

University of Birmingham

Hyperbolic embedding of attributed and directed
networks
McDonald, David; He, Shan

DOI:
10.1109/TKDE.2022.3188426

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
McDonald, D & He, S 2023, 'Hyperbolic embedding of attributed and directed networks', IEEE Transactions on
Knowledge and Data Engineering, vol. 35, no. 7, 9815143, pp. 7003-7015.
https://doi.org/10.1109/TKDE.2022.3188426

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
D. McDonald and S. He, "Hyperbolic Embedding of Attributed and Directed Networks," in IEEE Transactions on Knowledge and Data
Engineering, 2022, doi: 10.1109/TKDE.2022.3188426.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1109/TKDE.2022.3188426
https://doi.org/10.1109/TKDE.2022.3188426
https://birmingham.elsevierpure.com/en/publications/f380a912-c43c-4dd5-a67d-5f964ccad18f

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 1

Hyperbolic Embedding of Attributed and
Directed Networks

David McDonald and Shan He

Abstract—Network embedding – finding a low dimensional representation of the nodes with attributes in a hierarchical, directed
network remains a challenging problem in the machine learning community. An emerging approach is to embed complex networks –
networks of real-world systems – into hyperbolic space due to the fact that hyperbolic space can better naturally represent such a
network’s hierarchical structure. Existing hyperbolic embedding approaches, however, cannot handle the embedding of attributed
directed networks to an arbitrary embedding dimension. To fill this gap, we introduce HEADNet, for Hyperbolic Embedding of Attributed
Directed Networks, an algorithm based on extending previous works for embedding directed attributed networks to Gaussian
distributions in hyperbolic space of arbitrary dimension. Through experimentation on a variety of both synthetic and real-world
networks, we show that HEADNet can achieve competitive performance on common downstream machine learning tasks, including
predicting directed links for previously unseen nodes. HEADNet provides an inductive hyperbolic embedding method for directed
attributed networks, which opens the door to hyperbolic manifold learning on a wider range of real-world networks. The source code is
freely available at https://github.com/DavidMcDonald1993/HEADNET.

Index Terms—complex networks, directed network embedding, attributed network embedding, hyperbolic embedding

F

1 INTRODUCTION

COMPLEX networks are models of diverse real-world
systems [1]. The ubiquity of complex networks in such

fields as the study of protein-protein interactions, the world
wide web and social interaction modelling, has lead to the
study of complex networks emerging as a popular research
topic. They are described by the set of entities in the system
(nodes) and the relations between them (edges). In many
complex networks, edges are directed and this is essential
information that characterises the system as a whole. In
addition to the structural information described by edges,
often nodes within a complex network are richly annotated
with attributes. These node attributes provide additional
information about the elements within the network and this
information is necessary to understand the role that these
elements play within the system [2]. However, when dealing
with large networks containing billions of nodes, traditional
network-based data mining approaches suffer some draw-
backs, such as computational complexity, parallelizability
and applicability to downstream machine learning tasks [3].
To overcome these drawbacks, network embedding is often
used to learn low dimensional representations of the nodes
in a large network. By learning dense representations of
entities in the network, network embedding is able to de-
noise the network while preserving the intrinsic structural
information [3], further improving performance on down-
stream tasks over using the raw network representation.

A recent trend in network embedding research is to
suppose that the hidden metric space underpinning the
formation of many complex networks is, in fact, hyperbolic
[4]. A hyperbolic metric space has been shown to explain

D. McDonald (ORCID: 0000-0002-0540-8254) works for AIA Insights Ltd.
and S. He (ORCID: 0000-0003-1694-1465) is with the Department of Com-
puter Science, University of Birmingham, Birmingham, UK.
Contact e-mail for D. McDonald: davemcdonald93@gmail.com
Manuscript received September 15, 2022; revised xx xx, xxxx.

the scale-free degree distribution observed in real-world
networks [5]. Moreover, it can explain the small-world effect
observed in complex networks [6], help with routing of
information packets around the network [4] and explains
the implicit trade-off between popularity and similarity that
controls a node’s connections [1].

Due to the aforementioned advantages of assuming an
underlying a hyperbolic metric space, hyperbolic space
network embedding has received considerable attention.
As reviewed in section 1.1, researchers, including us, have
proposed several algorithms to embed undirected networks,
including attributed networks, to hyperbolic space. How-
ever, as yet, there is no approach that can embed attributed
directed networks – the most general form of complex
networks modelling real world systems – into hyperbolic
space. In order to address this, we propose HEADNet to
learn hyperbolic representations of arbitrary low dimen-
sions of the nodes in an attributed and directed network.
Moreover, we aim to capture the uncertainty in the learned
embeddings using Gaussian distribution, similar to [7], but
in hyperbolic space. This allows us to characterise node
neighbourhood diversity and use an established asymmetric
similarity measure with interpretations in both probability
and information theory. To this end, we propose both a node
embedding model to map attributed nodes to Gaussian
distributions in hyperbolic space; and a node similarity mea-
sure in hyperbolic space based on a novel mapping proce-
dure to map hyperbolic Gaussian distributions to Euclidean
ones, preserving both hyperbolic distance and direction.
HEADNet not only learns low-dimensional representations,
but also preserves the network’s latent structural hierarchy;
the interplay of attributes and structural information; and
the direction of relations between nodes in a network for
downstream inference tasks, allowing for greater insight
into complex systems than previously possible.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 2

1.1 Related Work

One popular hyperbolic embedding model is the
Popularity-Similarity (or PS) model [1]. This model extends
the “popularity is attractive” aphorism of preferential at-
tachment [8] to include node similarity as a second dimen-
sion of attachment. HyperMap (HM) [6], a pioneering PS
model embedding method, employed maximum likelihood
(ML) to search the space of all PS models with similar struc-
tural properties as the observed network, to find the one that
fit the original network best. Due to the computationally
demanding task of ML estimation, heuristic methods were
developed to improve upon existing PS model embedding
techniques. For example, LABNE [9] uses Laplacian Eigen-
maps was to efficiently estimate the angular coordinates of
nodes in the PS model. The same authors later extended
LABNE with LABNE+HM, which combined both exact and
heuristic approaches to leverage the performance of ML
estimation against the efficiency of heuristic search, with the
trade-off defined with a user controlled parameter [10].

The n-dimensional Poincaré ball provides more degrees
of freedom in the embedding process and capture further
dimensions of attractiveness than just “popularity” and
“similarity”. Since trees can be embedded in hyperbolic
space without distortion [11] so, some works by embed gen-
eral graphs to trees and then compute an exact distortion-
free embedding of the resulting tree [12]. The algorithm
proposed in Nickel and Kiela [13] embeds networks to the
Poincaré ball by optimising an objective that maximises
the likelihood of observing true node pairs versus arbitrary
pairs of nodes in the network. Through this approach, the
authors were able to embed hierarchical text corpora such
that the semantics of word hierarchy was preserved. This
work was later translated to the hyperboloid model [14]
and extended to embed any arbitrary parameterised object
[15]. Furthermore, hyperbolic skip-gram models have been
proposed [16], [17], and heterogeneous networks embedded
to hyperbolic space [18]. Interestingly, Wilson et al. [19] were
able to determine the appropriate curvature to embed any
symmetric dissimilarity data, selecting the most appropriate
of Spherical, Euclidean or Hyperbolic based on the data.
Neural network operations [20] and graph convolution [21]
have both recently been generalised to hyperbolic space
to allow for non-Euclidean representation learning on at-
tributed networks using both Poincaré and hyperboloid
manifolds. Recently, MuRP was proposed to embed multi-
relational graphs to the Poincaré ball [22] and Gulcehre et al.
[23] exploit hyperbolic geometry to reason about arbitrarily
deep neural networks. For directed networks, Wu et al. [24]
construct a bi-partite network from a given directed graph,
where each node is transformed into two nodes in the newly
constructed network (for incoming edges outgoing edges
respectively) and then embed both representations to the PS
model. Directed acyclic graphs (DAGs) can be embedded to
the Poincaré disk [25], [26]. Of course, transforming general
complex networks into DAGs naturally results in a loss of
information. Recently, heterogeneous networks have been
embedded to hyperbolic space [18]. Previously, we proposed
HEAT [27], an undirected hyperbolic network embedding
algorithm based on random walks. Furthermore, the Varia-
tional Autoencoder (VAE) [28] has recently been derived on

the Poincaré disk [29].
Graph2Gauss (G2G) [7] provides an inductive frame-

work to learn Gaussian node representations for attributed
networks, based on learning a Kullback-Leibler divergence
based objective. This algorithm in particular serves as a
great inspiration for our work.

By generalising the convolution operation from regular
pixel lattices to arbitrary graphs, it is possible embed and
classify entire small graphs [30], [31]. The popular Graph
Convolutional Network (GCN) [32] extend and simplify
existing graph convolution approaches to embed nodes
in a semi-supervised setting. Furthermore, GraphSAGE [2]
introduces an inductive framework for online learning of
node embeddings capable of generalising to unseen nodes.
Geom-GCN [33] overcomes the drawback of traditional
message-passing neural networks (like GCNs) that the
structural information of node neighbourhoods is lost in
graph-invariant aggregation through the use of a novel ag-
gregation function based on node embedding to exploit the
continuous space underlying the graph. Text-assisted Deep-
walk (TADW) [34] generalises Deepwalk [35] to nodes with
text attributes. RoSANE [36] introduces a scalable frame-
work based on the Skip-Gram model for embedding sparse
attributed networks. Also, GloDyNE [37] adapts Skip-Gram
for network embedding in a dynamic setting. LANE [38] can
deal with weighted/unweighted networks and binary/real
valued attributes and labels. Other approaches are based
on distributions of single and pairs of attributes [39]; some
based on known community structure [40]; while others
draw from the well known fields of manifold learning
and multi-view learning to align the projections based on
topology and attributes [41].

Many random walk based approaches can handle di-
rected networks and are capable of an asymmetric distance
measure when both the “source” and “context” embeddings
are retained [35], [42]. For unattributed directed network
embedding LINE (with second-order proximity) is able to
handle directed graphs by assuming that “vertices sharing
many connections to other vertices are similar to each
other” [43]. Furthermore, Asymmetric Transitivity Preser-
vation (ATP) [44] aims to directly preserve the inherently
asymmetric nature of the transitive relationships in Com-
munity Question Answering graphs, by learning two repre-
sentations of each node in the network.

2 HYPERBOLOID MODEL

Hyperbolic space cannot be embedded into Euclidean space
without distortion [45]. Due to the fundamental difficulty
of representing spaces of constant negative curvature as
subsets of Euclidean spaces, there are not one but many
equivalent models of hyperbolic spaces. The models are
equivalent because they can be freely mapped to each other
by an distance preserving map – called an isometry. Each
model emphasises different aspects of hyperbolic geometry,
but no model simultaneously represents them all.

We select the hyperboloid model due its rising popularity
in the literature, which is largely down to the compara-
tively simple form of all Riemannian operations [14], [46]
compared with the more traditional ball models. Both the
Poincaré and Klein models of hyperbolic space are formed

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 3

as projections of the points from the hyperboloid to balls
orthogonal to the main axis of the hyperboloid [47]. Infor-
mally, we can see these relationships as analogous to the
relationship between a projected map and a globe [45]. For
our purposes, the hyperboloid model allows for a more
simple formulation of Riemannian operators, such as the
exponential map, logarithmic map, and parallel transport
that will be leveraged later in this paper.

Unlike disk models that sit in an ambient Euclidean
space of dimension n, the hyperboloid model of n-
dimensional hyperbolic geometry sits in n+ 1-dimensional
Minkowski space-time. Furthermore, the set of hyperboloid
points do not form a disk in this ambient space, but an
n-dimensional hyperboloid. n + 1-dimensional Minkowski
space-time (denoted Rn:1) is defined as the concatenation of
n-dimensional Euclidean space with an additional time co-
ordinate t. A vector u ∈ Rn:1 has spacial coordinates ui for
i = 1, 2, ..., n and time coordinate un+1. For two vectors in
Minkowski space u, v ∈ Rn:1, the Minkowski bilinear form
〈·〉Rn:1 is defined as:

〈u, v〉Rn:1 :=
n∑
i=1

uivi − ψ2un+1vn+1 (1)

where ψ is the speed of information flow in the system
(often set to 1 for simplified calculations) [48]. This bilinear
form serves as an inner product and allows one to compute
vector norms in a familiar way:

||u||Rn:1 :=
√
〈u,u〉

Rn:1
(2)

It is worth noting that n+ 1-dimensional Minkowski space-
time contains the entire n-dimensional Euclidean space:
Rn ⊂ Rn:1 since Rn is the set of all x ∈ Rn:1 such that its time
co-ordinate xn+1 = 0. Further, the Minkowski bilinear form
(eq. (1)) is a generalisation of the Euclidean inner product
and is equivalent for all x ∈ Rn = {x ∈ Rn:1 | xn+1 = 0}.
The points u ∈ Rn:1 satisfying: Hn := {u ∈ Rn:1 |
〈u,u〉Rn:1 = −1 ∧ un+1 > 0} define the hyperboloid model
[46]. The first condition defines a hyperbola of two sheets,
and the second condition selects the top sheet. Shortest
paths (geodesics) between points on the model are given
by the hyperbola formed by the intersection of Hn and the
two dimensional plane containing the origin of Minkowski
space (0 ∈ Rn:1) and both of the points [45]. The distance
along the geodesic between two points u, v ∈ Hn is given
by dHn(u, v) = arccosh (−〈u, v〉Rn:1) and is analogous to the
length of segment of a great circle that connects two points
in spherical geometry [45]. The tangent space TuHn of a vec-
tor u ∈ Hn is defined as TuHn := {x ∈ Rn:1 | 〈u, x〉Rn:1 = 0}
and is the collection of all points in Rn:1 that are orthogonal
to u with respect to the Minkowski bilinear form. It can be
shown that 〈x, x〉Rn:1 > 0, for all x ∈ TuHn, for all u ∈ Hn
[45]. In other words, the tangent space of the hyperboloid
is positive definite (with respect to the Minkowski bilinear
form) for all points on the hyperboloid and so Hn (equipped
with eq. (1)) satisfies the requirements of a Riemannian
manifold [45].

3 HEADNET ALGORITHM

HEADNet is built upon the principle that nodes in an
attributed directed network can be mapped to Gaussian

distributions in hyperbolic space. As discussed previously,
hyperbolic space is selected since it can better reflect the
inherent hierarchy of the elements within many real-world
systems. The overall intuition behind this approach is that
the distributions capture the uncertainty in the learned
representations of nodes. Uncertainty here means that nodes
with highly diverse neighbourhoods – in terms of attribute
presence and/or class label, for example – tend to be em-
bedded to distributions with greater variance [7]. Kullback-
Leibler (KL) divergence, a measure of the penalty of encod-
ing one distribution as another, is used as an asymmetric
measure of similarity between nodes and forms the basis of
an objective function that aims to maximise the similarity
between the directed edges in the network, while minimis-
ing the similarity between all other node pairs.

3.1 Problem Definition

We consider a directed network of N nodes given by the
set V with |V | = N . E := {(u, v)} ⊆ V × V denotes the
set of all interactions between the nodes. Since the network
is directed, (u, v) ∈ E 6=⇒ (v, u) ∈ E. Further, the
nodes in V may be annotated with d-dimensional attributes
described in matrix X ∈ RN×d. In the special case that
nodes do not have attributes, we set X = IN which is the
N -dimensional identity matrix. We consider the problem
of representing the network given as G = (V,E,X) as a
set of n-dimensional Gaussian distributions in hyperbolic
space, such that asymmetric measure of similarity between
nodes in the network is preserved, where n � N . The dis-
tributions are described by n + 1-dimensional hyperboloid
mean vectors, along with n-dimensional Euclidean vectors
corresponding to diagonal co-variance matrices.

3.2 HEADNet Algorithm Overview

HEADNet is comprised of the following three main steps:

3.2.1 Step 1: Network Embedding

This step addresses the problem described in section 3.1 by
introducing a novel node embedder to transform the nodes
in G into a set of N n-dimensional Gaussian distributions in
hyperboloid model of hyperbolic space. Edges in E are not
required to perform an embedding, however they are used
to train the embedder.

3.2.2 Step 2: Node Similarity Measurement

For an arbitrary pair of nodes in a complex network, this
step transports their hyperbolic distributions provided by
step 1 as input and provides a asymmetric measure of
similarity between them that is assumed to be proportional
to their connection probability.

3.2.3 Step 3: Node Representation Learning

This step uses the output of step 2 as part of a learning ob-
jective explicitly based on known connectivity information
to train the embedder model used in step 1. The learning
objective is designed to maximise the similarity between all
of the node pairs (u, v) ∈ E and minimise the similarity of
all other pairs of nodes in V × V \ E.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 4

Fig. 1: Schematic representation of the main steps of HEADNet. The first step is a node embedder that accepts a d-
dimensional vector, Xu ∈ Rd, corresponding to attributes of a node u in the network, and outputs a Gaussian distribution
for node u in hyperbolic space, denoted Nu. The distributions are parameterised by n-dimensional hyperbolic means
u ∈ Hn and n-dimensional Euclidean vectors Σu, corresponding to diagonal variance matrices. Next, the node similarity
step takes two hyperbolic Gaussian distributions Nu and Nv , output by the node embedder, and computes a asymmetric
node similarity measure DKL(Nv || Nu) using Kullback-Leibler divergence. Finally, node similarity is used in as part of a
loss function L that aims to maximise the similarity of the directed edges comprising the edge set of the network (u, v) ∈ E.
The objective function is used to drive the learning of embedder parameters through back-propagation based on ∆L. Full
details are provided in section 3.3, section 3.4 and section 3.5.

3.2.4 Combining the Steps
Figure 1 provides a high-level overview of these three steps.
Once the embedder has been trained using step 3, it can
then be used by itself to map nodes to distributions in
hyperbolic space (using step 1 only), or it can be used
in conjunction with the node similarity step to query the
similarly of any arbitrary pair of nodes (combining steps 1
and 2 to map those nodes to low-dimensional distributions
and then measure the similarity using KL divergence). For
both applications, the nodes do not necessarily have to be
previously seen during model training, although, in this
case, the nodes are assumed to be annotated with attributes.

3.3 Network Embedding Step
This subsection describes how node attributes Xu are
mapped to a pair of vectors (u,Σu) ∈ Hn × Rn describing
a Gaussian distribution in hyperbolic space where u is
an n + 1-dimensional vector on the hyperboloid model
representing the mean of the distribution describing node u,
and Σu is an n-dimensional Euclidean vector that represents
the diagonal co-variance matrix of the distribution for node
u. We compute u and Σu as functions of node attributes
Xu. Mapping directly from attributes has the advantage of
readily handling previously unseen nodes [7].

To this end we propose the following node embedder
model: Following previous works [7], our embedder is a
two-layer feed-forward neural network with two parallel
output layers. This architecture provides a flexible non-
linear mapping between attributes and distributions, while
reducing the overall number of parameters compared to
two separate models for computing means and variances
respectively. The embedder has three components: a map
from attributes Xu to hu, a d′ � d dimensional hidden layer
representation; map from the hidden representation hu to
Euclidean vectors representing diagonal co-variance matri-
ces Σu ∈ Rn; and a map from the hidden representation hu
to hyperbolic means u ∈ Hn.

3.3.1 Mapping to Hidden Representation hu
We first map non-linearly from node attributes to a latent
hidden representation space hu ∈ Rd

′
(d′ � N) using

hu = relu (WhXu + bh) where Wh ∈ Rd
′×d and bh ∈ Rd

′

are a weight matrix and bias to learn. We share this in-
termediary representation hu for computing both u and
Σu, which has the advantage of regularising the model by
reducing the overall number of parameters [7]. We select the
relu function as a non-linearity to overcome the vanishing
gradients problem and due to its superior performance on
some small preliminary benchmark tasks.

3.3.2 Mapping from hu to Co-variance Vector Σu

From the hidden representation of node u, hu, we
compute its co-variance vector Σu using Σu =
eluα=1 (WΣhu + bΣ) + 1. Recall that the elu function is
bounded in the range [−1,∞], and so we add one to bound
the output in the range [0,∞] and thus ensure positive
definiteness in Σ as required [7].

3.3.3 Mapping from hu to Hyperbolic Mean Vector u
To map from the Euclidean hidden representation hu ∈ Rd

′

to a hyperbolic mean vector u ∈ Hn, we apply a fundamen-
tal operation of Riemannian geometry, the exponential map,
and leverage a property of the origin of the hyperboloid.

To transport a vector x ∈ TuHn from the tangent space
of a point u ∈ Hn on the hyperboloid to a vector v ∈ Hn on
the hyperboloid itself, one uses the exponential map Expu(x) :
TuHn → Hn [46], defined as:

v = Expu(x) = cosh(r)u + sinh(r)x/r (3)

where r = ||x||Rn:1 is the Minkowski norm of x (see eq. (2)).
The origin of the hyperboloid (informally, its “bottom

tip”) is defined as: µ0 := [0, ..., 0, 1]T ∈ Hn and is the point
on the upper hyperboloid with all spacial coordinates set to
0 and a time coordinate of 1. The following property of the
tangent space of this point follows from definition:

Tµ0H
n = {x ∈ Rn:1 | 〈x, µ0〉Rn:1 = 0} ≡ Rn. (4)

That is to say that the tangent space of the origin of the
hyperboloid, Tµ0Hn, is the entire n-dimensional Euclidean
space (every point in n + 1-dimensional Minkowski space
with a 0 time co-ordinate). Furthermore, in this space,
Euclidean and Minkowski norms coincide: ∀x ∈ Tµ0Hn =

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 5

Rn, ||x||R ≡ ||x||Rn:1 . We combine both Expu(·) (eq. (3)) and
this property of the origin of the hyperboloid (Tµ0Hn = Rn)
to define a point-wise non-linearity on the output of a dense
neural network layer: Expµ0

: Rn → Hn, computed as:

Expµ0
(x) = [sinh (||x||) x/||x||, cosh (||x||)] (5)

for x ∈ Rn, where || · || is the Euclidean norm operation.
Returning to the node embedder model, to compute the

hyperbolic mean vector u ∈ Hn from the hidden represen-
tation hu, we propose the use of u = Expµ0

(WHnhu + bHn)

where WHn ∈ Rn×d
′

and bHn ∈ Rn are a weight matrix and
bias to learn. The use of Expµ0 as a non-linearity provides a
differentiable mapping from n-dimensional Euclidean space
(Rn = Tµ0Hn) to Hn as required.

3.4 Node Similarity Measurement

This subsection describes the procedure for computing the
similarity measure for an arbitrary pair of nodes, using
the Gaussian distributions provided by the embedder. It
is largely inspired by the wrapped Gaussian distribution
in hyperbolic space introduced in [49]. We use Kullback-
Leibler divergence as the measure of similarity between
node distributions. For continuous distributions P and Q,
Kullback-Leibler divergence DKL(P || Q) is given by:

DKL(P || Q) :=

∫
x
P (x) log (P (x)/Q(x)) (6)

We see immediately that eq. (6) is asymmetric in P and Q.
Furthermore, when P and Q are normal distributions, it has
been shown that eq. (6) simplifies to:

DKL(P || Q) = 0.5 ∗
[
tr

(
Σ−1

u Σv

)
+

(µu − µv)T Σ−1
u (µu − µv)− n− log (det (Σv)/det (Σu))

]
(7)

where tr(.) and det(.) denote the trace and determinant of
of a matrix respectively [7].

3.4.1 Mapping Hyperbolic To Euclidean Coordinates
Since the node embedder outputs Euclidean co-variance
matrices, we only require a slight modification to the term
(µu − µv)T Σ−1

u (µu − µv) in order to apply eq. (7). To this
end, we propose a mapping from the hyperbolic mean
vectors output by the embedder to Euclidean vectors, such
that hyperbolic relationships are preserved. This mapping
preserves the hyperbolic distance between a given node
pair, while allowing for a simple form of the training ob-
jective (see eq. (12)). For the remainder of this section, we
will introduce a mapping Ψu that will replace the term
(µu − µv)T Σ−1

u (µu − µv) to reflect a hyperbolic distribu-
tion, rather than a Euclidean one. Ψu will behave exactly
like the original term in that it will be a weighted sum over a
distance vector. Furthermore, when all variances are identity
matrices, then our derived equivalent to eq. (7) will become
equivalent to hyperbolic distance squared as expected. This
makes our approach suitable for undirected networks.

For a node pair (u, v), the mapping, Ψ, is a two step
procedure that relies upon u – the hyperbolic mean of
node u – to serve as an “anchor point”. The two steps are:
first, transport vectors from Hn to the tangent space of the
anchor point TuHn; then, transport vectors from TuHn to

(a) (b)

Fig. 2: Demonstration of relative distance-preserving prop-
erty of Ψ operator. (a) shows three points u, v,w ∈ H2

on the two-dimensional hyperboloid. The three lines con-
necting the points show the geodesics between the points
with lengths of dH2(v,w), dH2(u,w), and dH2(u, v). (b) plots
their resulting positions in R2 after applying Ψu. Distances
dH2(u, v) and dH2(u,w) are preserved but dH2(v,w) is not.

the tangent space of the origin of the hyperboloid Tµ0Hn:
n-dimensional Euclidean space (see eq. (4)).

For two points u, v ∈ Hn, we can map to Euclidean space
(Tµ0Hn) by combining the logarithmic map operation of the
hyperboloid, defined as:

x = Logu(v) = arccosh(α)(v− αu)/
√
α2 − 1 (8)

and the parallel transport to µ0 operation, defined as:

y = PT
u→µ0

(x) = x + 〈µ0 − βu, x〉Rn:1 (u + µ0)/(β + 1) (9)

where α = −〈u, v〉Rn:1 and β = −〈u, µ0〉Rn:1 . We now
introduce Ψu as the composition of eq. (8) and eq. (9):

Ψu : Hn → Rn := PT
u→µ0

◦ Logu. (10)

We apply Ψu to map hyperbolic vectors to Euclidean
vectors. For a given node pair (u, v), each mapping from
their hyperbolic co-ordinates u and v to their Euclidean
positions Ψu(u) and Ψu(v) is performed “relative” to the
anchor node u. In general, for x, y, v ∈ Hn, x 6= y =⇒
Ψx(v) 6= Ψy(v) and so the Euclidean position of node v
(relative to anchor node u), Ψu(v), is wholly dependent
on hyperbolic coordinate u of the anchor node u that is
used in the mapping. In other words, changing u would
result in a different position for Ψu(v). The Euclidean norm
of Ψu(v) is equal to the hyperbolic distance between the
mean vectors of nodes u and v on the hyperboloid [49].
That is ||Ψu(v)|| = dHn(u, v) = arccosh(−〈u, v〉Rn:1). This
follows from eq. (2), and so we can interpret Ψu as a
distance preserving map for all nodes relative to node u.
For all u, v,w ∈ Hn, Ψu preserves distances dHn(u, v) and
dHn(u,w), but not dHn(v,w) [49]. Further, we observe that
for all u ∈ Hn, Ψu(u) = 0. Figure 2 provides an example
Ψ mapping from H2 to R2, that shows how Ψu preserves
hyperbolic distances to node u but distorts all distances
between other nodes.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 6

3.4.2 Node Similarity Measurement
Before putting everything together, note that the terms in-
volving Σ in eq. (7) simplify to a simple sum over vector ele-
ments since Σ is a diagonal matrix [7]. We can now propose
the following modified form for eq. (7) as an asymmetric
measure of node similarity in hyperbolic space:

D
KL

(Nv || Nu) =
1

2

n∑
i=1

[
Γiuv + Ωiuv − 1− log

(
Γiuv

)]
(11)

where xi is the i-th component of vector x, Γuv := Σv/Σu,
and Ωuv := [Ψu(u)−Ψu(v)]

2
/Σu = Ψu(v)2/Σu since

Ψu(u) = 0 ∀u ∈ Hn.

3.5 Node Representation Learning

This subsection describes the learning objective of HEAD-
Net, based on the node similarity computed in eq. (11).
The learning procedure is based on the idea that we aim
to maximise the similarity between observed node pairs –
the directed edges in the network – while simultaneously
minimising the similarity between all other node pairs.

3.5.1 Learning Objective
Following previous works [7], we adopt an energy-based
objective and define the energy Euv between two nodes
u and v (which are described by normal distributions Nu
and Nv to be simply: Euv = DKL(Nv || Nu). Note that,
in general, Euv 6= Evu as required. As with other energy-
based methods, we aim to minimise the energy (reduce the
KL divergence) for desirable node pairings (the edges in E)
and, likewise, maximise the energy of undesirable pairings
(the non-edge set V × V \ E). Our objective is based on on
negative log-likelihood:

L = E
(u,v)∼E,S∼Skuv

[
Euv + log

∑
(u′,v′)∈S

exp (−Eu′v′)

]
(12)

where Skuv := {S ⊆ V × V : |S| = k ∧ (u, v) ∈ S} is the
set of all subsets of node pairs containing exactly k elements
including the pair (u, v). The first term (Euv) will cause the
average energy of all pairs (u, v) ∈ E to be reduced. The
second, contrastive, term log

∑
(u′,v′)∈S exp (−Eu′v′) causes

the energy of all undesirable pairs to be “pulled-up” a little
[50]. The parameter k is a hyper-parameter used to control
the number of undesirable pairs seen for every desirable
pair, and is analogous to negative sample number in skip-
gram models [13].

4 EXPERIMENTAL VALIDATION

4.1 Network Datasets

4.1.1 Synthetic Networks
We generate 30 synthetic scale free directed networks with
N = 1000 nodes. We set the probability for adding a
new node connected to an existing node chosen randomly
according to the in-degree distribution to α = 0.41. The
probability for adding an edge between two existing nodes
is β = 0.54; and the probability for adding a new node
connected to an existing node chosen randomly according
to the out-degree distribution γ = 0.05 [51].

TABLE 1: Description of selected benchmark algorithms.

Algorithm Variant Description Metric Space Directed Attributes

ATP [44] ATP (log) ATP (log transform) R Yes No

LINE [43] LINE LINE (2nd order proximity) R Yes No

G2G [7]

G2GNA,K=1 G2G, no attributes, K = 1 R Yes No
G2GNA,K=3 G2G, no attributes, K = 3 R Yes No

G2GK=1 G2G, attributes, K = 1 R Yes Yes
G2GK=3 G2G, attributes, K = 3 R Yes Yes

NK [13] NK NK Algorithm H No No

Deepwalk [35] Deepwalk Random-walk sampling R No No

Sage-GCN [2], [32] Sage-GCN Graph Convolutional Network R Yes Yes

HNN [20] HNN Hyperbolic Neural Network H Yes Yes

HGCN [21] HGCN HyperbolicGCN H Yes Yes

HEADNet

HEADNetNA,Σ=I HEADNet, no attributes, Σ = I H No No
HEADNetNA HEADNet, no attributes H Yes No
HEADNetΣ=I HEADNet, attributes, Σ = I H No Yes

HEADNet HEADNet H Yes Yes

4.1.2 Real World Networks

We evaluate HEADNet on four directed citation networks:
Cora ML (N = 2995, |E| = 8416, d = 2879, y = 7),
Citeseer (N = 4230, |E| = 5358, d = 2701, y = 6), Pubmed
(N = 18230, |E| = 79612, d = 500, y = 3), and Cora
(N = 19793, |E| = 65311, d = 8710, y = 70) [7]; and one
unattributed directed social network: Wiki vote (N = 7115,
|E| = 103689, d = −, y = −) [52], where N , |E|, d, and y
to denote the number of nodes, edges, attributes and node
classes respectively. d = − and y = − denote that a network
does not have node attributes and node labels respectively.

4.2 Benchmark Algorithms

Table 1 provides details of all of the benchmark algorithms
used in this study. We have selected popular graph embed-
ding algorithms from the literature that that embed nodes
to a range of different metric spaces: Euclidean (ATP [44],
LINE [43], Deepwalk [35], Sage-GCN [32]), Hyperbolic (NK
[13], HGCN [20], HNN [21]), and distribution (G2G [7])
spaces. For all benchmark algorithms, we adopt the default
hyper-parameter settings except where stated. For LINE we
set the order to second only as the authors claim that this
is suitable for directed graphs [43]. We set the negative
ratio to 10 and the number of epochs to 1000. For ATP
we break cycles using the hierarchical grouping method
that the authors demonstrated obtained good results [53].
We select the log transform as it was the best performing
[44]. For G2G∗,K={1,3}, we set K to 1 and 3 respectively
and G2GNA,∗ denotes G2G without attributes. For all G2G
models, we fix the hidden dimension to 128 and train for
the default maximum of 2000 epochs. For NK we set the
negative sample size to 10, the hyperbolic learning rate to
1 and train for 1500 epochs. For Deepwalk we set walks
per node to 10, walk length to 80, context size to 10 and
top-k value to 30. For Sage-GCN, we use the GraphSAGE
implementation [2] of GCN and set learning rate to 0.001,
dropout rate to 0.5, batch size to 512, normalisation to true,
weight decay rate 1e − 4 and epochs to 100. For HNN and
HCGN, we use the PyTorch implementation (available at
https://github.com/HazyResearch/hgcn) [21] and set the
manifold space to Poincaré, the number of hidden layers to
2, use dropout value of 0.5, and use relu activation functions.
For HEADNet we train for 1000 epochs, stopping early if
there is no improvement in loss (eq. (12)) after 25 epochs,
and set the ratio of negative to positive pairs to k = 10. We
set the the dimension of the hidden layer to d′ = 128.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 7

TABLE 2: Summary of the network reconstruction task on Cora ML, Citeseer and Cora networks for an embedding
dimension of 25+25. For the computation of the t-statistic and corresponding p-value, we select the best benchmark
algorithm (identified with an asterisk (*)) according to AP.

Network Algorithm Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

Cora ML

ATP (log) 4083.0(25.8) 0.515(0.003) 0.531(0.003) 0.044(0.001) 0.025(0.002) 0.042(0.002) 0.058(0.002) 0.085(0.006)
LINE 4093.9(40.6) 0.514(0.005) 0.473(0.003) 0.060(0.002) 0.097(0.004) 0.110(0.004) 0.118(0.004) 0.124(0.007)

G2GNA,K=1 54.4(4.9) 0.994(0.001) 0.991(0.001) 0.609(0.007) 0.551(0.014) 0.530(0.011) 0.517(0.012) 0.495(0.017)
NK 101.7(3.7) 0.988(0.000) 0.987(0.001) 0.586(0.004) 0.607(0.007) 0.431(0.003) 0.339(0.002) 0.220(0.001)

HNN 423.6(24.8) 0.95(0.003) 0.945(0.004) 0.22(0.01) 0.197(0.013) 0.159(0.008) 0.136(0.007) 0.106(0.005)
HGCN 457(30.2) 0.946(0.004) 0.952(0.003) 0.42(0.013) 0.467(0.029) 0.318(0.01) 0.246(0.006) 0.162(0.004)

G2GK=1 64.6(7.7) 0.992(0.001) 0.989(0.001) 0.586(0.008) 0.536(0.013) 0.493(0.011) 0.479(0.013) 0.459(0.018)
G2GK=3 55.8(5.5) 0.993(0.001) 0.991(0.001) 0.609(0.011) 0.563(0.011) 0.539(0.014) 0.530(0.013) 0.509(0.013)

HEADNetΣ=I 13.4(2.7) 0.999(0.000) 0.998(0.001) 0.792(0.003) 0.743(0.006) 0.553(0.003) 0.432(0.001) 0.270(0.001)

*G2GNA,K=3 44.0(5.6) 0.995(0.001) 0.992(0.001) 0.647(0.007) 0.588(0.011) 0.587(0.009) 0.575(0.010) 0.548(0.012)

HEADNet 4.0(1.4) 1.000(0.000) 0.999(0.000) 0.945(0.014) 0.937(0.016) 0.921(0.019) 0.912(0.021) 0.904(0.021)

p-value 7.09E-29 7.09E-29 1.09E-24 4.77E-53 4.89E-62 5.58E-50 3.62E-47 3.39E-51

Citeseer

ATP (log) 2171.6(19.9) 0.595(0.004) 0.601(0.006) 0.026(0.001) 0.008(0.001) 0.032(0.003) 0.039(0.004) 0.034(0.006)
LINE 3156.9(29.5) 0.411(0.006) 0.418(0.002) 0.052(0.002) 0.053(0.002) 0.057(0.004) 0.050(0.004) 0.010(0.016)

G2GNA,K=1 6.6(1.5) 0.999(0.000) 0.999(0.000) 0.814(0.009) 0.734(0.015) 0.611(0.012) 0.584(0.017) 0.570(0.066)
NK 26.1(1.9) 0.995(0.000) 0.995(0.001) 0.722(0.004) 0.645(0.007) 0.365(0.003) 0.252(0.001) 0.141(0.000)

HNN 840.1(122.7) 0.843(0.023) 0.854(0.018) 0.133(0.018) 0.093(0.016) 0.063(0.011) 0.051(0.008) 0.037(0.004)
HGCN 873.6(129.9) 0.837(0.024) 0.868(0.023) 0.312(0.033) 0.31(0.029) 0.159(0.019) 0.11(0.013) 0.065(0.008)

G2GK=1 17.2(3.2) 0.997(0.001) 0.993(0.002) 0.632(0.010) 0.530(0.014) 0.395(0.014) 0.353(0.020) 0.424(0.069)
G2GK=3 17.0(2.8) 0.997(0.001) 0.993(0.002) 0.622(0.009) 0.513(0.014) 0.411(0.016) 0.371(0.023) 0.473(0.066)

HEADNetΣ=I 13.6(1.8) 0.998(0.000) 0.994(0.002) 0.670(0.003) 0.571(0.005) 0.358(0.002) 0.253(0.001) 0.144(0.000)

*G2GNA,K=3 6.1(1.8) 0.999(0.000) 0.999(0.001) 0.790(0.010) 0.686(0.017) 0.634(0.016) 0.612(0.019) 0.634(0.054)

HEADNet 7.3(2.1) 0.999(0.000) 0.996(0.002) 0.779(0.019) 0.718(0.028) 0.709(0.024) 0.685(0.023) 0.711(0.084)

p-value 9.90E-01 9.91E-01 1.00E+00 9.95E-01 1.14E-06 2.22E-19 5.94E-19 5.64E-05

Cora

ATP (log) 33041.2(69.9) 0.494(0.001) 0.508(0.001) 0.049(0.000) 0.043(0.001) 0.053(0.001) 0.061(0.001) 0.077(0.002)
LINE 32541.2(108.1) 0.502(0.002) 0.469(0.001) 0.087(0.001) 0.151(0.002) 0.157(0.002) 0.162(0.002) 0.166(0.003)

G2GNA,K=1 135.6(11.0) 0.998(0.000) 0.997(0.000) 0.808(0.010) 0.795(0.011) 0.742(0.014) 0.724(0.013) 0.719(0.011)
NK 401.7(11.3) 0.994(0.000) 0.993(0.000) 0.740(0.001) 0.787(0.002) 0.574(0.001) 0.449(0.001) 0.286(0.000)

HNN 4958.1(174.1) 0.924(0.032) 0.921(0.013) 0.233(0.009) 0.232(0.007) 0.182(0.006) 0.157(0.004) 0.121(0.000)
HGCN 1280.9(248.9) 0.98(0.046) 0.979(0.027) 0.493(0.02) 0.523(0.015) 0.381(0.012) 0.308(0.008) 0.212(0)

G2GK=1 181.7(20.9) 0.997(0.000) 0.996(0.000) 0.763(0.015) 0.746(0.017) 0.684(0.019) 0.672(0.018) 0.675(0.015)
G2GK=3 122.4(14.2) 0.998(0.000) 0.998(0.000) 0.813(0.013) 0.800(0.014) 0.756(0.016) 0.739(0.015) 0.735(0.012)

HEADNetΣ=I 25.7(2.7) 1.000(0.000) 0.999(0.000) 0.929(0.001) 0.919(0.002) 0.694(0.001) 0.544(0.001) 0.337(0.000)

*G2GNA,K=3 81.3(10.1) 0.999(0.000) 0.998(0.000) 0.865(0.008) 0.854(0.008) 0.824(0.011) 0.802(0.011) 0.783(0.009)

HEADNet 11.9(2.0) 1.000(0.000) 1.000(0.000) 0.973(0.003) 0.972(0.003) 0.966(0.004) 0.961(0.004) 0.956(0.005)

p-value 1.06E-27 1.06E-27 2.46E-25 1.39E-44 3.91E-46 4.39E-39 3.36E-42 2.33E-52

4.3 Network Reconstruction

We use network reconstruction (NR) to evaluate the capac-
ity of the learned embeddings to reflect the original data
[13]. We evaluate NR in the standard fashion [13]: That
is, we first train a model to convergence using complete
information. For NR, we then randomly select a set of true-
negative ordered node pairs equal the to size of true-positive
node pairs (|E|). Area-under-receiver operating character-
istic (AUROC), and average precision (AP) are pair-based
metrics, computed by ranking pairs from both sets inversely
by distance with respect to the metric of the model. AUROC
and AP are then readily computed from this ranked list of
labelled pairs. ‘Mean Rank’ is the expected position of a
true positive node pair in the set of selected negative pairs
when sorting by distance. Mean average precision (mAP)
and precision at k (p@k) are subtly different in that they
are computed with respect to each node individually and
then the mean over all nodes is reported. Firstly, ground-
truth (positive) node pairs of the form (u, v) are grouped
by source node u. For each u, mAP is computed for the
true neighbours of u and a random sample of 1000 non-
neighbours. For p@k, the top k closest nodes to each source
node u are determined and we compute the expectation that
a node in that set is a true neighbour. Each experiment is
repeated 30 times and we report the mean and s.d..

Table 2 provides a summary of the network reconstruc-
tion results for embedding dimension 25+25. Comparing
between like algorithms with and without attributes, for
example: G2GNA,K=1 and G2GK=1, we see that algorithms
that do not use attributes outperform their equivalents with
attributes. This suggests that attributes act as a natural
form of regularisation on the learning process, preventing
over-fitting to the given training data (in this case, trad-
ing perfect network reconstruction for better link predic-
tion performance, see section 4.4). Note that, the selected
benchmark algorithm in all three cases (G2GNA,K=3) does
not use attributes in the learning process, and so lacks
this regularisation. This leads to its poorer performance
in the link prediction task (table 3) in three out of four
networks with attributes. HEADNet, on the other hand,
does use attributes in the learning process and is able to
maintain competitive performance with G2GNA,K=3 for NR,
while handily our-performing in the link prediction task.
Similarly, by considering only benchmark algorithms that
leverage attributes (HNN, HGCN, G2GK=1, and G2GK=3),
HEADNet achieves superior performance. Comparison be-
tween HEADNet and HEADNetΣ=I reveals that learning
the variance matrix results in superior performance across
all networks, compared with fixing it to the identity matrix.
We further investigated this in section 4.7.3.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 8

TABLE 3: Summary of the link prediction task on synthetic, Cora ML, Citeseer, Pubmed, Cora and Wiki Vote networks for
embedding dimension 25+25. For each network, for the computation of the t-statistic and corresponding p-value, we select
the best benchmark algorithm (identified with an asterisk (*)) according to AP.

Synthetic Mean Rank AUROC AP mAP Wiki Vote Mean Rank AUROC AP mAP

ATP (log) 88.7(8.1) 0.493(0.041) 0.574(0.040) 0.017(0.020) ATP (log) 5768.5(37.5) 0.444(0.004) 0.471(0.003) 0.013(0.001)
LINE 122.0(8.2) 0.301(0.037) 0.383(0.012) 0.018(0.009) LINE 7171.1(48.1) 0.309(0.005) 0.376(0.002) 0.042(0.002)

G2GNA,K=1 47.0(6.7) 0.733(0.045) 0.651(0.051) 0.010(0.005) G2GNA,K=1 478.7(32.7) 0.954(0.003) 0.941(0.004) 0.109(0.005)
G2GNA,K=3 35.2(6.3) 0.801(0.040) 0.738(0.049) 0.023(0.010) G2GNA,K=3 476.3(33.7) 0.954(0.003) 0.932(0.006) 0.114(0.004)

*NK 34.6(9.8) 0.804(0.063) 0.738(0.072) 0.030(0.008) *NK 199.1(7.8) 0.981(0.001) 0.979(0.001) 0.179(0.004)

HEADNetNA 22.3(4.0) 0.876(0.026) 0.866(0.032) 0.051(0.009) HEADNetNA 121.6(8.6) 0.988(0.001) 0.984(0.001) 0.218(0.004)

p-value 7.68E-08 4.53E-07 1.95E-11 1.84E-13 p-value 7.88E-42 7.88E-42 3.25E-23 9.48E-41

Cora ML Mean Rank AUROC AP mAP Cora Mean Rank AUROC AP mAP

ATP (log) 500.4(11.9) 0.407(0.014) 0.446(0.009) 0.031(0.004) ATP (log) 3945.8(35.1) 0.396(0.005) 0.435(0.004) 0.038(0.001)
LINE 405.2(11.8) 0.520(0.014) 0.475(0.008) 0.063(0.008) LINE 3159.6(36.1) 0.516(0.006) 0.473(0.003) 0.084(0.004)

G2GNA,K=1 27.1(3.6) 0.969(0.004) 0.965(0.005) 0.240(0.013) G2GNA,K=1 74.8(6.6) 0.989(0.001) 0.989(0.001) 0.456(0.012)
G2GNA,K=3 26.6(3.6) 0.970(0.004) 0.966(0.006) 0.244(0.014) G2GNA,K=3 70.9(7.5) 0.989(0.001) 0.990(0.001) 0.485(0.012)

NK 29.6(3.7) 0.966(0.004) 0.965(0.005) 0.272(0.015) NK 109.4(7.5) 0.983(0.001) 0.984(0.001) 0.479(0.005)
G2GK=3 24.2(3.0) 0.972(0.004) 0.967(0.006) 0.244(0.014) G2GK=1 66.5(5.3) 0.990(0.001) 0.989(0.001) 0.426(0.012)

*G2GK=1 23.8(2.9) 0.973(0.003) 0.967(0.006) 0.241(0.012) *G2GK=3 64.1(5.2) 0.990(0.001) 0.990(0.001) 0.445(0.012)

HEADNetNA 24.4(3.9) 0.972(0.005) 0.974(0.004) 0.394(0.016) HEADNetNA 86.6(5.9) 0.987(0.001) 0.989(0.001) 0.623(0.008)

p-value 7.22E-01 7.22E-01 2.69E-06 3.16E-43 p-value 1.00E+00 1.00E+00 1.00E+00 2.48E-51

HEADNet 16.9(2.6) 0.981(0.003) 0.980(0.004) 0.415(0.017) HEADNet 46.1(4.3) 0.993(0.001) 0.993(0.001) 0.661(0.006)

p-value 5.41E-14 5.41E-14 2.59E-14 2.98E-43 p-value 3.01E-21 3.01E-21 2.35E-21 3.92E-50

Citeseer Mean Rank AUROC AP mAP Pubmed Mean Rank AUROC AP mAP

ATP (log) 303.9(11.2) 0.435(0.021) 0.494(0.021) 0.029(0.004) ATP (log) 7692.6(24.3) 0.132(0.003) 0.327(0.001) 0.083(0.005)
LINE 299.9(7.3) 0.442(0.014) 0.433(0.007) 0.040(0.005) LINE 4859.8(52.3) 0.452(0.006) 0.433(0.003) 0.045(0.002)

G2GNA,K=1 28.8(4.6) 0.948(0.008) 0.962(0.007) 0.279(0.015) G2GNA,K=1 66.0(7.5) 0.993(0.001) 0.991(0.001) 0.503(0.012)
G2GNA,K=3 28.5(4.6) 0.949(0.009) 0.962(0.007) 0.264(0.013) NK 107.6(6.2) 0.988(0.001) 0.987(0.001) 0.475(0.005)

NK 39.1(6.2) 0.929(0.011) 0.945(0.007) 0.265(0.012) G2GK=1 284.1(19.9) 0.968(0.002) 0.958(0.003) 0.146(0.006)
G2GK=1 15.0(3.0) 0.974(0.006) 0.972(0.009) 0.259(0.012) G2GK=3 229.6(10.4) 0.974(0.001) 0.965(0.002) 0.170(0.004)

*G2GK=3 14.9(2.8) 0.974(0.005) 0.972(0.008) 0.247(0.012) *G2GNA,K=3 39.2(4.9) 0.996(0.001) 0.995(0.001) 0.612(0.011)

HEADNetNA 35.0(5.2) 0.937(0.010) 0.951(0.007) 0.370(0.026) HEADNetNA 36.0(4.3) 0.996(0.000) 0.996(0.001) 0.781(0.009)

p-value 1.00E+00 1.00E+00 1.00E+00 1.18E-25 p-value 4.68E-03 4.68E-03 2.10E-04 1.06E-53

HEADNet 12.8(2.1) 0.978(0.004) 0.975(0.007) 0.414(0.020) HEADNet 73.4(6.8) 0.992(0.001) 0.989(0.001) 0.421(0.007)

p-value 1.21E-03 1.21E-03 9.95E-02 6.18E-39 p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00

Note that the purpose of NR is to preserve the training
data – the structure observed by the model at the time
of training. NR is typically evaluated in alongside link
prediction (LP), which evaluates the ability of a model to
predict new emerging links (see section 4.4), to measure
the overall generalisation performance of the model. This is
because there is often a trade-off between NR and LP, where
a model can ‘overfit‘ on the observed data resulting in high
NR performance, but can not generalise well and predict
new links, resulting in poorer LP performance. A high-
quality embedder model should simultaneously do both.

4.4 Link Prediction

To evaluate LP ability, we randomly select 10% of the edges
in the network and remove them (ensuring that every node
has at least one connecting edge) [7]. We randomly select
also an equal number of randomly selected non-edges in
the network. We then train each model on the incomplete
network and rank the pairs of nodes based on distance.

Table 3 provides a summary of the LP results. We ob-
serve that, in general, HEADNet performs very well com-
pared with the other benchmark algorithms on all network
datasets. Furthermore, incorporating node attributes in the
learning process improves the performance on all three
algorithms that are capable of doing so on three out of
the four networks: G2GK=1 vs. G2GNA,K=1, G2GK=3 vs.

TABLE 4: Link prediction on unseen nodes.

Cora ML (300 nodes removed) Pubmed (1972 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 417.1(67.1) 0.746(0.028) 0.690(0.029) 2771.0(231.7) 0.836(0.012) 0.811(0.013)
G2GK=3 644.3(85.2) 0.605(0.042) 0.556(0.036) 4033.5(421.9) 0.761(0.022) 0.742(0.021)

HEADNet 181.1(40.9) 0.890(0.018) 0.899(0.017) 1673.4(96.5) 0.901(0.004) 0.902(0.004)

p-value 1.25E-21 6.78E-29 2.63E-34 1.10E-26 2.45E-29 5.56E-33

Citeseer (423 nodes removed) Cora (1980 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 229.8(25.2) 0.772(0.018) 0.789(0.019) 2391.3(257.9) 0.807(0.018) 0.772(0.020)
G2GK=3 233.9(29.3) 0.768(0.023) 0.785(0.024) 3522.5(334.9) 0.716(0.023) 0.668(0.027)

HEADNet 154.5(21.0) 0.847(0.018) 0.864(0.016) 549.4(48.7) 0.956(0.003) 0.959(0.002)

p-value 2.68E-18 3.80E-23 1.76E-23 4.62E-28 5.12E-30 1.09E-30

G2GNA,K=3, and HEADNet vs. HEADNetNA. The poorer
performance on the Pubmed network perhaps suggests that
the homophily property (nodes with similar attributes are
more likely to connect) does not hold for this network.
Still, the performance of HEADNet for this network (and all
others) is notably superior to other node-attribute conscious
benchmark algorithms.

4.4.1 Unseen Nodes
Mapping directly from attributes allows our model to han-
dle previously unseen nodes. To evaluate the capacity for
HEADNet to predict edges on previously unseen nodes,
we perform the following: We randomly sample 10% nodes
from the network and remove all in- and out- going edges
from each of these selected nodes (this may result in the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 9

2% 4% 6% 8% 10%
0.5

0.6

0.7

0.8
F1

m
ic

ro
Cora ML

2% 4% 6% 8% 10%

0.4

0.6

0.8

Label Percentage

Citeseer

2% 4% 6% 8% 10%

0.6

0.7

0.8

Pubmed

NK Deepwalk Sage-GCN HNN HGCN G2GK=1 G2GK=3 HEADNet

Fig. 3: Mean of micro-averaged F1 scores for node classi-
fication on the Cora ML, Citeseer and Pubmed networks
for embedding dimension 5 and a range of observed label
percentages.

removal of additional nodes if we remove all of a nodes
neighbours). For each removed edge, we randomly select a
pair of nodes as a negative sample. We then train and evalu-
ate in the same way as in the link prediction experiment. We
repeat this process 30 times for each network. We compare
only against G2G as only G2G can handle unseen nodes.

Table 4 provides a summary of the results of this ex-
periment for embedding dimension 5+5. From this, we see
that HEADNet can achieve substantially better results than
G2G – outperforming it on all networks by all metrics –
in relatively small embedding dimensions. These results
suggest that embedding to a hyperbolic metric space using
attributes can provide an effective method for predicting the
links of previously unseen nodes.

4.5 Node Classification
A popular downstream task for low-dimensional node rep-
resentation is node classification (NC). Often in complex sys-
tems, entities belong to one to many classes that can affect
the emergence of links or new attributes. To evaluate NC, we
learn low-dimensional embeddings using the full network
structure in an unsupervised manner. We then use a Support
Vector Classifier (SVC) to evaluate the separation of classes
in the embedding space For hyperbolic embeddings, we
first project to the Klein model of hyperbolic space, which
preserves straight lines [54]. For HEADNet and G2G, we use
the mean vectors of the learned distributions as the input
features to the SVC. To simulate a common scenario, where
only a small fraction of nodes are labelled, we train our SVC
using small fractions of node labels, ranging from 2%-10%.

Figure 3 reports the mean micro-averaged F1 score
achieved on the node classification task for a range a label
percentages that are used to train the SVC. For two out of
the three networks, we observe that HEADNet marginally
out-performs all benchmark algorithms, even with only 2%
labels observed (0.733 vs. 0.718 and 0.809 vs. 0.803 for the
Citeseer and Pubmed networks respectively). For the Cora
ML network, we see inferior performance compared with
the best benchmark (for example, HEADNet achieves an
F1 score of 0.748 at 5% observed labels, whereas G2GK=1

scores 0.774). However, as we discuss in section 5.3, we
can view this performance as a lower bound that can be
improved in future work.

4.6 Network Visualisation
One common application of network embedding is network
visualisation. Figure 4 illustrates two-dimensional Poincaré

(a) Cora ML (b) Citeseer

Fig. 4: Poincaré visualisations of the learned hyperboloid
mean vectors for the nodes in the Cora ML and Citeseer
networks. Nodes are coloured according to class labels,
however class labels were not used in the learning process.

20 40

0

0.2

0.4

m
A

P

Cora ML

20 40
0

0.2

0.4

Embedding Dimension

Citeseer

20 40
0

0.2

0.4

0.6

Cora

ATP (log) ATP (harmonic) LINE G2GNA,K=1 G2GNA,K=3 NK
G2GK=1 G2GK=3 HNN HGCN HEADNetNA HEADNet

Fig. 5: mAP scores for link prediction on the Cora ML,
Citeseer and Cora networks across a range of dimensions.

projections of the hyperboloid mean vectors learned by
HEADNet in the 2+2 dimension setting for the Cora ML
and Citeseer networks. Nodes are coloured according to
node label. Note that HEADNet is a purely unsupervised
technique, and is trained using network topology and node
attributes only. The visualisation demonstrates that homo-
geneous nodes (i.e. nodes belonging to the same class) are
clustered together in the low-dimensional space and this
supports our intuition that consideration of node attributes,
as well as network topology, can lead to superior (and more
robust) performance in downstream tasks.

4.7 Parameter Sensitivity
4.7.1 Robustness to Choice of Embedding Dimension
We evaluated the robustness of HEADNet to choice of
embedding dimension, measuring mAP achieved in the LP
task for embedding dimensions 2+2, 5+5, 10+10, 25+25, and
50+50. Figure 5 summarises these results for the for the Cora
ML, Citeseer and Cora networks. Te observe the robustness
of HEADNet to the setting of embedding dimension, even at
low dimensions, as well as a consistent performance versus
the benchmark algorithms.

4.7.2 Choice of Metric
In order investigate the impact of the metric function on
the performance of downstream tasks, we compare the
performance of HEADNet using a hyperboloid metric and a
Euclidean one. To achieve this, we omit applying Expµ0

and
Ψu and apply eq. (7) directly on the output of WHnhu+bHn .

Table 5 compares the performance of using a Euclidean
metric versus a hyperbolic metric on a number of tasks
across a range of embedding dimensions. Based on the mAP

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 10

TABLE 5: The effect of a Euclidean (R) versus Hyperbolic
(H) metric on three downstream tasks: NR, LP and NC, over
a range of embedding dimensions n.

NR (mAP) LP (mAP) NC (10 fold F1)

n Network R H R H R H

5

Cora ML 0.389(0.012) 0.833(0.018) 0.229(0.050) 0.341(0.022) 0.833(0.015) 0.800(0.034)
Citeseer 0.387(0.008) 0.675(0.021) 0.245(0.015) 0.332(0.023) 0.808(0.005) 0.793(0.003)
Pubmed 0.334(0.041) 0.449(0.014) 0.256(0.049) 0.302(0.007) 0.832(0.039) 0.805(0.049)

Cora 0.605(0.045) 0.890(0.007) 0.430(0.002) 0.540(0.010) 0.482(0.045) 0.439(0.023)

10

Cora ML 0.604(0.024) 0.926(0.019) 0.272(0.011) 0.395(0.020) 0.856(0.039) 0.843(0.027)
Citeseer 0.433(0.033) 0.752(0.025) 0.241(0.037) 0.392(0.026) 0.819(0.044) 0.797(0.004)
Pubmed 0.416(0.040) 0.544(0.011) 0.312(0.010) 0.374(0.008) 0.854(0.007) 0.831(0.005)

Cora 0.818(0.026) 0.961(0.005) 0.482(0.014) 0.625(0.006) 0.606(0.030) 0.517(0.001)

25

Cora ML 0.647(0.040) 0.939(0.016) 0.296(0.001) 0.415(0.017) 0.861(0.039) 0.848(0.040)
Citeseer 0.486(0.013) 0.773(0.022) 0.278(0.043) 0.414(0.020) 0.832(0.049) 0.800(0.031)
Pubmed 0.506(0.007) 0.616(0.009) 0.359(0.025) 0.421(0.007) 0.857(0.044) 0.850(0.043)

Cora 0.852(0.046) 0.973(0.003) 0.510(0.031) 0.661(0.006) 0.633(0.045) 0.585(0.045)

50

Cora ML 0.681(0.038) 0.945(0.014) 0.285(0.032) 0.428(0.023) 0.857(0.014) 0.858(0.011)
Citeseer 0.485(0.003) 0.779(0.019) 0.284(0.034) 0.424(0.017) 0.846(0.037) 0.826(0.047)
Pubmed 0.511(0.028) 0.641(0.007) 0.346(0.045) 0.436(0.005) 0.860(0.021) 0.855(0.039)

Cora 0.843(0.016) 0.974(0.005) 0.538(0.038) 0.664(0.007) 0.634(0.020) 0.634(0.024)

TABLE 6: mAP scores achieved by HEADNet on the LP task
with and without learning the variance matrix.

Dimension 5 10 25 50

Cora ML
HEADNetΣ=I 0.277(0.019) 0.297(0.016) 0.302(0.015) 0.306(0.017)

HEADNet 0.341(0.022) 0.395(0.020) 0.415(0.017) 0.428(0.023)

p-value 1.41E-17 2.84E-28 2.36E-34 2.37E-30

Citeseer
HEADNetΣ=I 0.274(0.019) 0.291(0.016) 0.301(0.014) 0.311(0.017)

HEADNet 0.332(0.023) 0.392(0.026) 0.414(0.020) 0.424(0.017)

p-value 1.13E-15 4.23E-23 1.80E-31 1.55E-33

Pubmed
HEADNetΣ=I 0.317(0.007) 0.389(0.007) 0.436(0.008) 0.441(0.007)

HEADNet 0.302(0.007) 0.374(0.008) 0.421(0.007) 0.436(0.005)

p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00

Cora
HEADNetΣ=I 0.484(0.005) 0.558(0.006) 0.575(0.006) 0.578(0.008)

HEADNet 0.540(0.010) 0.625(0.006) 0.661(0.006) 0.664(0.007)

p-value 1.58E-29 1.58E-46 2.31E-46 2.31E-46

scores for for both NR and LP, we can see that the hyperbolic
metric does indeed out-perform the Euclidean one hand-
somely, and this strongly suggests that the intuition behind
our approach is sensible and the extra steps required to map
between spaces is justified and worthwhile. However, the
performance on the NC task further supports our theory
(see section 4.5) that projecting to the Klein model and
using a Euclidean classifier will achieve a lower-bound of
performance versus a hyperbolic classifier.

4.7.3 The Effect of Learning a Variance Matrix
Based on our findings for the NR experiment (table 2), and
in order to confirm our hypothesis that learning both mean
and variance vectors would result in superior downstream
performance, we run an ablation study to compare mAP on
the link prediction task with and without learning Σ.

Table 6 provides a comparison of mAP scores achieved
in the link prediction task by HEADNet with and with-
out fixing the variance matrix to the identity matrix
(HEADNetΣ=I). We find that in three out of the four citation
networks, performance is significantly improved when both
the mean and variance matrices are learned simultaneously,
even a significance value of 1.58E − 29 for a 5-dimensional
embedding of the Cora network. We also observe that this
holds true across the range of tested dimensions.

5 DISCUSSION

5.1 Connection to Variational Autoencoders
A natural comparison can be made between HEADNet and
a Variational Autoencoder (VAE) [28]. VAEs bridge the gap

between autoencoders and the generation of new, meaning-
ful data by regularising the latent space representation of
the data by encoding not to points in the latent space, but
to distributions and applying a penalty to the distribution
to encourage them to be as close to the chosen prior, p(z),
as possible. In this way, both a local (due to variance
control) and global (due to mean control) regularisation of
the latent space is ensured. The connection between VAEs
and HEADNet stems from the commonly selected choice of
prior: p(z) = N (0, I), a standard Gaussian distribution; as
well as the latent space penalty coming the form of Kullback
Leibler divergence DKL(f(x),N (0, I)). Like HEADNet, the
encoder makes the common simplifying assumption of fea-
ture independence to encode data points to d-dimensional
means and d-dimensional vectors corresponding to diago-
nal covariance matrices (i.e., f(x) = N (µ(x), σ(x))). Fur-
thermore, the architecture of the encoder neural network is
similar to the architecture of the embedder for HEADNet
[28]. Through this lens, we can view HEADNet as an en-
coder that learns uses not one, but N priors (corresponding
to the N nodes in the network) for regularisation, and that
the priors are not fixed (only the shape of them). We leverage
the structure in the network to select priors that we use to
regularise each distribution, based on the distributions of
the neighbours in the network.

A key difference between a VAE and HEADNet is the
omission of the decoder in HEADNet, and this leads to a
natural extension for HEADNet for the future: by simul-
taneously learning a hyperbolic decoder along with our
proposed embedder, we would be able to generate new,
meaningful entities in our system. For example: consider a
social network where nodes are annotated with characteris-
tics that describe a person. Each link describes a friendship,
and we find that the network displays characteristics that
would make us believe that a hyperbolic metric space may
underpin it. After training a hyperbolic encoder (HEAD-
Net) and a decoder, we would be able to, given a person,
“generate people” that might be friends with that person by
sampling from the learned distribution for that person and
decoding to obtain the attributes that that theoretical person
may exhibit. We leave this extension as future work.

5.2 Undirected Network Embedding

Undirected and directed network embedding share a close
relationship. Many undirected embedding algorithms can
be adapted to represent directed relationships, namely by
learned two representations of each node u – one to be used
for outgoing edges uo and and one for incoming ui. For two
nodes u, v ∈ V , where uo 6= ui, then asymmetric similarities
can be inferred, (f(uo, vi) 6= f(vo,ui) for most common
vector similarity measures f). However, in the worst case,
this could require two models and therefore double the
number of parameters. This is one of the drawbacks that
parameter sharing overcomes. For HEADNet, we learn 2n
parameters for n-dimensional node representations, but the
first layer of both models is shared. Further, the use of two
representations for a single node introduces the problem of
downstream representation: should uo, ui or some aggrega-
tion or concatenation of them be used for, for example, node
classification? By learning embeddings of distributions, the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 11

mean vectors correspond the the ‘most probable‘ location
of the node in the low-dimensional space and so makes for
an attractive vector to use in downstream tasks – exactly
as we have done for the node classification and network
visualisation tasks in section 4.5 and section 4.6 respectively.
Of course, the relatedness of the tasks of undirected and
directed embedding cannot be ignored. Indeed, by fixing
Σ = I (and therefore ignoring direction), our loss function
(eq. (12)) degenerates into the loss function of HEAT [27].

5.3 Node Classification
Sections 4.5 and 4.7.2 together suggest that mapping from
the hyperboloid to the Klein model and using Klein co-
ordinates directly as input into a Euclidean classifier may
result in sub-optimal class separation for some networks.
Despite preserved straight lines, it is challenging for the SVC
to build satisfactory class boundaries because distances are
distorted between Euclidean and Klein metrics and most
nodes will be embedded far from the origin of the space,
where large hyperbolic distances are represented by increas-
ingly small Euclidean ones. This is especially apparent in the
direct hyperboloid to Euclidean comparison in section 4.7.2,
as the Euclidean version of HEADNet outperforms the
hyperbolic version across the board.

To overcome this, one could account for the distortion as
much as possible by first re-centring hyperbolic projections
through a circle inversion about the Frècet mean [46] to
centre the points about the origin and therefore maximise
the Euclidean space between points in the Klein projection.
Alternatively, one could fit a hyperbolic neural network clas-
sifier [20] to the mean vectors in order to make node class
predictions. This will fully respect the hyperbolic metric
space in learning decision boundaries, which we feel will
result in the performance gain versus a Euclidean metric
that we currently observe in NR and LP. Visual inspection
of two-dimension network visualisation (see fig. 4) confirm
that the classes appear to sensibly separated and – since we
intended to focus primarily on directed links between nodes
in this work, and since the NR and LP results are promising
– we leave optimising the NC performance as future work.

5.4 Selecting Embedding Dimension
It has been shown in the past that a low-dimensional
hyperbolic embedding is sufficient to achieve high mAP
on tree and tree-like structures, such as taxonomies and
dendrograms [23]. For example: De Sa et al. [12] achieved
a near-perfect mAP score of 0.989 using just 2 dimensions
on the Wordnet hypernym graph, a strict tree structure. Fur-
thermore, it has been shown that the relative advantages of a
hyperbolic versus Euclidean network embedding diminish
as the dimensionality increases [27]. As such, we suggest
measuring the power-law ‘fit‘ of the network in question
(for example, using powerlaw [55]), and selecting between
2-10 dimensions based on the fit. The small dimension size
would maximise the efficacy over a Euclidean embedding,
while being very quick to generate. One could also hold
out a small proportion of edges from a network in question
and generate a range of embeddings of dimension 2-10 (as
table 4 shows – HEADNet can generalise well to predict
the distributions of unseen nodes even in low dimensions),

compute mAP and select the embedding based on the knee-
point of the mAP versus dimension curve.

6 CONCLUSION

In this paper we have presented HEADNet to fill the gap of
embedding attributed and directed networks in hyperbolic
space. We propose an embedding model to map attributed
nodes to Gaussian distributions in hyperbolic space. Based
on previous works [49], we further propose the use of a node
similarity measure in hyperbolic space based on a novel
mapping procedure to map hyperbolic Gaussian distribu-
tions to Euclidean ones, preserving hyperbolic distance and
direction. We achieve competitive performance on a number
of downstream machine learning tasks, including predicting
the links for previously unseen nodes. Our results suggest
that HEADNet can provide a general inductive hyperbolic
embedding method for directed networks with and without
node attributes, opening the door to hyperbolic manifold
learning on a wider range of network than previously
possible.

REFERENCES

[1] F. Papadopoulos, M. Kitsak, M. Serrano, M. Boguná, and D. Kri-
oukov, “Popularity versus similarity in growing networks,” Na-
ture, vol. 489, 2011.

[2] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 1024–1034.

[3] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 31, no. 5, pp. 833–852, 2018.

[4] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat,
“Greedy forwarding in dynamic scale-free networks embedded
in hyperbolic metric spaces,” in INFOCOM, 2010 Proceedings IEEE.
IEEE, 2010, pp. 1–9.

[5] D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá, “Cur-
vature and temperature of complex networks,” Physical Review E,
vol. 80, no. 3, p. 035101, 2009.

[6] F. Papadopoulos, C. Psomas, and D. Krioukov, “Network map-
ping by replaying hyperbolic growth,” IEEE/ACM Transactions on
Networking (TON), vol. 23, no. 1, pp. 198–211, 2015.

[7] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” in Interna-
tional Conference on Learning Representations, 2018, pp. 1–13.

[8] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[9] G. Alanis-Lobato, P. Mier, and M. A. Andrade-Navarro, “Efficient
embedding of complex networks to hyperbolic space via their
laplacian,” Scientific Reports, vol. 6, 2016.

[10] ——, “Manifold learning and maximum likelihood estimation for
hyperbolic network embedding,” Applied Network Science, vol. 1,
no. 1, p. 10, 2016.

[11] R. Sarkar, “Low distortion delaunay embedding of trees in hy-
perbolic plane,” in International Symposium on Graph Drawing.
Springer, 2011, pp. 355–366.

[12] C. De Sa, A. Gu, C. Ré, and F. Sala, “Representation tradeoffs for
hyperbolic embeddings,” Proceedings of machine learning research,
vol. 80, p. 4460, 2018.

[13] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierar-
chical representations,” in Advances in neural information processing
systems, 2017, pp. 6338–6347.

[14] ——, “Learning continuous hierarchies in the lorentz model of hy-
perbolic geometry,” in International Conference on Machine Learning,
2018, pp. 3776–3785.

[15] B. Dhingra, C. Shallue, M. Norouzi, A. Dai, and G. Dahl, “Em-
bedding text in hyperbolic spaces,” in Proceedings of the Twelfth
Workshop on Graph-Based Methods for Natural Language Processing
(TextGraphs-12), 2018, pp. 59–69.

[16] B. P. Chamberlain, J. Clough, and M. P. Deisenroth, “Neural em-
beddings of graphs in hyperbolic space,” arXiv:1705.10359, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, DEC 2020 12

[17] M. Leimeister and B. J. Wilson, “Skip-gram word embeddings in
hyperbolic space,” arXiv preprint arXiv:1809.01498, 2018.

[18] X. Wang, Y. Zhang, and C. Shi, “Hyperbolic heterogeneous infor-
mation network embedding,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 5337–5344.

[19] R. C. Wilson, E. R. Hancock, E. Pekalska, and R. P. Duin, “Spherical
and hyperbolic embeddings of data,” IEEE transactions on pattern
analysis and machine intelligence, vol. 36, no. 11, pp. 2255–2269, 2014.

[20] O.-E. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic neural
networks,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems. Curran Associates Inc.,
2018, pp. 5350–5360.

[21] I. Chami, Z. Ying, C. Ré, and J. Leskovec, “Hyperbolic graph
convolutional neural networks,” in Advances in Neural Information
Processing Systems, 2019, pp. 4869–4880.

[22] I. Balazevic, C. Allen, and T. Hospedales, “Multi-relational
poincaré graph embeddings,” Advances in Neural Information Pro-
cessing Systems, vol. 32, pp. 4463–4473, 2019.

[23] C. Gulcehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu,
K. M. Hermann, P. Battaglia, V. Bapst, D. Raposo, A. Santoro et al.,
“Hyperbolic attention networks,” arXiv preprint arXiv:1805.09786,
2018.

[24] Z. Wu, Z. Di, and Y. Fan, “A hyperbolic embedding model for
directed networks,” arXiv preprint arXiv:1906.03597, 2019.

[25] O. Ganea, G. Becigneul, and T. Hofmann, “Hyperbolic entailment
cones for learning hierarchical embeddings,” in International Con-
ference on Machine Learning, 2018, pp. 1646–1655.

[26] R. Suzuki, R. Takahama, and S. Onoda, “Hyperbolic disk embed-
dings for directed acyclic graphs,” in International Conference on
Machine Learning, 2019, pp. 6066–6075.

[27] D. McDonald and S. He, “Heat: Hyperbolic embedding of at-
tributed networks,” in International Conference on Intelligent Data
Engineering and Automated Learning. Springer, 2020, pp. 28–40.

[28] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[29] E. Mathieu, C. Le Lan, C. J. Maddison, R. Tomioka, and Y. W.
Teh, “Continuous hierarchical representations with poincaré vari-
ational auto-encoders,” in Advances in neural information processing
systems, 2019, pp. 12 565–12 576.

[30] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in International Conference on Machine
Learning, 2016, pp. 2014–2023.

[31] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in Neural Information Processing Systems, 2016, pp.
3844–3852.

[32] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv:1609.02907, 2016.

[33] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-
gcn: Geometric graph convolutional networks,” arXiv preprint
arXiv:2002.05287, 2020.

[34] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network
representation learning with rich text information,” in Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

[35] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in ACM SIGKDD. ACM, 2014, pp.
701–710.

[36] C. Hou, S. He, and K. Tang, “RoSANE: Robust and
scalable attributed network embedding for sparse networks,”
Neurocomputing, 2020. [Online]. Available: https://doi.org/10.
1016/j.neucom.2020.05.080

[37] C. Hou, H. Zhang, S. He, and K. Tang, “Glodyne: Global topol-
ogy preserving dynamic network embedding,” Accepted by IEEE
Transactions on Knowledge and Data Engineering, 2020.

[38] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in Proceedings of the Tenth ACM International Confer-
ence on Web Search and Data Mining, 2017, pp. 731–739.

[39] J. Gibert, E. Valveny, and H. Bunke, “Graph embedding in vector
spaces by node attribute statistics,” Pattern Recognition, vol. 45,
no. 9, pp. 3072–3083, 2012.

[40] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Thirty-first AAAI conference on
artificial intelligence, 2017.

[41] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed
network embedding for learning in a dynamic environment,”
in Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. ACM, 2017, pp. 387–396.

[42] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in ACM SIGKDD. ACM, 2016, pp. 855–864.

[43] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in WWW. Inter-
national World Wide Web Conferences Steering Committee, 2015,
pp. 1067–1077.

[44] J. Sun, B. Bandyopadhyay, A. Bashizade, J. Liang, P. Sadayap-
pan, and S. Parthasarathy, “Atp: Directed graph embedding with
asymmetric transitivity preservation,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 265–272.

[45] W. F. Reynolds, “Hyperbolic geometry on a hyperboloid,” The
American mathematical monthly, vol. 100, no. 5, pp. 442–455, 1993.

[46] B. Wilson and M. Leimeister, “Gradient descent in hyperbolic
space,” arXiv:1805.08207, 2018.

[47] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bo-
guná, “Hyperbolic geometry of complex networks,” Physical Re-
view E, vol. 82, no. 3, p. 036106, 2010.

[48] J. R. Clough and T. S. Evans, “Embedding graphs in lorentzian
spacetime,” PloS one, vol. 12, no. 11, p. e0187301, 2017.

[49] Y. Nagano, S. Yamaguchi, Y. Fujita, and M. Koyama, “A wrapped
normal distribution on hyperbolic space for gradient-based learn-
ing,” in International Conference on Machine Learning, 2019, pp.
4693–4702.

[50] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang,
“A tutorial on energy-based learning,” Predicting structured data,
vol. 1, no. 0, 2006.

[51] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, “Directed scale-
free graphs,” in Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2003, pp. 132–139.

[52] J. Leskovec and R. Sosič, “Snap: A general-purpose network
analysis and graph-mining library,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[53] J. Sun, D. Ajwani, P. K. Nicholson, A. Sala, and S. Parthasarathy,
“Breaking cycles in noisy hierarchies,” in Proceedings of the
2017 ACM on Web Science Conference, ser. WebSci ’17. New
York, NY, USA: ACM, 2017, pp. 151–160. [Online]. Available:
http://doi.acm.org/10.1145/3091478.3091495

[54] J. W. Cannon, W. J. Floyd, R. Kenyon, W. R. Parry et al., “Hyper-
bolic geometry,” Flavors of geometry, vol. 31, pp. 59–115, 1997.

[55] J. Alstott, E. Bullmore, and D. Plenz, “powerlaw: a python package
for analysis of heavy-tailed distributions,” PloS one, vol. 9, no. 1,
p. e85777, 2014.

David McDonald was born in the United King-
dom in 1993. He received the B.Sc., M.Sc.,
and Ph.D. degrees from Birmingham University,
West Midlands, United Kingdom, in 2015, 2016,
and 2020, respectively. He now works for AIA
Insights Ltd. as a Chief Technical Officer. His
main research interests are complex networks,
network embedding, heuristic searches and ma-
chine learning.

Shan He is a Senior Lecturer (Tenured Asso-
ciate Professor) in School of Computer Science,
the University of Birmingham. He is also an affil-
iate of the Centre for Computational Biology. His
research interests include complex networks,
machine learning, optimisation, and their appli-
cations to biomedicine. Shan is an Associate
Editor of IEEE Transactions on Nanobioscience
and Complex & Intelligent Systems (Springer).

