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Abstract 79 

Effective management of marine micro(nano)plastic (MnP) depends on a good 80 

understanding of their sources and cycling. The discovery of atmospheric MnP transport 81 

and ocean-atmosphere exchange points to a highly complex marine plastic cycle. Yet, 82 

observations are currently limited. In this Perspective, we quantify marine-atmospheric 83 

MnP cycle processes and fluxes, with the aim of highlighting the remaining unknowns in 84 

atmospheric MnP transport. Up to 25 (a range of 0.013-25) million metric tons per year 85 

(Mt) of MnP are potentially being transported within the marine atmosphere and deposited 86 

in the oceans. However, the high uncertainty in these marine-atmosphere fluxes is related 87 

to data limitations and a lack of study inter-comparability. To address the uncertainties 88 

and remaining knowledge gaps in the marine-atmospheric MnP cycle, we propose a 89 

future global marine-atmospheric MnP observation strategy, incorporating novel sampling 90 

methods and the creation of a comparable, harmonised and global data set. Together 91 

with long-term observations and intensive investigations, this strategy will help define the 92 

trends in marine-atmospheric pollution and any responses to future policy and 93 

management actions. 94 

 95 

 96 

 97 

Website summary: 98 

Atmospheric transport of microplastic could be a major source of plastic pollution to the 99 

ocean, yet observations currently remain limited. This Perspective quantifies the known 100 

budgets of the marine-atmospheric micro(nano)plastic cycle, and proposes a future 101 

global observation strategy. 102 

[H1] Introduction 103 

Over 368 million metric tons of single-use plastic were created in 2019 (refs. 1,2) and is 104 

projected to increase further owing to rapid and inexpensive plastic production, non-105 

circular economic models and a single-use plastic culture. Plastic pollution has been 106 

evidenced across all environmental compartments, including aquatic, soil and air3–6. 107 

Projections indicate plastic pollution will treble by 2040 under a business as usual 108 

scenario, up to ~80 million metric tons (Mt) of waste per year (based on 2016 109 

environmental plastic pollution estimates)7. Of the total managed and mismanaged plastic 110 

waste created, ~12% is projected to enter the aquatic environment and ~22% to enter the 111 

terrestrial environment, with an estimated ~60 Mt per year lost to just aquatic and 112 

terrestrial environmental compartments by 20307,8. However, there is currently limited 113 

assessment of the atmospheric compartment.  114 

 115 

The global oceanic microplastic cycle9,10 is currently quantified based on observational 116 

and modelled data of microplastics in marine and fresh water, biota and sediments, as 117 

these environments are frequently studied11–13. Terrestrial runoff, river discharge and 118 

marine currents carry micro(nano)plastic (MnP; see Box 1 for definitions) from terrestrial 119 

sources to distal areas such as the Arctic, Antarctic and deep-sea locations over months 120 

to years14. Whilst relatively slow, this mechanism is important in transporting MnP to 121 

remote areas where they can negatively impact marine life15,16. Although studied less, 122 
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atmospheric transport research similarly illustrates that wind can transport MnP at trans-123 

continental and trans-oceanic scales17–20. Atmospheric transport is comparably much 124 

faster than oceanic transport, as it can convey particles from sources to remote locations 125 

over a matter of days to weeks18,20,21. Long-distance transport to remote and Polar 126 

Regions could occur through a combination of atmospheric and marine conveyance 127 

(Supplementary Note 1), enabling plastic pollutants to infiltrate and influence even the 128 

most remote and uninhabited ecosystems of Earth.  129 

 130 

Atmospheric MnP can also affect surface climate, and therefore ecosystem health, via 131 

theorised influences on surface albedo19, cloud formation22 and radiative forcing23 132 

(Supplementary Note 2). Although MnPs have diverse colours, they are hypothesised to 133 

influence surface albedo and accelerate cryosphere melting when deposited on snow and 134 

ice19,24. In addition, laboratory-based experiments demonstrate that atmospheric MnP 135 

particles are effective ice nucleation particles, potentially influencing cloud lifetime and 136 

albedo22,25,26. Similarly, MnP have been modelled to cause positive and negative radiative 137 

forcing via direct effects, depending on their size and vertical distribution23. For example, 138 

greater radiation absorption and resultant atmospheric warming occurs when MnP are 139 

present throughout the troposphere23. While these theories have been hypothesised or 140 

modelled (with notable constraints and assumptions), physical monitoring and 141 

observation studies are urgently needed to validate and quantify MnP atmospheric 142 

influences. Critically, the only radiative forcing calculations performed to date were for 143 

non-pigmented polymers23.  144 

 145 

Beyond ecosystem health, MnPs are also an emergent pollutant of human health concern 146 

through ingestion and inhalation27,28. Potentially comparable to soot or black carbon, 147 

atmospheric MnP transported from proximal or distal sources can result in human 148 

exposure through direct inhalation and via the human food web through deposition on 149 

agricultural land and water reservoirs, inclusion or contamination during agricultural, food 150 

manufacturing and preparation activities. This atmospheric MnP is in addition to other 151 

sources of plastic widely used in agriculture, directly added to soils, used in food 152 

packaging, or uptake by seafood9,29–31. As a result, atmospheric MnP forms part of the 153 

threat to global sustainability and the ability of the global community to implement all or 154 

most of the United Nations Sustainable Development Goals32.  155 

 156 

In this Perspective, we synthesize current atmospheric MnP data and propose that the 157 

atmosphere provides an important but unconstrained flux of marine MnP. While 158 

atmospheric data is still limited, several studies have identified key processes that could 159 

substantially promote global transport to the oceans. Modelling suggests that there is 160 

considerable atmospheric transport of terrestrial MnP to marine environments18,19. 161 

Furthermore, the incorporation of atmospheric MnP transport processes into the marine 162 

MnP cycle highlights the importance of marine MnP export to the atmosphere and 163 

potential transportation to terrestrial environments. Therefore, it is important to quantify 164 

the atmospheric compartment (emission, transport and deposition) to obtain an accurate 165 

estimate of marine MnP fluxes. A collective effort is needed to better quantify and 166 

characterise the marine atmospheric MnP cycle, so that the roles of MnP in the 167 

atmosphere, ocean and land can be more fully understood.  168 

 169 
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 170 

[H1] Marine plastic cycle processes  171 

 172 

Micro and nano plastic that is atmospherically transported to and deposited on the ocean 173 

surfaces can originate from a multitude of sources (both marine and terrestrial)33 and can 174 

be conveyed long distances. However, quantitative assessment of atmospheric emission 175 

of MnP specific to land use type or activity is limited. This lack of quantification has 176 

resulted in numerous assumptions and uncertainties in global modelling and estimation 177 

of atmospheric MnP budgets and flux estimates. This section discusses what is known 178 

and unknown regarding the sources, transport and deposition of marine-atmospheric 179 

MnP.  180 

 181 

 182 

 183 

[H2] Sources 184 

Activities that result in atmospheric MnP creation and emission can generally be 185 

characterised as terrestrial or marine. Marine emission of MnP to the atmosphere is an 186 

emerging field of research and formative investigation in the field and laboratory point 187 

towards MnP ocean-air interface exchange. As such, the coastal zone is thought to serve 188 

as a source of MnP through beach sand erosion and entrainment, sea spray and bubble 189 

burst ejection along the surf zone due to wind and waves34–36. In the coastal and open-190 

ocean environments, MnP particles could be scavenged from the water column by 191 

bubbles and ejected into the atmosphere when the bubbles burst37,38. As with coastal 192 

zone processes, wind and wave action could increase the rate of ocean emission of MnP, 193 

for example along the ever-changing boundary between Arctic and Antarctic sea water 194 

and glacial ice or sea ice edge39. Aquaculture, coastal and offshore fishing have also 195 

been identified as a source of marine MnP40. 196 

 197 

The emission and (subsequent) atmospheric entrainment (the transition from surface to 198 

air followed by atmospheric transport) of agricultural soil MnPs have been quantified in 199 

the field and estimated in specific soils conditions (well sorted quartz sand, poorly-sorted 200 

organic soil, semi-arid soils)41,42. These studies, which focused on specific processes 201 

rather than the complex surface-atmosphere flux, suggest MnP emission of 0.08-1.48 mg 202 

m-2 minute-1 for relatively large microplastic particles (generally 100-200µm in size)41,42. It 203 

is acknowledged that there might be local or immediate (re-)deposition, but this is 204 

currently unquantified and requires further, focused research. However, if the values are 205 

used without localised (re-)deposition considerations. Acknowledging that 11% of 206 

habitable surface is agricultural (crop) land use (11 million km2)43, a global emission of 207 

0.0009 to 0.016 million metric tons (Mt) suspended per minute can be estimated when 208 

agricultural land is exposed to erosive wind (0.5–22m s-1)41. During strong wind events, 209 

there is potential for atmospheric emission of agricultural MnP to extend to the region of 210 

million metric tons per year. The wind erosion and emission rate of smaller MnP still needs 211 

to be determined. 212 

 213 

Tyre and brake wear become atmospherically emitted and entrained through road use 214 

and vehicle movement44,45. Early estimates suggested potential tyre emissions of ~6 tons 215 
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km-1 year-1 46. However, published studies acknowledge the highly variable 216 

concentrations of MnP in road dust due to spatial, temporal and meteorological 217 

characteristics, road and vehicle per year conditions (for example country, season, 218 

vehicle type and road maintenance). Current tyre and brake wear atmospheric emissions 219 

are suggested to be up to ≤40% of total tyre and brake wear emissions, amounting to 0.2-220 

5.5kg per capita for particles ≤10µm19,45. Alternative emission estimations are based on 221 

a constant tyre wear to CO2 ratio (0.49 mg TWP g−1 CO2) or using the Greenhouse gas–222 

Air pollution Interactions and Synergies (GAINS)47 model estimations (<0.25-~32 tonnes 223 

per year, based on region-specific, distance-driven and vehicle-type emission 224 

information). These different estimation techniques result in a global atmospheric flux of 225 

tyre and brake wear ranging from <0.15 to 4.3 million metric tons per year. It is important 226 

to note that many atmospheric MnP findings (MnP per m3 or MnP per m2) do not include 227 

tyre or brake wear particles due to analytical difficulties. 228 

 229 

Cities and dense urban living are considered an atmospheric MnP source due to human 230 

activities (for example commerce, industry, transport, household)44,48,49, plastic use and 231 

waste management (landfills, recycling centres, incineration)49–53. While there is a 232 

growing dataset of urban atmospheric MnP quantitative characterisation, the atmospheric 233 

emission rates from specific materials, actions and environments are currently unknown. 234 

Within urban environments, atmospheric MnP has been quantified from 0.9MPm-3 (Paris 235 

outdoor air54) to 5700 MP m-3 (Beijing outdoor air55) (Supplementary Data, Figure 2). 236 

However, these estimates were reported without any differentiation to indicate the 237 

proportion of MnP transported to each location from a local or distal source, or the 238 

proportion occurring as local emission, or the quantity lost due to atmospheric transport 239 

away from the local urban source. One study has used field data extrapolation and simple 240 

transport modelling to estimate the indoor microplastic fibre contribution to marine MnP 241 

deposition, suggesting a contribution of 7-33 metric tons per year56. Due to the early stage 242 

in field observation and MnP source emission research, urban atmospheric MnP emission 243 

rates are very uncertain and currently based primarily on theoretical estimates. 244 

 245 

 246 

[H2] Transport and deposition 247 

There have been numerous quantitative observations of MnPs in remote locations where 248 

plastic pollution is attributed to atmospheric transport. These include the Ecuadorian 249 

Andes57, French Pyrenees17, Italian Alps58, US conservation areas59, snow in the 250 

Arctic39,60, Nunavut (Canadian Arctic)61, Isle of Helgoland (Germany)39, Austrian and 251 

Swiss Alps20,39,62, the Iranian Plateau63, and the Tibetan Plateau64. Atmospheric transport 252 

of MnP particles is extensive, reaching hundreds to potentially thousands of kilometres 253 

from major emission sources (for example, cities, intensive agriculture, industry). 254 

Therefore, while there is limited quantitative field observation of atmospheric MnP, the 255 

observed atmospheric transport and modelling suggest the atmosphere to contain, 256 

transport and deposit MnPs throughout the marine environment. 257 

There is a substantial body of literature on microplastics in the environment. However, 258 

most research is focused on the aquatic or terrestrial environments (855 and 366 259 

publications respectively in 2020)65,66. In total, over 70 published scientific studies (field 260 

or laboratory research) are on atmospheric MnP, of which only 6 focus on the marine 261 
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environment (Supplementary Data, Google Scholar, Web of Science and Scopus search). 262 

The concentration of suspended microplastic particles in urban air range up to 5700 MPm-263 
3 (in Beijing55) and studies generally suggest that particle concentrations decrease with 264 

distance from city centres67.  265 

Marine air samples generally present lower atmospheric microplastic concentrations 266 

compared to terrestrial levels. Marine atmospheric MnP concentrations of up to 0.06-1.37 267 

MP m-3 have been reported over the North Atlantic Ocean, South China Sea, Indian 268 

Ocean and Western Pacific Ocean (Figure 2). However, this marine sampling comprises 269 

particles collected predominantly in the range of 20µm-5mm68–70 (limited focus or analysis 270 

on the smaller particle size range, Supplementary Data) and is thus an underestimation. 271 

Comparatively, the Beijing and other terrestrial studies extend down to 5µm (limit of 272 

quantification), potentially resulting in relatively elevated particle counts given the 273 

increasing particle count with decreasing particle size. However, it has been shown that 274 

coastal air samples of wind in an onshore direction (blowing from the sea to the land) can 275 

carry elevated microplastic concentrations of ~2.9 MP m-3, rising to 19 MP m-3 during 276 

turbulent sea conditions37. Bubble and sea spray studies of ocean chemical species 277 

suggest that this increase in atmospheric microplastic could be due to the bubble burst 278 

ejection process and spume entrainment71,72, where the bubble source (horizontally within 279 

the water column and spatially such as within a gyre or coastal environment) might be 280 

particularly important18,73. 281 

 282 

The deposition of airborne MnP has been measured across a range of terrestrial 283 

environments, but publication of marine MnP offshore measurements of air69 and MnP 284 

deposited snow on ice floes39only commenced in 2019  (Supplementary Data). MnP 285 

particles collected using passive deposition sampling can present different particle counts 286 

and morphology compared to active (pumped) air samples54,70,74–76. This difference might 287 

be due to the different transport processes in action (for example scavenging, settling, 288 

convective or advective transport) or the sampling methodology (active versus passive 289 

sampling, deposition versus suspended particle sampling), and is an important area of 290 

future investigation.  291 

 292 

To quantify the marine atmospheric MnP flux, both air and depositional field studies must 293 

consider the full atmospheric transport process and quantify marine MnP flux. The 294 

morphology and quantitative characterisation of marine atmospheric MnP deposition 295 

beyond these polar regions are unknown, and thus marine deposition assessments are 296 

primarily theoretically modelled estimates due to lack of field data. The quantitative 297 

assessment of marine aquatic MnP particle ejection to the atmosphere and transport of 298 

these particles is also in its infancy, resulting in estimations based on limited field data. 299 

 300 

Thus, while current understanding of atmospheric MnP in the marine environment 301 

identifies the cyclic nature of MnP movement (ocean-atmosphere flux) the quantification 302 

of this flux (deposition, emission and atmospheric concentrations) require substantial 303 

further study. 304 

 305 
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[H1] Marine-atmosphere plastic flux  306 

Atmosphere-ocean MnP interactions are important to understand so that the particle sizes 307 

and quantities can be identified. The atmosphere transports predominantly small micro- 308 

and nano-plastics compared to fluvial processes, and is a notably faster transport 309 

pathway, potentially resulting in substantial marine particle deposition and exchange 310 

between the ocean and atmosphere. Smaller micro and nanoplastics are also of concern 311 

to species and ecosystem health, therefore quantifying the marine atmospheric exchange 312 

and transport process is necessary to monitor marine ecosystem health. Conversely, 313 

quantifying the marine emission and atmospheric transport of MnPs to terrestrial 314 

environments is necessary as many remote areas, distal from terrestrial micro and 315 

nanoplastic sources, could be notably influenced by marine atmospheric MnP. In this 316 

section, the estimates, uncertainties and future improvements in marine-atmosphere 317 

fluxes are discussed (Figure 3).  318 

 319 

[H2] Estimates 320 

 321 

Early estimates of the atmospheric MnP within the marine environment have been 322 

undertaken using simple extrapolation of continental data through to more dynamic 323 

atmospheric process modelling. The 2017 IUCN report suggests 15% of marine plastic 324 

pollution is wind transported (estimated primary microplastic marine pollution input of 0.8-325 

2.5 million metric tons, therefore 0.12-0.38 million metric tons of atmospheric 326 

deposition)77. Acknowledging that both primary and secondary MnP particles are 327 

atmospherically transported to the marine environment, simplistic extrapolation of 328 

atmospheric MnP deposition onto the ocean surface has been carried out. Using the 329 

reported remote area atmospheric MnP deposition quantities and the global ocean 330 

surface area (3.6x108 km2), microplastic deposition (particles between 1µm and 5mm in 331 

size) on the marine environment has been estimated as 10 million metric tons per year78. 332 

New nanoplastic deposition analysis, considering only the <200nm particle fraction, 333 

suggests that this smaller sized plastic pollution might result in up to 15 million metric tons 334 

of nanoplastic deposition on the ocean surface per year20. For context, 10 million metric 335 

tons is equivalent to 3% of current annual global total plastic production (2018, 359 million 336 

metric tons)78,79, represents 11% of mismanaged plastic waste (2016, 91 million metric 337 

tons year-1)7, is comparable to the plastic (macro and micro) entering aquatic ecosystems 338 

(11-23 million metric tons per year)7,8 and potentially transported to the marine 339 

environment (4-13 million metric tons) (2010)80 (Figure 1). 340 

 341 

Global model estimations have been undertaken using estimated emission rates from 342 

terrestrial (and marine) sources and current atmospheric MnP transport dynamics. 343 

Lagrangian transport and dispersion modelling (FLEXPART) of tyre and brake wear MnPs 344 

(high density polymers that form a fraction of the total atmospheric and marine plastic 345 

pollution) illustrate that >30-34% of these continental MnP particles are atmospherically 346 

transported and deposited on ocean surfaces (analysis of only MnPs ≤10µm, Figure 4)19. 347 

FLEXPART modelling suggests that net tyre and brake wear MnP input into the oceans 348 

via atmospheric transport and deposition could be ~0.14 million metric tons per year19. 349 

This is comparable to the annual quantity of tyre wear reported to enter the oceans via 350 

fluvial transport (0.064 million metric tons per year, tyres wear only)19. Gross atmospheric 351 
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deposition and marine microplastic flux has also been globally modelled (using the 352 

Community Atmospheric Model, CAM)18. The CAM estimate incorporates land based 353 

atmospheric microplastic emissions and as such has a high uncertainty due to data 354 

availability and associated assumptions. The CAM model includes ocean ejection and 355 

recirculation (resuspension) of microplastic particles, incorporating marine bubble burst 356 

ejection and wave action into the marine microplastic cycle. Gross atmospheric deposition 357 

to the ocean is estimated as 0.013 million metric tons18. It is important to note that the 358 

CAM model microplastic particle size distribution is notably more coarse than the 359 

FLEXPART tyre and brake wear modelling, adopting a particle size distribution generally 360 

above 5µm and focused on particles 10-50µm in size. The model suggests that potentially 361 

>11% of urban atmospheric deposition comes from sea spray or bubble burst ejection in 362 

the marine environment and that up to 99% of the total marine microplastic ejection to the 363 

atmosphere (re)deposits within the marine environment (Figure 1, Supplementary Note 364 

3). 365 

 366 

[H2] Uncertainties 367 

These early marine flux and deposition estimates range from 0.013 to 25 million metric 368 

tons per year, illustrating the uncertainty resulting from data and research limitations. 369 

There is limited global representation of atmospheric MnP concentrations due to the 370 

limited number of studies, limited parallel air concentration and deposition studies and the 371 

limited global observation extent (Figure 2). Field data is especially scarce in the marine 372 

atmospheric environment, a lack that constrains the capacity to accurately calculate and 373 

validate estimated and modelled marine environment results of emission, deposition, 374 

marine atmospheric burden and flux. As a result, current marine atmospheric MnP 375 

understanding and flux estimations are based on available data and assumptions, 376 

resulting in large uncertainties around calculated flux and transport results. 377 

 378 

A primary knowledge gap is the quantitative assessment of source emissions to the 379 

atmosphere, both marine and terrestrial. The quantitative characterisation of atmospheric 380 

MnP primary and secondary source emission is needed across the full temporal (all 381 

seasons and weather patterns) and spatial range (Arctic to Antarctic, remote to urban 382 

areas). Currently, atmospheric emission rates (for example particles or mass released 383 

per hour or m2) are assumed or estimated, both in models and flux calculations due to 384 

the complexity of in field study assessment (specifically the disaggregation of background 385 

atmospheric MnP presence from the source specific emission). To advance the 386 

atmospheric flux accuracy and to understand key sources of atmospheric MnP, these 387 

emission rates require field observation and validation using advanced field sampling 388 

methods (for example horizontal and vertical array sampling across a prospective source 389 

area to define upwind and local atmospheric MnP concentrations relative to emission 390 

specific concentrations). 391 

 392 

The understanding and experimental validation of wet removal (scavenging) of 393 

atmospheric MnP is relatively unknown. While MnPs are often considered hydrophobic, 394 

once within the environment it is unknown whether this hydrophobicity changes, for 395 

example, due to corona effects, photodegradation and weathering, or leaching of 396 

phthalates. Field and laboratory controlled studies are needed to describe changes to the 397 

microphysical behaviour of environmental MnPs as a result of environmental exposure 398 
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and therefore corresponding changes to the emission, transport and deposition behaviour 399 

of these particles. Furthermore, entrainment and turbulent mixing dynamics of MnP are 400 

also poorly understood; they are generally modelled using proxies (for example Saharan 401 

dust, or Cesium-137) or theoretical particle motions (based on particle mass, shape and 402 

density). To improve flux estimates and model outputs, laboratory and field 403 

experimentation and data are needed to adequately describe the emission, (re-404 

)entrainment, turbulent mixing and deposition dynamics (Figure 3) of these generally 405 

negatively charged81,82, low density, non-uniform MnP particles. 406 

 407 

Comparability between studies is difficult at best. The wide range of sampling methods, 408 

analytical techniques and reporting standards has resulted in publication of MnP 409 

observations with differing limits of detection (LOD) or quantification (LOQ), incomparable 410 

size fractionation, differing particle characterisation (shape, polymer type) and sampling 411 

of different processes (for example snow deposition versus pumped volume of air)3,83,84. 412 

Atmospheric (terrestrial and marine) MnP studies need to provide comparable results to 413 

ensure data advances the understanding of source, transport, deposition and flux 414 

quantification. To achieve this, inter-method comparison studies are needed to define the 415 

method specific limitations and the relative uncertainties of each method, allowing 416 

published findings to be directly compared. For example, a sample analysed by µRaman 417 

and Nile Red fluorescence microscopy could provide similar MnP counts, but the relative 418 

uncertainties for each analytical method have not been quantified to support effective 419 

direct comparison. Early comparative studies have started to identify under or over 420 

estimations relative to specific analytical methods but without direct comparison and 421 

quantification of these uncertainties specific to particle shape, size and polymer type85,86. 422 

Similarly, there is an assumption that sample collection methods are accurate and 423 

effective representations of the environment or medium they sample. However, the 424 

respective comparable sampling efficiencies of deposition and air concentration 425 

collectors, and the associated uncertainties, are unquantified. For example, deposition 426 

sample collectors such as funnels connected to a collection bottle75, petri dishes with 427 

double sided tape87, NILU deposition collectors88, or Brahney Buckets89 (to name a few) 428 

have different blow-by (particle not collected due to turbulence at sampler opening 429 

resulting from sampler design or wind conditions), entrapment and retention efficiencies, 430 

resuspension and sample losses. These comparative analysis and method unknowns 431 

result in unquantifiable uncertainties in flux estimates. 432 

 433 

Tyre and brake wear can comprise an important fraction of urban MnP pollution and might 434 

be an important component of marine atmospheric MnP19,45. However, in practice, these 435 

black particles can be difficult to characterise by spectroscopic methods because of 436 

limited signal due to absorption of input wavelengths and strength of vibrational response. 437 

Therefore, tyre and brake wear particle chemical characterisation is often achieved with 438 

destructive thermal degradation methods, without particle morphology 439 

characterisation45,90. As a result, many atmospheric MnP studies either focus on tyre and 440 

brake wear or exclude these particle types and quantify classic plastics (for example 441 

polyethylene, polypropylene, polyvinyl chloride, polyester, polyethylene terephthalate and 442 

others). This has created a disjointed dataset of MnP that does not represent the total 443 

(tyre and brake wear plus all other polymer types) MnP concentration, burden, emission 444 
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or deposition. This disjoin creates uncertainty in total MnP calculations and representation 445 

(both atmospheric and marine). 446 

 447 

[H2] Methods to advance the flux estimate 448 

 449 

To advance the accuracy in the marine atmospheric MnP flux, greater understanding of 450 

atmospheric concentrations, deposition, emission and entrainment mechanisms and 451 

rates are needed across the global spatial and temporal range. There are numerous 452 

atmospheric processes that have not yet been quantitatively characterised or 453 

parameterised (orange processes highlighted in Figure 3) which need to be assessed to 454 

close the marine air mass balance, advance the particle flux estimation, and limit the 455 

uncertainty in flux and transport estimations. These include the vertical distribution of 456 

MnPs both on the inshore and offshore, ocean ejection of MnPs offshore, and coastal 457 

and offshore deposition. 458 

 459 

 460 

It is a challenging task to properly sample atmospheric fluxes of MnP in any environment, 461 

but it is particularly difficult in remote marine environments. Marine atmospheric sampling 462 

(for dust and particulates, not plastic) has been undertaken using Modified Wilson and 463 

Cook samplers (MWAC), which typically collect particles >50µm (losing the smaller 464 

particle fraction)21,91. In addition, pump sampling devices have been mounted on buoys 465 

and ships38,68,69. Modified versions of these methods can be included in the array of 466 

sampling methods effective for MnP marine atmospheric research on ocean or coastal 467 

platforms92, but field testing is needed to ensure these methods provide appropriate MnP 468 

data across the full particle size range and function in the complex marine climate 469 

(inclement weather). Method advances and innovation are needed to sample the <50µm 470 

MnP particles, especially in open-ocean and remote locations, and to provide sample 471 

methods close to the water surface.  472 

 473 

While the study of marine MnP emission to the atmosphere via bubble-burst ejection and 474 

sea spray processes is in its infancy35–37,73, since the 2000’s there has been extensive 475 

research on the mechanism of sea-salt aerosol production and other materials involved 476 

with ocean-atmosphere exchange72,93,94. These provide a foundation on which to base 477 

future research of ocean ejection of MnP to the atmosphere. To quantify ocean MnP 478 

emissions via bubble-burst ejection, it might be possible to use sampling methods such 479 

as the Bubble Interface Microlayer Sampler (BIMS)95. The BIMS was originally designed 480 

for sea salt aerosol studies, however its use is limited to calm seas. When used in 481 

conjunction with deposition measurements and pumped air sampling campaigns, a BIMS-482 

type device could effectively advance the quantification of ocean-atmosphere MnP 483 

exchange in the field. In the laboratory, wave flumes and marine aerosol reference tanks, 484 

extensively used in sea-spray aerosol research, could provide a tool to observe and 485 

quantify the MnP wave and bubble ejection processes96,97. 486 

 487 

Atmospheric MnPs generally fall within the lower range of microplastics (<500µm) down 488 

to nanoplastics, a complex particle size to analyse98,99 and within the range of concern 489 

for environmental and human health. The majority of atmospheric MnP studies are 490 

constrained by their particle counts, polymer type and shape, and limit of quantification 491 
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(published down to 11µm using an FTIR or 2µm using a µRaman, but with pixel size 492 

limitations and in LOD of 10µm for FTIR, 1µm for Raman under standard analytical 493 

setup)100,101. Polymer identification analysis, across the full particle size range, is a vital 494 

requirement for MnP analysis and reporting3,102,103. Analysis of individual particles below 495 

1µm can be achieved (for example using equipment such as Raman tweezers, AFM-496 

IR)98,104,105 but is resource heavy and difficult to analyse a representative proportion of a 497 

field sample. To advance the understanding and flux assessment of atmospheric marine 498 

MnPs, new techniques and advancements in technology are needed to enable submicron 499 

particle polymer analysis that provides comparable results to the micron particle studies 500 

published to date.  501 

 502 

There is limited testing or parallel analysis of mass and particle counts to date84,85, 503 

resulting in mass based results being mathematically converted to particle counts and 504 

vice versa, and the uncertainty associated with this mathematical estimation. Mass 505 

analysis of MnP using destructive methods (thermal degradation) is now possible for very 506 

low concentrations of nanoplastics in environmental samples20,106. While thermal 507 

degradation methods do not have a theoretical size limit, these methods are constrained 508 

by the minimum concentration (total mass) required to achieve detection. However, the 509 

uncertainty associated with comparative mass to particle count and particle 510 

characterisation analysis is unquantified for nano and micro plastic studies. To ensure 511 

accurate conversion of mass-particle count 37,59 and the comparability of analytical results 512 

using these different methods, comparative experimental analysis of spectroscopic and 513 

thermal degrading methods is necessary for atmospheric MnP samples. 514 

 515 

Within the research community, it is acknowledged that reporting must be prescriptive 516 

and standardised. While it might not be possible to standardise the collection or analytical 517 

methods across individual studies and institutions, future studies need to present the 518 

following to ensure a comparable and consistent knowledge base and database of MnPs: 519 

the limits of detection and quantification of studies (LOD and LOQ); a clear description of 520 

analytical methods to support inter-study comparison; quality assurance and control (use 521 

of field blanks and spiked sample recovery, positive and negative controls); 522 

documentation of contamination controls (clean room use, field and laboratory 523 

contamination prevention actions); method and calculations for blank correction of sample 524 

results; sample replication and individual replicate results102,103,107,108. While visual or 525 

graphical representation of MnP findings can be done in coarse particle increments, it is 526 

necessary for inter-study comparability that findings are presented in the smallest, 527 

consistent particle size increments possible (for example, a table of 5 µm size increments 528 

provided in a data repository or supplementary dataset). Similarly, MnP particle sizes 529 

need to be presented as physical particle sizes for ecotoxicology assessment and also 530 

as aerodynamic diameters for transport modelling and inhalation studies109,110. Analytical 531 

methods have advanced beyond visual identification (effective to ~500µm)111–113 and 532 

while polymer identification by thermal degradation or spectroscopy (chemical 533 

fingerprinting) methods for all particles is not always possible due to resource constraints, 534 

a minimum of 10% (ideally 30%+) of reported particles must be validated using (at least 535 

one) of these methods. 536 

 537 
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Ocean-atmosphere flux estimations using current information hold large uncertainties due 538 

to data availability, sampling methods and study inter-comparability. To advance ocean-539 

atmosphere flux understanding a global quantitative characterisation of MnP that provides 540 

more standardised and comparable data is needed. 541 

 542 

[H1] A global strategy 543 

The oceans comprise over 70% of the Earth’s surface, highlighting the global importance 544 

of understanding the marine atmospheric MnP cycle, transport and exchange processes. 545 

Knowledge of these processes is a prerequisite to assessing the risk posed by the 546 

atmospheric transport of MnP on species, ecosystems, and human health114. Individual 547 

MnP studies undertaken suggest that MnP are omnipresent over the oceans and that 548 

long-distance transport of atmospheric MnP could be a critical factor in supplying these 549 

particles to the oceans. In order to quantify these processes, a comprehensive, formalised 550 

global program is needed that follows a harmonised protocol of sampling and analysis. A 551 

key objective is to provide comparable datasets that enable detailed characterisation of 552 

MnP concentrations and properties over the ocean, their temporal and spatial variability, 553 

as well as the importance of the atmospheric compartment to marine plastic pollution.  554 

 555 

 556 

 557 

[H2] Global long-term observation network  558 

Multi-year measurements at selected long-term observation sites will identify current state 559 

and trends in atmospheric MnP concentrations. Such long-term observation activities are 560 

usually a part of a globally coordinated research or monitoring network(s) due to cost and 561 

to ensure data uniformity. We propose an organizational approach to address these 562 

research needs (Box 2). These activities are broadly compartmentalized under 563 

Measurement Studies and Modelling Studies. The objective of this research organization 564 

is to ensure the identified data limitations, inter-study comparability issues and process 565 

knowledge gaps are fully addressed with specific objectives in mind. However, there must 566 

be cooperation and integration across all activities.  567 

 568 

Early modelling of atmospheric MnP gross deposition shows considerable atmospheric 569 

deposition to the oceans, especially the Mediterranean Sea, and the North Pacific and 570 

North Atlantic Oceans (Supplementary Figure 4)18. However, these estimates must be 571 

used with caution because much of the deposition theoretically represents both MnP 572 

ejected from the ocean surface and transported from the terrestrial environment18,37. 573 

Studies looking only at tyre and brake wear show substantial net atmospheric MnP 574 

deposition in the mid-and high-latitude North Atlantic, North Pacific and the northern 575 

Indian Ocean (Figure 4)19. These early findings, although limited to a subset of 576 

microplastic types, provide guidance in establishing location priorities in studies of the 577 

global MnP cycle. 578 

 579 

 580 
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To expedite these studies, it is recommend that the existing stations (Figure 4) in the 581 

World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) 582 

program115,116 be used as the initial long-term monitoring platform network115,116. The 583 

proposed sites are non-prescriptive but form an effective basis for a long-term observation 584 

network for atmospheric MnPs. GAW coordinates activities in a global array of fixed 585 

platforms and follows a fully developed protocol of high-quality measurements of a wide 586 

range of atmospheric composition variables, including aerosol properties117 and of 587 

atmospheric deposition118. It is recommended that as part of the international effort all 588 

observational sites adopt common measurement and quality assurance protocols and 589 

centralized data reporting. At least two GAW stations have tentatively undertaken 590 

microplastics measurements. As such, the WMO/GAW program presents an ideal and 591 

cost-effective global monitoring network to commence long-term observation of 592 

atmospheric MnP.  593 

 594 

The sites (Figure 4) are suggested based on their capacity to create multi-year time series 595 

for extended sets of variables, ranging from atmospheric constituents to atmospheric 596 

dynamics, key to MnP variability analysis. Sites located on isolated coasts or islands are 597 

ideal in that they minimize the impact from local and regional sources of MnP. The 598 

network configuration includes the most intense deposition areas as identified through 599 

early modelling effort and published field data (Supplementary Note 4). A selection of 600 

coastal and marine locations would ensure good coverage on a global scale (Figure 4), 601 

including regions where transport is potentially weak. Atmospheric MnP modelling 602 

suggests transport and deposition plumes downwind of North and South America, Africa, 603 

Australia and Asia19. Long-term observation stations are scarce in these regions and 604 

additional stations need to be added to the network (future network expansion) to 605 

represent these areas. 606 

[H2] Observation and sampling campaigns  607 

Long-term observations and monitoring activities are designed to provide multi-year to 608 

decadal datasets that can illustrate long-term and event specific trends and fluxes119–123. 609 

Past and currently active global monitoring networks studying non-plastic atmospheric 610 

substances have used a variety of sampling platforms, sampling methods, observation 611 

and monitoring campaigns. Building on this wealth of marine and atmospheric research 612 

experience, the proposed coordinated research strategy incorporates a unified and 613 

standardized long-term monitoring campaign. It is recommended weekly sampling (to 614 

yield monthly mean MnP particle quantitative particle characterisation and mass 615 

analyses), which could initially suffice for the gross characterisation of transport quantities 616 

(although it is acknowledged this for such a novel global study, adjustments will be made 617 

after initial datasets are created). 618 

In addition to the long-term observations, complementary exploration and process studies 619 

would occur within the network. These studies would create high resolution datasets 620 

(minute, hour, daily sampling dependent on the research focus) undertaken through 621 

shorter-term intensive research campaigns using specialized equipment and platforms 622 

(for example, UAVs, BIMS). It is important that these exploration and process campaigns 623 

create data comparable with the global long-term observation dataset, therefore following 624 

(at an overview level) the basic observation outputs of the long-term dataset. The 625 
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intensive research campaigns will link detailed process and event specific data and 626 

findings to specific source regions, synoptic conditions or transport processes.  627 

The global observation network may take several years to develop a full description of 628 

the atmospheric MnP burden, flux and trends due to annual and inter-annual variability of 629 

conditions that affect entrainment, transport and deposition of atmospheric particles124. A 630 

fundamental aspect of such a monitoring network is that MnP measurements must be co-631 

located with other observations, in particular aerosol chemical and physical properties 632 

and meteorological conditions. In the long run, fixed-point observatories in the ocean 633 

should become part of the observation network. As a part of the international efforts116, 634 

the proposed observational sites will adopt centralized data reporting (similar to the World 635 

Meteorology Organisation dataset management). 636 

 637 

[H2] Proposed sampling platforms  638 

Sampling strategies to achieve long-term observations are initially proposed for fixed 639 

stations (Figure 4) using both passive deposition and active (pumped air, such as Tisch 640 

HiVol) sampling methods. These sites could include sampling towers similar to those 641 

used in the SEAREX and AEROCE networks (17-20m walk-up scaffold sampling towers 642 

equipped with elevated atmospheric samplers supported by temporary or permanent field 643 

laboratories located on both continental coast and islands at the terrestrial-marine 644 

interface)119–122. 645 

 646 

It is proposed that the fixed (coastal and island) long-term observations will be augmented 647 

by offshore long-term observations attained from repetitive research vessel campaigns. 648 

Research vessels often carry out repeat transits and cruises to the Arctic, Atlantic, Pacific 649 

and Antarctic waters (any sea or ocean)123,125,126. Such campaigns are typically 20-40 650 

days’ duration and entail frequent location changes, which enable offshore sampling over 651 

a wide spatial and temporal range (Supplementary Note 4). Offshore atmospheric 652 

microplastic sampling has been limited to air filter sample collection38,68,69. Future 653 

campaign protocols must be extended to include deposition and nanoplastic sampling. 654 

Intensive studies to quantitatively characterise the under-studied processes and 655 

environmental conditions (Figure 3) will need to use novel and innovative sampling 656 

methods, redesigned and validated specifically for MnP observation. It is expected these 657 

will include platforms and methods based on research vessels, aircraft, UAVs, buoys, or 658 

temporary sampling towers. Intensive offshore and coastal water interface sampling is 659 

novel, and initially it is recommended that methodology such as the Bubble Interface 660 

Microlayer Sampler (BIMS) (with advancements specific to MnP analysis) is used.  661 

Low latitude air sampling, vertical and horizontal array sampling over coastal and offshore 662 

environments, can be achieved through use of unmanned aerial vehicles. Unmanned 663 

aerial vehicles (UAVs) have limitations on flight duration but can sample over extensive 664 

vertical and spatial distances provided sampling payloads are kept minimal127,128. UAVs 665 

are cost-effective, they sample at low airspeed and can maintain a selected altitude and 666 

location (for minutes to hours) to allow sampling of specific air masses. Furthermore, 667 

UAVs can fly close to high-risk surfaces and locations (for example, sea surface and 668 

urban areas, potentially high-emission activities) with fewer constraints. This level of 669 

control in flight path and, therefore, sample precision could be very useful for intensive air 670 
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and emission source sampling in the marine environment (Supplementary Note 4). UAVs 671 

will enable sampling in locations where access is limited. Use of UAV could improve 672 

measurements of the overall marine atmospheric MnP burden and help to quantify ocean-673 

atmosphere exchange. 674 

 675 

The proposed global observation network and sampling strategy would provide a 676 

comprehensive assessment of marine atmospheric MnP and the ocean-atmosphere MnP 677 

flux. Combined with intensive process, environment or meteorologically specific focused 678 

studies, the global strategy will enable more accurate marine atmospheric MnP flux 679 

estimations, highlight hot spots and key exchange or transport processes that will support 680 

improved policy, management and mitigation measures tackling MnP. 681 

[H1] Summary and future directions 682 

There is consensus that microplastic and nanoplastic pollution can harm the environment 683 

and, potentially, human health. However, despite the growing body of evidence of the 684 

importance of atmospheric MnP, there is limited marine atmospheric MnP information. 685 

MnP particles are emitted from primary and secondary sources and transported to the 686 

marine atmosphere, but the atmospheric MnP burden is also comprised of resuspended 687 

particles. Limited source emission and resuspension studies, alongside transport and 688 

deposition studies, have resulted in high uncertainty in global-scale and marine MnP 689 

burden and flux estimations.  690 

 691 

Reviewing the current state-of-the-art sampling and analysis methods makes it evident 692 

that both sampling and analytical methodologies need to be advanced to incorporate the 693 

marine atmosphere in the plastic pollution cycle. Terrestrial atmospheric MnP sample 694 

collection methods could be implemented to effectively collect coastal and high-altitude 695 

samples but have limitations for deployment in the marine environment. Adaption and 696 

advancement of marine and terrestrial sampling methods used in aerosol and 697 

atmospheric chemistry research could provide an inroad to marine atmospheric MnP 698 

collection but require field experimentation and transport process focused studies to test 699 

their capabilities and effectiveness. Furthermore, research vessel studies currently 700 

provide low altitude air MnP concentrations but have the potential to observe a greater 701 

air column sample and ocean-atmosphere exchange if a wider range of sampling 702 

methodologies are employed (for example, UAV, BIMS, deposition collectors). Future 703 

sampling campaigns should incorporate a range of open-ocean sampling platforms and 704 

sampling methods to help address the marine atmospheric MnP research gap.  705 

 706 

In conjunction with the complexity of marine atmospheric MnP sampling, there is a need 707 

to advance analytical methods to help quantify the marine MnP flux. Current analytical 708 

methods have advanced to the point where these measurements can be reliably made, 709 

however, a harmonised approach is fundamental. Despite an increasing particle count 710 

with decreasing particle size, to date the majority of analysis has focused on larger 711 

microplastic particles (>10µm), and there is limited nanoplastic analysis and unquantified 712 

uncertainties surrounding the comparison of different analytical methods. Analytical 713 

advances to enable both mass and particle characterisation of marine atmospheric MnP 714 

are necessary, complemented by detailed studies to create an easy comparison between 715 

different analytical results. These studies will enable future studies using particle 716 
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characterisation to be directly comparable to mass concentration studies and include the 717 

nano-sized particle range. 718 

 719 

Early estimates suggest that the atmospheric MnP influx to the oceans are comparable 720 

to that from rivers78. However, early model estimates show a huge range of 721 

uncertainty18,19,78. An expanded and coordinated global-scale research effort must be 722 

undertaken to constrain the uncertainties and provide a clear representation of the marine 723 

MnP flux. We propose a global observation network built upon existing long-term 724 

monitoring platforms to create a baseline and trend analysis dataset, augmented with 725 

intensive, short-term monitoring and experimentation research focused on specific 726 

processes, events or locations. Looking forward, we recommend the global monitoring 727 

effort expands to include research vessels and open-ocean observations, which will 728 

complement existing monitoring in inland water bodies and estuary sites.  729 

 730 

After several years of network operations, we expect that researchers will be able to 731 

identify the key locations, processes, and sources of MnP that impact the marine 732 

environment. Conversely, this research will also demonstrate the influence and relative 733 

importance of emissions from the marine environment influencing the terrestrial 734 

atmospheric MnP burden. This improved understanding of MnP flux and the global plastic 735 

cycle will be vital for evaluating the success of urgently needed mitigation strategies 736 

against plastic pollution. The information is also vital to inform risk assessments for 737 

humans and the biosphere, which need to be based on realistic environmental micro- and 738 

nanoplastic concentrations. 739 
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Figure Captions 433 

 434 

Figure 1. Atmospheric transport, potential annual flux, burdens and current knowledge gaps. 435 

The atmospheric compartment of the total dynamic microplastic (MP) cycle (in million metric tons, Mt, 436 

per year) can be separated into the marine and terrestrial burdens, which in turn are partitioned into 437 

inland, coastal and offshore zones. Deposition, emission and total burden values are compiled from 438 

model analyses18,19, early flux estimations78 and reported field studies37,80,129. *The coastal zone 439 

onshore emission estimate is for localised coastal marine transport at low altitude (<200m above mean 440 

sea level)37, and does not include long-distance transport microplastic or high altitude marine 441 

(secondary) sourced atmospheric microplastic. Atmospheric micro and nano plastic is a key part 442 

(potential up to 25Mt) of the marine (micro and nano) plastic cycle and the calculation of the marine 443 

micro(nano)plastic (MnP) flux. 444 

 445 

Figure 2. Summary of published micro and nano plastic atmospheric and marine research. The 446 

marine surface MnP results are reproduced from the Van Sebille model130. The atmospheric MP values 447 

are derived from 73 research studies (full details of which are provided in the Supplementary Data) . It 448 

is noted that these atmospheric studies are not directly comparable due to the range of methodologies 449 

and individual studies’ limits of detection but are provided here for spatial information. The map shows 450 

the spatial limitations of atmospheric MnP research, which highlights the need for global, comparative 451 

and standardised sampling. 452 

 453 

Figure 3. Critical known and unknown atmospheric processes . Specifically, micro(nano)plastic 454 

(MnP) processes that have been (†) or have yet to be (*) observed (not modelled), quantified, 455 

characterised or parameterised for MnP either in the laboratory or in the field. The processes listed are 456 

indicative, considered to be ‘unknowns’ in atmospheric transport but given they are untested this list is 457 

not exhaustive or prescriptive. Understanding, quantitative characterisation and parameterisation of 458 

these atmospheric MnP processes is vital for accurate modelling of atmospheric MnP transport and 459 

accounting for field MnP findings.  460 

 461 

 462 

Figure 4. The proposed global observation network. Suggested potential sampling sites (primarily 463 

taken from the established WMO and/or GAW networks or European Monitoring and Evaluation 464 

Programme stations) illustrated on the map of FLEXPART modelled net deposition of tyre wear and 465 

brake wear particles19 (gross global MP deposition CAM model output is provided in Supplementary 466 

Figure 4). Locations identified with * are high altitude (tropospheric) sites, all other locations are coastal 467 

monitoring sites. Potential sites are: ALT Alert (Canada); AMS Amsterdam Island (France); BHD Baring 468 

Head (NZ); BMW Tudor Hill (Bermuda); BRW (Barrow, USA); CGO Cape Grim (Australia); CPT Cape 469 

Point (South Africa); FKL Finokalia (Greece); GSN Gosan (Korea); IZO Izana (Spain, 2373 m); LLN 470 

Lulin (Taiwan, China 2862 m); MHD Mace Head (Ireland); MLO Mauna Loa (USA, 3397 m); NEU 471 

Neumayer (Antarctica); RPB Ragged Point (Barbados); RUN La Reunion (France, 2160m); SMO 472 

American Samoa (USA); SPO South Pole (Antarctica, 2841 m); ZEP Zeppelin (Norway). Figure adapted 473 

from ref.19 X, CC BY 4.0.  474 

 475 

 476 

 477 
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Boxes 478 

 479 

Box 1| Key micro(nano)plastic terminology definition and descriptions 480 

Microplastic (MP) 481 

Plastic particles greater than 1µm and less than 5 mm (aerodynamic) diameter9,10,131,132.  482 

Nanoplastic (NP) 483 

Plastic particles less than 1µm (aerodynamic) diameter9,10,131,132.  484 

Micro(nano)plastic (MnP) 485 

All plastic particles ≤5mm (both micro and nano plastic)131–133. MP and NP are measured in the 486 

atmosphere as particles or mass per volume of sampled air, for example, MP m-3; and deposition as 487 

particles or mass per surface area sampled over a specified duration, for example, MP m-2 day-1.  488 

Primary micro(nano)plastic 489 

MP manufactured to be 1µm-5mm (for example, nurdles134, personal care products135, textiles136). 490 

NP manufactured to be <1µm (for example, medical applications137, printing ink138, electronics107,139,140). 491 

Secondary micro(nano)plastic 492 

MP or NP produced through mechanical, chemical or photodegradation (for example, plastic bottle 493 

breakdown to MP and NP on a beach due to UV, salt and wave action)107,141–143.  494 

Source 495 

An activity that results in MP or NP emission, described both in location and time and with reference to 496 

the plastic particle emission characteristics (primary or secondary). 497 

Point source 498 

MP or NP emission from a defined location at specific times (for example, waste water treatment plant 499 

release to receiving waterway, recycling plant emission due to mechanical plastic deconstruction, 500 

plastic factory emission due to production activities)144–146. 501 

Diffuse source 502 

MP or NP emission (and re-emission) from activities that have no single emission time and location (for 503 

example, road dust or agricultural emissions)144,145,147–149. 504 

 505 

 506 

Box 2| Proposed global network structure and coordinated international research  507 

Measurement Studies 508 

Monitoring Studies 509 

Long-term (multi-year) atmospheric concentration and deposition measurements of MnP at Global 510 

Atmosphere Watch (GAW) and other sites (weekly or monthly composite samples continuously 511 

collected using standardised sample collection and analysis methodology, standardised Limit of 512 

Detection (LOD) / Limit of Quantification (LOQ) 513 

Exploration Studies 514 

Site specific studies from coast to offshore across a wide range of platforms and analytical methods, 515 

including: 516 

 Ship based atmospheric sampling offshore (north and southern oceans, Arctic and Antarctic) 517 

 Ice cores in Greenland, Antarctica, the Arctic (and other locations) 518 

 High altitude aircraft measurements, coastal and offshore 519 

 Marine air concentration buoy-type platform measurements 520 

Process Studies 521 

Emission, deposition and transport process studies (potentially including degradation, leaching, Trojan 522 

horse and other studies) and to quantitatively characterise MnP marine atmosphere dynamics, 523 

including: 524 

 Assessment of the ocean as a source (emission and resuspension of MnP) 525 

 Differentiated wet and dry deposition on ocean and/or marine surfaces 526 

 Marine atmospheric MnP source identification 527 

 MnP particle count to mass comparative measurement technique development 528 

Modelling Studies 529 

Transport 530 

Modelling, built from the field study findings, to define the local, national, regional, and global transport 531 

of atmospheric MnP in the marine (and terrestrial) environment. 532 

Sources 533 

Modelling to identify the potential (key) MnP sources of atmospherically transported particles found in 534 

the marine environment, remote and coastal areas.Process specific models are also needed to quantify 535 

and detail ocean-atmosphere exchange (ocean emission or ejection). 536 
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Flux 537 

Using global, comparable and uniform datasets that are temporally and spatially representative, global 538 

flux modelling will quantify the marine atmospheric MnP burden and flux through quantitative 539 

assessment of the full plastic cycle (emission, transport, deposition). Flux trends and responses to 540 

policy or practice changes can be derived using these models (long-term data mining and modelled 541 

forecasting). 542 

 543 


