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Abstract
Green hydrogen can be produced by integrating water electrolyzers to renew-
able energy sources. The integration confronts the problem of renewable power
volatility that requires advanced control strategies. There are three main elec-
trolyzer control approaches, which are: battery hysteresis cycle, model-based
scheduling, and frequency response. These approaches do not fully solve the
problemof electrolyzer operation under power fluctuating conditions. This study
introduces a novel integration and control approach forwater electrolyzers based
on model predictive control algorithm. The algorithm controls electrolyzer load
so that steering the system into a breakeven energy balance across the main DC
busbar that links generation and demand sides. However, the energy balance is
subject to power conditioning losses and capacity constraints of electrolyzer. The
novel approach uses simplified predictionmodels for the generation and demand
and introduces a compensator for model uncertainty based on a novel role to
the battery as a sensor of energy imbalance. The approach is tested on a 5 kW
polymer electrolyte membrane electrolyzer and showed that fully automated
energy balancing is achievable for grid connected and stand-alone systems. Also,
the electrolyzer can operate at partial capacity with improved efficiency and
hydrogen yield, and it is applicable to any mix of renewables.

KEYWORDS
battery as sensor, green hydrogen, model predictive control, model uncertainty compensator,
renewable energy fluctuation, water electrolyzer control

1 INTRODUCTION

Hydrogen production using water electrolyzers is a green
source of hydrogen that is anticipated to contribute signifi-
cantly to decarbonize the transport sector in conjunction
with wide adoption of hydrogen-based propulsion sys-
tems. The transport sector is considered as one of the
major sources of greenhouse gases, for instance, inter-
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nal combustion engines contribute by around 14% of the
greenhouse gases [1, 2]. Fuel cells have promising poten-
tials in electrifying road, maritime, and aviation transport.
However, electrification based on fuel cells requires green
hydrogen supply in order to be eligible for Renewable
Transport Fuel Certificates [3]. Renewable energy industry
is a mature technology and the same is true for water elec-
trolysis technology. The integration of these two3 mature
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F IGURE 1 Solar irradiance variability.

technologies, however, is still under research and devel-
opment. Many pilot projects of hydrogen from renewable
energy sources (RES) were installed around the world to
investigate the feasibility of the concept and to develop
energymanagement strategies that can handle electrolyzer
operation under power volatility of solar and/or wind
energy sources [4–12]. The main issue that requires atten-
tion is identified as the fluctuated power from RES due to
variable wind speed and solar irradiance. The variability
can be divided into two components. A deterministic com-
ponent due to daily profile of solar irradiance or seasonal
profile of wind speed, the second is a stochastic compo-
nent due to different random natural phenomena such as
partial shading from clouds [13–15] or sudden changes is
the wind speed and its direction or due to any technical
fault in the system. The fluctuation rate in the wind speed
varies from an order of 0.1 s to minutes [16, 17]. However,
power fluctuations of wind turbines are relatively miti-
gated by the rotor-inertia, but the fluctuation rate would
be still of the order of seconds [18, 19]. The fluctuation
rate of solar photovoltaic (PV) power could be on the order
of seconds to minutes [20]. While the demand side could
vary stochastically according to power usage by end users
during their daily activities, which can have a predictable
profile [21]. Figures 1 and 2 show examples of solar radia-
tion variability and wind speed variability of 7 consecutive
days, respectively.
Intensive research has been conducted over the last two

decades considering electrolyzer control and integration to
RES, mainly focusing on the deterministic component of
renewable energy [22–26]. However, the problem of short-
term power fluctuations (the stochastic component) has
not been fully resolved.
The simplest water electrolyzer integration is the direct

coupling to RES. Researchers are considering direct cou-
pling to solar PV only. The concept depends on proper
electrolyzer sizing compared to solar PV panel sizing to
match electrolyzer voltage–current curve with PV voltage–

F IGURE 2 Wind speed variability.

F IGURE 3 Control scheme based on battery hysteresis cycle.
EL, electrolyzer; FC, fuel cell; SOC, state of charge.

current curve at maximum point corresponding to dif-
ferent solar irradiance intensities [27, 28]. However, no
large-scale demonstration using direct coupling method is
reported. On other hand, direct coupling to wind energy
is technically infeasible due to alternating power output
from wind turbines. Therefore, direct coupling is not con-
sidered as a control approach for electrolyzer operation in
this study.
Threemain electrolyzer control approaches can be iden-

tified. These are: battery hysteresis cycle, model-based
scheduling, and frequency response. In this paper, the
three control approaches will be discuss in brief, highlight-
ing the pros and cons of each approach.

1.1 Battery hysteresis cycle

This method depends on setting upper and lower limits
of battery state of charge (SOC). Charging and discharg-
ing limits are used for turning ON or OFF the electrolyzer
and fuel cell [29], as shown in Figure 3. The SOC can be
monitored by measuring the battery voltage and current.
The battery is this system reacts as an energy buffer that
absorbs power fluctuations andmaintains stable powering
for the electrolyzer.
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The advantage of this approach is the simplicity of the
control system. The main disadvantage is that electrolyzer
operation is limited to ON/OFF control only. That means
operating either at full electrolyzer power with constant
efficiency or a complete shutting down. Since the ON/OFF
status of the electrolyzer depends on the SOC of the bat-
tery, then a large battery size would be required in order
to reduce the frequency of swapping between ON and OFF
states. If a small battery size is used, then power volatility of
RES will result in higher charging and discharging inten-
sity that will hit the limits of SOC more frequently. This
will result in more frequent exchange between ON and
OFF states of the electrolyzer [30]. Also, the battery will
be subject to high number of charging–discharging cycles,
and this will reduce the battery life and then higher cost is
expected due to the need for battery replacement.

1.2 Model-based scheduling

This is an open loop control scheme that depends on the
forecast for both renewable power generation and load
demand [31–33]. This approach tries to predict the deter-
ministic and the stochastic components of power fromRES
over a specific future time span, a day ahead, for example.
The forecast is based on time intervals of sampling time of
30–60min, which are relatively long intervals compared to
real-time power fluctuation incidents. Therefore, large bat-
tery sizeswould still be required to absorb andmitigate any
power imbalance in the system due to any forecast errors.
Another drawback of this approach is operating the sys-
tem in an off-line mode that could lead to intensive energy
drain cycles for the battery, which eventually will reduce
the battery life. The forecast is required to be as accurate
as possible and therefore complicated prediction meth-
ods are used. Some studies estimate the uncertainty as a
stochastic model or as a standard deviation of historical
data, with adding the uncertainty model to a determinis-
tic model of generation as in Refs. [34–36]. Smoothing out
the generation profile is presented in Ref. [37] as a solution
to overcome the uncertainty.

1.3 Frequency response

This approach depends on monitoring the frequency of an
AC power source such as the grid. The power is supplied to
the electrolyzer from the grid through anAC–DCconverter
and the energy balance in this case would be implemented
on the AC side of the system where electrolyzers can offer
grid balancing services [38–40]. Hydrogen gas produced
with this approach cannot be considered as fully green
fuel because grid energy is a mix of renewable energy and

F IGURE 4 Frequency response control scheme. EL,
electrolyzer; PCU, power conditioning units.

fossil fuel energy from conventional power stations. There-
fore, hydrogen produced using this method will have a
carbon footprint. For example, the intensity of greenhouse
gas emission of electricity generation for European grid is
275 g CO2 kW h–1 in 2019 [41]. Figure 4 shows electrolyzer
operation controlled by frequency control scheme. The
electrolyzer consists of sub-electrolyzer units, which are
turned ON or OFF sequentially while monitoring the fre-
quency (Hertz) of the grid.When the grid is overloaded, the
frequency starts to fall, and the electrolyzer is turned OFF.
When the grid is underloaded, the electrolyzer receives
a signal to turn ON. Therefore, electrolyzer operation is
limited to ON/OFF control, and it operates at a constant
nominal efficiency. On other hand, power stations on the
grid have their own frequency regulators to maintain grid
frequency. Furthermore, the challenge with integrating
RES to the grid is the lack of inertia, which can lead
to rapid frequency variations. Therefore, electrolyzers are
required to adapt fast frequency response to support amore
secure and resilient grid operation [42, 43]. In addition to
ON/OFF control of electrolyzers operation, variable elec-
trolyzer load has been investigated for frequency ancillary
services [44, 45].

2 EXPERIMENTAL APPROACH

The stochastic nature of renewable power generation is a
critical problem that needs to be addressed by researchers
and engineers. During a given moment of operation, the
controller is required to run the fuel cell or the electrolyzer
at a specific power load, which is determined by an energy
management high-level controller (HLC). In model-based
scheduling approach, the HLC relies on a forecast for gen-
eration and demand. However, the forecast would always
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have a margin of error [46–48]. Furthermore, the fore-
cast is updated at a relatively low sampling rate of 10–30
min compared to actual stochastic variations of order of
seconds and sometimes in milliseconds. The mismatch
between prediction sampling rate and the actual rate of
variation could result in energy imbalance. The control
system could adopt a conservative approach [49], where
the surplus power is lost or even undetected due to adopt-
ing prediction that underestimates the actual generation
and hence operates the electrolyzer at load levels much
below the actual surplus. On other hand, overestimating
the generation could result in operating the electrolyzer
at power level more than the actual surplus. Such a sit-
uation can lead to fast depletion of the battery or even
a system failure. Power intermittency of RES can turn to
be a threat to the stability and reliability of power sys-
tems as the penetration of renewables increases in the grid.
This is because there will be a significant share of fluctuat-
ing power sources in the grid [50–52]. Solving these issues
requires incorporating a prediction algorithm in the energy
balance control and it requires also developing novelmeth-
ods to deal with the uncertainty of prediction. Also, it
requires implementing the energy balance at high sam-
pling rate, so that the system can achieve real-time control.
Applying the above two requirements will enable the con-
troller to trace and compensate abrupt and fast stochastic
variation in both generation and demand sides. The impor-
tance of real-time energy balance has been reported also in
many publications [53–56].

2.1 Novel energy control system

In this work, a novel energy control system is introduced.
The novel approach is a control-oriented approach that
depends on having an energy storage system as an energy
buffer, it is battery in this case. The battery plays a cru-
cial and novel role in the proposed approach. In addition
to its fundamental role as an energy buffer, the battery
serves as an indicator or a sensor for any power imbal-
ance in the system. The concept relies on that any power
contribution from the battery, whether positive or nega-
tive, indicates that the system is out of balance in terms
of net power incoming and outcoming to and from the DC
busbar. In other words, any charging or discharging of the
battery indicates that we operate the electrolyzer and the
fuel cell at a power level that does not satisfy the energy
balance. Also, it indicates that the system is currently devi-
ated from a desired energy balance, which can be defined,
for instance, as having a zero-power equilibrium across the
DC busbar.
In this study, an energy balance controller is developed.

The control system comprises of two levels of control.

A low-level controller (LLC) responsible for controlling
electrolyzer and fuel cell power to follow a setpoint. The
design of LLC of the electrolyzer incorporates compen-
sators for the uncertainty of electrolyzer controlmodel and
the uncertainty of control signal law of the DC–DC buck
converter, which controls electrolyzer electrical current.
Also, electrolyzer electrical current constraints have been
considered. The LLCs of the electrolyzer and fuel cell are
not addressed in this study as the focus of this study is
about the energy balance control. The HLC is responsible
for calculating power setpoint for the electrolyzer and fuel
cell using prediction models for generation and demand
sides [57].
The overall system layout is described in Figure 5. The

power balance is implemented on the DC side of the sys-
tem. Therefore, all the nodes of power sourcing and power
sinking connected to the DC busbar will require power
conditioning units (PCU), except the battery.

2.2 Battery role

The control algorithm is based on a novel concept for the
battery role in the system. In addition to its role as an
energy buffer, the battery is used as a sensor to detect any
power imbalance in the system that can result from to
any uncertainty in the prediction models. So, the battery
contribution will be used for compensating the error in
the prediction models. In the system shown in Figure 5,
the battery is connected directly to the DC busbar. Such
arrangement provides the busbar with energy buffer and
will allow the controller to have enough time to respond
to power fluctuations. Also, the energy buffer will pro-
tect electrical devices connected to the busbar against any
abrupt power fluctuations and will maintain the voltage of
the busbar at the nominal voltage of the battery. In gen-
eral, the battery nominal voltage can be chosen to fit a
voltage requirement in the system to facilitate interfacing
system components. Practically, the busbar voltage needs
to be adjusted between the nominal voltage and the charg-
ing voltage of the battery in order to ensure high SOC of
the battery during system operation. The DC busbar volt-
age can be regulated by the PCU of generation side. The
nominal DC voltage in this study was chosen as 48 V, but
the PCU of generation side maintains a voltage of 50 V in
order to keep the SOC of the battery around 70% [57, 58].

2.3 Control algorithm

The controller uses model predictive control (MPC) algo-
rithm to implement the energy balance subject to oper-
ational constraints in the system. Developing MPC algo-
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F IGURE 5 Energy control of a hydrogen system integrated to renewable energy sources (RES). EL, electrolyzer; FC, fuel cell; PCU,
power conditioning units.

rithm starts with defining the cost function 𝐽 as in
Equation (1) using prediction models for power surplus
and power deficit from Equations (2) and (3).

min
sub.to

const.

𝑱 =

𝑁∑
𝑖=1

⎡⎢⎢⎣
(
𝑃𝑘+𝑖
Sur∗

−

(
𝑃𝑘+𝑖
EL,sp

𝜂cEL

))2

+
(
𝑃𝑘+𝑖
Def∗

−
(
𝑃𝑘+𝑖
FC,sp

× 𝜂cFC

))2] (1)

𝑃𝑘+𝑖
Sur∗

= 𝑃𝑘+𝑖
G∗

− 𝑃𝑘+𝑖
D∗

(𝑃𝑘+𝑖
G∗

> 𝑃𝑘+𝑖
D∗

) (2)

𝑃𝑘+𝑖
Def∗

= 𝑃𝑘+𝑖
D∗

− 𝑃𝑘+𝑖
G∗

(𝑃𝑘+𝑖
G∗

< 𝑃𝑘+𝑖
D∗

) (3)

This study focuses on controller design, prototyping, and
performance testing during power surplus events where
only the electrolyzer will be in operation. Therefore, fuel
cell operation will be not discussed here and will be not
included in the algorithm. The cost function J is then
reduced to power surplus term only as in Equation (4) and
the introduced term “Comp” represents a compensator for
the uncertainty of surplus prediction model.

min
sub.to

const.

𝑱 =

𝑁∑
𝑖=1

[(
𝑃𝑘+𝑖
Sur∗

− Comp
)
−

(
𝑃𝑘+𝑖
EL,sp

𝜂cEL

)]2
(4)

where N is the prediction horizon. Since real-time control
is targeted in this study, the sampling time is selected to be
50–100 ms. Therefore, the prediction horizon will be in a
span of a fraction of a second. During power deficit events,
there will be no power surplus and Equation (4) will result
in zero electrolyzer power. That means turning OFF the
electrolyzer.
The solution of Equation (1) determines power setpoint

for operating the electrolyzer. If power surplus prediction
is 100% accurate, then electrolyzer power setpoint will
match the available surplus; hence, electrolyzer operat-
ing power regulated by the LLC will be exactly matching
power surplus. However, 100% accurate prediction cannot
be guaranteed and there will be always a marginal error in
the prediction. Any error in the prediction will results in
either operating the electrolyzer at lower or higher power
level than the actual surplus. In this case, the battery will
be either in charging or discharging state, respectively.
That means that the battery can indicate errors of the
prediction and not only this, the battery contribution can
also be used in quantifying the error (model uncertainty).
Equation (4) includes an important term of the compen-
sator that is derived from the battery power. This term
compensates for prediction error of the generation and
demandmodels. The novel role of the battery as a compen-
sator in multi-sourcing multi-sinking energy systems was
reported in Ref. [59].
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Renewable power generation model used here is a very
simple model that tries to find the maximum actual power
by escalating the prediction by an increment which can
be determined and tuned by the controller designer. The
escalating model, shown in Equation (5), is based on the
latest power measurement on the generation side plus
an incremental power increase. While the demand pre-
diction model applies the concept of load following as
shown in Equation (6). It is based on the latest power
measurement on the demand side. The demand side
could include external loads by the end users in addi-
tion to internal loads by local system ancillaries such as
pumps, control and monitoring system, and the hydrogen
compressor.

𝑃𝑘+𝑖
G∗

= 𝑃𝑘
𝐺,𝑚

+ Δ𝑃+
G

(5)

𝑃𝑘+𝑖
D∗

= 𝑃𝑘
𝐷,𝑚

(6)

The escalating model in Equation (5) is based on the
concept that any overestimate in predicting the surplus
will result in steering the electrolyzer to run at a power
level exceeding the actual surplus power. Therefore, the
battery will be forced to contribute to balance the system.
Since we are considering the battery power as an indica-
tion of power imbalance across the DC busbar, then MPC
algorithm is designed in this study to consider the battery
power as an error/feedback signal to compensate for
model uncertainty. The compensator formula is shown in
Equation (7)

Comp = 𝐺p𝑃
𝑘
B
+ 𝐺i

𝑘

∫
0

𝑃𝑘
B

(7)

where 𝐺p and 𝐺i are the proportional gain and integral
gain of the error signal (battery power). The overall cost
function would be as shown in Equation (8)

min
sub.to

const.

𝑱 =

𝑁∑
𝑖=1

⎡⎢⎢⎣
⎛⎜⎜⎝𝑃𝑘+𝑖Sur∗

−

⎡⎢⎢⎣𝐺p𝑃𝑘B + 𝐺i

𝑘

∫
𝑘=0

𝑃𝑘
B

⎤⎥⎥⎦
⎞⎟⎟⎠

−

(
𝑃𝑘+𝑖
EL,sp

𝜂𝑐EL

)]2 (8)

Equation (8) can be written also in digitized inte-
grator (summation) form as in Equation (9), which is
more compatible to the integrator (accumulator) of a con-
trol loop when embedding the algorithm in a controller
computer; for example, the control loop in LabVIEW vi

driver.

min
sub.to

const.

𝑱 =

𝑁∑
𝑖=1

[(
𝑃𝑘+𝑖
Sur∗

−

[
𝐺p𝑃

𝑘
B
+ 𝐺i

𝑘∑
𝑘=0

𝑃𝑘
B

])

−

(
𝑃𝑘+𝑖
EL,sp

𝜂𝑐EL

)]2 (9)

Equation (9) can be embedded in a controller as it is,
and the compensator termwill represent the proportional-
integral feedback from the battery. From investigating the
performance of the controller in the lab, it has been noticed
that the summation term can be reduced to include only
a short history of battery contribution. Therefore, Equa-
tion (9) can be rewritten as Equation (10) or (11), where the
span of date history of the battery is determined from the
observations of system performance dynamics. This pro-
cess can also be considered as part of parameters tuning of
the controller.

min
sub.to

const.

𝑱 =

𝑁∑
𝑖=1

[(
𝑃𝑘+𝑖
Sur∗

−

[
𝐺p𝑃

𝑘
B
+ 𝐺i

𝑘∑
𝑘−ℎ

𝑃𝑘
B

])

−

(
𝑃𝑘+𝑖
EL,sp

𝜂𝑐EL

)]2 (10)

min
sub.to

const.

𝑱 =

𝑁∑
𝑖=1

[(
𝑃𝑘+𝑖
Sur∗

−
[
𝐺p𝑃

𝑘
B
+ 𝐺i

(
𝑃𝑘−ℎ
B

+⋯

+𝑃𝑘−1
B

+ 𝑃𝑘
B

)])
−

(
𝑃𝑘+𝑖
EL,sp

𝜂𝑐EL

)]2 (11)

The constraints of optimization solver are set to the lim-
its of maximum and minimum operating power of the
electrolyzer, as in Equation (12). Also, the rate of change
of electrolyzer power can be constrained according to
electrolyzer specs of minimum and maximum allowable
electrolyzer power change, as shown in Equation (13).

𝑃EL,min ≤ 𝑃EL,sp ≤ 𝑃EL,max (12)

Δ𝑃EL,min ≤ Δ𝑃EL,sp ≤ Δ𝑃EL,max (13)

The control algorithm of the entire system is illustrated
in Figure 6. The algorithm starts with predicting the power
of demand side and the power of generation side from
renewables. The prediction is based on the models shown
in Equations (5) and (6) and using power transducers
installed on the generation and demand sides. The pre-
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F IGURE 6 Control algorithm using a
compensator based on battery power contribution.
HLC, high-level controller; LLC, low-level
controller; MPC, model predictive control; QP,
quadratic programming.

diction models are used to formulate the cost function,
which is solved using quadratic programming (QP) solver
with initial guess for electrolyzer and fuel cell power. At
time zerowhen the controller starts, the initial guesswould
be zeros, afterward the guess will be electrolyzer and fuel
cell power that is calculated from the previous time step.
The QP solver calculates the optimal power level vector
for the electrolyzer over the prediction horizon subject to
operational constraints of Equations (12) and (13). Only
the first value in the vector will be applied to the elec-
trolyzer. If the prediction is very accurate, that is, when
the prediction is exactly equal to actual surplus, then the
solver calculates electrolyzer power exactly equal to power
surplus. Since the algorithm uses escalating model for
the prediction then the control loop will reach a point
where electrolyzer power exceeds the actual surplus and
at this point the battery will contribute to power the elec-
trolyzer. Obviously, this battery contribution is what we
need to avoid and to correct by the compensator. That is
why the battery contribution is considered here as an error

in the energy balance and based on this concept the bat-
tery is considered as a sensor for power imbalance in the
system.
The compensator formula from Equation (7) will need

several sampling times to develop the integral term,
which will curtail the overestimated prediction so that the
solver calculates electrolyzer power exactly equal to actual
surplus despite that the prediction model has already
exceeded the surplus. At this point, the escalating process
in Equation (5) will stop as a result of the compensation.

3 RESULTS AND DISCUSSION

The controller performance is tested in the lab using a
5 kW polymer electrolyte membrane water electrolyzer
connected to a DC busbar that is interfaced to two ran-
domly emulated profiles for generation and demand sides
using a power supply unit and an electron load unit. The
generation and demand profiles are shown in Figure 7. As
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F IGURE 7 Randomly generated profiles for power generation
and demand sides.

F IGURE 8 Surplus profile with different falling and rising
power step changes.

a result of these two profiles, a random surplus profile is
created as shown in Figure 8.
The control performance is investigated at different

falling and rising power step changes. Four different
scenarios are considered, which are:

(i) A surplus rise due to a generation rise
(ii) A surplus fall due to a demand rise
(iii) A surplus rise due to a demand fall
(iv) A surplus fall due to a generation fall

It should be noted that such abrupt changes do not occur
commonly in renewable energy systems. However, the
controller was tested on extreme power changes in order
to prove the concept of the novel control approach of using
escalating prediction model as feedforward and the inter-
action with and the compensator as feedback. On other
hand, abrupt changes are expected to occur on the demand
side because of any sudden changes in load demand by the
end users or because of the hydrogen gas compressor is
turned ON.
Figure 9 shows that the controller was able to track

power fluctuations in the surplus profile and was able

TABLE 1 Parameters of model predictive control (MPC)
algorithm for high-level control

Δ𝑃+
Gen

100 W (escalating step)
𝐺P 0.2
𝐺i 0.02
Δ𝑃

EL,max
50 W

Δ𝑃
EL,min

−100 W
𝑃
EL,max

5000 W
𝑃
EL,min

0
𝜂𝑐EL 94%
𝑡s 50 ms
N 6

to regulate electrolyzer load accordingly so that the
maximum actual surplus energy can be always converted
and stored into hydrogen gas. The only disparity between
electrolyzer power and the actual surplus power was
because of power electronic losses of the DC–DC buck
converter which controls electrolyzer load. The converter
efficiency was measured to be 94%; therefore, the disparity
is around 6%.
To understand the controller performance, we need

to discuss the battery power contribution and the com-
pensator role. Figure 9 shows that the uncertainty of
prediction model can be always identified by positive or
negative battery power. Whenever the system restores a
zero-energy balance and reaches steady state, the compen-
sator is equal to the difference between surplus prediction
and the actual surplus, that is the error (uncertainty) of
prediction model. This indicates that the compensator can
successfully quantify model uncertainty based on battery
power contribution.
The controller performance can be tuned using many

parameters. Table 1 lists the parameters of MPC algorithm
used in the study. Some of these parameters can be used
for tuning control performance such as the constraints
and the escalation step of the prediction model. Figure 10
shows the electrolyzer response to +500 and −500 W step
change to the actual surplus power. Electrolyzer response
can be dominated by electrolyzer setpoint calculated from
Equation (9), which is constrained by maximum change is
electrolyzer setpoint of 50W per sampling time and amin-
imum of −100 W per sampling time. Also, the rise time
and overshoot can be tunned using the escalating step of
prediction model in Equation (5), which was 100 W per
sampling time. However, electrolyzer response can also
be dominated and tuned by the LLC of the electrolyzer.
For example, the rate of change of electrolyzer load can
be controlled by setting constraint on the rate of change
of electrical current of electrolyzer buck converter. Also,
maximum electrolyzer load can be constrained by setting



AL-SAGHEER and STEINBERGER-WILCKENS 9

F IGURE 9 Performance of energy
system control. EL, electrolyzer.

F IGURE 10 Electrolyzer (EL) response to rising and falling
surplus power.

maximum electrical current that the converter can supply.
Detailed interaction between the HLC and the LLC is out
of the scope of this paper.
Also, we can see that battery power contributions to the

energy balance over the course of system operation were
limited to very short intervals only. During these intervals,
the feedback of battery power is used for compensating
prediction error and as a result restoring zero battery con-
tribution. Hence, the battery plays a role as a sensor to
compensate for model uncertainty. Therefore, a small bat-
tery size will be required to keep the energy balance and to
act as an energy buffer for just a very short time (couples of
seconds). The voltage of the DC busbar (which is the same
of battery voltage) wasmaintainedwithin a narrow voltage
window, 48–50 V. The slight voltage variations, shown in
Figure 11, were because of power imbalance events. A drop
in the voltage can be caused by a drop in actual surplus
because of either decrease in power generation or increase
in load demand. At surplus drop events, the escalated pre-
diction already exceeds the actual surplus; therefore, the
compensator will regulate electrolyzer power to match the

F IGURE 11 DC busbar voltage and battery power
contribution.

actual surplus. While a rise in the voltage can be caused
by a rise in actual surplus because of either increase in
power generation or decrease in load demand. At volt-
age rise events, the battery is in charging state and the
battery power will be negative. In this case and accord-
ing to Equation (4), the compensator will increase surplus
prediction instead of curtailing and at the same time the
escalating process can start over again. This will elevate
electrolyzer power until an overshoot is detected again by
battery contribution (as a discharge now). At this point, the
escalating process will be terminated by the compensator
and a zero-energy balance will be recovered, therefore.
Figure 12 shows the state of the battery energy during

the discharge and charge events. We can see that the bat-
tery energy accumulates over the course of the experiment
because the busbar voltage was maintained by the PCU of
generation side at 50 V, which is higher than the nominal
voltage of battery (48 V). With this voltage configuration,
the controller will always ensure a high SOC of the bat-
tery and the battery energy would be available to act as
an energy buffer during any upcoming power transient
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F IGURE 1 2 Battery power contribution and battery energy
accumulation.

event. The energy accumulation will eventually stop when
battery voltage reaches 50 V.

4 CONCLUSIONS

Renewable power variability can be detected and quan-
tified with the novel approach proposed in this study.
This will facilitate fully automated electrolyzer operation
with applying an energy management including ancil-
lary power needs of the plant. With the novel approach,
maximum power availability will be always tracked and
converted in the real time into hydrogen. That means that
a novel maximum power point tracking (MPPT) algorithm
is introduced in this approach, which can be applicable to
any mix of RES. As a future work, this requires testing the
novelMPPT in the field on a large-scale integration of elec-
trolyzer to a mix of RES, for example, to a solar farm under
partial shading and multiple wind turbine machines.
The variable electrolyzer power will result in a higher

hydrogen yield due to operating the electrolyzer at higher
efficiency region. This will improve overall energy conver-
sion efficiency.
The battery size required in this approach can be very

much reduced in comparison to the sizes required in bat-
tery hysteresis and model-based scheduling approaches.
Therefore, electrolyzer integration at a large scale would
be viable and more cost effective (lower capital expenses
(CAPEX)). Furthermore, the battery would be no longer
subject to high-energy drain cycles as the SOC of the bat-
tery can be maintained almost constant. This will prolong
the battery lifetime. As a future work also, battery sizing
can be well defined by considering themaximum expected
change in the load side, which can be equal to hydrogen
compressor power. So, the battery nominal power would
be equal to the compressor power and the optimal battery
size will depend on controller settling time. The settling
time in this case will be the time required to restore the

energy balance after the compressor load is introduced as
a disturbance to the system.
Also, the operating expenses (OPEX) of such systems

would be reduced because of applying the energy balance
in a fully automated approach. Reduced OPEX will con-
tribute to reducing the cost of hydrogen production. Also,
the cost of electricity fed to the electrolyzer is expected to
be reduced as the electrolyzer would be located close to
RES in a distributed micro-grid system. The cost of elec-
tricity transport in the network will be avoided in such
distributed integration systems. Therefore, extra reduction
in the hydrogen cost can be achieved.
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