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Behavioral/Cognitive

Sleep-Specific Processing of Auditory Stimuli Is Reflected by
Alpha and Sigma Oscillations

Malgorzata Wislowska,1,2 Wolfgang Klimesch,1 Ole Jensen,3 Christine Blume,4,5 and Manuel Schabus1,2
1Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, 5020, Austria, 2Laboratory for Sleep, Cognition and Consciousness Research,
University of Salzburg, 5020, Salzburg, Austria, 3Centre for Human Brain Health, University of Birmingham, Birmingham, B12 2TT, United
Kingdom, 4Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, CH-4002, Switzerland, and 5Transfaculty Research
Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, 4055, Switzerland

Recent research revealed a surprisingly large range of cognitive operations to be preserved during sleep in humans. The new
challenge is therefore to understand functions and mechanisms of processes, which so far have been mainly investigated in
awake subjects. The current study focuses on dynamic changes of brain oscillations and connectivity patterns in response to
environmental stimulation during non-REM sleep. Our results indicate that aurally presented names were processed and neu-
ronally differentiated across the wake-sleep spectrum. Simultaneously recorded EEG and MEG signals revealed two distinct
clusters of oscillatory power increase in response to the stimuli: (1) vigilance state-independent h synchronization occurring
immediately after stimulus onset, followed by (2) sleep-specific a/r synchronization peaking after stimulus offset. We discuss
the possible role of h, a, and r oscillations during non-REM sleep, and work toward a unified theory of brain rhythms and
their functions during sleep.
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Significance Statement

Previous research has revealed (residual) capacity of the sleeping human brain to interact with the environment. How sensory
processing is realized by the neural assemblies in different stages of sleep is however unclear. To tackle this question, we
examined simultaneously recorded MEG and EEG data. We discuss the possible role of u , a, and s oscillations during non-
REM sleep. In contrast to versatile u band response that reflected early stimulus processing step, succeeding a and s band ac-
tivity was sensitive to the saliency of the incoming information, and contingent on the sleep stage. Our findings suggest that
the specific reorganization of mechanisms involved in later stages of sensory processing takes place upon falling asleep.

Introduction
Sleep differs from wakefulness at behavioral, cognitive, and neu-
ronal levels. Nonetheless, several recent studies documented the

capacity of the brain to interact with (usually auditory) external
cues even during consolidated stages of sleep. According to these
studies, the sleeping brain can detect novelty (Ruby et al., 2008),
discriminate stimuli on a semantic (Perrin, 1999) and lexical
(Kouider et al., 2014) level, distinguish familiarity (Blume et al.,
2018) and emotional tone (del Giudice et al., 2016b), or even
track continuous speech (Legendre et al., 2019). These processes
endure despite a major reorganization of brain activity patterns
during sleep. This is an interesting observation because the rela-
tionship between oscillations and cognitive processes has been,
so far, investigated mainly in awake subjects.

In the current project, we therefore focused on the interplay
between oscillatory activity and cognitive processes during sleep.
For this purpose, we stimulated participants with auditory cues
and compared brain responses across wakefulness and the differ-
ent stages of non-REM (NREM) sleep. We used stimuli of a high
personal relevance, including the subject’s own name spoken by
a close family member. This way, we increased the bottom-up
stimulus strength, which ensues from subjective importance and
frequent exposure across lifetime (Holeckova et al., 2006). Own
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names and familiar voices elicit a distinct brain response even in
patients whose level of consciousness diminished after a severe
brain injury (Bekinschtein et al., 2004; Perrin et al., 2006; del
Giudice et al., 2016a). Preserved processing of names and voices has
likewise been observed in participants falling asleep (Perrin et al.,
1999; Portas et al., 2000; Blume et al., 2018), rendering these specific
stimuli pertinent for studying information processing during sleep.
Consequently, we investigated how the oscillatory responses to aur-
ally presented names change as the brain progresses through differ-
ent stages of NREM sleep. Thereupon, we deliberate on the possible
functional meaning of the observed brain dynamics.

Over the last century that followed the legendary first record-
ing of a rhythms in the brain (Berger, 1929), a multitude of
research drew a link between brain oscillations and cognition
(Varela et al., 2001; Buzsáki and Draguhn, 2004). Even con-
sciousness has directly been related to the activity of synchron-
ized neural networks (Crick and Koch, 2003; Owen and Guta,
2019), and oscillations have been discussed to orchestrate infor-
mation transmission (Sauseng and Klimesch, 2008; Siegel et al.,
2012). A hierarchy of nonoverlapping and distinct frequency
bands allows executing various cognitive tasks in exact temporal
order (Pletzer et al., 2010; Klimesch, 2012). For example, the u
oscillation (;4–7 Hz) has been associated with working and epi-
sodic memory (Doppelmayr et al., 1998; Jensen and Tesche,
2002), whereas a (;8–12 Hz) has been related to semantic mem-
ory (Klimesch et al., 1997; Fellinger et al., 2012), attention
(Klimesch, 1999; Thut et al., 2006), or disengagement of irrele-
vant cortical regions (Jokisch and Jensen, 2007; Haegens et al.,
2010). In sleep, the function of these oscillations is, however,
much less investigated and conclusive. The major contributions
for the functional interpretation of oscillations in sleep come
from the field of overnight memory consolidation in humans,
where slow-wave (;0.5–1 Hz) (Marshall et al., 2006), u (;4–7 Hz)
(Schreiner et al., 2018), and spindle (;11–15 Hz) (Cairney et al.,
2018) frequencies play the central role. Yet cognitive processes that
appear to persist during sleep are, of course, not limited to internal
memory reorganization.

Overall, we lack a systematic understanding of the neuronal
underpinnings of the cognitive processes still being intact during
sleep. Therefore, in the current MEG/EEG study, we aimed to
answer the following questions: (1) to which degree the sleeping
brain is still capable of processing environmental stimuli, (2)
which oscillatory mechanisms govern that processing, and (3)
how connectivity patterns change across the continuum from
wake to NREM sleep.

Materials and Methods
The study was approved by the University of Salzburg local ethics com-
mittee and conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained from all research participants
before inclusion. Volunteers received financial or course credit compen-
sation for their time.

Participants
Twenty-nine young, healthy, right-handed, native German speakers partici-
pated in the experiment. All were nonsmokers and had no record of a neu-
rologic, psychiatric, or sleep disorder. Two participants were later excluded
because of technical problems during data acquisition. Ultimately, we ana-
lyzed data from 27 subjects (16 females) with an average age of 24.93
(SD=2.37) years, of which 11 reached stable deep sleep.

Experimental design
Participants visited the laboratory 1 week before the MEG session.
They assisted in creating their individual stimulus set by selecting

unfamiliar names and getting instructed on how to record familiar
voice audio files. Thereafter, subjects received a wrist-actigraphy
(Cambridge Neurotechnology Actiwatch), which they were wear-
ing on their left (nondominant) hand for the next 7 d. Afterward,
participants returned to the laboratory for the MEG session. The
recorded actigraphy data helped us to control for adherence to the
study protocol. Subjects were instructed to keep a regular sleep-
wake cycle (and sleep ;8 h each night) between the two laboratory
visits, except for the last night, when they were asked to restrict
their sleep time to 6 h. On the day of the experimental visit, the
volunteers reported to the MEG laboratory (14 subjects at around
9:00 A.M., 13 subjects at around noon), where they were familiar-
ized with the protocol. Upon signing the informed consent, the
subjects had to change into scrubs and remove all metallic parts
from their body. After fixing localization coils and polysomnogra-
phy channels, participants entered the magnetically shielded room
and lay down in a supine position on an MEG-compatible bed. We
maximized the comfort with individually adjusted pillows and
blankets, and provided participants with earphones. A 5 min rest
recording (not reported here) was followed by the main experi-
ment that consisted of 20 min wake session and a 2 h sleep oppor-
tunity session (Fig. 1). Throughout the entire 2h20min of the
experiment participants were played an auditory stream of first names.
There was no specific task instruction for participants, except of
remaining awake with eyes open during the wake part, and there being
the opportunity to fall asleep with eyes closed during the sleep part.
For the analysis of brain activity during wakefulness, only data from
the first stable 20min wake session with eyes-open were included.

Stimuli
We adopted a passive version of a previously established “own name
paradigm” (Perrin et al., 2005; Fellinger et al., 2011; del Giudice et al.,
2016b), where the first name of a subject is presented among other first
names. During their first visit in the laboratory, participants were pre-
sented with a list of common Austrian first names, matched with their
own first name in terms of the syllable number, gender, and likelihood
of occurrence in the general population. From this list, participants
selected two names with no strong personal emotional valence. The sub-
ject-specific set of three names (subject own name and two other
names) was recorded by two speakers of the same gender: first was a
person closely related to the participant (e.g., parent, partner, a close
friend; familiar voice condition), second was an unfamiliar, dialect-free
native German speaker (unfamiliar voice condition). The recordings of
the audio files were matched in length, as much as possible, while pre-
serving their natural tone. All stimuli were preprocessed (denoised,
normalized and filtered) using Audacity software (http://audacityteam.
org/). Accordingly, a 2� 2 design was created, with two types of names
(own and other) and two types of voices (familiar and unfamiliar).
Stimuli on average lasted 725ms (1 SD= 0.164ms). During the MEG
session, the names were presented via MEG-compatible pneumatic ear-
phones (SOUNDPIxx, VPixx Technologies) with interstimulus interval
pseudo-randomly varying between 2.5 and 6 s (in 500ms steps). As in
earlier studies (e.g., Ameen et al., 2022), loudness of the stimuli was
adjusted for each participant individually and based on a subjective
feedback, aiming at the volume clearly audible, which at the same time
allows falling asleep. Consequently, the volume level of the presented
stimuli varied between 61 and 84 dB. After preprocessing (see below),
the following average number of trials per subject remained for analy-
ses: 60 (613) trials during wake (W), 93 (670) trials during drowsiness
(N1), 130 (690) trials during light sleep (N2), and 42 (631) trials dur-
ing deep sleep (N3).

Data acquisition
Brain and peripheral signals were recorded at 1000Hz with hardware fil-
ters between 0.1 and 330Hz, in a passive magnetically shielded room
using a whole head MEG (Elekta Neuromag Triux). Magnetic brain data
were sampled with 204 orthogonal gradiometers and 102 magneto-
meters. Simultaneously, we recorded electric brain signal with 18 active
monopolar EEG channels spanning the whole scalp according to the
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international 10–20 system (Fp1, Fpz, Fp2, F3, Fz, F4, FC5, FC6, C3, Cz,
C4, P3, Pz, P4, O1, O2, left and right mastoid), with a reference placed
on the left ear and a ground placed on the right shoulder. Additional
bipolar peripheral channels were recorded: EMG on the chin, ECG
across the chest, and two EOG (horizontal and vertical), following stand-
ard recommendations for sleep EEG data acquisition of the American
Association of Sleep Medicine (Iber and Iber, 2007). EEG impedances
were kept ,5 kOhm for the monopolar channels, and ,75 kOhm for
the bipolar channels. The position of the head in the MEG helmet was
acquired at the beginning of each session with 5 HPI localization coils
(three placed on the forehead, two placed on the left and right periauric-
ular points). Shape of the head as well as positions of the electrodes and
the localization coils were 3D digitized with Polhemous FASTTRACK.

Sleep analysis
PSG recordings were post hoc automatically staged (Somnolyzer 24� 7,
Koninklijke Philips) (Anderer et al., 2005, 2010) and visually controlled
by an expert from The Siesta Group, according to current standard crite-
ria (Iber and Iber, 2007).

Arousals. From sleep analysis, we excluded trials containing signs of
cortical arousal. An automatized MATLAB script (Jagannathan et al.,
2018) classified 4-s-long epochs (from �2 to 2 s around stimulus onset)
according to Hori staging (Hori, 1990; Tanaka et al., 1996; Goupil and
Bekinschtein, 2012). For the classification, we used the entire set of
16 EEG scalp electrodes, with the signal downsampled to 250 Hz and fil-
tered between 1 and 30 Hz. Epochs labeled as “Alert” (Hori Stages 1 and
2) were subsequently removed from all analyses.

Data preprocessing
MEG and EEG data were analyzed using MATLAB (version 2017a) and
the Fieldtrip toolbox (Oostenveld et al., 2011). The signal was high-pass
filtered at 0.5 Hz. EEG was rereferenced to mastoid electrodes (A1 and/
or A2), selected depending on the visually inspected and best signal qual-
ity. We identified and removed independent components corresponding
to eye-blinks (during wake) and heart-beat (during wake and sleep) and
projected out exogenous noise with a signal-space-projection algorithm
(Uusitalo and Ilmoniemi, 1997) (MATLAB implementation: https://

gitlab.com/obob/obob_ownft, obob_apply_ssp function). Further arti-
facts and noisy channels were semiautomatically identified in 1 s seg-
ments. Finally, continuous data (after independent components analysis
and signal-space-projection) was downsampled to 512 Hz, filtered,250
Hz, and segmented into trials from �2.3 to 2.3 s relative to stimulus
onset (longer trials were used to avoid the boundary effect disturbing
data of interest in the time-frequency analysis). Trials containing noisy
1 s segments were excluded. In the final step, an additional data quality
assurance was performed visually on each individual recording. For the
sensor level analysis, we interpolated missing MEG sensors.

Data analysis at the sensor level
Evoked brain responses. For the time-locked analysis, we averaged

across trials filtered,40 Hz and calculated the difference from power in
the prestimulus baseline between �0.5 and �0.1 s (absolute baseline in
FieldTrip). For the MEG analysis, magnetic fields of the corresponding
planar gradiometers were combined (root of sum of squares). Last, a lin-
ear trend was removed from windows of interest (spanning �0.5 to 1.5 s
relative to stimulus onset). In the final step, the individual evoked
responses were averaged across subjects.

Induced brain responses. For the induced response analysis, we used
a sliding window approach on the single-trial demeaned data. Data seg-
ments were extracted every 50ms and multiplied with a Hanning taper.
Phase and power of frequencies between 1 and 30 Hz were calculated in
1 Hz steps using a frequency-dependent time window length of 3 cycles
(except for frequencies ,3 Hz, where we used only 1 cycle for conven-
ience). For the MEG analysis, oscillatory power of the corresponding
planar gradiometers was combined (root of sum of squares). Finally, we
averaged across trials, cut windows of interest (spanning from �0.5 to
1.5 s), and averaged across subjects.

Auditory ROI. In the MEG data, auditory ROIs were identified at
single-subject level and based on evoked response in the 0.05-0.5 s time
window (across stimuli). Fifteen combined gradiometers with the high-
est power relative to the baseline (�0.5 to �0.1 s before stimulus onset)
were then selected. For the EEG analysis, always the same six sensors
were used: FC5, C3, P3, FC6, C4, and P4.

Figure 1. Study design. Processing steps from MEG/EEG acquisition to analysis of the data are illustrated. Spoken first names were presented to the participants lying in the MEG scanner.
Volunteers were requested to stay awake with eyes open for 20min, and then close their eyes and try to sleep for another 2 h. Stimuli were presented aurally and in a pseudo-random order
every 2.5 to 6 s. For the analysis, stimuli were grouped according to (1) the name type, (2) the uttering (familiar or unfamiliar) voice, and (3) the current sleep stage at stimulus presentation.
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Sleep spindles. Sleep spindles were detected automatically at EEG
electrodes C3 and C4 during sleep stages N2 and N3 with a two-stage algo-
rithm (ASK analyzer, The Siesta Group). First, possible spindles were iden-
tified (Schimicek et al., 1994) in data filtered between 11 and 16 Hz, based
on the following criteria (Broughton et al., 1978; Schimicek et al., 1994;
Anderer et al., 2005): (1) amplitude.12mV and (2) duration between 0.3
and 2 s. Second, a linear discriminant analysis, previously trained on visu-
ally scored spindles, was run on the possible spindles. In our analyses, we
used spindle events of frequency between 11 and 15 Hz and with a discrim-
inant score .0.8, corresponding to a sensitivity of ;90% (Diekelmann
and Born, 2010). Sleep spindles that occurred in an overlapping time win-
dow at C3 and C4 were considered to represent the same spindle event.

Oscillations generating evoked responses. The analysis of oscillations
contributing to the generation of the ERPs was performed on the grand-
average EEG time-locked data (i.e., broadband signal, filtered between
0.5 and 40 Hz, as explained in the previous sections). The ERPs were fil-
tered with 8 different bandpass FIR filters, using the following cutoff val-
ues: 1-2 Hz (d ), 4-7 Hz (u ), 8-12 Hz (a), 8-10 Hz (lower a), 10-12 Hz
(upper a), 11-15 Hz (s ), 11-13 Hz (slow s ), and 13-15 Hz (fast s ). Peaks
of the broadband and each narrow-band signal were detected with
MATLAB’s findpeaks.m routine. Finally, peaks of the broadband signal
were compared with the peaks of each narrow-band signal and classified as
aligned, when they occurred in the same time point (63 sample points).

Statistical analysis
We tested for statistical differences in time-frequency spectra between
conditions of interest (two types of name and two types of voice) in each
sleep stage separately, as well as between sleep stages, using nonparamet-
ric cluster-based permutation statistics (Maris and Oostenveld, 2007),
which accounts for the multiple-comparison problem. We used a two-
sided test for dependent samples (depsamlesT in Fieldtrip), with the a
level value set to 2.5%. The histogram of test statistics was built based on
1000 permutations. The same analysis was performed for prestimulus to
poststimulus contrasts. For the prestimulus condition, data between
�0.5 and �0.1 s before the name onset was averaged for each time, fre-
quency, sensor, and subject separately. The averaged values were then
repeated over time window of the same length as the poststimulus inter-
val (0-1.5 s relative to the stimulus onset).

Distributions of sleep spindle features (number and amplitude) for
the two name types were statistically quantified with a two-sample
Kolmogorov–Smirnov test.

Source reconstruction
In the last step, we reconstructed sources underlying the observed sensor
level results. For the head modeling, we were able to acquire individual
structural MRI scans from 9 subjects; for the rest, we used a standard
template brain of the MNI. The brain anatomy of each subject was
approximated with a single shell model. A template brain was discretized
into a grid of 1.5 cm resolution and then wrapped to match each individ-
ual head model (canonical mesh).

We reconstructed single trials at each source grid point with adaptive
spatial filters (LCMV beamformers) (Van Veen et al., 1997), using filters
built on data from all conditions, separately for each sleep stage, and filtered
,40 Hz. We integrated the signal recorded with gradiometers and magne-
tometers. To estimate generators of the specific frequency responses, we
decomposed the source level signal into the time-frequency domain with
the exact same parameters as for the sensor level analysis. Contrasts of inter-
est (names or voices) were calculated for each subject individually, and the
results were averaged across subjects.

Code accessibility
The code used for data analysis is available at the first author’s Gitlab re-
pository (https://gitlab.com/Wislowska/fSON_MEG_project).

Results
The sleeping brain detects and discriminates environmental cues
Overall, results reveal that the brain can detect auditory stimuli
in wakefulness as well as sleep. Interestingly, more complex

stimulus discrimination persists across all stages of NREM sleep.
It should be noted that, in this study, stable deep (N3) sleep was
reached by 11 of the 27 subjects as we refrained from strict sleep
restriction the night before to get an estimate of natural sleep in
the MEG as much as possible.

Stimulus detection
As shown in Figure 2, auditory stimuli modulated ongoing brain
activity in wakefulness as well as NREM sleep, when measured
with MEG (Fig. 2A) and EEG (Fig. 2B) sensors. Stimulus-
induced oscillatory power (across a broad frequency spectrum)
was significantly different from prestimulus baseline in
wakefulness (MEG: pcluster1 = ,0.001, pcluster2 = 0.004; EEG:
pcluster1 = ,0.001, pcluster2 = 0.007), as well as all stages
of NREM sleep: drowsiness (MEG: pcluster,0.001; EEG:
pcluster,0.001), N2 (MEG: pcluster,0.001; EEG: pcluster,0.001) and
deep sleep (MEG: pcluster = 0.002; EEG: pcluster1 = 0.003,
pcluster2 = 0.02).

Frequency-resolved MEG (Fig. 2A) and EEG (Fig. 2B)
responses during wakefulness displayed a typical profile, with
early d /u (;1-7 Hz) synchronization, followed by a (;8-12 Hz)
desynchronization. u synchronization persisted across all stages
of NREM sleep (Fig. 2A,B). a-frequency desynchronization, on
the other hand, was exclusively observed during wakefulness.
Furthermore, oscillations within the broad a/s (;8-20 Hz)
range synchronized at ;700ms after stimulus, in light (N1 and
N2), and to a smaller extent in N3.

To estimate the sources within the brain that underlie the
observed oscillatory activity, we applied a beamformer technique
to the MEG signal. As depicted in Figure 2C, generators of the
u activity were identified in the primary auditory cortices
(Brodmann area [BA] 41), independently of vigilance state (xyz
coordinates of the source level response in the MNI space: W =
[70, �21, 10]; N1 = [64, �22, 12]; N2 = [66, �10, 8]; N3 = [59,
�14, 4]). During NREM sleep, additional sources included the
sensorimotor areas (BA 1, 4, 6; xyz coordinates: N1 = [37, �22,
68]; N2 = [55, �6, 9], N2 = [41, �10, 65]; N3 = [59, �10, 38])
and the brainstem (xyz coordinates: N1 = [9, �21, �38]; N2 =
[8,�18,�34]; N3 = [�6,�24,�44]).

Sleep-specific a/s power increase had similar generating
sources in N1 and N2 sleep, including: primary auditory areas
(BA 41; xyz coordinates: N1 = [53, �19, 6]; N2 = [55, �19, 9]),
Wernicke’s area (BA 40; xyz coordinates: N1 = [55, �28, 38];
N2 = [59, �23, 37]), sensorimotor areas (BA 1, 4, 6, 7; xyz coor-
dinates: N1 = [50, �22, 54], [56, �11, 37], [39, �19, 65], [25,
�70, 54]; N2 = [61, �3, 18], [26, 3, 64], [12, �61, 68], [58, �18,
47]), as well as thalamus (xyz coordinates: N1 = [5,�13, 6]; N2 =
[12, �14, 12]). In deep sleep, sources of a/s activity also encom-
passed sensorimotor areas (BA 1, 6; xyz coordinates: N3 = [�46,
�24, 54], [�39, �21, 64]), along with the frontal eye field (BA 8;
xyz coordinates: N3 = [28, 26, 48]) and parahippocampal region
(BA 36; xyz coordinates: N3 = [�24,�5, 36]) (Fig. 2D).

Figure 3 illustrates how the induced brain responses differed
between different vigilance states (W to N3) in MEG as well as
EEG. Compared with wakefulness, NREM sleep was characterized
by a significantly larger response in the a/s frequency band (W vs
N1 in MEG: pcluster, 0.001 and EEG: pcluster, 0.001; W vs N2 in
MEG: pcluster, 0.001 and EEG: pcluster, 0.001; W vs N3 in MEG:
pcluster =0.002 and EEG: pcluster, 0.001). A similar effect was
observed when we compared drowsiness (N1) to deeper stages of
NREM sleep (N1 vs N2 in MEG: pcluster, 0.001 and EEG:
pcluster, 0.001; N1 vs N3 in MEG: pcluster =0.011 and EEG:
pcluster =0.006). Last, comparing NREM sleep stages, we found a
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significant decrease in deep N3 sleep in a late a/s frequency band
(N1 vs N3 in MEG: pcluster =0.018; N2 vs N3 in MEG: pcluster,
0.001 and EEG: pcluster1, 0.001, pcluster2 = 0.008).

Stimulus discrimination
In a next step, we inspected the brain’s capacity to discriminate
between different stimuli across vigilance states. Figure 4 shows
differences in oscillatory response to the names varying in sali-
ency (subject’s own vs other first name), as measured by MEG
(Fig. 4A) and EEG (Fig. 4B).

Cluster-based permutation tests run on the MEG signal,
revealed a statistically significant effect in all NREM sleep stages
(N1: pcluster,0.001; N2: frequencies .5 Hz: pcluster,0.001; N2

frequencies,5 Hz: pcluster = 0.02; deep sleep) (Fig. 4A). In lighter
(N1 and N2) sleep stages, the subject’s own name compared with
other first names induced stronger responses in a late time win-
dow (;1-1.5 s after stimulus onset), across frequencies spanning
the a-s -b range (;9-30 Hz). Interestingly, in deep sleep, the
pattern of brain responses reversed with a/s showing stronger
response after other names compared with own name in an early
time window;0.5 s after stimulus onset.

Generally, EEG brain responses overlapped with the MEG
results and confirmed responses of a-s in N1 (pcluster = 0.03)
and N2 (pcluster,0.001) sleep (Fig. 4B). During wakefulness, a
trend in the same direction was observed (pcluster = 0.08); how-
ever, it occurred in an earlier time window (0.3-0.7 s after

Figure 2. Oscillatory power response to auditory stimuli presented in various stages of NREM sleep. In (A) depicting MEG sensors and (B) depicting EEG sensors, NREM sleep is characterized
by synchronization within the a/s band (;9-16 Hz) and a lack of a band (;8-12 Hz) desynchronization. The plots are normalized against absolute baseline between 0.5 and 0.1s before
stimulus onset. Areas outlined in black represent significant clusters for prestimulus versus poststimulus contrasts. C, D, Source level topographical distribution of the MEG u (4-7 Hz) and s
(12-20 Hz) frequency response, respectively. Primary auditory areas contribute to the u response in wakefulness and in NREM sleep, along with coactivation in sensorimotor areas and the
brainstem after sleep onset. Sources of s modulation in light sleep (N1 and N2) included thalamus, auditory, and sensorimotor areas, while in deep sleep s was generated in sensorimotor
areas, frontal eye field, and parahippocampal regions. Maps represent the highest 60% of the difference between baseline and poststimulus intervals, where y and x coordinates indicate loca-
tions in MNI space. Toi = time of interest.
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Figure 3. Difference between sleep stages in brain response to auditory stimuli. In (A) MEG sensors and (B) EEG sensors, the transition from wakefulness to NREM sleep is characterized by
significant changes in induced brain responses. The deeper the sleep (N1 to N2 to N3), the stronger the response in the a/s frequency band (shown in negative values, blue) to auditory stim-
uli. Additionally, deep N3 sleep was characterized by a weaker response in the late (.50 0 ms) a/s frequency window compared with N1/N2 (in red). Areas outlined in black represent signif-
icant clusters for between-sleep-stage contrasts.
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stimulus onset) and across lower frequencies (;1-5 Hz). In
deep sleep, no significant difference between the names
varying in saliency was found in the EEG, although the pat-
tern partly resembled the one seen in MEG.

In the following, we checked how oscillatory signatures related
to name discrimination (ownminus other name) differed between
sleep stages (Fig. 5). The only statistically significant change
in brain activity was from wakefulness to both drowsiness
(N1, MEG: pcluster1 = 0.02, pcluster2,0.001; EEG: pcluster1 = 0.01,
pcluster2 = 0.039) and to light sleep (N2, MEG: pcluster = 0.045; EEG:
pcluster = 0.04).

The analysis of brain responses to familiar versus unfamiliar
voices revealed no statistically significant effects in EEG as well
as MEG across states (Fig. 6).

Sleep spindles have a unique fingerprint
Next, we explored the potential contribution of sleep spindles for
the observed a/s frequency responses to the name stimuli.
Figure 7A depicts spectral and topographical distribution of sleep
spindles that emerged spontaneously and in the absence of audi-
tory input during N2 and N3 sleep stages. The source reconstruc-
tion encompassed subcortical areas, including (xyz coordinates
in MNI space): thalamus = [10,�5, 7], hypothalamus = [�5,�3,
�7], hippocampus = [�23, �29, �9], parahippocampal gyrus =
[�23, �37, �7], amygdala = [�18, �7, �18], and the pons =
[�6,�24,�33].

Furthermore, we checked whether sleep spindles changed as a
function of specific stimulus characteristics in sleep. Figure 7B
shows that neither the distribution of spindle number (D=0.039,
p=0.363), nor the distribution of spindle amplitude (D=0.033,
p=0.571), revealed statistically significant difference between
own and other names.

a-r contributions for the auditory evoked MEG and EEG
components from wakefulness to sleep
To further explore the oscillatory mechanisms involved in infor-
mation processing during NREM sleep, we investigated time-
locked activity, that is event-related fields (ERFs) and ERPs
across frequencies. As seen in Figure 8, presented names evoked
brain responses in wakefulness and NREM sleep, both in MEG
(Fig. 8A) and EEG (Fig. 8B). With the beamformer technique,
we then sought for the underlying sources of the observed MEG
activity (Fig. 8C). Primary auditory cortices along with Wernicke’s
area likely generated the early ERF field responses (0.1-0.4 s
following stimulus onset), independently of the vigilance
state (BA 41, 21, 22; xyz coordinates of the source level
response in the MNI space: W = [70, �21, 10], [65, �21, 4];
N1 = [59, �19, 6], [63, �19, �5]; N2 = [59, �21, 6], [70, �21,
�1]; N3 = [56, �29, 10], [54,�35,�4]). During NREM sleep,
we observed additional coactivation of the right fusiform
gyrus (BA 37; xyz coordinates: N1 = [64, �52, �20]; N2 =
[61, �45, �19]) and of the pons (xyz coordinates: N2 = [10,
�22, �38]; N3 = [�6, �25, �34]).

Building on the assumption that ERPs are generated by super-
imposed oscillations via transient phase alignment (Klimesch
et al., 2004, 2007; for an application in sleep research, see Karakaş
et al., 2007), we additionally investigated narrow-band-filtered
evoked brain responses. Figure 8D shows the time alignment
of ERP filtered in a broadband frequency (0.5-40 Hz), together
with the filtered narrowband frequencies (u , a, s ) thought to
generate the prominent ERP peaks. According to that analysis
during wakefulness and drowsiness, the first ERP component
was likely generated and dominated by u (4-7 Hz) oscillations.

During consolidated stages of NREM sleep, on the other hand
(N2 and N3), the first ERP component was generated by
synchronized (phase aligned) and somewhat faster oscilla-
tions within the a (8-12 Hz) and s (11-15 Hz) frequency
band (Fig. 8D).

Discussion
By tracking the temporal organization of oscillatory activity, we
observed that the brain processes external information depend-
ing on the current vigilance level and consequently physiological
state. Interestingly, reorganization of the oscillatory activity
during NREM sleep did not preclude processing (Fig. 2) or differ-
entiation of acoustic stimuli even at a semantic level (Fig. 4).
Oscillatory mechanisms governing these processes during NREM
sleep were found to include mainly u , s , and a frequency bands.
In the following, we will discuss the potential functional role of
these oscillations in the sleeping brain and in the light of an audi-
tory processing demand.

u power increase originating in primary auditory areas, as
revealed by MEG source reconstruction, was universally seen in
response to acoustic stimulation in wakefulness as well as NREM
sleep (Fig. 2). One could relate it to the functional role of u in ep-
isodic memory, which has been described in the awake brain
(Klimesch et al., 1994; Doppelmayr et al., 1998; Staudigl and
Hanslmayr, 2013). In a similar context, Fellinger et al. (2011)
observed u power increased in response to active counting of
own first name presentation, in post-comatose patients. This
implies that, even in a state of reduced awareness, stimuli with
sufficient bottom-up strength may activate a corresponding
episodic memory trace. Unlike a and s , u responses contin-
ued throughout the wake-sleep spectrum (Fig. 2). It is fasci-
nating that this mode of sensory processing seemingly
remains unchanged, independently of the physiological or vig-
ilance state of the brain. In studies investigating mechanisms
of sleep-dependent memory reactivation and consolidation, u
was also identified to coordinate reprocessing of memories during
sleep and wakefulness (Schreiner et al., 2018). Together, u oscilla-
tions play a crucial role in memory-related processes in the sleep-
ing (in addition to the awake) brain. However, the multifunctional
role of u oscillations during wakefulness (Kahana et al., 2001;
Karakaş , 2020), along with limited top-down control of cognitive
processing during sleep, renders our interpretation speculative
and open for further discussion.

The second dominant brain response to acoustic stimula-
tion involved a and s oscillations. During light sleep stages
(N1 and N2), we mainly observed a to s power increase after
name presentation (Fig. 2), which was stronger in light sleep
than in wakefulness (Fig. 3). Furthermore, unlike u oscilla-
tions, a-s power displayed a prominent difference, depending
on whether a subject’s own name or another first name was
presented (Fig. 4). In more detail, phase-aligned a and s
oscillations appear to initiate the stimulus-processing cascade
in consolidated stages of NREM sleep (N2 and N3; Fig. 8D).
Given that, during NREM sleep, s becomes the dominant
oscillation, we assume that s drives the transient coupling
with a.

By definition, the frequency range of a (;8-12) and s (;11-
15) bands overlap (Klimesch, 2012; Buzsáki et al., 2013). It is
therefore difficult to completely disentangle these two oscilla-
tions, and a possibility remains that our a/s findings are mainly
driven by sleep spindle effects. Given the data, we do not believe
so for several reasons: (1) a/s effects in our study predominantly
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showed up in N1 and N2 sleep stages, whereas the spindles
are dominant in N2 and N3 sleep stages. (2) Sleep spindles
were reconstructed to have the highest activity in deep brain
regions surrounding thalamus and pons (Fig. 7A), while the

auditory evoked activity at ;12-20 Hz had clear cortical peaks
(Fig. 2D). (3) There was a significant difference in a/s oscillatory
power between own and other names in NREM sleep (Fig. 4A),
whereas no such difference was evident in the number or amplitude

Figure 4. MEG/EEG brain response differences depending on stimulus saliency. Plots represent (A) MEG and (B) EEG oscillatory brain responses to two types of cues (own vs other names) separately,
and the difference between them (subject’s own first name minus other first name). Interestingly, the brain differentiated between the presented stimuli even during all NREM sleep stages. During N1
and N2, the own name induced stronger responses (in a broad 5-30 Hz oscillatory band). During N3, on the other hand, it was the other name that induced a stronger response in a 5-17 Hz frequency
window. Areas outlined in black represent significant clusters. The depicted brain response to own and other names is normalized against absolute baseline between 0.5 and 0.1 s before stimulus onset.
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Figure 5. Own versus other name brain response difference between sleep stages. (A) MEG as well as (B) EEG activity revealed a more prominent a-s frequency band response during
drowsiness (N1) and light sleep (N2) compared with wakefulness (W). Areas outlined in black represent significant clusters for between-sleep-stage contrasts.
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of sleep spindles evoked by the stimuli (Fig. 7B). Together, these
observations suggest that our a/s findings presented in Figures 2-5
do not merely reflect sleep spindling activity. It is therefore possible
that a and s frequencies might reflect synchronous activity of

distinct neural populations, which perform different functions in
processing of external stimuli.

The used stimulus material of first names differed to some
degree at the semantic level. Consequently, we speculate that the

Figure 6. Brain response differences depending on voice familiarity during sleep. Plots represent (A) MEG and (B) EEG oscillatory brain responses to names uttered by a familiar versus unfa-
miliar voice and indicate stronger responses to the unfamiliar voice during NREM sleep (which however does not reach statistical significance). The depicted brain response to familiar and unfa-
miliar voices is normalized against absolute baseline between 0.5 and 0.1 s before stimulus onset. Statistical analysis did not reveal any significantly different brain responses to the two types
of voices in either wakefulness or sleep.
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observed distinct a/s response to the stimulus category (own vs
other first names) reflects varying degrees of semantic informa-
tion with the own name having an inherent different meaning to
the sleeper. The role of s during NREM sleep might therefore be
underestimated and may enable access to stored information
specifically in the absence of conscious awareness. Indeed, s and
sleep spindles have been linked to a variety of complex “offline”
processes, such as the following: overnight memory consolida-
tion (Cairney et al., 2018), spontaneous (Jegou et al., 2019) and
cued (Antony et al., 2018) memory reactivation, acquisition of
new associative memories during sleep (Canales-Johnson et al.,
2020), as well as thalamocortical and corticocortical connectivity
governing information transfer across brain regions (Bonjean
et al., 2012). Another possible explanation is that the observed
s power increase is generated by the so-called m rhythm in
somato-motor cortex (Salmelin and Hari, 1994a, b). Indeed, our
source reconstruction of s oscillations revealed a coactivation of
the rolandic brain area along with auditory cortex and thalamus,
which was specific to (light) sleep (Fig. 2C). In that case, s syn-
chronization could indicate an automatic preparation to or inhi-
bition of a motor response toward the presented stimuli. This is
a plausible explanation, especially in the light of recent findings
by Andrillon et al. (2016) who observed a preserved lateralized
readiness potential in sleeping subjects that were previously
instructed to perform semantic categorization with button presses
in wakefulness. Timing of our s effect might give another hint: s
power increase began only after u power returned to the baseline
level, and somewhere around the average stimulus offset.

The role of the a rhythm during NREM sleep is rather
elusive. One possibility is that a oscillations, similarly to wakeful-
ness, also during NREM sleep play a transient, yet important,

role for accessing the semantic content of the presented stimuli
(Klimesch et al., 1997). However, during wakefulness, a power
decrease rather than increase characterizes semantic memory
processing (Klimesch, 1999). Conversely, several studies described
a power increase in paradigms engaging working memory
(Klimesch et al., 1999; Jensen et al., 2002; Kaiser et al., 2007),
which might in our case indicate sustaining of neural repre-
sentations of the auditory stimuli (Palva and Palva, 2007).
Yet, similar to the interpretation of the u effect, pinpointing
the exact function of the a oscillations during NREM sleep
is very challenging, and further research using different
sorts of environmental stimuli can help resolving this puz-
zle. For example, gentle movements of a sleeping person’s
limbs (similarly to the protocol used by Onishi et al., 2013)
might elucidate m rhythm propagation in different sleep
stages worth studying.

Interestingly, the pattern underlying discrimination of stimuli
was going in the opposite direction during deep than during light
NREM sleep (Fig. 4). A direct statistical comparison, however,
failed to reveal significant differences between sleep stages (Fig. 5).
Given the limited number of subjects who entered deep sleep in
this study (11 of 27), we need to remain careful when interpreting
these findings. Noteworthy, a similar deep sleep-specific inversion
of the brain response was observed previously in research using
continuous speech as stimulus material. Specifically, Legendre et al.
(2019) reported that activity of the sleeping subjects’ brain preferen-
tially followed an irrelevant story, rather than a simultaneously pre-
sented relevant one, but only during deep sleep.

It is surprising that own and other names did not statistically
differ during wakefulness in the present study. We can only spec-
ulate that this lack of effect reflects habituation and a lack of

Figure 7. Sleep spindle topography in EEG and MEG. A, Spontaneous sleep spindles detected in the prestimulus time window (�2 to�0.2 s relative to the stimulus onset) peak at;14 Hz and have the
highest power over medial, frontocentral EEG sensors and lateral MEG sensors. MEG source reconstruction suggests deep sources surrounding thalamus, hippocampus, and pons. B, Histograms of sleep spindle
onsets relative to stimulus onsets show accumulations at;500ms after stimulus presentation, which however appears not to be name category-specific. x, y and z coordinates indicate location in MNI space.
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saliency over the course of repeated stimulus presentation. In
total, we had six different stimuli, which were presented repeat-
edly, without engaging the subject in any active task. The awake
brain may therefore neglect or inhibit in-depth processing of

information that is considered to be irrelevant. During sleep, on
the other hand, we might observe a more sentinel brain response,
which cannot be turned off, and which automatically processes
information that is potentially relevant or dangerous in an

Figure 8. Frequency-specific brain responses evoked by all stimuli. Two top panels represent brain responses evoked by auditory stimuli in wakefulness and the three NREM sleep stages, in
(A) MEG and (B) EEG. C, Source reconstruction of the MEG signal revealed involvement of the primary auditory cortices in the generation of the early (0.1-0.4 s after stimulus onset) evoked
responses across wakefulness and NREM sleep. Maps represent the difference between baseline and poststimulus interval, and show the highest 60% of the relative change values, where x, y,
z coordinates indicate the location in MNI space. D, The plots compare the appearance of ERP peaks with the narrow-band peaks and troughs in each NREM sleep stage separately. Vertical lines
indicate peak-to-peak or trough-to-trough alignment within62 sample points. u oscillations (4-7 Hz) generated the first ERP component during wakefulness and drowsiness. During consoli-
dated NREM sleep (N2 and N3), on the other hand, the first ERP component seems to be generated by faster and phase-synchronized a (8-12 Hz) and s (11-15 Hz) oscillations.
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evolutionary sense. Although not significant, we visually also
observe the effect of a stronger response to the unfamiliar
compared with the familiar voice (Fig. 6), which likewise indi-
cates an automatic focus on unexpected or unfamiliar stimuli
during sleep, as recently seen in an hdEEG study of our group
(Ameen et al., 2022).

In conclusion, we find strong reorganization of the oscillatory
underpinnings of auditory information processing in wake as
well as various stages of NREM sleep. This transition likely
reflects the function to (1) turn “cognitively inward” while, at the
same time, (2) keeping track of potentially relevant external in-
formation in the absence of awareness (Andrillon and Kouider,
2020). The main difference between the various vigilance and
physiological states lies in the temporal activity profile of various
oscillations processing information across all states of vigilance.
Although still needing more research, we believe that the current
findings are another step toward shedding light on a unified
theory of brain rhythms and their functions from wake to sleep.
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