquake in 2016, the
Haiyan Typhoon in 2013 and finally for the 2017 floods in Thailand. All these events
caused severe damages in the affected areas and one would expect a significant
change in nightlight values ex-post.

The Aceh earthquake is the single most damaging event in our study period and
occurred in the Indonesian province of Aceh in the morning of 7 December 2016.
The magnitude was measured to be 6.5Mw with 104 fatalities and more than 80,000
displaced. The affected area was rather small, primarily affecting the Pidie Jaya
Regency towards the northwestern tip of Sumatra. However, within the Regency it
was stated that as much as 30% of the area was affected, making it a highly localized
event that caused severe destruction and hence a good case to test for any local area
heterogeneity between damaged and non-damaged cells.
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The case study on typhoons is the typhoon Haiyan, also known as typhoon
Yolanda, on the Philippines, which was active from November 3 2013 through
November 11 2013. It made landfall in the eastern parts of the Philippines on
November 7 with wind speeds that were 305 km/h, a then-record velocity. It contin-
ued across the middle islands of the Philippines leaving the islands on November 8.
It is known as the deadliest and costliest typhoon to hit the Philippines in modern
times, killing 6300 people and causing damages worth USD2.2 billion. Furthermore,
in July 2014 typhoon Rammasun struck some of the same areas and costing USD885
million in total damages, the third costliest typhoon ever to hit the Philippines.

The third case study are the 2017 Southern Thailand Floods, which happened in the
southern parts of Thailand during December 2016 and January 2017. These were the
largest floods in over 30 years in these parts of Thailand. Malaysia was also affected,
although to a lesser extent. There were almost 100 fatalities and the total costs was USD4
billion, meaning the floods significantly local economies. The reason why these floods
were chosen is twofold. Firstly, they lasted only 2months, unlike the ones in 2013 that
lasted approximately 4months. Secondly, they were isolated compared to other events.
The 2014-2015 floods would potentially be capturing the 2013 floods.

To check for any effect from the hazards, we performed a mean comparison of
nightlight values between cells that experienced damage and those that did not. Two
graphs were constructed for each event; one with the mean of the nightlight values of
cells that were struck by the event and one with the cells that were not affected.
Furthermore, the analysis focussed on the affected regions – state or province level -
and not the national averages.

The second analysis consists of a fixed effects regression for each country and nat-
ural hazard type to see if any statistically significant national effects exist. The regres-
sions are lagged for the 12months following the hazards to allow for any short- and
mid-term effects to materialize. The regressions include corrections for time and spa-
tial effects and to correct for potential heteroscedasticity, Driscoll-Kraay standard
errors are used (Driscoll and Kraay 1998). The model can be stated as:

Li, t ¼ b0 þ R12
n¼0bnþ1EDi, q, t�n þ hi þ ei, t

where Li, t is the light level in cell i in month t and EDi, q, t represents the damage or
intensity value in the same cell and at the same time. Lags are allowed from month t
to t-12. b0 is the intercept, hi are the cell fixed effects and ei, t is the error term. In
short, it gives the coefficients for the effect that a natural hazard has on the night-
lights for the month when the hazard happens and the 12 subsequent months. One
should note that the fixed effects hi control for all unspecified time invariant location
specific differences, such as geographical features.

3. Results

3.1. Case study results

Figures 4 through 6 show the mean VIIRS value for the three case studies for affected
and unaffected cells. All figures have a green line depicting the monthly mean
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radiance value for cells that were not damaged by the hazard in question, while there
is also a blue line showing the mean value for cells that were damaged. All graphs
start 12months before the case study occurs and ends 12months ex-post and the
means are calculated for cells within the same administrative boundary. The graphs
show the results when comparing the interpolated radiance values. In addition, we
did the same analysis with raw radiance values and with STL decompositions where
we compared the trend and the remainder means for the two groups of cells. These
additional checks did not change the results.

First, Figure 4 shows the results for the case study of the 2016 Aceh Earthquake.
The mean values fluctuate and the month before the earthquake the radiance means
almost drop to zero. For the months after the earthquake, there is an upward trend,
and the affected cells seem to fluctuate more than the non-affected ones. Overall, the
two groups exhibit similar trends and fluctuations.

Figure 5 depicts the nightlight intensity before and after typhoon Haiyan struck
the Philippines. There is less volatility than for the Aceh earthquake and the month
of Haiyan shows a clear distinction between damaged cells and those that were not
damaged with the former group having a negative drop of approximately 0.05 or 25%
of the mean. After the month of Haiyan the radiance value growth in the damaged
cells is higher than for the non-damaged group until many of the same cells are
struck by typhoon Rammasun 8months later, when there is another sharp decline in
radiance values. However, already the following month, the two groups show simi-
lar means.

Finally, Figure 6 shows the graphs for the 2017 Southern Thailand floods. When
using our flood estimator with the rainfall data almost all cells in an area would be
affected due to the relatively homogenous rainfall values across large areas. To avoid
the problem with a small sample size of non-affected cells a new flood estimator was
used. This estimator was set to 1 if the total rainfall in a month above our flood def-
inition exceeded 500mm. Although this number is somewhat arbitrary, it should cap-
ture a select set of especially impacted cells.

Figure 4. 2016 Aceh Earthquake – Mean of nightlight cell values in the province of Aceh split
between cells that were affected by the earthquake and those that were not. Source: Authors’ esti-
mates based on VIIRS and population layer data (see text for details).
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Having imposed the new flood threshold produced the result in Figure 6, which
shows the means 12months before and after January 2017. The flood graphs show a
very high level of volatility. However, there is a drop for the most affected cells in the
month of the flood, and this do seem to lag below the general trend of the non-
affected cells.

3.2. Regression results

Figures 7 through 9 show the fixed effect regression coefficients by country for the
earthquakes, typhoons and floods. The regressions were run individually by country
and hazard type; thus it is assumed that the impacts from each hazard type is perpen-
dicular to each other. Furthermore, it is assumed that any VIIRS radiance value below
0.3 is 0 and that any cell with fewer than 10 inhabitants is rural.

Figure 7 shows the results for the 4 countries that experienced damaging earth-
quakes during our period. The nightlight radiance values were not impacted in a stat-
istically significant way in Indonesia and Myanmar, except for 11months ex-post in
Myanmar. The Philippines show a positive and significant impact during the month
of the earthquake and Thailand a strongly significant and negative impact two
months after the earthquake followed by a very strong positive impact in month 3
before a small, but negative and statistically significant, effect for the months 5
through 12. However, Thailand has a small sample of only 169 affected nightlight
cells with modest damage.

Figure 8 shows the typhoon coefficients for the two affected countries, the
Philippines and Vietnam. The Philippines experience a negative and significant effect
for months 3, 6 and 10 after a typhoon makes landfall, whereas Vietnam shows a
negative and significant effect for months 7 through 11.

Finally, Figure 9 shows the coefficients associated with flooding for our 5 South
East Asian countries. Overall, there are only a few months that are statistically

Figure 5. Case study of Typhoon Haiyan and Rammasun showing the mean VIIRS value for cells
that were affected by typhoon Haiyan and those that were in the same province but that were
not damaged. Source: Authors’ estimates based on VIIRS and population layer data (see text
for details).
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significant. However, we find that for both Indonesia and the Philippines there is a
negative and statistically significant effect during the month of the flood, but this
effect disappears in the following months. Apart from that, there is a positive impact
in month 8 for Indonesia and a negative one in month 11 for the Philippines. The
other countries show no strong patterns or effects and only exhibit significance dur-
ing scattered months, with only month 7 being significant in Myanmar, months 3
and 7 in Thailand and no month being significant in Vietnam.

4. Discussion

Overall, the results in this study showed a general lack of consistency across hazard
types and countries. To check if the lack of significant results were due to our
assumptions further examinations and robustness checks were performed both for the
case studies and the fixed effect regressions.

With previous studies showing promising results when using VIIRS data for earth-
quakes (Zhao et al. 2018; Gao et al. 2020) and hurricanes (Zhao et al. 2020), one
would expect that when one tried to correct for noise and seasonality one could see
similar statistically significant results also on a more general scale. Also, given the
geographical and cultural similarities between the countries in our sample, one could
reasonably expect to see consistent and similar results for each of the different types
of hazards. However, despite trying several different correction and transformation
methods - both on a case by case basis and generally - the results remained inconsist-
ent and insignificant. For instance, for the Aceh earthquake case we investigated
whether there was a particular reason for the general volatility and in particular the
sudden decline in radiance values the month before the earthquake. However, apart
from finding the value change to be nationwide from November to December, we
found no information on other hazards or major power outages during that period.
Using STL to decompose into a trend value and a remainder value did not have any
impact between the means of the two nightlight cell groups either. The difference

Figure 6. 2017 Southern Thailand Floods mean VIIRS nightlight values before and after for
impacted and non-impacted cells. Source: Authors’ estimates based on VIIRS and population layer
data (see text for details).
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between the means were statistically insignificant. When applying the same methods
to the 2017 floods in Thailand, we found similar results.

The most likely explanation for these results is some noise or measurement error
in the underlying VIIRS data. This is not surprising given the seasonality and noise
found in the data (Levin 2017, Zhao, Hsu, et al. 2017). However, it could also poten-
tially be due to aid and relief efforts being deployed quickly and to the correct areas,
and hence cancelling out any negative effect on the radiance values of the affected

Figure 7. Earthquake coefficients with 95% confidence intervals. Source: Authors’ estimates based
on VIIRS and population layer data (see text for details).
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cells. Unfortunately, we lack any geomapped or geographic aid data that could help
validate this hypothesis.

The graph for typhoon Haiyan in Figure 5 shows the most consistent radiance val-
ues, even though some volatility with spikes and troughs are still present. Most
importantly, the graph shows Haiyan’s strong negative effect on nightlight values and
a similar drop 8months later, when Rammasun would strike many of the same cells.
Interestingly, one finds a sharp recovery in radiance values in the months following
the hazards, potentially due to the influx of aid and personnel. The recovery seems to

Figure 8. Typhoon coefficients with 95% confidence intervals. Source: Authors’ estimates based on
VIIRS and population layer data (see text for details).
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benefit the areas that were hit by the typhoon the most, implying that the aid reached
the areas in need.

For the regressions, which are using nightlight cells from entire countries across a lon-
ger temporal period, one needs to make an assumption with regards to the treatment of
VIIRS values below or close to 0. Currently, there is no consensus in the literature on
how to correct this. The radiance value is set by deducting a dark offset from the raw
day/night value. This offset is sometimes severely impacted by airglow leading to negative
light values. To correctly account for this, several options were explored. Firstly, the

Figure 9. Flood coefficients with 95% confidence intervals. Source: Authors’ estimates based on
VIIRS and population layer data (see text for details).
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regressions were run with any light value below 0.1 set to 0. Then absolute values were
used with any absolute value below thresholds of 0.1, 0.3 and 0.5 set to 0. Irrespective of
the chosen threshold, the results did not change in a statistically meaningful way. Given
the distribution of the data, with the large majority of cells having values below 0.5, a
higher threshold could not be justified as it would clearly exclude radiance values from
areas that were populated. Furthermore, given the lack of impact on the results from
changing the threshold value, it was decided to not pursue the threshold analysis
any further.

When looking at the different hazard types, there was no consistency of results across
countries and very few showed any statistically significant impact. For example, in the
case of Indonesia, a country that experiences several damaging earthquakes a year, there
was no discernable statistical effect either immediately or ex-post. This might be due to
several factors. As Indonesia is often struck by earthquakes, they might have efficient
methods for dealing with the damage from earthquakes. It could also be that the regres-
sion specifications were not suitable for analyzing a country such as Indonesia. Due to
the size and geography, there might be large local differences, such as usage of electric
light, building methods and quality, and how natural disasters are dealt with. This poten-
tial spatial clustering would preferably be controlled for, but it has not been computa-
tionally possible to do this due to the dimensional increase of the regression matrix
when clustering across multiple regions. Secondly, there might be regional or national
differences for when an earthquake is causing damage and hence the PGA threshold for
damage might be too low or too high. However, the lack of significance is more likely to
have other causes.6 It might be due to local cloud cover leading to poor measurement
conditions or it could be due to the regression specifications being unable to quantify
the relationship. As for the latter point, due to the random nature of earthquakes and
the lack of other confounding variables, one would expect that the objective damage vari-
able would accurately estimate the impact meaning that any potential errors are related
to either the damage modelling or the VIIRS data. However, to be able to correctly iden-
tify the source of the error, one would need to analyze each earthquake event individu-
ally, preferably with locally validated damage data, and have access to high-resolution
GDP data for comparison and validation against the nightlight data.

Typhoons and floods showed a similar lack of results across countries, with the
exception of Indonesia – and to a smaller extent the Philippines - in the month of a
flood event. The coefficient on the damage index is strongly negative and significant.
The immediate return to insignificance might be an indication that most floods are
small, local events where repairs are often carried out almost immediately. However,
it is unlikely that the Philippines and Indonesia would be impacted differently from
the other 3 countries given the similarities in climate and GDP. Furthermore, the two
hazard types are weather related implying that the radiance values are likely to be
impacted by significant cloud cover, which are correlated with floods and typhoons.

5. Conclusion

Our findings do not indicate a causal relationship between nightlight values and nat-
ural hazard events. Given the lack of consistency in the results despite the efforts to
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decrease volatility and remove noise, we conclude that researchers should be careful
when analyzing natural hazard impacts with the help of VIIRS nightlights. The ana-
lysis shows a lack of significance across all hazard types and all countries, despite tak-
ing multiple approaches to try to correct for any measurement problems in the data
or methodology. The most likely cause for the lack of significant results is the noise
and natural volatility in the VIIRS data that is due to measurement precision and
cloud cover. Another likely factor is that our sample of low-income countries and the
low correlation between monthly VIIRS and GDP is not a good fit for a broad ana-
lysis like this. These different factors might also explain why the authors found stron-
ger results using the annual – and in most ways inferior - DMSP data in Skoufias
et al. (2017). Finally, it might be that the unique local spatial and cultural attributes
make it very difficult to get generalized and significant results.

Nevertheless, the data and the methodology has shown previously that it has merit
and use, with this paper simply demonstrating some of the limits of the data and that
it is important to consider the temporal and spatial scale of analysis and carefully
review both the data and the results to account for factors such as noise, cloud cover,
light levels and urbanization. However, the main problem with using the data is that
it is difficult to disentangle and quantify the different effects that these factors would
have on the radiance values.

An extension of this research for other researchers can be to look at specific cases and
see if one could identify effects at a more local scale, preferably with high-resolution and
good quality underlying data. With the recent proposed correction methods in Gao et al.
(2020) and Zhao et al. (2020) it might also be possible to use STL as a basis to construct
a more general methodology for correcting the VIIRS measurements, in particular if it is
based on validated GDP data. Additional research efforts could be focussed on different
regression methodologies as this type of analysis could lend itself well to other methods.
Finally, with the addition of secondary data from other sources such as for example day-
time satellite images, vegetation images, national census data or similar one could use
machine learning methods to try to account for or correct some of the noise and better
identify places of economic activity.

Notes

1. The annual VIIRS data was not used in this study, as it is currently only available for
2 years

2. If one includes all the low income countries, the correlation is negative (-0.02), but it is
heavily skewed by the poorest African nations. With the exclusion of the Central African
Republic, the correlation improves to 0.12.

3. Values below 2 constitute approximately 95 percent of the total. This was done due to the
maximum VIIRS value being 17,699 and hence a density graph would be meaningless
going from -1.5 to 17,699. Also, any bin above 2 is very small and would not contribute
to the graph

4. Damages are related to wind speed in a cubic manner due to nature of energy dissipation
of the hurricane

5. The 3B42RT daily derived product is used in this article
6. The Philippines and Thailand did experience some significance. In the case of the

Philippines, one finds a significant and positive effect on the nightlights in the month that
the earthquake happens. This might be due to good and efficient local infrastructure and
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efficient aid work. However, with no further effect later it is not clear what might be
causing this early light influx as one would expect aid work to last longer than a couple of
weeks. In the case of Thailand, there were only 169 cells that were damaged, and there
was little heterogeneity across the cells, potentially impacting the results.

Acknowledgments

This paper was funded by the global knowledge program of the World Bank’s Poverty and
Equity Global Practice.

Disclosure statement

No potential competing interest was reported by the authors.

Data availability statement

The data used in this study were derived from the following resources available in the pub-
lic domain:
These data were derived from the following resources available in the public domain:

Population data:
Worldpop: https://www.worldpop.org/project/categories?id=3
CIESIN: https://ciesin.columbia.edu/data/hrsl/

Nightlights data:
VIIRS: https://eogdata.mines.edu/download_dnb_composites.html

Natural hazards data:
Earthquakes:
USGS Shakemaps: https://earthquake.usgs.gov/earthquakes/search/
Building inventory data: https://pubs.er.usgs.gov/publication/ofr20081160

Typhoons:
IBTrACS: https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access

Floods:
TRMM 3B42RT: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42RT_Daily_7/summary

References

Baragwanath K, Goldblatt R, Hanson G, and, Khandelwal AK. 2019. Detecting urban markets
with satellite imagery: An application to India. J Urban Econ. :103173.

Bertinelli L, Mohan P, Strobl E. 2016. Hurricane damage risk assessment in the Caribbean: An
analysis using synthetic hurricane events and nightlight imagery. Ecol Econ. 124:135–144.

Bertinelli L, Strobl E. 2013. Quantifying the local economic growth impact of hurricane strikes:
an analysis from outer space for the Caribbean. J Appl Meteorol Climatol. 52(8):1688–1697.

Boose ER, Chamberlin KE, Foster DR. 2001. Landscape and regional impacts of hurricanes in
new england. Ecol Monogr. 71(1):27–48.

Boose ER, Serrano MI, Foster DR. 2004. Landscape and regional impacts of hurricanes in
Puerto Rico. Ecol Monogr. 74(2):335–352.

402 E. SKOUFIAS ET AL.

https://www.worldpop.org/project/categories?id=3
https://ciesin.columbia.edu/data/hrsl/
https://eogdata.mines.edu/download_dnb_composites.html
https://earthquake.usgs.gov/earthquakes/search/
https://pubs.er.usgs.gov/publication/ofr20081160
https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42RT_Daily_7/summary


Chen X, Nordhaus W. 2015. A test of the new VIIRS lights data set: population and economic
output in Africa. Remote Sens. 7(4):4937–4947.

De Groeve T, Annunziato A, Gadenz S, Vernaccini L, Erberik A, and T. Yilmaz 2008. Real-
time impact estimation of large earthquakes using USGS Shakemaps. In Proceedings of
IDRC2008, Davos: Switzerland.

Del Valle A, Elliott RJR, Strobl E, Tong M. 2018. The short-term economic impact of tropical
cyclones: satellite evidence from Guangdong province. EconDisCliCha. 2(3):225–235.

Driscoll J, Kraay A. 1998. Consistent covariance matrix estimation with spatially dependent
panel data. Rev Econ Stat. 80(4):549–560. http://EconPapers.repec.org/RePEc.
:tpr:restat:v:80:y:1998:i:4:p:549–560.

Elvidge CD, Baugh K, Zhizhin M, Hsu FC, Ghosh T. 2017. VIIRS night-time lights. Int J
Remote Sens. 38(21):5860–5879.

Emanuel K. 2011. Global warming effects on U.S. hurricane damage. Wea Climate Soc. 3(4):
261–268.

Facebook Connectivity Lab and Center for International Earth Science Information Network -
CIESIN - Columbia University. n.d. High Resolution Settlement Layer (HRSL). Source
imagery for HRSL # 2016 DigitalGlobe. Accessed 04 02, 2019. https://ciesin.columbia.edu/
data/hrsl/.

Gao S, Chen Y, Liang L, Gong A. 2020. Post-earthquake night-time light piecewise (PNLP)
Pattern based on NPP/VIIRS night-time light data: a case study of the 2015 Nepal earth-
quake. Remote Sens. 12(12):2009.

Gillespie TW, Frankenberg E, Chum KF, Thomas D. 2014. Nighttime lights time series of tsu-
nami damage, recovery, and economic metrics in Sumatra, Indonesia. Remote Sens Lett.
5(3):286–294.

Harris A, Rahman S, Hossain F, Yarborough L, Bagtzoglou A, Easson G. 2007. Satellite-based
flood modeling using TRMM-based rainfall products. Sensors (Basel). 7(12):3416–3427.
MDPI AG)

Henderson JV, Storeygard A, Weil DN. 2012. Measuring economic growth from outer space.
Am Econ Rev. 102(2):994–1028.

Hodler R, Raschky PA. 2014. Regional favoritism. Q J Econ. 129(2):995–1033.
Holland GJ. 1980. An analytic model of the wind and pressure profiles in hurricanes. Mon

Wea Rev. 108(8):1212–1218.
Hu Y, Yao J. 2019. Illuminating economic growth. (International Monetary Fund). Working

Paper no. 19/77.
GeoHazards International and United Nations Centre for Regional Development. 2001. Final
report: Global Earthquake Safety Initiative (GESI) pilot project. Report, GHI. 86 p

Jaiswal KS, and, Wald DJ. 2008. Creating a global building inventory for earthquake loss
assessment and risk management: U.S. Geological Survey Open-File Report 2008-1160.
Tech. rep., USGS, p. 103. p.

Jean N, Burke M, Xie M, Davis WM, Lobell DB, Ermon S. 2016. Combining satellite imagery
and machine learning to predict poverty. Science. 353(6301):790–794.

Klomp J. 2016. Economic development and natural disasters: A satellite data analysis. Global
Environ Change. 36:67–88.

Levin N. 2017. The impact of seasonal changes on observed nighttime brightness from 2014 to
2015 monthly VIIRS DNB composites. Remote Sens Environ. 193:150–164.

Michalopoulos S, Papaioannou E. 2013. National Institutions and Subnational Development in
Africa. Q J Econ. 129(1):151–213.

Mohan P, Strobl E. 2017. The short-term economic impact of tropical Cyclone Pam: an ana-
lysis using VIIRS nightlight satellite imagery. Int J Remote Sens. 38(21):5992–6006.

Nguyen CN, Noy I. 2020. Measuring the impact of insurance on urban earthquake recovery
using nightlights. J Econ Geogr. 20(3):857–877.

Rahman MM, Singh Arya D, Goel NK, Mitra AK. 2012. Rainfall statistics evaluation of
ECMWF model and TRMM data over Bangladesh for flood related studies. Met Apps.
19(4):501–512. " Wiley)

GEOMATICS, NATURAL HAZARDS AND RISK 403

http://EconPapers.repec.org/RePEc
https://ciesin.columbia.edu/data/hrsl/
https://ciesin.columbia.edu/data/hrsl/


Rom�an MO, Wang Z, Sun Q, Kalb V, Miller SD, Molthan A, Schultz L, Bell J, Stokes EC,
Pandey B, et al. 2018. NASA’s Black Marble nighttime lights product suite. Remote Sens
Environ. 210:113–143.

Skoufias E, Strobl E, and, Tveit T. 2017. Natural disaster damage indices based on remotely
sensed data: an application to Indonesia (English). World Bank Policy Research Working
Paper. No. 8188.

Strobl E. 2012. The economic growth impact of natural disasters in developing countries:
Evidence from hurricane strikes in the Central American and Caribbean regions. Journal of
Development Economics. 97(1):130–141.

Uprety S, Cao C, Gu Y, Shao X, Blonski S, Zhang B. 2019. Calibration Improvements in S-
NPP VIIRS DNB Sensor Data Record Using Version 2 Reprocessing. IEEE Trans Geosci
Remote Sensing. 57(12):9602–9611.

World Bank 2017. “South Asia Economic Focus, Fall 2017: Growth Out of the Blue.”
Washington, DC. https://openknowledge.worldbank.org/handle/10986/28397. License: CC
BY 3.0 IGO.

WorldPop 2013. Viet Nam 100m Population. Alpha version 2010, 2015 and 2010 estimates of
numbers of people per pixel (ppp) and people per hectare (pph), with national totals
adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining
unadj.

Worldpop 2016. Myanmar 100m Population. Alpha version 2010, 2015 and 2020 estimates of
numbers of people per pixel (ppp) and people per hectare (pph), with national totals
adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining
unadj.

Wu H, Adler RF, Hong Y, Tian Y, Policelli F. 2012. Evaluation of global flood detection using
satellite-based rainfall and a hydrologic model. J Hydrometeorol 13(4):1268–1284.

Wu H, Adler RF, Tian Y, Huffman GJ, Li H, Wang J. 2014. Real-time global flood estimation
using satellite-based precipitation and a coupled land surface and routing model. Water
Resour Res. 50(3):2693–2717.

Yuan F, Zhang L, Soe K, Ren L, Zhao C, Zhu Y, Jiang S, Liu Y. 2019. Applications of TRMM-
and GPM-Era multiple-satellite precipitation products for flood simulations at sub-daily
scales in a sparsely gauged watershed in Myanmar. Remote Sens. 11(2):140.

Zhao N, Hsu F-C, Cao G, Samson EL. 2017. Improving accuracy of economic estimations with
VIIRS DNB image products. Int J Remote Sens. 38(21):5899–5918.

Zhao N, Liu Y, Hsu F-C, Samson EL, Letu H, Liang D, Cao G. 2020. Time series analysis of
VIIRS-DNB nighttime lights imagery for change detection in urban areas: A case study of
devastation in Puerto Rico from hurricanes Irma and Maria. Appl Geogr. 120:102222.

Zhao X, Yu B, Liu Y, Yao S, Lian T, Chen L, Yang C, Chen Z, Wu J. 2018. NPP-VIIRS DNB
Daily Data in Natural Disaster Assessment: Evidence from Selected Case Studies. Remote
Sens (MDPI AG). 10(10):1526.

404 E. SKOUFIAS ET AL.

https://openknowledge.worldbank.org/handle/10986/28397
http://esa.un.org/wpp/
http://esa.un.org/wpp/

	Abstract
	Introduction
	Materials and methods
	Population data
	Nightlights data
	Constructing the damage indices
	Earthquakes
	Typhoons
	Floods

	General empirical strategy

	Results
	Case study results
	Regression results

	Discussion
	Conclusion
	Acknowledgments
	Disclosure statement
	Data availability statement
	References


