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Abstract 41 

Rationale: Although the cysteine protease cathepsin S has been implicated in the pathogenesis of 42 

a number of inflammatory lung diseases, its role has not been examined in the context of acute 43 

respiratory distress syndrome, a condition which still lacks specific and effective pharmacological 44 

treatments. 45 

Objectives: Characterize the status of cathepsin S in acute lung inflammation and examine the 46 

role of cathepsin S in disease pathogenesis. 47 

Methods: Human and mouse model bronchoalveolar lavage fluid samples were analyzed for the 48 

presence and activity of cathepsin S and its endogenous inhibitors. Recombinant cathepsin S was 49 

instilled directly into the lungs of mice. The effects of cathepsin S knockout and pharmacological 50 

inhibition were examined in two models of acute lung injury. Protease-activated receptor-1 51 

antagonism was used to test a possible mechanism for cathepsin S-mediated inflammation. 52 

Measurements and Main Results: Pulmonary cathepsin S levels and activity were elevated in 53 

acute respiratory distress syndrome, a phenotype possibly exacerbated by the loss of the 54 

endogenous antiprotease, cystatin SN. Direct cathepsin S instillation into the lungs induced key 55 

pathologies of acute respiratory distress syndrome including neutrophilia and alveolar leakage. 56 

Conversely, in murine models of acute lung injury, genetic knockdown and prophylactic or 57 

therapeutic inhibition of cathepsin S reduced neutrophil recruitment and protein leakage. 58 

Cathepsin S may partly mediate its pathogenic effects via protease-activated receptor-1, as 59 

antagonism of this receptor abrogated cathepsin S-induced airway inflammation.  60 

Conclusions: Cathepsin S contributes to acute lung injury and may represent a novel therapeutic 61 

target for acute respiratory distress syndrome. 62 

 63 
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Introduction 66 

Acute respiratory distress syndrome (ARDS) is characterised by the flooding of the alveoli with 67 

protein- and leukocyte-rich oedema as a result of a direct injury to the lung, such as pneumonia or 68 

acid aspiration, or a systemic inflammatory response causing indirect lung injury, such as in sepsis 69 

(1). With a mortality rate between 30-50 % and no specific pharmacological therapies available, 70 

novel therapeutic approaches are required to improve outcomes in patients with ARDS (2, 3).  71 

 72 

Neutrophils are the first leukocytes recruited to sites of injury and inflammation in response to 73 

chemotactic factors released by activated macrophages and epithelial and endothelial cells (4–6). 74 

Despite being the first line of defence against pathogens, uncontrolled neutrophil recruitment and 75 

activation can lead to bystander tissue damage and additional loss of lung function (7, 8). 76 

Bronchoalveolar lavage fluid (BALF) from patients with ARDS is chemotactic for human 77 

neutrophils, with a potential role for the chemokines CXCL8, CCL2 and CCL7 (9, 10). Neutrophil 78 

counts in BALF from patients with ARDS positively correlated with disease severity and poor 79 

outcome (8, 11–13). In addition, a number of animal models of acute lung injury have 80 

demonstrated a neutrophil-dependent pathogenesis (14, 15). With an important role for neutrophils 81 

in at least a subset of patients with ARDS, neutrophil products such as the serine protease 82 

neutrophil elastase (NE) have been investigated as potential therapeutic targets. Samples from 83 

patients with ARDS have elevated NE proteolytic activity (16, 17) and the potential role for 84 

pathogenic proteolysis has been investigated in ARDS. However, NE inhibitor therapy has not 85 

consistently proven effective and other protease targets warrant investigation (18, 19). 86 

 87 
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Cathepsin S (CTSS) is a lysosomal and extracellular cysteine protease that is abundantly expressed 88 

in antigen presenting cells, including macrophages and dendritic cells, as well as airway epithelial 89 

cells, neutrophils and B cells (20–22). The localization of CTSS, coupled with broad substrate 90 

specificity, suggests an important role for this protease in the immune response (23, 24). CTSS 91 

upregulation in response to inflammatory stimuli may have a direct influence on immune cell 92 

responses, particularly those involved in antigen presentation through the major histocompatibility 93 

complex (MHC) class II. Cleavage of the invariant chain (li), a type II transmembrane 94 

glycoprotein, by CTSS is an integral part of exogenous antigen presentation through MHC class 95 

II complexes (21). The aberrant expression and activity of CTSS has been implicated in the 96 

pathogenesis of a number of conditions including cardiovascular disease, cancer, rheumatoid 97 

arthritis and a number of pulmonary diseases (25, 26).  98 

 99 

CTSS, along with cathepsins B and L are upregulated in the lungs of patients with cystic fibrosis 100 

(CF) (21, 27, 28). Small et al. demonstrated that CTSS contributes to neutrophilic pulmonary 101 

inflammation and mucus plugging in CF-like lung disease, mediated at least in part through 102 

activation of protease-activated receptor (PAR)-2 (29). CTSS has also been shown to be 103 

upregulated in the lungs of patients with chronic obstructive pulmonary disease and in response to 104 

cigarette smoke in vivo (30–32). However, the status and role of CTSS in ARDS has not been 105 

evaluated in detail. In this study, we demonstrate elevated CTSS levels and activity in the lungs of 106 

patients with ARDS and that this increase in activity coincides with the loss of the potent CTSS 107 

inhibitor, cystatin SN. In addition, elevated CTSS activity was implicated in neutrophil recruitment 108 

to the lungs, a process mediated at least in part via activation of PAR-1. Therefore, these results 109 
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suggest that CTSS plays a role in neutrophil recruitment to the acutely inflamed lung, making it a 110 

potential therapeutic target for ARDS. 111 

 112 

Results 113 

Cathepsin S activity in patients with ARDS and in models of acute lung injury 114 

The status of CTSS in ARDS was determined by assessing CTSS protein levels and activity in 115 

BALF samples from patients with ARDS, healthy volunteers who received nebulised 116 

lipopolysaccharide (LPS) and healthy control volunteers. CTSS levels and activity were 117 

significantly increased in patients with ARDS (Figure 1a,b), a finding that was verified by 118 

Western blot (Figure 1c). Mature CTSS (approximately 25 kDa) along with bands analogous to 119 

the precursor form of CTSS (approximately 37 kDa) were detected. This finding translated into a 120 

murine model of LPS-induced acute lung injury, in which CTSS activity was significantly 121 

increased in BALF from LPS-instilled mice compared to controls (Figure 1d). This finding was 122 

accompanied by increased levels of both precursor and mature CTSS protein in murine BALF 123 

when analysed by western blot (Figure 1e). These data provide evidence for the presence of 124 

elevated pulmonary CTSS activity in patients and in vivo models of ARDS. 125 

 126 

The cysteine protease-antiprotease imbalance in ARDS 127 

As elevated CTSS activity was detected in patients with ARDS, we assessed the protease-128 

antiprotease hypothesis in ARDS as an explanation for this observation. Dysregulation of the 129 

canonical extracellular cathepsin inhibitor cystatin C (23, 33) was considered the most likely cause 130 

of elevated CTSS activity. Although recent work identified a strong association between mortality 131 

and elevated plasma cystatin C measured early in the course of ARDS (34), its status in the lungs 132 
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of ARDS patients is unknown. We found that the ratio of BALF CTSS:cystatin C was unchanged 133 

between healthy and ARDS (data not shown) and therefore we turned our attention to other 134 

extracellular cystatins. Relatively little is known about the status of these antiproteases in the 135 

inflamed lung, especially the so-called ‘salivary’ or SD-type cystatins (35). A preliminary screen 136 

of BALF samples from healthy volunteers and patients with ARDS for cystatins S, SA, SN and D 137 

revealed that these SD-type cystatins were not detectable in samples from patients with ARDS 138 

compared to healthy controls (see Figure E1 in the online data supplement).  139 

  140 

Reported as the most potent SD-type cystatin, altered expression of cystatin SN has been reported 141 

in lung fibrosis, pneumonitis and allergic rhinitis (36–38). Expression of cystatin SN is thought to 142 

be highly localised to the oral and nasal epithelium, along with the epithelium of the upper 143 

respiratory tract (39, 40). Furthermore, there is evidence that cystatin SN may be differentially 144 

regulated by inflammatory mediators (40). Cystatin SN levels were significantly reduced in BALF 145 

from patients with ARDS and in LPS volunteers compared to healthy controls (Figure 2a,c). 146 

Consequently, a CTSS:cystatin SN ratio in favour of CTSS was identified in ARDS and in the 147 

human LPS model (Figure 2b). Cystatin SN has been reported to inhibit cathepsin B and papain 148 

(41), but has not previously been reported as a CTSS inhibitor. The ability of cystatin SN to inhibit 149 

CTSS was assessed, and the results indicate that cystatin SN is a potent, tight-binding, reversible 150 

inhibitor of CTSS in vitro with a Ki in the nanomolar range (Figure 2d).  151 

 152 

As elevated CTSS activity and a deficiency of cysteine antiproteases were characteristic features 153 

of ARDS, we investigated the effects of introducing exogenous cystatin SN into the murine LPS 154 
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model. Cystatin SN treatment significantly decreased LPS-induced total cell and neutrophil 155 

recruitment to the lung (Figure 2e,f).  156 

 157 

The pro-inflammatory role of pulmonary cathepsin S in vivo 158 

To characterize the effects of active pulmonary CTSS in vivo, recombinant CTSS or buffer control 159 

was administered via intratracheal instillation into the lungs of mice. Intratracheal instillation of 160 

CTSS produced a dose-dependent inflammatory response, resulting in total cell and neutrophil 161 

infiltration into the lungs (Figure 3a,b) in agreement with  previous work (29). Alveolar leakage 162 

(as measured by BALF protein) was significantly increased in mice that received CTSS compared 163 

to controls (Figure 3c). The pro-inflammatory cytokines IL-6 and KC were also increased in a 164 

dose-dependent manner in CTSS-instilled mice (Figure 3d,e). These data showed that active, 165 

pulmonary CTSS recapitulated hallmarks of ARDS in vivo. 166 

 167 

Having established that CTSS was elevated and active in a well-established mouse model of acute 168 

lung injury, and that direct instillation of CTSS resulted in acute lung inflammation, the role of 169 

CTSS in the pathogenesis of LPS-induced pulmonary inflammation was investigated using CTSS 170 

knockout (CTSS-/-) mice. Total inflammatory cell and neutrophil infiltration into the lungs were 171 

significantly reduced in CTSS-/- mice compared to wild-type (WT) mice receiving LPS (Figure 172 

4a,b). These findings were accompanied by a significant decrease in BALF total protein and the 173 

neutrophil chemoattractant KC in CTSS-/- mice (Figure 4c,d). These data provide further evidence 174 

to support the hypothesis that CTSS plays an important role in mediating LPS-induced acute lung 175 

injury in vivo. 176 

 177 
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Pharmacological targeting of cathepsin S in vivo 178 

We next investigated the therapeutic potential of a small molecule reversible inhibitor of CTSS 179 

(I.6) (42) on LPS-induced pulmonary inflammation. Similar to CTSS-/- mice, significant reductions 180 

in total cell and neutrophil counts were observed in mice pre-treated with I.6 compared to vehicle 181 

control (Figure 5a,b). Furthermore, prophylactic CTSS inhibition reduced BALF total protein and 182 

KC levels (Figure 5c,d).  183 

 184 

Since ARDS has diverse aetiologies including both direct and indirect injuries, we investigated 185 

whether CTSS inhibition would also alter measures of inflammation in an indirect model of 186 

ARDS; the caecal ligation and puncture (CLP) model of polymicrobial sepsis-induced ARDS. 187 

Treatment with I.6 significantly reduced total cell and neutrophil counts in peritoneal lavage fluid 188 

(PLF) (Figure 6a-d). Within the lung, I.6 treatment had no significant effect on the number of 189 

cells, however, there were significant changes in the cellular composition of BALF with a decrease 190 

in the percentage of neutrophils and a concomitant increase in monocytic cells in the I.6-treated 191 

group (Figure 6e-h). These changes were accompanied by reductions in the inflammatory 192 

cytokines KC and IL-6 (Figure 6i,j). Overall, these results indicate that prophylactic 193 

pharmacological inhibition of CTSS with a small molecule inhibitor protects against inflammation 194 

in direct and indirect lung injury models of ARDS.  195 

 196 

Next, to establish whether CTSS inhibition could also effectively reduce inflammation when 197 

administered at a later time-point, a therapeutic dosing strategy was tested in the LPS model. In 198 

this study, the CTSS inhibitor I.6 was administered two hours post-LPS and significant reductions 199 

in BALF total and neutrophil cell counts, protein and KC levels were observed (Figure 7).  200 
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 201 

The role of protease-activated receptor-1 in CTSS-induced inflammation 202 

Our group (29) and others (43) have previously highlighted a role for PAR-2 in CTSS-mediated 203 

signalling. However, bacterial cysteine proteases and several human non-cysteine proteases have 204 

also been shown to activate PAR-1 (44), which has previously been implicated in acute lung 205 

inflammation (45, 46). To explore whether PAR-1 plays a role in CTSS-induced inflammation in 206 

vitro, human macrophage-like cells derived from THP-1 monocytes were treated with recombinant 207 

CTSS. As had been observed during in vivo CTSS instillations, CTSS induced the release of 208 

neutrophilic cytokines including IL-8 and CXCL1 from these cells (Figure 8a,b). However, when 209 

the synthetic PAR-1 antagonist SCH-530358 was added to cells concomitantly with CTSS, these 210 

cytokine responses were significantly decreased. To consolidate this finding in vivo, mice were 211 

treated with SCH-530358 30 min before intratracheal CTSS instillation. Administration of SCH-212 

530358 significantly reduced CTSS-induced BALF total cell and neutrophil infiltration as well as 213 

total protein and KC levels (Figure 8c-f).  214 

 215 

To investigate whether the reduced LPS-induced inflammation observed in our previous studies 216 

where CTSS was knocked down could be due to diminished PAR-1 activation, PAR-1 knockout 217 

(PAR-1-/-) mice were treated with I.6 using the same prophylactic dosing strategy previously used 218 

in WT mice (Figure 7). In PAR-1-/- mice that received LPS the protective effects of I.6 were lost 219 

(Figure 9). In this model, CTSS inhibitor treatment had no significant effect on total cell or 220 

neutrophils counts, suggesting that CTSS-mediated PAR-1 activation is an important part of 221 

neutrophil recruitment in this model (Figure 9a,b). PAR-1-/- mice treated with I.6 also did not 222 
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show decreased BALF protein or IL-6 (Figure 9c,d). Taken together, these findings suggest an 223 

important role for PAR-1 in CTSS-mediated pathology in ARDS-like disease.  224 

 225 

Discussion 226 

In this study, we have demonstrated that CTSS is elevated in the lungs of patients with ARDS and 227 

in in vivo models of ARDS. Furthermore, a quantitative imbalance between CTSS and a newly 228 

identified CTSS inhibitor, cystatin SN, in patients with ARDS was identified. Active CTSS 229 

instilled into the lungs produced typical symptoms of ARDS in mice, namely pulmonary 230 

neutrophilia, alveolar-capillary leakage and increased levels of potent neutrophil chemoattractants. 231 

We also show that PAR-1 antagonism significantly abrogated CTSS-induced inflammation in vitro 232 

and in vivo. Targeting of CTSS limited neutrophilic inflammation in both direct and indirect 233 

murine models of ARDS. The protective effects of CTSS inhibition were not replicated in PAR-234 

1-/- mice, suggesting that the pathogenic effects of CTSS may be mediated, at least in part, through 235 

PAR-1. To our knowledge, this is the first study to comprehensively investigate CTSS in the 236 

acutely inflamed lung. 237 

 238 

Proteases play key roles in pulmonary health and disease, fulfilling basic homeostatic roles and 239 

regulating regeneration and repair processes within the healthy lung (47). Previous studies have 240 

reported that an imbalance between proteases and their physiological inhibitors can lead to the 241 

destruction of lung parenchyma and leakage of protein-rich fluid into alveolar spaces and 242 

interstitium, which is critical in the instigation and propagation of ARDS (48). In the context of 243 

ARDS, the deficiency of endogenous protease inhibitors, such as cystatin SN, may lead to a 244 

protease-antiprotease imbalance that favours inflammatory and injurious proteolytic activity. As 245 
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mice do not express any of the SD-type cystatins, cystatin SN downregulation was not a feature of 246 

the murine model of ARDS and as such could not be examined in vivo. However, treating mice 247 

with recombinant cystatin SN did show some protective effects, particularly in limiting LPS-248 

induced neutrophil recruitment, suggesting that the loss of cystatin SN in human ARDS may 249 

accentuate the neutrophilic response. The causes of cystatin SN deficiency in human ARDS are 250 

unknown, although IL-17A, an important cytokine in ARDS (49), has been shown to repress 251 

cystatin SN expression in neutrophil-infiltrated nasal polyps, suggesting that a pro-inflammatory 252 

environment may downregulate this antiprotease (40). 253 

 254 

Our finding that dysregulated CTSS activity is a feature of the ARDS lung and the lungs of ARDS 255 

models led us to investigate whether pulmonary instillation of CTSS was damaging and produced 256 

traits of ARDS in vivo. Indeed, a significant increase in neutrophil recruitment and protein levels, 257 

along with elevated cytokine levels were observed following CTSS instillation, in agreement with 258 

previous findings (29, 50), indicating that CTSS can induce typical features of acute lung 259 

inflammation (51). CTSS has previously been shown to activate PAR-2 (43), thereby upregulating 260 

expression of pro-inflammatory cytokines and inducing pain and itch responses (50, 52, 53). 261 

However, there is no evidence linking CTSS to PAR-1 activation in the existing literature. The 262 

role of PAR-1 in experimental models of ARDS has previously been highlighted, with PAR-1 263 

signalling reported to influence key features of ARDS including neutrophil recruitment, alveolar-264 

capillary leakage and fibrosis in LPS-, acute infection- and bleomycin-induced murine lung injury 265 

models (45, 46, 54). Based on these observations, we hypothesized that PAR-1 plays a role in 266 

modulating the immune response during CTSS-induced acute lung inflammation. The data from 267 

this study showed that CTSS-induced lung inflammation was attenuated by a specific PAR-1 268 
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antagonist and that PAR-1-/- mice received no additional benefit from treatment with a CTSS 269 

inhibitor, unlike their WT counterparts. Although we show clear evidence of CTSS-induced 270 

activation of PAR-1, it is not clear if that activation step occurs directly, or indirectly via another 271 

protease, as has been shown in previous studies (55, 56). 272 

 273 

The use of synthetic CTSS inhibitors in our studies demonstrated that both prophylactic and 274 

therapeutic inhibition had beneficial effects on key readouts of injury and inflammation in 275 

preclinical models of ARDS. The case for the use of such inhibitors is strengthened by the 276 

discovery that endogenous cysteine protease inhibitors are lost in ARDS. Although we explored a 277 

PAR-1 mediated pathway of CTSS-induced inflammation, more work is required to understand 278 

other pathways modulated by CTSS to account for the residual inflammation that is present 279 

following PAR-1 antagonism (Figure 8). Furthermore, it is not yet clear which LPS-mediated 280 

signalling pathways are affected by CTSS inhibition. Even a relatively simple model of ARDS, 281 

such as the intratracheal LPS model, activates numerous pathways (57) and future work should 282 

explore which of these pathways are affected by CTSS inhibition, resulting in an abrogated 283 

phenotype. 284 

 285 

A number of pre-clinical studies have demonstrated a beneficial role for the inhibition of CTSS in 286 

various inflammatory diseases (25, 26, 58). The use of protease inhibitors in the treatment of 287 

pulmonary disease is a promising therapeutic strategy primarily aimed at attenuating lung tissue 288 

destruction. For instance, recent evidence has shown that α1-antitrypsin augmentation therapy 289 

slows the progression of emphysema in patients with α1-antitrypsin-deficiency (59). The present 290 

work demonstrates that CTSS also has roles in the setting of acute lung injury, such as that seen in 291 
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ARDS. Given the availability of clinical grade CTSS inhibitors, and the evidence from this study 292 

indicating a role for CTSS in ARDS disease pathogenesis, CTSS inhibitors may offer a novel 293 

therapeutic approach for prevention and management of excessive neutrophilic inflammation 294 

associated with ARDS.  295 
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Methods  296 

Human samples 297 

Cathepsin S and cystatins were evaluated in BALF samples obtained from several clinical trials. 298 

Samples from patients within 48 h of ARDS onset were collected as part of the 299 

Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce 300 

Pulmonary dysfunction (HARP) study (ISRCTN70127774) (60). BALF samples were collected 301 

from healthy volunteers 6 h after receiving 50 μg nebulised LPS (Escherichia coli serotype 302 

026:B6, Sigma-Aldrich, Dorset, UK) as part of NCT01659307 (the effect of Aspirin on REducing 303 

iNflammation in human in vivo model of Acute lung injury (ARENA)) (61). Ethical approval for 304 

the use of samples from the HARP and ARENA studies as control samples was granted by the 305 

local institution and the local research ethics committee (06/NIR02/77, 12/NI/0082, respectively). 306 

Samples were collected from healthy volunteers who did not receive LPS under the Office for 307 

Research Ethics Committees Northern Ireland ethical approval study number 08/NIR02/46 (62). 308 

 309 

Animals 310 

All experimentation was carried out in accordance with the Animal (Scientific Procedures) Act 311 

1986 and current guidelines approved by the Queen’s University Belfast Ethical Review 312 

Committee and the University of Birmingham Animal Welfare and Ethical Review Body.  313 

Full details of the animals used in this study and the in vivo experiments conducted can be found 314 

in the Supplementary Methods. 315 

 316 

 317 

 318 
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Protein analysis 319 

ELISAs were performed as per the manufacturer’s instructions: murine IL-6 and KC (R&D 320 

Systems, Abingdon, UK); human cystatin SN (RayBiotech, Georgia, USA); human total CTSS, 321 

IL-8 and CXCL1 (R&D Systems, Abingdon, UK). Samples below the lower limit of detection of 322 

an assay were arbitrarily assigned a value of half the lower limit of detection, in order to minimise 323 

the difficulties associated with statistical analysis of zero values, as previously described (63). 324 

Total protein concentrations were determined using the BCA method (Pierce BCA Assay, Thermo 325 

Scientific) as per the manufacturer’s instructions. 326 

 327 

THP-1 experiments 328 

Full details can be found in the Supplementary Methods. Briefly, THP-1 monocytes 329 

differentiated into macrophage-like cells by incubation with phorbol-12-myristate-13-acetate 330 

(PMA, Sigma-Aldrich, Dorset, UK) were stimulated with 1 µg/mL recombinant human CTSS 331 

(Merck-Millipore, Hertfordshire, UK) for 24 h in the presence or absence of the PAR-1 antagonist 332 

SCH-530348 (Axon Medchem, Groningen, Netherlands) at a concentration of 10 µM. 333 

 334 

Calculating Ki and IC50 for CTSS inhibitors 335 

Full details can be found in the Supplementary Methods. Briefly, a range of concentrations of 336 

recombinant cystatin SN (R&D Systems, Abingdon, UK) were incubated with recombinant CTSS 337 

(Merck-Millipore, Hertfordshire, UK) and proteolytic degradation of Z-FR-AMC fluorogenic 338 

substrate (Enzo Life Sciences, Exeter, UK) was measured using a BioTek Synergy HT plate reader 339 

(BioTek, Swindon, UK). ΔRFU was then converted into μM AMC released by calibration with an 340 

AMC standard curve and the rate of product formation (v) was calculated. The reciprocal of this 341 
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unit of velocity (1/v) was plotted against the concentration of inhibitor used ([i]), forming a Dixon 342 

plot (64, 65) from which Ki and IC50 were determined.  343 

 344 

SDS-PAGE and Western blotting 345 

BALF samples were separated on 15 % SDS-PAGE gels and transferred onto nitrocellulose 346 

membranes (GE Healthcare, Buckinghamshire, UK). Membranes were blocked with 5 % non-fat 347 

milk in PBS-Tween20 (0.05 %) and incubated with anti-CTSS (AF1183, R&D Systems), anti-348 

cystatin SN (AF1285, R&D Systems), anti-cystatin S (AF1296, R&D Systems), anti-cystatin D 349 

(AF1202, R&D Systems), anti-cystatin SA (MAB1201, R&D Systems) antibodies overnight at 4 350 

°C. Binding was detected using the appropriate horseradish peroxidase-conjugated secondary 351 

antibodies and visualized by chemiluminescence (PerkinElmer, Coventry, UK) using the Syngene 352 

G:Box and GeneSnap software (SynGene UK, Cambridge). 353 

 354 

Statistics 355 

All data were analysed using GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA). Data 356 

are presented as mean ± standard error of the mean (SEM). Means were compared by unpaired 357 

two-tailed t test, two-tailed Mann Whitney test or two way ANOVA with Sidak's multiple 358 

comparisons test as indicated in the figure legends. P < 0.05 was accepted to indicate statistical 359 

significance; *P < 0.05; **P < 0.01; ***P< 0.001, ****P < 0.0001. Data points are biological 360 

replicates taken from distinct samples. 361 

 362 

  363 
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Figure Legends 564 

 565 

Figure 1. Cathepsin S is elevated in the lungs of patients with ARDS and in models of 566 

ARDS. a Cathepsin S (CTSS) levels and b activity were analysed in bronchoalveolar lavage fluid 567 

(BALF) from healthy volunteers (n = 15), healthy volunteers who received 50 µg nebulised 568 

lipopolysaccharide (LPS) (n = 13) and patients with ARDS (n = 38). CTSS levels were quantified 569 

by ELISA. CTSS activity was detected by fluorometric activity assay and results are expressed as 570 

the change () in relative fluorescence units (RFU) over time. *** P < 0.001, **** P < 0.0001 571 

(two-tailed Mann-Whitney test). c Western blot detection of CTSS in BALF from healthy 572 

volunteers (n =3), healthy volunteers who received LPS (n = 4) and ARDS patients (n = 4). In a 573 

murine model of endotoxin-induced acute lung injury, mice received 1 mg/kg LPS or saline (Ctrl) 574 

by intratracheal instillation and BALF was collected 16 h post-LPS administration. d BALF CTSS 575 

activity (n = 8 per group) was detected by fluorometric activity assay. *** P < 0.001 (unpaired 576 

two-tailed t test). e Western blot detection of CTSS in BALF (n = 5 per group). 577 

 578 

Figure 2. Cystatin SN inhibits cathepsin S and is lost in the lungs of patients with ARDS. a 579 

Cystatin SN levels were quantified in bronchoalveolar lavage fluid (BALF) from healthy 580 

volunteers (n = 10), healthy volunteers who received 50 µg nebulised lipopolysaccharide (LPS) (n 581 

= 9) and patients with ARDS (n = 13) by ELISA. b The protease-antiprotease imbalance was 582 

expressed as a ratio of cathepsin S (CTSS) to cystatin SN. * P < 0.05, *** P < 0.001, **** 583 

P < 0.0001 (two-tailed Mann-Whitney test). c Cystatin SN in BALF from healthy volunteers (n = 584 

2), healthy volunteers who received 50 µg nebulised LPS (n = 2) and patients with ARDS (n = 8) 585 

was detected by Western blot. d The inhibitory activity of cystatin SN against active CTSS was 586 

assessed by incubating recombinant CTSS with increasing concentrations of recombinant cystatin 587 
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SN and quantifying activity with varying concentrations of 7-amino-4-methylcoumarin (AMC)-588 

conjugated substrate. The turnover of substrate over time was quantified by calibrating the change 589 

in fluorescence with a standard curve of free AMC. A Dixon plot was generated to allow the 590 

calculation of a theoretical value for the inhibition constant Ki (representative plot shown, Ki 591 

calculated from n = 4 individual experiments) and half-maximal inhibitory concentration (IC50, n 592 

= 3). To test the anti-inflammatory activity of cystatin SN in vivo, mice received an intratracheal 593 

instillation of 1 mg/kg LPS (n = 5-7 per group) or saline (n = 4-5 per group) and were left to 594 

recover for 15 min before receiving a subcutaneous injection of recombinant cystatin SN (cys SN; 595 

0.5 mg/kg). After 16 h, BALF was collected, and e total cell and f neutrophil counts were 596 

quantified. *** P < 0.001 (unpaired two-tailed t test). 597 

 598 

Figure 3. Intratracheal instillation of cathepsin S induces pulmonary inflammation. Mice 599 

received sodium acetate (Ctrl, n = 3), 1 µg (n = 4) or 5 µg of recombinant cathepsin S (CTSS, n = 600 

5) via intratracheal instillation. After 24 h, bronchoalveolar lavage fluid (BALF) was collected for 601 

analysis and a total cell and b neutrophil counts were quantified. BALF c total protein 602 

concentration was quantified by BCA, d IL-6 and e KC levels were measured by ELISA. * 603 

P < 0.05, ** P < 0.01, *** P < 0.001 (a,c-e unpaired two-tailed t test and b two-tailed Mann-604 

Whitney test). 605 

 606 

Figure 4. Genetic cathepsin S knockdown protects mice from LPS-induced acute lung 607 

inflammation. WT (n = 6 per group) and cathepsin S (CTSS)-/- (n = 5 per group) mice received 1 608 

mg/kg lipopolysaccharide (LPS) or saline (Ctrl) via intratracheal instillation. After 16 h, 609 

bronchoalveolar lavage fluid (BALF) was collected for analysis and a total cell and b neutrophil 610 
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counts were quantified. BALF c total protein and d KC levels were quantified by BCA and ELISA, 611 

respectively. * P < 0.05, ** P < 0.01, **** P < 0.0001 (a,c,d unpaired two-tailed t test and b two-612 

tailed Mann-Whitney test). 613 

 614 

Figure 5. Prophylactic inhibition of cathepsin S is protective in the murine model of LPS-615 

induced acute lung injury. Mice were treated with the cathepsin S inhibitor I.6 (100 mg/kg) or 616 

vehicle via intraperitoneal injection 24 h before receiving 1 mg/kg lipopolysaccharide (LPS) or 617 

saline vehicle via intratracheal instillation (n = 7 per group). Fifteen minutes later, mice received 618 

a second injection of I.6 and bronchoalveolar lavage fluid (BALF) was collected for analysis 16 h 619 

later and a total cell and b neutrophil counts were quantified. BALF c total protein and d KC 620 

concentrations were measured by BCA and ELISA, respectively. * P < 0.05, ** P < 0.01 (a-c 621 

unpaired two-tailed t test, d two-tailed Mann-Whitney test). 622 

 623 

Figure 6. Cathepsin S inhibitor treatment selectively dampens inflammation in the caecal 624 

ligation and puncture mouse model of acute lung injury. Mice were untreated or received an 625 

intraperitoneal injection of the cathepsin S inhibitor I.6 (100 mg/kg) 30 min before undergoing 626 

caecal ligation and puncture (CLP) surgery. Mice were sacrificed 18 h post-CLP and peritoneal 627 

lavage fluid (PLF) and bronchoalveolar lavage fluid (BALF) were collected. PLF a total cell, b 628 

neutrophil and c monocyte/macrophage cell counts were quantified. ** P < 0.01, *** P < 0.001 (n 629 

= 6 per group, unpaired two-tailed t test). d Neutrophil and monocytic cells were expressed as a 630 

percentage of the total PLF cell count. *** P < 0.001 (n = 6 per group, two way ANOVA with 631 

Sidak's multiple comparisons test). BALF e total cell, f neutrophil and g monocyte/macrophage 632 

cell counts were quantified (n = 6 per group, two-tailed Mann Whitney test). h Neutrophil and 633 
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monocytic cells were expressed as a percentage of the total BALF cell count. ** P < 0.01 (two 634 

way ANOVA with Sidak's multiple comparisons test). BALF i KC and j IL-6 were quantified by 635 

ELISA (n = 6 per group). * P < 0.05, ** P < 0.01 (unpaired two-tailed t test).  636 

 637 

Figure 7. Therapeutic inhibition of cathepsin S is protective in the murine model of LPS-638 

induced acute lung injury. Mice received a single dose of the cathepsin S inhibitor I.6 (100 639 

mg/kg) or vehicle via intraperitoneal injection 2 h after intratracheal lipopolysaccharide (LPS) (1 640 

mg/kg) instillation (n = 8-11 per group). Bronchoalveolar lavage fluid (BALF) a total cell and b 641 

neutrophil counts were quantified. c Total protein and d KC concentrations in BALF were 642 

measured by BCA and ELISA, respectively. * P < 0.05, ** P < 0.01 (unpaired two-tailed t test). 643 

 644 

Figure 8. PAR-1 antagonism reduces cathepsin S-induced inflammation in vitro and in vivo. 645 

a,b THP-1 macrophages were treated with 1 μg/mL active CTSS in the presence or absence of the 646 

PAR-1 antagonist SCH-530348 (10 µM). Cell supernatants were collected 24h later and levels of 647 

IL-8 and CXCL1 were quantified by ELISA. Results are representative of n = 3 independent 648 

experiments where each condition was plated in triplicate. c-f Mice received 10 mg/kg of the PAR-649 

1 antagonist SCH-530358 (SCH) via intraperitoneal injection 30 min before receiving 5 µg active 650 

cathepsin S (CTSS) or vehicle by intratracheal instillation (n = 4-5 per group). Mice were allowed 651 

to recover for 24 h before bronchoalveolar lavage fluid (BALF) was collected and total cell and 652 

neutrophil counts were quantified. Total protein and KC levels in BALF were quantified by BCA 653 

and ELISA, respectively. ** P<0.01 *** P<0.001, **** P<0.0001 (unpaired two-tailed t test). 654 

 655 
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Figure 9. Cathepsin S inhibition has no significant effect on pulmonary inflammation in 656 

PAR-1 knockout mice. PAR-1-/- mice were treated with the cathepsin S inhibitor I.6 (100 mg/kg) 657 

or vehicle via intraperitoneal injection 24 h before receiving 1 mg/kg lipopolysaccharide (LPS) (n 658 

= 8-9 per group) or saline (n = 5-6 per group) via intratracheal instillation. Fifteen minutes later, 659 

mice received another injection of I.6 and were allowed to recover for 16 h before bronchoalveolar 660 

lavage fluid (BALF) was collected for analysis. BALF a total cell and b neutrophil counts were 661 

quantified. c Total protein and d IL-6 levels in BALF were quantified by BCA and ELISA, 662 

respectively. 663 


