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endpoint cases using multilinear analysis.
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1. Introduction

The solution of the kinetic transport equation

�tf�t� x� v�+ v · �xf�t� x� v� = 0� f�0� x� v� = f 0�x� v�

for �t� x� v� ∈ �×�d ×�d, satisfies the Strichartz estimates

�f�Lq
t L

p
xLr

v
� �f 0�La

x�v
� (1.1)

where

2
q
= d

(
1
r
− 1

p

)
�

1
a
= 1

2

(
1
r
+ 1

p

)
� q > a� p ≥ a� (1.2)

(We write X � Y and Y � X if X ≤ CY for some finite constant C depending
at most on the parameters �q� p� r� a� d�, and X ∼ Y if X � Y and X � Y .) With
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1822 Bennett et al.

�q� p� r� a� satisfying (1.2), but with the further condition q > 2 ≥ a, this was proved
by Castella and Perthame [1], and it was observed by Keel and Tao [5] that this
latter condition can be relaxed to q > a and hence (1.2) suffices. In [5] it is tentatively
conjectured that the Strichartz estimate (1.1) holds at the endpoint q = a, at least
for d > 1. Using the invariance under the transformations

f 0 ↔ �f 0��� f ↔ f�� �q� p� r� a� ↔
(
q

�
�
p

�
�
r

�
�
a

�

)
(1.3)

this conjectured endpoint can be (and usually is) stated for initial data in L2
x�v as

�f�
L2
t L

2d
d−1
x L

2d
d+1
v

� �f 0�L2
x�v
� (1.4)

The main purpose of this paper is to disprove this conjecture.

Theorem 1. The endpoint Strichartz estimate (1.4) for the kinetic transport equation
fails for all d ≥ 1.

The case d = 1 of Theorem 1 was proved by Guo and Peng [4] and later by
Ovcharov [7] using different arguments (where the norm in x on the left-hand side
is L�

x ). The argument we present uses key ideas from recent work of Frank et al. [3].
We remark that for the free Schrödinger propagator, the endpoint Strichartz

estimate fails in the case d = 2 (see [6]) but is true for all d > 2, as shown in the
landmark paper of Keel and Tao [5]. Thus, Theorem 1 highlights a fundamental
difference in the Strichartz estimates for these related equations.

In the next section, we prove Theorem 1. In the final section, we provide an
alternative proof of the Strichartz estimates (1.1) in all non-endpoint cases using
multilinear analysis.

2. Proof of Theorem 1

Using the invariance under the transformation (1.3) with � = 2d
d+1 , estimate (1.4) is

equivalent to

�f�
L

d+1
d

t L
d+1
d−1
x L1

v

� �f 0�
L

d+1
d

x�v

� (2.1)

Since f�t� x� v� = f 0�x − tv� v�, it is clear that (2.1) implies

���f 0��
L

d+1
d

t L
d+1
d−1
x

� �f 0�
L

d+1
d

x�v

� (2.2)

where ��f 0� is the macroscopic density defined by the linear mapping

��f 0��t� x� =
∫
�d

f 0�x − tv� v� dv�

Hence, by duality, (2.2) implies

��∗g�Ld+1
x�v

� �g�
Ld+1
t L

d+1
2

x

� (2.3)
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On the Strichartz Estimates 1823

where the adjoint �∗ is given by

�∗g�x� v� =
∫
�
g�t� x + tv� dt�

From here, the argument strongly uses ideas from the paper of Frank et al.
[3] concerning refined Strichartz estimates for the free Schrödinger propagator
associated with orthonormal initial data.

Suppose g ∈ � ��×�d� \ 	0
 is nonnegative and such that ĝ ∈ C�
c ��×�d� is

also nonnegative. Here, we use ĝ to denote the space-time Fourier transform of g
given by

ĝ��� �� =
∫
�×�d

g�t� x�e−i�t�+x·�� dtdx�

In this proof, we shall also use c to denote a constant depending on at most d, which
may change from line to line.

Proceeding formally, using Fourier inversion we get

��∗g�d+1
Ld+1
x�v

=
∫ d+1∏

j=1

g�tj� x + tjv� d	tdxdv

= c
∫ d+1∏

j=1

ĝ��j� �j�
d+1∏
k=1

eitk��k+v·�k�eix·
∑d+1

=1 � d	�d	�d	tdxdv

= c
∫ d+1∏

j=1

ĝ��j� �j�
d+1∏
k=1

���k + v · �k� �
( d+1∑

=1

�

)
d	�d	�dv

= c
∫ d+1∏

j=1

ĝ�−v · �j� �j� �
( d+1∑

k=1

�k

)
d	�dv

and hence

��∗g�d+1
Ld+1
x�v

= c
∫ d∏

j=1

ĝ�−v · �j� �j �̂g
(
v ·

d∑
k=1

�k�−
d∑

=1

�

)
d	�dv� (2.4)

We remark that by appropriately truncating the integrals in the above identities
and limiting arguments, (2.4) makes sense in �0��� for the class of g under
consideration.

Define K to be the d by d matrix whose consecutive rows are −�1� � � � �−�d.
Using the change of variables w = Kv, so that wj = −�j · v for each 1 ≤ j ≤ d, we
obtain

��∗g�d+1
Ld+1
x�v

= c
∫ d∏

j=1

ĝ�wj� �j �̂g

(
−

d∑
k=1

wk�−
d∑

=1

�

)
1


 detK
d 	wd
	��

Writing each �j = rj�j in polar coordinates, we have


 detK
 =
( d∏

j=1

rj

)

 det��1 · · · �d�
�
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1824 Bennett et al.

Since ĝ�0� 0� > 0 and ĝ is continuous, it follows that

��∗g�d+1
Ld+1
x�v

�
∫

r
�1

∫
��d−1�d

( d∏
j=1

rd−2
j

)
1


 det��1 · · · �d�

d	rd	�� (2.5)

For d = 1 the radial integral is infinite, and for d ≥ 2,

∫
��d−1�d

1

 det��1 · · · �d�


d	� = ��

so the angular integral is infinite. Hence, for all d ≥ 1 we have shown that (2.3), and
consequently (1.4), cannot hold.

Remark. The above argument shows that the endpoint estimate (2.3) fails rather
generically. For example, the space-velocity norm ��∗g�d+1 is infinite whenever g ∈
� ��×�d� \ 	0
 is nonnegative and such that ĝ ∈ C�

c ��×�d� is also nonnegative.

3. A Multilinear Approach to the Non-Endpoint Cases

Fix � > 1. In this section, the notation � allows, in addition, the implicit constant
to depend on �.

We shall prove

��∗g�
L
��d+1�
x�v

� �g�
L
q���
t L

�d+1��
2

x

� (3.1)

for all g ∈ L
q���
t L

�d+1��
2

x , where the exponent q��� satisfies

1
q���

+ d

�d + 1��
= 1�

Our argument is a multilinear variant of that in [1] and [9] (see also [8]), which deals
with all non-endpoint cases directly. Similar multilinear arguments have been used
recently in [3].

Using the invariance under transformations in (1.3), to prove the full range of
non-endpoint Strichartz estimates, it suffices to consider �q� p� a� satisfying

q > a� p ≥ a�
2
q
= d

(
1− 1

p

)
�

1
a
= 1

2

(
1+ 1

p

)
(3.2)

and show that (1.1) holds with r = 1, or equivalently, that

���f 0��Lq
t L

p
x
� �f 0�La

x�v

holds for all f 0 ∈ La
x�v. By duality, this is equivalent to

��∗g�La′
x�v

� �g�
L
q′
t L

p′
x

(3.3)
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On the Strichartz Estimates 1825

for all g ∈ L
q′
t L

p′
x . Note that (3.2) implies that a′ = 2p′ and 1

q′ + d
a′ = 1, in which case

(3.3) reads

��∗g�La′
x�v

� �g�
L
q′
t L

a′
2
x

�

and the condition q > a is equivalent to a′ > d + 1. Therefore, (3.1) with � = a′
d+1 >

1 implies the full range of non-endpoint Strichartz estimates (1.1).

Proof of (3.1). Without loss of generality, suppose g is nonnegative. By multiplying
out and using Minkowski’s integral inequality, we get

��∗g�d+1

L
��d+1�
x�v

=
( ∫ ( ∫ d+1∏

j=1

g�tj� x + tjv�d	t
)�

dxdv
)1/�

≤
∫ ( ∫ d+1∏

j=1

g�tj� x + tjv�
�dxdv

)1/�

d	t�

Now fix t1� � � � � td+1 and consider the multilinear form

∫ d+1∏
j=1

gj�tj� x + tjv�dxdv�

A straightforward estimate via the change of variables �x� v� �→ �x + tiv� x + tjv�
gives

∫ d+1∏
j=1

gj�tj� x + tjv�dxdv �
1


ti − tj
d
�gi�ti� ·��L1

x
�gj�tj� ·��L1

x

∏
k �=i�j

�gk�tk� ·��L�
x

for each 1 ≤ i < j ≤ d. A multilinear interpolation argument yields

∫ d+1∏
j=1

gj�tj� x + tjv�dxdv �
∏

1≤i<j≤d


ti − tj
− 2
d+1

d+1∏
k=1

�gk�tk� ·��
L

d+1
2

x

�

Applying this with g� for each gj we get

��∗g�d+1

L
��d+1�
x�v

�
∫
�d+1

∏
1≤i<j≤d


ti − tj
−
2

�d+1��

d+1∏
k=1

�g�tk� ·��
L

�d+1��
2

x

d	t

� �g�d+1

L
q���
t L

�d+1��
2

x

�

The last inequality is a consequence of the multilinear Hardy–Littlewood–Sobolev
inequality due to Christ [2]. �

Remark. It seems natural to conjecture that �∗ satisfies the weak-type estimate

��∗g�Ld+1��
x�v

� �g�
Ld+1
t L

d+1
2

x

�
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1826 Bennett et al.

A similar comment was made in an operator-theoretic context in [3].
Certain replacements for the endpoint are already known. For example, with

q = a = 2, in [5], Keel and Tao obtain a substitute for (1.4) with the Lp
xL

r
v norm

(where p = 2d
d−1 and r = 2d

d+1 ) replaced by that of a certain real interpolation space
which is between Lp�1

x Lr�1
v and Lp��

x Lr��
v . See also work of Ovcharov [8] where a

different substitute bound was given for velocities v belonging to a bounded subset
of �d.
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