

University of Birmingham

MetaEmu
Chen, Zitai; Thomas, Sam; Garcia, Flavio

DOI:
10.1145/3548606.3559338

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Chen, Z, Thomas, S & Garcia, F 2022, MetaEmu: an architecture agnostic rehosting framework for automotive
firmware. in CCS '22: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. Proceedings of the ACM Conference on Computer and Communications Security, Association for
Computing Machinery (ACM), pp. 515–529, CCS '22: 2022 ACM SIGSAC Conference on Computer and
Communications Security, Los Angeles, California, United States, 7/11/22.
https://doi.org/10.1145/3548606.3559338

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1145/3548606.3559338
https://doi.org/10.1145/3548606.3559338
https://birmingham.elsevierpure.com/en/publications/873d1116-fcec-40d3-904c-5b9a63e80712

MetaEmu: An Architecture Agnostic Rehosting Framework for
Automotive Firmware

Zitai Chen∗
z.chen@pgr.bham.ac.uk
University of Birmingham

Birmingham, United Kingdom

Sam L. Thomas∗
sam@binarly.io

BINARLY
Pasadena, California, USA

Flavio D. Garcia
f .garcia@cs.bham.ac.uk
University of Birmingham

Birmingham, United Kingdom

ABSTRACT

In this paper we presentMetaEmu, an architecture-agnostic frame-
work geared towards rehosting and security analysis of automotive
firmware. MetaEmu improves over existing rehosting environ-
ments in two ways: Firstly, it solves the hitherto open-problem of
a lack of generic Virtual Execution Environments (VXEs) by syn-
thesizing processor simulators from Ghidra’s language definitions.
Secondly,MetaEmu can rehost and analyze multiple targets, each
of different architecture, simultaneously, and share analysis facts
between each target’s analysis environment, a technique we call
inter-device analysis.

We show that the flexibility afforded by our approach does not
lead to a performance trade-off—MetaEmu lifts rehosted firmware
to an optimized intermediate representation, and provides perfor-
mance comparable to existing emulation tools, such as Unicorn.
Our evaluation spans five different architectures, bare-metal and
RTOS-based firmware, and three kinds of automotive Electronic
Control Unit (ECU) from four distinct vendors—none of which can
be rehosted or emulated by current tools, due to lack of processor
support. Further, we show howMetaEmu enables a diverse set of
analyses by implementing a fuzzer, a symbolic executor for solving
peripheral access checks, a CAN ID reverse engineering tool, and
an inter-device coverage tracker.

KEYWORDS

automotive; dynamic program analysis; firmware; emulation

1 INTRODUCTION

Automobiles fulfill a vital function in our societies—a means of
transport—and, as with many technologies, have become increas-
ingly connected, and at the same time more closed to scrutiny [33].
Kocher et al. [31] and Checkoway et al. [6] demonstrated that this
increased connectivity introduces a significant attack surface, and,
inspired by these seminal works, Miller and Valasek [39] showed
that automobiles, like any other Internet-connected device can be
remotely compromised. Meanwhile, Garcia et al. [21] and Verdult et
al. [53, 54] showed that physical entry to a vehicle—something tra-
ditionally handled by a mechanical means—could also be defeated.

While researchers have sought to mitigate these flaws by proto-
col enhancements, e.g., [4], analyzing the black-box firmware of the
ECUs connected to a vehicle’s internal network, has largely been
left as a manual endeavor, e.g., [14]. We posit that this is due to
the fact that, while ECU firmware is not necessarily hard to obtain,
tool support for performing anything more than manual analysis is
severely lacking for the processor architectures they are based on.

∗Both authors contributed equally to this research.

Recent approaches enabling security analysis of embedded de-
vices have primarily focused on rehosting, i.e., the process of trans-
planting a device’s firmware to run inside a virtualized execution
environment, e.g., QEMU [3] or derived tools, such as Unicorn [46],
to enable specific analysis tasks. While these environments support
a wide-range of commonly used embedded architectures, such as
ARM and MIPS, they do not provide out-of-the-box support for
arbitrary peripherals, or any support for esoteric architectures, such
as those found in automotive components. At the time of writing,
most published work has sought to address the former challenge:
peripheral support. However, as noted by Fasano et al. [17] in their
systematization of the field, for devices whose firmware is not sup-
ported by an off-the-shelf emulator, the latter challenge—obtaining
a suitable execution environment—remains an open problem, ham-
pering the analysis of a large and vital class of devices.

An orthogonal issue arising from the use of commodity emu-
lators for rehosting is that they implicitly force a device-centric
approach, where a device and its peripherals are assumed to operate
with little or no constraints on the inputs they receive. For many
scenarios where embedded devices are deployed, we believe that
this simplification is unjustified, as evidenced in recent work by
industry practitioners [51, 52]. In the automotive setting, for exam-
ple, ECUs are interconnected by a Controller Area Network (CAN)
bus, which they use to communicate. Many ECUs require the pres-
ence of other ECUs to successfully initialize and operate, hence, to
realistically simulate a device’s operating environment, we often
require more than a single ECU to be rehosted.

Our contribution In this paper, we address the challenge of
analyzing devices that cannot be rehosted using commodity emu-
lators. We present our framework,MetaEmu, that takes as input
widely available processor and instruction set definitions—Ghidra’s
language definitions, and automatically synthesizes virtualized ex-
ecution environments capable of rehosting multiple devices of dif-
ferent architectures simultaneously. Our synthesized environments
enable deep introspection of each rehosted firmware’s state and
facilitate complex inter-device analyses.

We demonstrate that our approach is general (it can support
rehosting firmware of many architectures, irrespective of their
peculiarities), scalable (it can analyze many instances of a firmware
in parallel and share analysis facts), and enables dynamic analysis
of devices that until now have been largely overlooked.

To evaluate MetaEmu, we benchmark its performance and pro-
vide six case studies detailing its use for different kinds of security
analysis, including backdoor detection, inter-device analysis, and
various automotive-focused reverse engineering tasks. For these
analyses, we implement a fuzzer (by integrating MetaEmu with
LibAFL [20]), a symbolic executor, which we use to solve periph-
eral access checks, a CAN bus reverse-engineering tool, and an

inter-firmware coverage tracker. Our case studies demonstrate that
MetaEmu is effective in analyzing complex, binary-only firmware,
without any architecture support or performance trade-off. Our
evaluation data-set consists of thirteen benchmarks and six de-
vice firmware: two based on open-source SDKs and four extracted
from automotive ECUs: a Body Control Module (BCM), an Instru-
ment Cluster (IC), and two Telematics Control Units (TCUs). Each
end-user firmware is based on a different CPU architecture (Infi-
neon C166 and Renesas RH850, SH-2A, and V850E2M-M), and each
presents a different set of challenges for emulation and analysis.

To summarize, our work makes the following contributions:

(1) We present, to the best of our knowledge, the first generic
framework for rehosting and dynamically analyzing end-
user automotive firmware, and the first framework support-
ing device inter-dependent analysis of multiple rehosted
firmware executing simultaneously.

(2) We show that our framework is capable of synthesizing VXEs
for multiple esoteric architectures, generically enabling anal-
ysis of a vital class of devices currently unsupported by any
other dynamic analysis framework.

(3) We show how our framework enables complex analyses,
such as symbolic execution and fuzz testing, to be applied to
binary-only automotive firmware.

(4) We provide an in-depth evaluation of MetaEmu, with respect
to performance, implementation flexibility, and real-world
usability. It spans five different architectures, bare-metal and
RTOS-based firmware, and three kinds of automotive ECU
from four distinct vendors.

We release our framework, processor definitions, and firmware
data-set as open-source [7].

2 BACKGROUND

In this section, we provide the necessary background to understand
our contributions. We first provide an overview of the challenges
involved in analyzing automotive components, and then cover the
terminology used in the rest of this article.

A modern vehicle is composed of multiple ECUs connected by a
CAN bus. Each ECUmay have multiple peripherals, and often, each
will be manufactured by a different vendor, and may be based on a
different CPU architecture. In contrast to the majority of devices
analyzed under the umbrella of “embedded device security” in the
literature, ECUs are generally based on more esoteric architectures,
e.g., V850/RH850, or C166, rather than ARM orMIPS. Unfortunately,
these architectures are not supported at all by the de facto emula-
tion environments for security analysis—QEMU and Unicorn. This
makes it impossible to apply modern security analysis approaches
such as symbolic execution to these devices. While one might as-
sume that this challenge can be addressed by adding support for
new architectures to those tools, doing so requires an unreasonably
large amount of engineering effort: 1000s of lines of code and many
months of development time—an unjustifiable amount of work
for most applications. While Ghidra has EmulatorHelper which
can be used to emulate some of these architectures, it does not
have an easy-to-use interface for peripheral handling or adequate
performance for intensive analyses.

The tangential problem of peripheral support is a significant chal-
lenge in the automotive context: on the one hand, due to the variety
and number of peripherals a single firmware might interface with,
and on the other, due to a lack of documentation. For some analysis
tasks, peripheral interactions can be bypassed by providing a satis-
fying value which will work even with limited information about
the peripheral, as is done in previous work [5, 19, 60]. However,
such a bypass is often no better than (unsoundly) forcing execution
of a given branch target. This is because the real constraints on
the peripheral register might depend on another device’s output,
or be constrained outside the execution path being analyzed. An
obvious example of such a peripheral is a Compare and Match
Timer (CMT), which is often used by firmware to implement task
scheduling. Clearly, providing any satisfying value for the periph-
eral’s output will lead to undesired behavior, and is better handled
by a modeling approach, such as that proposed by Gustafson et
al. [24]. Thus, support for peripheral models and the ability to have
multiple rehosted firmware interact and communicate is vital to
ensure faithful simulation.

MetaEmu provides a means to rehost one or more device firm-
ware inside a virtual execution environment.We use the term rehost
to jointly refer to the process of transplanting a device’s firmware
into an emulator, and the simulation of its execution and interac-
tion with its peripherals. In this work, we refer to the rehosting
environment as a VXE, and assume that a VXE facilitates multiple
firmware to coexist and interact with each other.MetaEmu synthe-
sizes VXEs; we distinguish a synthesized VXE from a standard VXE,
such as those built on top of Unicorn [46], e.g., [36, 48], by how
they are specified: synthesized environments are specified using a
declarative approach, rather than purely programmatically.

3 SYSTEM OVERVIEW

In this section we provide an overview of MetaEmu, its inputs, and
the assumptions we make about the firmware it can rehost.

3.1 Framework Architecture

We summarizeMetaEmu’s architecture in Figure 1.MetaEmu takes
as input one or more binary blob firmware and outputs a combined
simulation/analysis environment capable of rehosting all the input
firmware within a single VXE. In the combined VXE, each firmware
has its own simulator (pink box in Figure 1). To synthesize these sim-
ulators,MetaEmu requires four inputs: ❶ a processor specification,
❷ an execution mode specification, ❸ a list of execution observers,
and ❹ a peripheral specification. To dynamically introspect and
manipulate the firmware’s state,MetaEmu attaches user-defined
observers to the simulator, which can be triggered on, e.g., regis-
ter reads and memory writes. The attached observers enable us to
handle complex addressing modes (e.g., that used for the C166 ar-
chitecture in §5.2.2) and implement symbolic solvers for peripheral
checks (similar to `𝐸𝑚𝑢 [60] and Laelaps [5]). By interfacing with
the analysis coordinator (gray box), observers can communicate
with other rehosted devices (e.g., allowing one device to provide
input to another’s peripherals) and share analysis facts, enabling
inter-device analyses.

Framework Inputs. MetaEmu is capable of rehosting many different
types of devices; from those with bare-metal firmware to those

Input

Output

Per firmware simulator

VXE analyzer

Peripheral
specification

Execution mode
specification

Lifter

Optimizer

Simulator

Processor
specification (.sla)

Firmware 1

Firmware 2

...

Firmware N

Virtual Execution
Environment

Execution
observers

Analysis coordinator

Introspector

Figure 1: Overview of MetaEmu. Each firmware along with corresponding processor, execution mode, and peripheral specifica-

tions are used to synthesize a simulator. Each simulator (pink box) can have execution observers attached, which monitor and

manipulate its execution state and interface with an analysis coordinator (gray box) to facilitate inter-firmware interaction and

analyses. The resulting VXE (yellow box) is composed of many per firmware simulators operating in parallel.

based on embedded RTOSes, such as ThreadX. Regardless of the
type of firmware being rehosted, we make the following assump-
tions:

(1) We do not have access to the firmware’s source-code.
(2) We know its basic memory map and architecture.
(3) We know the memory regions it uses for memory-mapped

I/O with its peripherals.
(4) We have a Ghidra language definition for its architecture.
Our assumptions are consistent with existing approaches, such

as P2IM [18, 19] and `Emu [60, 62], which also require manual spec-
ification of the memory mappings for each target firmware/device.

In addition to the firmware to rehost, MetaEmu requires four
auxiliary inputs to synthesize a VXE (shown in green in Figure 1).
Processor specification: To disassemble and obtain an architec-
ture independent representation of each firmware,MetaEmu lever-
ages Ghidra’s language definitions. These consist of a pspec which
defines register name and basic memory mappings, a cspec which
defines calling conventions and size information of primitive types,
and a slaspec which describes how to disassemble the architecture’s
instructions and an encoding of their semantics. At the time of
writing, there are 28 processor families supported in Ghidra master
branch and many others created by the community.
Execution mode specification: MetaEmu can simulate each
firmware’s execution using different strategies (further detailed
in §4.2.1), including concrete execution and concolic execution.
Each specification defines howMetaEmu simulates firmware at the
level of individual Intermediate Language (IL) operations and how
we represent the firmware’s state. All mode specifications imple-
ment a common interface and each synthesized firmware simulator
is parameterized by a generic type constrained by that interface,
allowing it to be instantiated to operate under any execution mode.
Execution observers: To extend each synthesized simulator to
support architectural nuances, peripherals, interrupts, and user-
defined analyses, we use so-called observers. As discussed later in
§4.3, our observers intercept events during simulation specific to
the simulator’s execution mode, and in response, can modify the
firmware’s state and coordinate with other simulators and observers
through a VXE-shared analysis coordinator.
Peripheral specification: As detailed later in §4.4, MetaEmu
supports peripherals through generic and user-specified models
(§4.4.2), and automatic model inference (§4.4.1). We specify all types

of peripheral using execution observers, which we attach to simu-
lators via their introspection interface. This interface is flexible and
can support peripherals that receive input from outside of a VXE,
enabling us to interact with rehosted firmware via SocketCAN,
fuzzers such as AFL [59], and even physical devices.

3.2 Challenges Rehosting Complex Firmware

FundamentallyMetaEmu is a multi-target emulation framework
purpose-built to facilitate complex security analysis that can be cus-
tomized and extended using a specification-based approach to alter
execution policies, architecture definitions, and peripheral models.
We encountered several challenges during the design and imple-
mentation of MetaEmu. In this section, we provide an overview of
these difficulties and how we have addressed them.

Architecture support and IR optimization: To facilitate ar-
chitecture agnostic analysis,MetaEmu emulates a firmware by first
translating its architecture-specific instructions to an intermediate
representation, and performs emulation of the resulting Interme-
diate Representation (IR) operations. The emitted operations are
based on Ghidra’s SLEIGH language definitions for the target’s
architecture. These definitions produce an IR representation that
is not well suited for emulation, as it is overly verbose, as shown
in Figure 2a. This is particularly problematic when using a sym-
bolic execution policy, as a more complex IR leads to more complex
symbolic formula. To improve the performance, we implement a IR
optimizer in our lifter, which can produces a much more optimal
IR representation, as shown in Figure 2b.

While our lifting and optimization approach is mostly standard,
i.e., optimizations are applied on the SSA form representation of
our IR, due to our use of SLEIGH specifications to generate our IR,
we encountered a number of additional challenges in our imple-
mentation. The first being that Ghidra’s language definitions allow
for variables (both registers and temporaries) to overlap. SLEIGH
represents each variable as a (𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑠𝑖𝑧𝑒) pair that indexes into
a flat address space, e.g., the register RAX might have offset 0 and
size 8, while EAX might have offset 4 and size 4. This complicates
SSA transformation, as it assumes that variables do not overlap. We
thus, modify the standard algorithm to treat overlapping variables
as equivalent. A further challenge is that SLEIGH’s temporaries
have a liveness that only spans a single instruction’s IL operations.
Hence, the same temporaries may be reused between consecutive
instructions. We adapt the standard liveness data-flow analysis to

account for this implicit lifetime information by providing unique
labels for temporaries across instructions, thus preventing data-flow
information propagating over instruction boundaries.

Missing analysis state and context: When emulating embed-
ded firmware, we often have to deal with missing or inconsistent
state. For example, the values of a device’s peripheral status reg-
isters, or global variables that may be have been set to particular
values when the firmware was dumped, which prevent the firmware
executing correctly when starting emulation from another location.
Under these circumstances, the emulated firmware will usually stall
in a check-and-wait loop. To solve this problem automatically, we
implement a peripheral check solver, which ❶ identifies looping
states and ❷ updates the firmware’s context with suitable values
to allow execution to proceed. The main difficulty is how to detect
such states during emulation. A naive approach would be to track
and count the number of times blocks of operations are executed
and if a particular block is executed repeatedly over a threshold
number of times, we assume that the emulated firmware has en-
tered a stall-state. While such an approach works, in practice, it is
both inefficient and requires a significant amount of resources. To
efficiently address this in MetaEmu, we use a state machine-based
approach, shown in Figure 3 to detect stall-states based on both
code and memory access patterns, which reduces the amount of
program state to track simultaneously.

While our peripheral solver can be used to bypass checks that
do not impact the behavior of the target firmware with respect to a
particular analysis, when the data or functionality of the peripheral
does matter for a given analysis, we cannot simply bypass a stall-
state check with any satisfying state configuration. Examples of this
include the CAN peripheral of our RH850-based firmware (§5.2.4)
and the Compare and Match Timer of our C166-based firmware
(§5.2.2). In such scenarios, the peripheral’s behavior needs to be
explicitly modeled. As even SoCs from the same family have slightly
different implementations of such peripherals, and different kinds of
context switching logic, it is both error-prone and time-consuming
to implement versions of the same peripheral for different devices.
To address this issue, we provide a universal peripheral backend
(§4.4.2) and interrupt model. They abstract the peripheral behav-
iors and provide building blocks for implementing peripherals for
different devices. Our interrupt framework enables a means to
rapidly implement interrupt status tracking, context switching, and
interrupt handler hooks and overrides.

Inter-device analysis: As mentioned in §2, a micro-controller
may rely on the data from other chips or devices to function cor-
rectly. Modeling and analyzing the interactions between multiple
targets pose two sets of challenges. Firstly, devices being rehosted in
the same VXE may come from different manufactures, have differ-
ent methods of handling peripherals, and may be based on different
architectures. Secondly, the devices may lack a documented shared
channel for communication, that would otherwise be facilitated
by black-box hardware in a real-world setting. In MetaEmu, we
overcome the first set of challenges by providing a wide-range of
architecture support and three methods to implement peripheral
models. We address the second challenge by providing an analy-
sis coordinator that facilitates message passing using a common
interface between both device’s emulated peripherals.

4 IMPLEMENTATION OF METAEMU

In this section, we describe MetaEmu’s key features in depth
and detail how they can be used to analyze rehosted firmware.
MetaEmu is written entirely in Rust and spans ~40kloc (excluding
comments and dependencies). This includes ~24kloc for IR lift-
ing and optimization, ~5kloc for IR simulation and observers, and
~11.5kloc for symbolic execution and other execution policy backends.
We do not rely on Ghidra’s code-base for any functionality, other
than its XML-based processor specifications.

4.1 Lifting & IR Generation

To support emulation in an architecture agnostic way,MetaEmu
operates on an IR that explicitly models all processor instructions
and their side effects. We represent each architectural instruction
as one or more IL operations, which we obtain by a process called
lifting, i.e., the translation of bytes into IL operations. Our IR is
inspired by Ghidra’s [43] IR, P-Code [42]. In contrast to P-Code, our
IR uses two isomorphic IL encodings: a SSA-form expression-based
variant, which we use for optimization, and a Register Transfer
Language (RTL) variant, semantically equivalent to P-Code, which
we use for emulation. Similar to P-Code, our IR supports arbitrary
extensions via intrinsic operations, which we use to model dynamic
processor state changes, such as localized address mode switches.

Our lifter takes as input unmodified Ghidra language definitions,
which contain information about calling conventions and the nec-
essary information to lift a byte stream into our IRs. This approach
enables us to make use of the vast number of processor architecture
definitions from Ghidra and greatly reduces the workload of adding
support for new architectures to MetaEmu. Inspired by B2R2 [30],
our lifter is completely parallel, and supports lifting chunks of the
same firmware across many cores.

While one might assume we could have used Ghidra’s lifter as a
basis forMetaEmu, unfortunately, it does not perform any optimiza-
tion of the IR it generates—it simply produces a literal translation of
the specification for each instruction into IL operations—which we
find leads to as much as 25% of the operations emitted being super-
fluous (§5.1.4). Clearly, naively interpreting IL operations emitted
from Ghidra’s lifter will be inefficient, and for analyses such as
symbolic execution will lead to much more complex formula due
to extraneous operations. Figure 2a provides a taste of just how
inefficient the generated IR is.

IR Optimization. In MetaEmu, we address these inefficiencies in
two ways. First, within our lifter, we rewrite and optimize our IR
prior to it being emitted and processed by our simulator. Second, we
cache optimized IR blocks, both on disk and within a cache shared
among all executor instances of the same firmware, which enables
us to amortize the overhead of performing our optimizations. Ac-
cordingly, MetaEmu lifter can produce a much more optimal IR
representation, as shown in Figure 2b.

We optimize IR blocks by rewriting and simplification using
e-graphs [50]. This enables us to obtain the most optimal repre-
sentation of each statement with respect to our rewrite rules. For
e-graph construction and manipulation, we use egg [57].

We use our SSA-form expression-based IR, to perform our op-
timizations, rather than our RTL-based IR, to ensure the correct
application of our rewrite rules in the presence of instruction-local

1 // mov dword [RBP - 0xc], ECX
2 va r0620 : = RBP + 0 x f f f f f f f f f f f f f f f 4
3 va r1790 : = ECX // redundant variable var1790
4 ∗ var0620 : = va r1790
5 CF := 0 x0
6 OF := 0 x0
7 // xor ECX, ECX
8 ECX := ECX ^ ECX // ECX is constant value 0x0
9 RCX := z e x t (ECX , 6 4) // Zext of 0 is constant 0x0
10 SF : = ECX s < 0 x0 // Constant 0x0
11 ZF := ECX == 0x0 // Constant 0x1
12 va r2580 : = ECX & 0 x f f // Constant 0x0
13 va r2590 : = popcount (va r2580) //number of 1s in 0 is 0
14 va r25a0 : = va r2590 & 0x1 // Constant 0x0
15 PF : = va r25a0 == 0 x0 // Constant 0x1

(a) IR produced by Ghidra’s lifter. The highlighted lines indicate

instructions that can be simplified.

1 va r0620 : = RBP + 0 x f f f f f f f f f f f f f f f 4
2 ∗ var0620 : = ECX
3 CF := 0 x0
4 OF := 0 x0
5 ECX := 0 x0
6 RCX := 0 x0
7 SF : = 0 x0
8 ZF := 0 x1
9 PF : = 0 x1

(b) Optimized IR produced byMetaEmu for the sequence in Fig-

ure 2a. The optimization to “mov dword [RBP - 0xc], ECX” elimi-

nates the intermediate variable var1790. The optimization to “xor
ECX, ECX” uses an identity for XOR, i.e., 𝑣 ⊕ 𝑣 = 0. Our optimiza-

tions are safe and preserve both memory and register side-effects.

Figure 2: Generated IR for the x86-64 instructions: mov dword [RBP - 0xc], ECX; xor ECX, ECX.

control-flow. Such control-flow occurs when the IR corresponding
to an architectural instruction requires loops or branches to model
the architectural semantics fully (e.g., rep stosb). Thus, an IR block
is more akin to a sequence of instruction-level control-flow graphs,
rather than a strict basic block.

After obtaining the SSA-form representation, we transform each
statement into an e-graph, merge it into a block-level e-graph, and
apply rewrite rules which cover algebraic identities and simplifi-
cations. Upon adding a new statement to the block-level e-graph,
we greedily apply rewrite rules, and extract its most optimal repre-
sentation with respect to AST depth (i.e., the shallower, the better).
By extracting statements in this way, we preserve the original IR
ordering, and by constructing an e-graph for the entire block incre-
mentally, we preserve the equivalence classes discovered, allowing
each statement to benefit from any rewriting possibilities applied
to its predecessors. Finally, we use liveness analysis [1] to identify
redundant assignments and remove them.

Our optimizations preserve all side-effects to memory and regis-
ters encoded in our unoptimized IR and therefore will not negatively
impact the accuracy of any downstream analyses performed. To
the best of our knowledge, our use of e-graphs for optimizing IR for
emulation is novel. In evaluating our approach (§5.1), we find that
through IR optimization and designing our emulator specifically for
rehosting, we achieve more than 400% performance improvement
over Ghidra’s lifter and emulator.

4.2 Firmware Simulation

At the most fundamental level, the simulators MetaEmu generates
load an input firmware, translate its instructions into our IR, and
interpret each emitted IL operation. Within the output VXE, each
simulator runs in parallel on a separate thread, and communicates
using a shared analysis coordinator.

4.2.1 Execution Modes & Policies. The method each simulator uses
for interpretation depends on the execution mode or policy it was
synthesized with. In contrast to traditional emulation environments,
MetaEmu supports a variety of execution modes to simulate the
execution of a rehosted firmware. Among other scenarios, these
modes allow us to address the lack of complete peripheral models

and support analyses bootstrapped using incomplete execution con-
texts, which often occur when analyzing firmware extracted from
end-user devices. Each policy also influences the kind of observa-
tions that attached execution observers (§4.3) can make and the
underlying representation they act upon. We support five modes:
❶ Concrete execution follows the standard semantics of the
firmware’s Instruction Set Architecture (ISA). It represents state
as a collection of byte arrays, and updates the state by directly
interpreting each IL operation in a step-wise manner.
❷ Concolic execution [49] permits us to mark some input vari-
ables, i.e., memory locations, as symbolic, while treating the re-
mainder as in concrete execution. We obtain concrete assignments
for symbolic variables by querying the Satisfiability Modulo Theo-
ries (SMT) solver, Boolector [44]. By negating the path constraints
associated with a branch, we can obtain an assignment that allows
us to explore both branch targets. Under this policy observers can
inject symbolic values into the firmware’s state.
❸ Forced execution [45] follows concrete execution semantics,
with the caveat that at conditional branches, we can “flip” the branch
condition, such that the non-satisfying branch target is taken.
❹ Micro execution [22] follows concrete execution, with the ex-
ception our observers can intercept invalid memory accesses, map
the locations into our VXE state, and populate them by an analysis-
dependent policy.
❺ Flood execution [56] follows forced execution, with the addi-
tional property that all branch targets, regardless of their satisfia-
bility, are explored in accordance with an exploration policy, e.g.,
to a fixed bound or threshold branch coverage. In MetaEmu we
implement a variant of flood execution based on micro execution,
as proposed by Gotovchits et al. [23]. Under this policy, observers
witness events from multiple execution paths simultaneously.

4.2.2 Architectural Nuances. To facilitate non-standard addressing,
dynamic processor mode switches, and other architectural quirks,
we provide an interface to implement IL intrinsic operations. This
interface enables MetaEmu to support functionality that cannot
be directly modelled in our IR, e.g., instructions for cryptographic
primitives, as well as modify how low-level operations such as

memory reads and writes are performed. We use this interface to
support the DPP override mechanism address scheme for the C166
architecture [28], which requires us to alter how the simulator
resolves memory accesses for a variable window of instructions.

4.3 Observers & Analysis Coordination

To extend our specification approach to support peripherals (§4.4),
arbitrary extensions to our generated simulators (§4.5), and different
kinds of analyses (§5.2), we use a concept called execution observers.
Observers attach to our simulators and register to receive event
notifications via each simulator’s introspector (bottom blue box in
Figure 1). In response to events, we can configure observers to
manipulate the running firmware’s state and/or interface with the
VXE analysis coordinator (gray box in Figure 1) to enable inter-
device communication or analyses.

As noted in §4.2.1, the kind of events an execution observer can
witness, and the firmware state representation it operates on, is
tied to the execution policy of the simulator it is attached to. How-
ever, regardless of the execution policy a simulator is synthesized
with, we can register observers to receive event notifications for a
number of basic event kinds. These include: register reads/writes,
memory reads/writes, program counter changes, conditional
branches, and function calls. We associate each event kind with
a corresponding response kind, which we use to facilitate common
rehosting tasks, such as: instruction skipping, conditional branch
flipping, function call replacement, and forking the simulator’s state.
We provide a full list of event kinds in Appendix A.

Inter-device analysis. Our analysis coordinator provides a generic
message passing interface that routes arbitrary event notifications
between each simulator. It also acts as an inter-device communica-
tion channel, that allows each rehosted device to communicate with
any other device inside the same VXE. For example, it enables us to
connect devices by their Hardware Abstraction Layer (HAL) APIs,
without resorting to manually implementing low-level cross-device
communication channels using emulated peripherals.

4.4 Peripheral Support

As discussed in §2, correct and faithful firmware simulation depends
on providing some degree of peripheral support. When rehosting,
this support is still required: for example, to supply input to the
firmware when fuzzing, or to ensure the firmware can execute at
all if it is based on a RTOS.

In embedded firmware, peripheral interactions are frequently
performed using Memory-mapped I/O (MMIO). To facilitate this,
such firmware has a continuous memory region allocated specif-
ically for MMIO, which is divided into smaller regions for each
peripheral. These regions contain memory mapped versions of a
peripheral’s control and status registers, as well as registers facil-
itating data transfers between the firmware and peripheral. This
presents two challenges when rehosting firmware: ❶ When ex-
ecuting, firmware frequently checks its peripherals’ statuses. If
the status of a peripheral does not match what the firmware ex-
pects, e.g., due to being uninitialized, execution will “stall” in an
infinite loop until the peripheral’s status changes. Thus, without
correct support, execution cannot proceed past such checks. ❷ A
firmware’s control-flow is often dependent on data read from its

peripherals. For example, for ECUs that communicate using Unified
Diagnostic Services (UDS), the specific service handler executed
will be determined by data received via a CAN peripheral. Hence,
without peripheral support, it is impossible to faithfully explore
such execution paths.

To overcome these obstacles, we provide three types of periph-
eral support in MetaEmu, as shown in Appendix B. They are all
based on execution observers (§4.3). The first, inspired by Lae-
laps [5], is a generic Peripheral Check Solver that allows us
to specify a MMIO address range and automatically bypass sim-
ple checking loops that would otherwise cause execution to stall.
The second, is a Universal Peripheral framework, which pro-
vides a specification-based approach to build common peripher-
als by composing generic models. These models are architecture-
agnostic, so can be reused for many different devices, with minimal
reconfiguration. MetaEmu provides models to act as generic input
sources, e.g., for fuzzing or to facilitate inter-firmware communica-
tion, timers of various kinds, and models that allow a peripheral
to be associated with one or more interrupts (discussed in §4.5).
Finally, as some peripherals cannot be implemented using auto-
mated or generic approaches, but are essential to enable security
analyses, e.g., complex I/O devices for communication over CAN,
we provide an observers-based API (§4.3) tomanually implement

peripherals. We demonstrate this in §5.2.4 by implementing CAN
network interface controller.

4.4.1 Inferring Expected Peripheral Behavior. Our peripheral check
solver can be applied in many rehosting scenarios, as firmware of-
ten only performs comparisons against a peripheral’s status register
to ensure it is initialized. These checks usually occur as tight loops
whose exit condition depends on certain bits of a MMIO register
being set or clear, similar to Listing 1. They generalize to the fol-
lowing: ❶ the firmware reads the peripheral’s MMIO register, ❷ it
checks the value read using a boolean predicate, ❸ if the predicate
yields false, the loop repeats, otherwise execution continues past
the check. We use this pattern to identify peripheral checking loops.
do {

mmioValue = read_4 (0 xfff81104);
} while ((mmioValue & 4) == 0);

Listing 1: Example of a peripheral checking loop.

Bypassing status checks: To compute satisfying values to exit
checking loops, we use localized symbolic execution, as shown
in Figure 3. Our technique works by monitoring and symbolizing
read accesses to our configured peripheral MMIO region. For each
access, we track its data-flow and build an expression tree capturing
the constraints imposed upon the read value. Upon reaching a
conditional branch that is dependent on our read value, we use a
SMT solver [44] to find an assignment that enables us to explore
the “not taken” branch target. We then execute the branch; if it
leads us to re-enter of the checking loop, we replace the value read
from the MMIO register with the value computed using the solver.

Solver not
started

Symbolic
tree

builder
started

Solve the
peripheral
check
value

CBranch

Load from
monitored
address

Store to monitored
address/Forward jump

Figure 3: Peripheral model inference to bypass status checks.

Our solver monitors loads fromMMIO register addresses and

builds an expression tree of the constraints imposed upon

the value read. Upon reaching a conditional (cbranch), it uses
SMT solver to compute an assignment for the register that

allows us to exit the checking loop.

4.4.2 Universal Peripheral Models. Building support for common
peripherals for many different devices is both tedious and error-
prone. Thus, it is desirable to build generic peripheral models in-
stead. However, different Microcontroller Units (MCUs) use differ-
ent MMIO registers and bit masks to perform similar tasks, com-
plicating the implementation process. For example, to control the
start/stop of a CMT, the C167CR MCUs use bit 6 at address 0xff42
[28], while SH-2A MCUs use bit 0 at address 0xfffec000 [47]. Our
universal peripheral models overcome this difficulty generically.

WithinMetaEmu, we support universal peripherals using two
methods. ❶ We provide an interface to intercept and redirect any
function call, e.g., HAL API calls. This enables MetaEmu to han-
dle many kinds of I/O-based peripherals using generic handlers,
without concern for the low-level hardware details. ❷ We provide
memory/register read/write hooking, which enables us to model
MMIO-based peripherals generically. Our MMIO peripheral models
implement data and status handling logic using a common inter-
face that enables them to be used with our universal peripheral
framework. Our framework then allows us to configure each model
declaratively by specifying the address, bit masks, and handler
functions associated with a given peripheral’s MMIO registers. To
facilitate model composition and architectural quirks, we provide a
means to override each model’s handler functions, which enables us
to modify and combine their behaviors arbitrarily. Listing 2 demon-
strates how the CMSTR register of SH2A CMT can be configured
using our generic CompareMatchTimer model.
let mut cmt = CompareMatchTimer :: default ();
cmt.map_function_addr_read(ADDR_CMSTR , 0x01 ,

&CMTFun :: is_enabled);
cmt.map_function_addr_write(ADDR_CMSTR , 0x01 ,

&CMTFun :: set_enable);

Listing 2: Configuration of a Compare & Match Timer model

using our universal peripheral backend.

4.5 Interrupt Support

While many peripheral interactions occur synchronously, i.e., ex-
clusively via MMIO, others happen asynchronously. A common ex-
ample is the tick of a timer peripheral used in RTOS-based firmware
to implement task scheduling. Such asynchronous events manifest
in firmware via interrupts, which are handled by inducing a context
switch to a so-called Interrupt Service Routine (ISR). This type of
context switch is almost always facilitated by hardware, and works

by first saving a snapshot of the current execution context to a
vendor-defined area of memory, and then redirecting control-flow
to the interrupt handler routine. To return from an ISR, either the
interrupt routine or the micro-controller itself will be responsible
for restoring the execution context depending on the implementa-
tion of the vendor. These type of interrupts are commonly used in
event driven firmware, where most functionality is implemented
via ISRs. To handle this diversity inMetaEmu, we provide a generic
interrupt handling framework, implemented using observers.

Similar to our universal peripheral backend (§4.4.2), our inter-
rupt handling backend is also specification-based. It enables us
to specify an interrupt by configuring handlers for its triggering
behavior and restoration logic. Within MetaEmu, we provide a
number of default interrupt behaviors, e.g., to associate an inter-
rupt trigger with a peripheral, and to perform context restoration
based on specified registers or memory ranges. Our backend tracks
each configured interrupt’s enabled and triggered status, the ISR or
analysis-specific functionality to perform when it is triggered, and
the context restoration logic to execute after it has been handled.
We provide a complete example in §5.2.5.

5 EVALUATION

We evaluateMetaEmu using three criteria: ❶ performance, ❷ im-
plementation flexibility, and❸ real-world usability. For❶we bench-
markMetaEmu’s raw execution performance, and compare it to
two existing tools for firmware emulation: Unicorn and Ghidra’s
emulator. For ❶ and ❸, we measure the extent our lifter is able
to optimize its generated IR for large ECU firmware images, and
compare the number of emitted IL operations to naive lifting with-
out any optimization. We assess ❷ and ❸ together through six
case-studies, which demonstrate using MetaEmu to perform differ-
ent kinds of firmware analysis, including: inter-device analysis of
two rehosted ARM firmware, inference of undocumented memory
mapped peripheral interactions in a Renault BCM, reverse engi-
neering of the UDS handler functions of a Land Rover Discovery’s
TCU, fuzz testing to rediscover a backdoor in the “Security Access”
UDS service of a Volkswaggen Passat’s IC [14], and emulation of
the ThreadX RTOS implementation of a Range Rover Evoque TCU.
Across our case studies we demonstrate thatMetaEmu is capable of
enabling complex dynamic analyses built upon symbolic execution,
fuzz testing, and micro execution [22].

We perform our experiments on a machine with a 32-core AMD
Ryzen Threadripper 3970X and 128GB RAM.

5.1 Performance Benchmarks

We evaluate the performance of MetaEmu using two metrics: ex-
ecution time and optimization of emitted IL operations. In the
evaluation of execution time, we compare our tool with two ex-
isting emulation frameworks: Unicorn and Ghidra. We compare
MetaEmu to Unicorn, as it is widely used for rehosting and per-
forming security analyses [35, 36, 48], and to Ghidra’s emulator, as
it is used as the backend for afl_ghidra_emu, a fuzzer released by
AirBus targeting esoteric architectures [2]. We use ARM programs
for our head-to-head benchmarks based on the assumption that it
is the most optimized embedded architecture all tools support.

We perform four sets of experiments: ❶ a micro-benchmark to
evaluate the performance of each tool on various analysis tasks,
❷ a deeper inspection of the differences in performance between
Unicorn andMetaEmu performing different kinds of hooking, ❸
an evaluation of the performance and trade-offs of performing IR
optimization, and ❹ the effects of IR optimization on the number
of IL instructions emitted.

5.1.1 Micro-benchmarks. We benchmark the performance of each
tool on the programs described in Appendix C and visualize the
results in Appendix D. Our test harnesses measure execution time in
milliseconds; we run each test 10,000 times and report the average
time taken. We omit the results for Ghidra’s emulator, as they are
significantly worse than both tools shown—on average by at least
an order of magnitude, e.g., “1M-no-count” takes 3234ms, compared
to 271ms for MetaEmu and 385ms for Unicorn.

We find thatMetaEmu performs favorably compared Unicorn
on all but one benchmark. We attribute the performance difference
between MetaEmu and Unicorn on the “loop3-2loop” benchmark,
to be due to the program being well suited to optimization by
Unicorn’s JIT compiler, as it contains a small number of basic blocks
executed in two tight loops, where both loop bounds are hard-coded.

5.1.2 Deeper Analysis of MetaEmu and Unicorn. In this experi-
ment, we benchmark the performance of MetaEmu and Unicorn
while analyzing a sample program that consists of 100k instructions
performing repeated memory transfer operations and function calls.
In addition to baseline performance, we benchmark three differ-
ent kinds of analyses: execution trace logging (PC Change Hook),
memory access interception (Memory Hook), and function stubbing
and call context logging (Call Hook). We include two baselines for
MetaEmu—one with IR optimization and one without. We run each
experiment 10,000 times and report the average time taken. We do
not include Ghidra’s emulator in these experiments, as it does not
provide sufficient hooking support and is dramatically slower than
bothMetaEmu and Unicorn.
Results: We show the results of our benchmarks in Appendix E.
Across all benchmarks, Unicorn is on average∼20 times slower than
MetaEmu. For Memory Hook and PC Change Hook, bothMetaEmu
and Unicorn have negligible performance overhead over baseline
performance, while for Call Hook, both tools show larger over-
heads, which is due to the additional complexity of logging calling
contexts.MetaEmu’s IR optimizations provide an average of 4-5%
performance improvement. Our benchmarks clearly demonstrate
that our specification-based rehosting approach can perform at
least as well as those based on Unicorn—without a performance
trade-off—while also being much easier and flexible to extend.

5.1.3 IR Optimization Performance and Trade-Offs. In this experi-
ment, we analyze the trade-offs of IR optimization by performing
an extended analysis of the the “loop3-2loop” program from §5.1.1
compiled for both ARM and C166 (omitted for Unicorn as it does
not support C166). We measure the time each framework takes to
execute the program’s loop 1k times and 65k times, and measure the
overheads of performing MetaEmu’s IR optimizations both online
and offline against a baseline without any optimizations enabled.
Results: Appendix F shows the benchmark results. MetaEmu’s
optimization overhead is constant for both architectures on both

0.0M 2.0M 4.0M 6.0M 8.0M 10.0M 12.0M
IL Operations (Millions)

v850es

rh850

sh2a

c166

3728764

1214654

5060160

7971642

4320754

1417317

5527027

10833679

Unoptimized
Optimized

Figure 4: IR optimization performance for each ECU

firmware. Total number of operations calculated by lifting

every basic block of each firmware; reduction calculated by

number of eliminated operations.

test configurations—∼15ms for C166 and ∼2ms for ARM. As men-
tioned in §5.1.1, Unicorn outperforms all frameworks on this bench-
mark, due to its JIT optimizer. We find that although MetaEmu
and Ghidra’s emulator share the same processor specifications,
MetaEmu is ~400% faster on all benchmarks for both architectures.
MetaEmu performs most favorably when applying its optimiza-
tions offline, and when applying its optimizations online, we only
observe favorable performance on the longer running loop. On the
shorter loop, the overheads induced by optimization (C166: ~15ms,
ARM: ~2ms) result in diminished performance. Thus, we find that
the choice of whether to apply optimizations depends on the kind
of analysis being performed and the size of the program being ana-
lyzed. We provide an option to disable optimizations as part of our
synthesizer specification. As a rule of thumb, optimizations make
most sense when running loop-based firmware, fuzzing, or when
performing symbolic execution (due to the decreased size of sym-
bolic formulas), and otherwise may negatively impact performance.

5.1.4 Impact of Optimizations on Real Firmware. To evaluate the
effectiveness of our optimizer on real-world firmware, we measure
the total number of IL operations before and after optimization
when lifting every basic block in each of our ECU firmware. The
C166-based IC firmware is ~512KB and contains 2609 functions, the
RH850-based TCU is ~32KB and contains 646 functions, the V850ES-
based BCM is 544KB and contains 2987 functions, the SH-2A-based
TCU is 8.4MB and contains 14,223 functions.

Results: We summarize MetaEmu’s optimizer performance by
IL elimination in Figure 4. Though our results are a conservative
approximation of our tool’s performance—accounting only for op-
timizations that lead to elimination of IL operations—across all
firmware we see reductions of hundreds of thousands of opera-
tions, e.g., for our C166-based firmware, we observe thatMetaEmu
reduces the number of operations by ~27%: from ~10.8M to ~7.9M.

As our optimizations can be applied offline, they incur no over-
head during simulation. However, when lifting, applying IR opti-
mization induces a non-negligible overhead of ~700`s per IR block,
compared to ~6`s without. The optimization time is constant re-
gardless of the number of iterations. We attribute the significant
difference to our use of e-graphs and equality saturation [57] to
find optimal IL sequences—our optimizer effectively computes all
simplifications of each IR block and extracts the most optimal with
respect to minimizing the IR size.

Table 1: Summary of case studies performed. MetaEmu fea-

tures evaluated: architecture support (A), inter/multi-device

analysis (M), peripheral support (P), interrupt support (I), in-

tegration with external tools (T). Implementation size shows

the approximate LoC for experiment (E) and specification

for peripherals and execution mode (S).

Firmware ISA
Impl. Size Firmware Evaluated

E S A M P I T

Arduino & NuttX firmware ARM 300 180 ✓ ✓ ✓ - ✓

P2IM firmware (averaged) ARM 200 170 ✓ - ✓ - ✓
Volkswagen IC C166 260 100 ✓ - ✓ - ✓
Renault BCM V850E2 160 <10 ✓ - ✓ - ✓

Land Rover Discovery TCU RH850 700𝛿 - ✓ ✓‡ ✓ - ✓
Range Rover Evoque TCU SH-2A 370 110 ✓ - ✓ ✓ ✓

𝛿 : We manually implemented complex peripheral (CAN Bus) with hooking API
‡: We rehost multiple instances of the firmware to perform fuzzing.

F103-NUTTX ARDUINO-SAM3

VXE analyzer

Message queueInput source

Input-to-coverage
analyzer

Execution trace
logger

Input/trace pairs

Figure 5: Inter-device analysis. Inputs are supplied outside

the VXE via a message queue, received by the F103, and for-

warded to the ARDUINO. The F103 has an observer that logs

the execution path corresponding to each input received

and sent. The ARDUINO has an observer that analyzes the

branch coverage corresponding to processing received in-

puts; on new coverage, it notifies the shared VXE analyzer,

which instructs the F103’s observer to dump the execution

trace matching the last sent input. The VXE analyzer outputs

input/trace pairs that yield new coverage.

5.2 Case Studies

In this section, we show how MetaEmu can be used to emulate
and analyze firmware based on five different ISAs: ARM, C166,
RH850, SH-2A, and V850E2—the latter four are not supported by
any existing rehosting framework. We show thatMetaEmu handles
complex end-user firmware by rehosting four ECU firmware. We
also perform two other case studies: inter-device analysis (§5.2.1),
and fuzzing and rehosting non-automotive firmware (§5.2.6), using
ARM-based firmware from the P2IM data-set [19]. The firmware
from this data-set are simpler than our ECU examples, and are
chosen to enable us to more easily describe our experimental set-up
and results. We summarize our case studies in Table 1.

5.2.1 Inter-Device Analysis. In this case study, we demonstrate
MetaEmu’s capability to rehost multiple firmware in the same VXE
and perform an inter-device analysis. Each target firmware is ARM-
based and adapted from the P2IM [19] data-set—one is based on
the Arduino SDK, and the other on NuttX, as shown in Figure 5.
Objective: The goal of this case study is two-fold: First, to show
how two rehosted firmware can communicate, where one firmware

(F103) is supplied input from outside the synthesized VXE, and the
other (ARDUINO) receives input from the other rehosted firmware
(F103). Second, to demonstrate an analysis that captures execution
traces from a rehosted firmware (F103) that leads to new branch
coverage in another (ARDUINO). This case study models a typical
scenario found in CAN networks, where one can only interact with
a particular ECU by sending messages via another.

Set-up: We develop five observers. Three simulate peripherals:
one to receive input via UART (outside to F103), one to transmit
data via a TTY (from F103) and one to receive input via a serial
port (into ARDUINO). Two perform analyses: an execution trace
dumper that starts on a read from UART and stops on a write to a
TTY, and a coverage tracker, which reports new branch coverage
via the VXE’s coordinator. The coordinator is configured to dump
execution trace/input pairs that cause new branch coverage. We
provide input to the F103 using random byte sequences, and specify
a concrete execution mode for each firmware.

Discussion & results: Combined, our firmware configuration
spans ~180 lines of code (not including processor specifications),
while our observers take a further ~300. Our configuration accounts
for overriding firmware functionality unrelated to our analysis task,
creating a memory mapping for each firmware, and specifying
the behavior of our analysis coordinator. Each rehosted firmware
executes in parallel and faithfully simulates its expected behavior.
This case study demonstrates how our approach can enable an
otherwise tricky to reproduce analysis scenario with very little
manual overhead. Further, it shows how MetaEmu can facilitate
modeling peripheral and inter-device interactions, akin to those
that regularly occur in real automotive networks, without requiring
any hardware or source-code access.

5.2.2 Volkswagen Passat Instrument Cluster (C166). In this case
study, we demonstrate how MetaEmu can be used with LibAFL
to rediscover a previously reported backdoor in the UDS “Security
Access” service of a Volkswagen Instrument Cluster [14]. The ECU
is based on the Infineon C166 architecture. To support the C166
architecture, which is not currently distributed with Ghidra, we
base our language definition on an open-source project [16]; our
definition consists of 1737 lines. We implement two extensions
to our simulator: an intrinsic to handle the C166’s DPP override
addressing [28], which enables the firmware to override which
memory pages are accessed for a variable window of instructions,
and an observer to implement its GPR bank switching.

Objective & set-up: The backdoor is embedded in the UDS han-
dling routine. The routine receives two inputs: a buffer containing
the UDS request, which we populate with input from LibAFL, and
a request ID, corresponding to a UDS service, which we populate
using the ID of the “Security Access” service (0x27). Authenticat-
ing against this service enables a client to access security critical
services, e.g., “Request Download” (ID 0x34), which permits new
software to be transferred to the ECU. To authenticate, a client
must complete a challenge-response handshake by sending a cor-
rect key for a given seed. The backdoor enables this check to be
bypassed by supplying a specific hard-coded value in the request
buffer (0xCAFFE012). The backdoor trigger is in the form of two
2-byte comparisons, and can easily be discovered by fuzzing. To

do so, we configure our LibAFL harness to mark inputs that reach
blocks corresponding to successful authentication attempts as if
they induce a “crash”.
Discussion & results: We were able to trigger the backdoor with
our fuzzer, but not as easily as expected. In fact, our initial attempt
was unsuccessful, as the firmware relies on a timer peripheral to
correctly execute the “Security Access” check—instead of validating
our fuzzer’s supplied “key”, it enters an infinite polling loop. On
investigation, we found that this check first generates a challenge
seed by repeatedly sampling from the timer’s value register until
a specific criterion is met. Rather than bypassing the seed gener-
ation, we attached a peripheral to the firmware’s simulator based
on our generic CMT model (§4.4.2). The specification takes just 6
lines; requiring masks for the enable bit, toggle on match bit, and
current tick value, and the address range of the MMIO of the timer
peripheral. Our peripheral model emulates realistic behavior in
our simulator when accessing the timer’s memory mapped regis-
ters, TxCON and Tx, successfully enabling us to fuzz the firmware
to discover the backdoor key.

5.2.3 Renault Body Control Module (V850E2). In this case study,
we useMetaEmu to aid in identifying peripheral access checks in
firmware from a Renault BCM. Even when an emulator is available
for the architecture of a device, one of the major obstacles when
performing rehosting is the lack of documentation for its peripher-
als. Usually, processor manuals provide the address range of MMIO
registers, but as each device can have a diverse array of peripher-
als, inferring the meaning of each address often requires manual
reverse engineering. Unfortunately, when these documents are not
in the public domain, we need to reverse engineer the MMIO range
itself to achieve even basic emulation. In this case study, we show
how MetaEmu can help automate this task.

Objective & set-up: The objective of this case study is to fa-
cilitate basic emulation of our BCM firmware, and identify pe-
ripheral access checks, without prior knowledge of specific pe-
ripheral register addresses. We use processor definitions adapted
from those distributed with Ghidra. We obtain an approximate
MMIO peripheral address range from the processor manual of a re-
lated MCU (V850E2/Fx4-G), as the peripheral manual for the MCU
(V850E2/Dx4) used in the BCM is not publicly available.

Identifying peripheral status checks: We perform our analysis
in two steps. We first use our peripheral check solver to identify
peripheral checking loops using registers mapped to the MMIO
range of a similar MCU (0xff400000–0xffff8000). This enables
us to identify and bypass some peripheral checks, however, our
firmware still stalls prior to reaching its main loop. To overcome this,
we gradually widen our assumed MMIO range by specifying larger
bounds in our solver’s configuration. After a few iterations, we
determined that the real MMIO range of the MCU is much wider
than expected: we discovered checks in the range 0xffff8000–
0xffffffff. By reconfiguring our peripheral check solver to use
this extended range, we were able to bypass the initialization checks
performed by the firmware. This case study demonstrates that
our specification-based approach can enable analyses of this kind
without custom peripheral models, or device-specific heuristics.

5.2.4 Land Rover Discovery Telematics Unit (RH850). In this case
study, we useMetaEmu to rehost the TCU from a 2018 Land Rover
Discovery in order to reverse-engineer its UDS handler routines.
To aid our reverse-engineering, we use fuzzing to identify valid
UDS requests. The ECU’s firmware is based on the RH850 architec-
ture. It’s worth mentioning that despite the RH850 and V850 are
from similar microcontroller family, there are still differences in
instruction set and the peripheral layout.
Objective & set-up: TCUs are responsible for communicating
with and monitoring other ECUs on the CAN bus, and reporting
diagnostics data and metrics over other mediums, such as LTE,
hence have a large attack surface. UDS is the protocol responsible
for transmitting diagnostic information and is implemented on top
of CAN. Among other functionality, UDS can be used to re-flash
or dump an ECU’s firmware. The goal of our analysis is to reverse
engineer the UDS handling functions in our target firmware. These
functions take input from a CAN peripheral, process it, and act
accordingly. To analyze them, we take a four-step approach:

(1) Since UDS is a CAN-based protocol, to determine how to use
it to communicate with the device, we first need to identify
the device’s CAN IDs.

(2) Next, to interface with the device’s rehosted firmware over
UDS, we create a model for its CAN peripheral.

(3) As the firmware interfaces with many peripherals unrelated
to our analysis task, yet relies on them being successfully
initialized to configure its internal state prior to executing its
main loop, we attach a peripheral check solving observer to
supply suitable values when accessing their MMIO registers.

(4) Finally, to identify valid UDS requests, we use a LibAFL-
based fuzzer to supply input to the firmware via its CAN
peripheral, and track which inputs lead to new coverage.

CAN ID identification: In a modern automobile, the CAN bus
is the standard medium for ECUs to communicate with each other
and the outside world. Thus, it is usually the first interface/input
source we investigate when analyzing automotive firmware. On the
CAN bus, each ECU is assigned one or more CAN IDs, and will only
respond to messages sent to those IDs. As many manufacturers
attempt to keep CAN IDs secret, it is a non-trivial task to identify
them effectively without analyzing the ECU’s firmware.

As mentioned previously, automotive microcontrollers usually
interface with their peripherals and, thus, the CAN bus, by reading
and writing to MMIO registers. Each such register controls either
a peripheral’s behavior or act as an input/output buffer. From our
experience, for peripherals that interface with the CAN bus, one
register will contain the listening CAN ID. Hence, if we know the
address this register is mapped to, we can use it to recover the IDs
the ECU listens on by monitoring values written to it.

Unfortunately, exhaustively enumerating all execution paths that
write to the register requires near complete emulation of the entire
firmware—defeating the purpose of rehosting. Flood execution [56],
however, provides a means to approximate all execution paths in a
bounded manner, and the micro execution-based variant proposed
by Gotovchits et al. [23] provides a means to perform flood execu-
tion in the presence of failing memory accesses. To recover CAN
IDs, we use flood execution mode with our synthesized simulator to
enumerate paths, and use an observer to log writes to the register

CAN Frame Queue

Input

Set “Reset” Bit
CAN Data Register

Read “Message Left”

CAN ID Register

CAN Status Register

Clear

Count

Read

Set

Set

Clear

Set “Next Message” Bit

Figure 6: Data-flow diagram of RH850 CAN peripheral. We

store incoming CAN messages in a FIFO queue (blue box).

When the firmware sets the “next message” bit, we dequeue

a CAN frame, use it to populate the CAN data and CAN ID

registers, and then set the data available bit in the CAN status

register. Upon a reading message left event, we update the

“message left” counter in the CAN status registers with the

length of the queue. When the firmware sets the peripheral’s

“reset” bit, we clear the queue and reinitialize the registers.

documented to store CAN IDs. Through this process we recover
three CAN IDs: 0x7df, 0x18db33f1, and 0x700.
CAN peripheral modeling: We model the device’s CAN pe-
ripheral using observers, as shown in Figure 6, and interact with
our model via SocketCAN [55]. We use an observer to hook reads
and writes to the CAN registers to simulate receiving and sending
CAN frames. When sending data, we build CAN frames using val-
ues from the CAN status register (TMSTS), the receive ID register
(RFID) and receive data register (RFDF); after transmission, we set
the firmware’s transmission success bit. When receiving data, we
read a frame from our input source, and use it to set the following
registers: TMC, TMID, TMPTR, and TMDF.
Bypassing peripheral status checks: To bypass the initializa-
tion checks of the device’s other peripherals, we use our symbolic
status check solver (§4.4.1). We configure it using the full periph-
eral address range: 0xFF400000–0xFFFFAFFF. Alongside our CAN
peripheral, this enables us to execute the firmware from reset to its
UDS request processing loop.
Fuzzing for valid UDS requests: To fuzz for valid UDS requests,
we use concrete execution mode to run our rehosted firmware from
reset to the UDS function, and then use an observer to take a snap-
shot of the simulator’s state. We build a LibAFL-based harness
which starts execution from our snapshot and supplies input to
the UDS routine via our CAN peripheral. We implement a cus-
tom EventManager for LibAFL that supports sharing coverage and
interesting inputs across multipleMetaEmu simulators via our anal-
ysis coordinator. This enables us to rehost many instances of our
firmware and fuzz the UDS routine in parallel. Through our anal-
ysis, we generated inputs that explored execution paths covering
898 unique IL branches, which uncovered 8 UDS request handlers.

5.2.5 Range Rover Evoque Telematics Unit (SH-2A). In this case
study, we demonstrate howMetaEmu can be used to rehost a Range
Rover Evoque TCU SuperH-2A firmware. The firmware is based
on ThreadX RTOS, which executes multiple tasks concurrently. To
rehost, it requires robust peripheral models to correctly perform
task switching—something that cannot be achieved using simpler

Observer MMIO Status & Functionalities

Compare & Match Timer Model Enable Status

Timer Matching Status

Interrupt StatusInterrupt Backend

Interrupt Handler

Interrupt Context Switching

Figure 7: Overviewof our SH-2ACMTmodel, which is respon-

sible for tracking the enabled, timer matching, and interrupt

status of the peripheral. We use our interrupt backend to

specify a custom interrupt handler and ensure the PC and

SP registers are preserved during the context switch.

symbolic modeling approaches, such as the peripheral check solver
used in our other case studies.
Objective & set-up: Through manual reverse engineering, we
found that the firmware uses a timer interrupt to facilitate task
scheduling, which is performed by a CMT peripheral. The goal
of this case study is: First, to show how MetaEmu facilitates im-
plementing a complex peripheral that can faithfully trigger task
switches. Second, to show howMetaEmu can emulate hardware-
supported multi-tasking.
Discussion & results: Since the device’s CMT peripheral acts as
both a timer and interrupt source, we can implement it using a
combination of our generic CMT model (§4.4.2) and our interrupt
backend (§4.5), as shown in Figure 7. To configure our CMT model,
we specify the mapping between the peripheral’s registers and the
model’s set/unset actions. This enables our model to update and
track its enabled status, interrupt status, and timer matching status.
To simulate the timer’s counting and interrupt triggering behavior,
we implement a simple observer that increments the timer’s value
by one each time a new architectural instruction is lifted, and fires an
interrupt usingMetaEmu’s interrupt backend. Our implementation
(optimistically) assumes that each instruction takes one clock cycle,
and the timer increases based on the device’s clock. We configure
our interrupt backend to trigger a jump to the firmware’s timer ISR
when it is instructed to fire by our timer observer. Since the context
switch is normally performed in hardware, we configureMetaEmu
to preserve the status register SR and program counter PC prior
to jumping. The firmware uses the rte instruction to return from
interrupt handlers, and its logic is implemented in the architecture’s
processor specification. Our peripheral requires just ~250 lines of
specification and code. To test our peripheral model, we attach
an execution tracer observer to our simulator and run the device
from reset. Our traces show that the emulated firmware correctly
performs task switches and mirrors the real firmware’s behavior.

5.2.6 P
2
IM dataset firmware. The P2IM authors [19] provide a data-

set consisting of 10 ARM-based firmware based on open-source
projects, which all use a HAL to interact with their peripherals. In
this case study, we use the Gateway and Soldering_Iron firmware
to demonstrate the correctness of MetaEmu and show that it can
achieve the same analysis outcomes as existing rehosting frame-
works. We perform two experiments: ❶ we fuzz test the Gateway

firmware, and ❷ we use the Soldering_Iron firmware to test
MetaEmu’s support for handling tricky (DMA-based) peripherals.
Set-up: For experiment ❶, we set up a basic fuzz harness to supply
I2C query packets by hooking the HAL of the firmware. Similar
to past work [41], we mark part of the firmware’s memory as a
“red zone” (write permission disabled) to perform sanitization and
detect any memory corruption bugs. For experiment ❷, we attempt
to test if MetaEmu can run the firmware from its entry-point, allow
it to perform peripheral initialization, and execute its main loop
without crashing due to peripheral mishandling.
Discussion & results: For ❶, we were able to trigger an out of
bounds write with inputs exceeding a length of 62 bytes (the first
two bytes of i2cRxData are populated using i2c_device_info.addr
and i2c_device_info.reg) after only three iterations of our fuzz
harness. This demonstrates that MetaEmu is usable for analyzing
firmware beyond our original use-case of automotive firmware, as
well as its suitability for fuzz testing.

For ❷, the author’s of P2IM [19] describe two false crashes/hangs
induced by their framework when rehosting the Soldering Iron
firmware. The first is caused by misclassification of a peripheral reg-
ister, and the second is due to P2IM missing support for DMA-based
peripherals. As MetaEmu can support peripherals generically, we
were able to rehost this firmware by intercepting DMA interactions
by the firmware’s HAL interface in a manner similar to past work
by Clements et al. [10]. We thus avoid the false crashes experienced
by P2IM and `Emu [61]. Since MetaEmu provides an API to inter-
cept any memory read/write (i.e., hook_memory_write/read), it
can be extended to provide DMA support similar to DICE [37]. We
note that since the author’s of P2IM do not provide source code for
this firmware1, we manually stubbed out the functionality relating
to AFL, as it is unnecessary for our experiment.

6 HUMAN EFFORT

In this section, we discuss the human effort involved in using
MetaEmu for rehosting. As with any kind of reverse engineer-
ing, rehosting necessarily requires manual intervention for tasks
that cannot be automated—from implementing complex peripherals
to identifying functions to hook and override.MetaEmu attempts
to reduce this manual effort by moving towards a specification-
based approach from one that is purely programmatic. In Table 1,
we show the human effort involved in each of our case studies in
terms of lines of code—all require under 1kloc—even in the case of
complex inter-device analysis. Concretely, each case study took the
author’s less than a day to implement.

The advantage of using our approach is twofold: firstly, a specifi-
cation-based approach provides a DSL which enables much faster
iteration of manual tasks such as implementing missing ISA in-
structions or peripheral models. As we separate specification files
from the implementation of our tool, we can prototype new fea-
tures without recompiling the tool, something not possible with
QEMU-based rehosting approaches. Secondly, by using the same
ISA specification language as Ghidra, we benefit from the mainte-
nance and testing efforts of a large and active community. Ghidra’s
repository contains specifications for 28 architectures and when

1https://github.com/RiS3-Lab/p2im-real_firmware/issues/2

combined with community projects [16],MetaEmu can rehost most
ECUs without the need to implement any architectural support.

7 LIMITATIONS

In this section, we provide a discussion of MetaEmu’s limitations.
The correctness of MetaEmu’s lifter depends on the processor defi-
nitions it uses as input. Fortunately, as they are based on Ghidra’s
language definitions, we benefit from Ghidra’s large and active
community that regularly contributes fixes.

The three peripheral interfaces in MetaEmu provide a simple
way to implement peripherals for automotive microcontrollers of
atypical architectures, however, we have less peripheral models
for common microcontrollers such as ARM or MIPS based devices.
This makes it difficult to produce a direct comparison with existing
emulators such as QEMU. As future work, we intend to explore
adding a compatibility layer to allow MetaEmu to use QEMU-
derived peripheral models to address this issue, however, it would
require implementing QEMU’s Object Model, memory, sysbus, in-
terrupt, and peripheral APIs inMetaEmu to do so. Our universal
peripheral backend (§4.4.2) does not fully support Direct Memory
Access (DMA)-based I/O, except when firmware interfaces with it
using a HAL. Support for peripherals requiring this, however, can
easily be added usingMetaEmu’s execution observers (§4.3).

WhileMetaEmu’s runtime performance is comparable to Uni-
corn, there are possibilities for improvement, such as adding a JIT
compiler for our IL. We believe such an enhancement will lead
to even greater performance for our specification-based approach.
However, it is unclear how to generically implement a JIT compiler
that supports all of MetaEmu’s different execution modes (§4.2.1).

8 DISCUSSION & RELATEDWORK

Approaches to firmware rehosting cover a broad spectrum: in terms
of the kind of analyses they facilitate, the degree to which they rely
on hardware, the kinds of device they support, and the fidelity and
faithfulness of the environments they transplant firmware into.

Avatar [40, 58] and Surrogates [32] propose hardware-in-the-
loop analysis, which enables a device to be analyzed without han-
dling many of the complexities of its peripherals. It permits a kind
of hybrid methodology where a fast host can emulate most of the
firmware and rely on the real device for peripheral I/O and interrupt
handling.Many techniques have capitalized on these seminal works;
for instance, Ruge et al. [48] use a hardware-in-the-loop approach
to fuzz for vulnerabilities in bluetooth chips, while Gustafson et
al. [24] use such an approach as a basis for their tool, Pretender,
which automatically infers peripheral models from execution traces
and device I/O behavior. Inception [11] and HardSnap [12] use a
hardware-in-the-loop approach for their debugger component; both
attempt to handle the nuances of complex firmware and devices
with multiple peripherals under symbolic execution.

In contrast to hardware-dependent approaches, emulation-based
approaches do away with hardware interaction altogether, and to
varying degrees attempt to emulate a device and its peripherals. Of
the approaches that make their implementations open-source, we
observe that almost all rely on either QEMU (e,g.,[25]) or Unicorn
(e.g.,[36]) as the basis for their VXE. Clements et al. [10] emulate
peripherals by hooking HAL APIs provided by many vendor SDKs.

https://github.com/RiS3-Lab/p2im-real_firmware/issues/2

They simulate peripheral interactions through generalized models
that receive input and supply output via the hooked HAL func-
tions. In [9] they extend their approach to support VxWorks-based
devices. Feng et al. [19] rehost firmware to facilitate fuzz testing.
To handle peripherals, they learn appropriate values for MMIO
peripheral interactions based on device-specific abstract peripheral
models. Mera et al. [37] propose a method to handle DMA-based pe-
ripheral inputs, similarly targeted at fuzzing rehosted firmware. Liu
et al. [34] use model-guided execution to generate QEMU periph-
eral models from kernel device-tree and source code. Cao et al. [5],
Johnson et al. [29], and Zhou [61], all leverage symbolic execution
to learn satisfying values to bypass peripheral checks. Hernandez
et al. [27] achieve full-system emulation of closed-source Shannon
baseband firmware by adding missing architectural and peripheral
support in QEMU, they later demonstrate that such an approach
can be extended to other basebands [26]. In contrast to the afore-
mentioned approaches, Milburn et al. [38] build a custom emulator
and peripheral models to rehost an automotive instrument cluster;
they use their emulator to aid in reverse-engineering the firmware’s
UDS commands. Meanwhile, Davidson et al. [13] use full-system
symbolic execution to discover vulnerabilities in PIC32 devices;
they propose using specifications to configure interrupt and periph-
eral memory mappings, allowing their approach to be adapted to
analyze different device configurations.

While pure emulation and hardware-in-the-loop approaches
can achieve near complete support for a given device or family of
devices, when based on commodity emulators, they are difficult to
adapt to support devices based on esoteric architectures, such as
automotive components, due to the substantial engineering effort
required.Mera et al. [37] highlight this difficulty in their evaluation—
to test their approach on both ARM and MIPS32-based devices, they
need to build separate prototypes of their tool for two different forks
of QEMU, as neither variant supports both architectures. Hernandez
et al. [26] note the current impossibility of porting their baseband
rehosting framework to work with Qualcomm basebands, due to
lack of architecture support in the PANDA [15] QEMU fork.

As discussed in our evaluation, Ghidra provides a P-Code-based
emulator, which can facilitate basic analysis tasks, including in-
struction hooking and manipulation of memory and register values.
However, it lacks more advanced features for firmware reverse
engineering, such as symbolic execution, and peripheral support.
Although it is possible to add such functionality using its hooking
API, its emulation performance is insufficient to support intensive
tasks, such as fuzzing. Further, adding functionality to support
dynamic changes to addressing modes, e.g., to correctly emulate
C166-based firmware, would require extensive changes to the core
of Ghidra’s emulator framework—a significant engineering task.

We provide a comparison of MetaEmu with the state-of-the-
art, using the framework classification proposed by Fasano [17]
in Appendix G. The key difference between MetaEmu and the
frameworks listed, is that our approach generically enables analysis
of firmware not currently supported by other frameworks with
little effort. Moreover, like Avatar, it is a general framework to
build analysis tools, as opposed to a method to enable a specific
type of analysis, e.g., fuzzing. As demonstrated through our case
studies (§5.2), we can use MetaEmu to build analyses similar to
those proposed by other approaches (e.g., [5, 29]) in a completely

architecture-independent way, without resorting to implementing
those techniques for many different emulators, or limiting the ap-
proach to a few architectures.As with other rehosting approaches,
such as P2IM, MetaEmu’s peripheral support will lead to better
coverage when performing analysis tasks, such as fuzzing.

9 CONCLUSION

To conclude, we have presented the first architecture-agnostic
framework capable of rehosting multiple devices simultaneously.
Our IR lifter and simulators provide fully generic, extensible, archi-
tecture support, and our universal peripheral models and peripheral
solver enable simulation of realistic execution environments. We
also have tight integration with binary analysis tools to help man-
ual analysis. Through our case studies, we have demonstrated that
our tool is flexible, efficient, and can drive the analysis of real-world
automotive firmware whose architectures are not supported by
existing state-of-the-art rehosting approaches.

ACKNOWLEDGMENTS

This research is partially funded by the Engineering and Physical
Sciences Research Council (EPSRC) under grants EP/R012598/1,
EP/R008000/1, and EP/V000454/1. We also thank our shepherd
Zhiqiang Lin and the anonymous reviewers for their helpful com-
ments and feedback.

APPENDICES

Due to space limitations, we provide appendices in the referenced
supplementary material [8].

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA.

[2] Airbus CyberSecurity. 2018. Fuzzing exotic arch with AFL using ghidra em-
ulator. https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-using-
ghidra-emulator/.

[3] Fabirce Bellard. 2003. QEMU: A generic and open source machine emulator and
virtualizer. https://www.qemu.org.

[4] Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens. 2017. VulCAN: Effi-
cient Component Authentication and Software Isolation for Automotive Control
Networks. In Proceedings of the 33rd Annual Computer Security Applications Con-
ference, Orlando, FL, USA, December 4-8, 2017. ACM, New York, NY, USA, 225–237.
https://doi.org/10.1145/3134600.3134623

[5] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. 2020. Device-agnostic Firmware
Execution is Possible: A Concolic Execution Approach for Peripheral Emulation.
In ACSAC ’20: Annual Computer Security Applications Conference, Virtual Event
/ Austin, TX, USA, 7-11 December, 2020. ACM, New York, NY, USA, 746–759.
https://doi.org/10.1145/3427228.3427280

[6] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In 20th USENIX Security Symposium, San Francisco, CA, USA,
August 8-12, 2011, Proceedings. USENIX Association, San Francisco, CA. http:
//static.usenix.org/events/sec11/tech/full_papers/Checkoway.pdf

[7] Zitai Chen, Sam L. Thomas, and Flavio D. Garcia. 2022. MetaEmu source code.
https://metaemu.fugue.re.

[8] Zitai Chen, Sam L. Thomas, and Flavio D. Garcia. 2022. MetaEmu supplementary
material. https://metaemu.fugue.re/supplementary.pdf.

[9] Abraham A. Clements, Logan Carpenter, William A. Moeglein, and Christopher
Wright. 2021. Is Your Firmware Real or Re-Hosted? A case study in re-hosting
VxWorks control system firmware. In Proceedings of the 2021 NDSS Workshop on
Binary Analysis Research (NDSS BAR 2021).

[10] Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.
2020. HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation.
In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,

https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/
https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/
https://www.qemu.org
https://doi.org/10.1145/3134600.3134623
https://doi.org/10.1145/3427228.3427280
http://static.usenix.org/events/sec11/tech/full_papers/Checkoway.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Checkoway.pdf
https://metaemu.fugue.re
https://metaemu.fugue.re/supplementary.pdf

Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 1201–1218.
https://www.usenix.org/conference/usenixsecurity20/presentation/clements

[11] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018. Inception:
System-Wide Security Testing of Real-World Embedded Systems Software. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,
309–326. https://www.usenix.org/conference/usenixsecurity18/presentation/
corteggiani

[12] Nassim Corteggiani and Aurélien Francillon. 2020. HardSnap: Leveraging Hard-
ware Snapshotting for Embedded Systems Security Testing. In 50th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks, DSN 2020,
Valencia, Spain, June 29 - July 2, 2020. IEEE, 294–305. https://doi.org/10.1109/
DSN48063.2020.00046

[13] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.
FIE on Firmware: Finding Vulnerabilities in Embedded Systems Using Symbolic
Execution. In Proceedings of the 22th USENIX Security Symposium, Washington,
DC, USA, August 14-16, 2013, Samuel T. King (Ed.). USENIX Association, 463–
478. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/
paper/davidson

[14] Jan Van den Herrewegen and Flavio D. Garcia. 2018. Beneath the Bonnet: A Break-
down of Diagnostic Security. In Computer Security - 23rd European Symposium
on Research in Computer Security, ESORICS 2018, Barcelona, Spain, September
3-7, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11098),
Javier López, Jianying Zhou, and Miguel Soriano (Eds.). Springer, 305–324.
https://doi.org/10.1007/978-3-319-99073-6_15

[15] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whe-
lan. 2015. Repeatable Reverse Engineering with PANDA. In Proceedings of the
5th Program Protection and Reverse Engineering Workshop, PPREW@ACSAC, Los
Angeles, CA, USA, December 8, 2015.

[16] Alexey Esaulenko. 2021. C166 Ghidra language definition. https://github.com/
esaulenka/Ghidra_C166.

[17] Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexander Bulekov,
Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francillon, Long Lu, Nick Gregory,
Davide Balzarotti, and William Robertson. 2021. SoK: Enabling Security Analyses
of Embedded Systems via Rehosting. In ASIA CCS ’21: ACM Asia Conference on
Computer and Communications Security, Virtual Event, Hong Kong, June 7-11, 2021.
ACM, 687–701. https://doi.org/10.1145/3433210.3453093

[18] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM documentation. https:
//github.com/RiS3-Lab/p2im/blob/master/docs/add_mcu.md.

[19] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling.
In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 1237–1254.
https://www.usenix.org/conference/usenixsecurity20/presentation/feng

[20] Andrea Fioraldi and Dominik Maier. 2021. LibAFL. https://github.com/
AFLplusplus/LibAFL.

[21] Flavio D. Garcia, David F. Oswald, Timo Kasper, and Pierre Pavlidès. 2016. Lock
It and Still Lose It - on the (In)Security of Automotive Remote Keyless En-
try Systems. In 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX
Association. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/garcia

[22] Patrice Godefroid. 2014. Micro execution. In 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, Pankaj
Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 539–549. https:
//doi.org/10.1145/2568225.2568273

[23] Ivan Gotovchits, Rijnard Van Tonder, and David Brumley. 2018. Saluki: finding
taint-style vulnerabilities with static property checking. In Proceedings of the
2018 NDSS Workshop on Binary Analysis Research (NDSS BAR 2018).

[24] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry,
Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christopher Kruegel, and Giovanni Vigna. 2019. Toward the Analysis of Em-
bedded Firmware through Automated Re-hosting. In 22nd International Sym-
posium on Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang
District, Beijing, China, September 23-25, 2019. USENIX Association, 135–150.
https://www.usenix.org/conference/raid2019/presentation/gustafson

[25] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, andMichael
Grace. 2020. PARTEMU: Enabling Dynamic Analysis of Real-World TrustZone
Software Using Emulation. In 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX
Association, 789–806. https://www.usenix.org/conference/usenixsecurity20/
presentation/harrison

[26] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn, Shinjo Park,
Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and Kevin R. B. Butler. 2022.
FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware. In
29th Annual Network and Distributed System Security Symposium, NDSS 2022, San
Diego, California, USA, February 27 - March 3, 2022. The Internet Society.

[27] Grant Hernandez, Marius Muench, Tyler Tucker, Hunter Searle, Weidong
Zhu, Patrick Traynor, and Kevin Butler. 2020. Emulating Samsung’s Base-
band for Security Testing. https://i.blackhat.com/USA-20/Wednesday/us-20-
Hernandez-Emulating-Samsungs-Baseband-For-Security-Testing.pdf. Black
Hat USA (2020).

[28] Infineon Technologies AG. 2001. C166S V2 16-Bit Microcontroller
User Manual V1.7. https://www.infineon.com/dgdl/c166sv2um.pdf?fileId=
db3a304412b407950112b41d4ea32fe3.

[29] Evan Johnson, Maxwell Bland, Yifei Zhu, Joshua Mason, Stephen Checkoway,
Stefan Savage, and Kirill Levchenko. 2021. Jetset: Targeted Firmware Rehosting
for Embedded Systems. In 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX
Association, 321–338. https://www.usenix.org/conference/usenixsecurity21/
presentation/johnson

[30] Minkyu Jung, Soomin Kim, HyungSeok Han, Jaeseung Choi, and Sang Kil Cha.
2019. B2R2: Building an Efficient Front-End for Binary Analysis. In Proceedings
of the NDSS Workshop on Binary Analysis Research.

[31] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak N. Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, and Stefan Savage. 2010. Experimental Security Analysis of
a Modern Automobile. In 31st IEEE Symposium on Security and Privacy, S&P
2010, 16-19 May 2010, Berleley/Oakland, California, USA. IEEE Computer Society,
447–462. https://doi.org/10.1109/SP.2010.34

[32] Karl Koscher, Tadayoshi Kohno, andDavidMolnar. 2015. SURROGATES: Enabling
Near-Real-Time Dynamic Analyses of Embedded Systems. In 9th USENIX Work-
shop on Offensive Technologies, WOOT ’15, Washington, DC, USA, August 10-11,
2015, Aurélien Francillon and Thomas Ptacek (Eds.). USENIX Association. https://
www.usenix.org/conference/woot15/workshop-program/presentation/koscher

[33] Daniel Lange and Felix Domke. 2015. The exhaust emissions scandal (“Diesel-
gate”): Take a deep breath into pollution trickery. https://media.ccc.de/v/32c3-
7331-the_exhaust_emissions_scandal_dieselgate.

[34] Qiang Liu, Cen Zhang, Lin Ma, Muhui Jiang, Yajin Zhou, Lei Wu, Wenbo Shen,
Xiapu Luo, Yang Liu, and Kui Ren. 2021. FirmGuide: Boosting the Capability of
Rehosting Embedded Linux Kernels through Model-Guided Kernel Execution. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 792–804. https://doi.org/10.1109/ASE51524.2021.9678653

[35] Dominik Maier, Benedikt Radtke, and Bastian Harren. 2019. Unicorefuzz: On
the Viability of Emulation for Kernelspace Fuzzing. In 13th USENIX Workshop
on Offensive Technologies, WOOT 2019, Santa Clara, CA, USA, August 12-13, 2019,
Alex Gantman and Clémentine Maurice (Eds.). USENIX Association. https:
//www.usenix.org/conference/woot19/presentation/maier

[36] Dominik Maier, Lukas Seidel, and Shinjo Park. 2020. BaseSAFE: baseband
sanitized fuzzing through emulation. In WiSec ’20: 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, Linz, Austria, July 8-
10, 2020, René Mayrhofer and Michael Roland (Eds.). ACM, 122–132. https:
//doi.org/10.1145/3395351.3399360

[37] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. 2021. DICE: Automatic Em-
ulation of DMA Input Channels for Dynamic Firmware Analysis. In Proceedings
of the 42nd IEEE Symposium on Security and Privacy (S&P/Oakland’21).

[38] Alyssa Milburn, Niek Timmers, Nils Wiersma, and Ramiro Pareja. 2018.
There Will Be Glitches: Extracting and Analyzing Automotive Firmware
Efficiently. https://www.riscure.com/uploads/2018/11/Riscure_Whitepaper_
Analyzing_Automotive_Firmware.pdf.

[39] Charlie Miller and Chris Valasek. 2015. Remote Exploitation of an Unaltered
Passenger Vehicle. http://illmatics.com/Remote%20Car%20Hacking.pdf.

[40] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar2 : A Multi-target Orchestration Platform. In Proceedings of the 2018 NDSS
Workshop on Binary Analysis Research (NDSS BAR 2018).

[41] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. 2018. What You Corrupt Is NotWhat You Crash: Challenges in Fuzzing
Embedded Devices.. In NDSS.

[42] National Security Agency (NSA). 2017. P-Code Reference Manual. https://
ghidra.re/courses/languages/html/pcoderef .html.

[43] National Security Agency (NSA). 2019. Ghidra. https://ghidra-sre.org.
[44] Aina Niemetz, Mathias Preiner, and Armin Biere. 2014. Boolector 2.0. J. Satisf.

Boolean Model. Comput. 9, 1 (2014), 53–58. https://doi.org/10.3233/sat190101
[45] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong

Su. 2014. X-Force: Force-Executing Binary Programs for Security Applications.
In Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, 829–
844. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/peng

[46] Nguyen Anh Quynh and Hoang-Vu Dang. 2015. Unicorn: Next Generation CPU
Emulator Framework. https://www.unicorn-engine.org.

[47] Renesas Electronics. 2010. SH7266 Group, SH7267 Group User’s Manual:
Hardware. https://datasheet.octopart.com/R5S72661P144FP%23VZ-Renesas-
datasheet-11803191.pdf.

https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://doi.org/10.1109/DSN48063.2020.00046
https://doi.org/10.1109/DSN48063.2020.00046
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1007/978-3-319-99073-6_15
https://github.com/esaulenka/Ghidra_C166
https://github.com/esaulenka/Ghidra_C166
https://doi.org/10.1145/3433210.3453093
https://github.com/RiS3-Lab/p2im/blob/master/docs/add_mcu.md
https://github.com/RiS3-Lab/p2im/blob/master/docs/add_mcu.md
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://github.com/AFLplusplus/LibAFL
https://github.com/AFLplusplus/LibAFL
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garcia
https://doi.org/10.1145/2568225.2568273
https://doi.org/10.1145/2568225.2568273
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://www.usenix.org/conference/usenixsecurity20/presentation/harrison
https://i.blackhat.com/USA-20/Wednesday/us-20-Hernandez-Emulating-Samsungs-Baseband-For-Security-Testing.pdf
https://i.blackhat.com/USA-20/Wednesday/us-20-Hernandez-Emulating-Samsungs-Baseband-For-Security-Testing.pdf
https://www.infineon.com/dgdl/c166sv2um.pdf?fileId=db3a304412b407950112b41d4ea32fe3
https://www.infineon.com/dgdl/c166sv2um.pdf?fileId=db3a304412b407950112b41d4ea32fe3
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://doi.org/10.1109/SP.2010.34
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://media.ccc.de/v/32c3-7331-the_exhaust_emissions_scandal_dieselgate
https://media.ccc.de/v/32c3-7331-the_exhaust_emissions_scandal_dieselgate
https://doi.org/10.1109/ASE51524.2021.9678653
https://www.usenix.org/conference/woot19/presentation/maier
https://www.usenix.org/conference/woot19/presentation/maier
https://doi.org/10.1145/3395351.3399360
https://doi.org/10.1145/3395351.3399360
https://www.riscure.com/uploads/2018/11/Riscure_Whitepaper_Analyzing_Automotive_Firmware.pdf
https://www.riscure.com/uploads/2018/11/Riscure_Whitepaper_Analyzing_Automotive_Firmware.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://ghidra.re/courses/languages/html/pcoderef.html
https://ghidra.re/courses/languages/html/pcoderef.html
https://ghidra-sre.org
https://doi.org/10.3233/sat190101
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/peng
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/peng
https://www.unicorn-engine.org
https://datasheet.octopart.com/R5S72661P144FP%23VZ-Renesas-datasheet-11803191.pdf
https://datasheet.octopart.com/R5S72661P144FP%23VZ-Renesas-datasheet-11803191.pdf

[48] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. 2020. Franken-
stein: Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Tar-
gets. In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 19–36.
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge

[49] Koushik Sen. 2007. Concolic testing. In 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta,
Georgia, USA, R. E. Kurt Stirewalt, Alexander Egyed, and Bernd Fischer (Eds.).
ACM, 571–572. https://doi.org/10.1145/1321631.1321746

[50] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality
saturation: a new approach to optimization. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C.
Pierce (Eds.). ACM, 264–276. https://doi.org/10.1145/1480881.1480915

[51] Tencent Keen Security Lab. 2020. Tencent Keen Security Lab: Experimental
Security Assessment on Lexus Cars. https://keenlab.tencent.com/en/2020/03/
30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-
Cars/.

[52] Tencent Keen Security Lab. 2021. Mercedes Benz MBUX Security Research
Report. https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_
Research_Report_Final.pdf.

[53] Roel Verdult, Flavio D. Garcia, and Josep Balasch. 2012. Gone in 360 Seconds:
Hijacking with Hitag2. In Proceedings of the 21th USENIX Security Symposium,
Bellevue, WA, USA, August 8-10, 2012, Tadayoshi Kohno (Ed.). USENIX Associa-
tion, 237–252. https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/verdult

[54] Roel Verdult, Flavio D. Garcia, and Baris Ege. 2013. Dismantling Megamos
Crypto: Wirelessly Lockpicking a Vehicle Immobilizer. In Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013, Samuel T.
King (Ed.). USENIX Association, 703–718. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/verdult

[55] Volkswagen Research. 2022. Linux-CAN / SocketCAN user space applications.
[56] Jeffrey Wilhelm and Tzi-cker Chiueh. 2007. A Forced Sampled Execution Ap-

proach to Kernel Rootkit Identification. In Recent Advances in Intrusion Detec-
tion, 10th International Symposium, RAID 2007, Gold Goast, Australia, September
5-7, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4637), Christo-
pher Krügel, Richard Lippmann, and Andrew J. Clark (Eds.). Springer, 219–235.
https://doi.org/10.1007/978-3-540-74320-0_12

[57] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. egg: Fast and Extensible Equality Saturation. Proc.
ACM Program. Lang. 5, POPL, Article 23 (Jan. 2021), 29 pages. https://doi.org/
10.1145/3434304

[58] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti. 2014.
AVATAR: A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The In-
ternet Society. https://www.ndss-symposium.org/ndss2014/avatar-framework-
support-dynamic-security-analysis-embedded-systems-firmwares

[59] Michał Zalewski. 2013. American Fuzzy Lop. https://lcamtuf .coredump.cx/afl.
[60] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. 2021. Automatic Firmware

Emulation through Invalidity-guided Knowledge Inference. In 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, Michael Bai-
ley and Rachel Greenstadt (Eds.). USENIX Association, 2007–2024. https:
//www.usenix.org/conference/usenixsecurity21/presentation/zhou

[61] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. 2021. Automatic Firmware
Emulation through Invalidity-guided Knowledge Inference. In 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, Michael Bai-
ley and Rachel Greenstadt (Eds.). USENIX Association, 2007–2024. https:
//www.usenix.org/conference/usenixsecurity21/presentation/zhou

[62] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. 2021. `Emu documentation.
https://github.com/MCUSec/uEmu/blob/main/docs/Configuration.md.

https://www.usenix.org/conference/usenixsecurity20/presentation/ruge
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1145/1480881.1480915
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars/
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars/
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars/
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/verdult
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/verdult
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/verdult
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/verdult
https://doi.org/10.1007/978-3-540-74320-0_12
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://www.ndss-symposium.org/ndss2014/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares
https://www.ndss-symposium.org/ndss2014/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares
https://lcamtuf.coredump.cx/afl
https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://github.com/MCUSec/uEmu/blob/main/docs/Configuration.md

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	3.1 Framework Architecture
	3.2 Challenges Rehosting Complex Firmware

	4 Implementation of MetaEmu
	4.1 Lifting & IR Generation
	4.2 Firmware Simulation
	4.3 Observers & Analysis Coordination
	4.4 Peripheral Support
	4.5 Interrupt Support

	5 Evaluation
	5.1 Performance Benchmarks
	5.2 Case Studies

	6 Human effort
	7 Limitations
	8 Discussion & Related Work
	9 Conclusion
	Acknowledgments
	References

