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Abstract: High throughput technological innovations in
the past decade have accelerated research into the trillions
of commensal microbes in the gut. The ‘omics’ technolo-
gies used for microbiome analysis are constantly evolving,
and large-scale datasets are being produced. Despite of the
fact that much of the research is still in its early stages,
specific microbial signatures have been associated with
the promotion of cancer, as well as other diseases such as
inflammatory bowel disease, neurogenerative diareses etc.
It has been also reported that the diversity of the gut
microbiome influences the safety and efficacy of medi-
cines. The availability and declining sequencing costs has
rendered the employment of RNA-based diagnostics more
common in the microbiome field necessitating improved
data-analytical techniques so as to fully exploit all the
resulting rich biological datasets, while accounting for
their unique characteristics, such as their compositional
nature as well their heterogeneity and sparsity. As a result,
the gut microbiome is increasingly being demonstrating as
an important component of personalised medicine since it

not only plays a role in inter-individual variability in health
and disease, but it also represents a potentially modifiable
entity or feature that may be addressed by treatments in a
personalised way. In this context, machine learning and
artificial intelligence-based methods may be able to unveil
new insights into biomedical analyses through the gener-
ation ofmodels thatmay be used to predict category labels,
and continuous values. Furthermore, diagnostic aspects
will add value in the identification of the non invasive
markers in the critical diseases like cancer.

Keywords: biomarker; diagnostics; machine learning;
microbiota.

Background

Technological innovations in the past decade have accel-
erated research into the trillions of commensal microbes
in the gut, the microbiome. Across gut, inflammatory,
and neurological disorders, there are alterations in gut
microbiome composition and function [1, 2]. As a result, a
plethora of machine learning approaches are increasingly
being developed targeting the microbiome due to its
diagnostic potential [3]. While the majority of these
machine learning studies are critically flawed [4], the
microbiome remains a potentially invaluable source for
identifying novel biomarkers [5].

Culture-based diagnostics for monitoring

A simple, albeit limited, diagnostic approach involves
selectively-culturing fecal samples to monitor antibiotic-
resistant bacteria, such as Enterococci [6]. However, this
approach is limited to well-identified organisms that are
easily cultured [5] and have been successfully demonstrated
to aid the diagnosis of gastrointestinal infections [7, 8]. For
many exploratory studies, culture-based methods are far
too limited in their scope but could provide additional
functional information that can form valuable components
for developing novel machine learning-based analysis
approaches.
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16S rRNA diagnostics

The availability and declining cost of sequencing has
rendered RNA-based diagnostics more common in the
microbiome field. Amplifying and sequencing conserved
bacterial ribosomal regions results into microbiome
diversity and composition high resolution data [9, 10]. Such
datasets have the potential of aiding prediction approach
to depict patients that are likely to develop bacterial-
resistant infections; for example,Morganella and Prevotella
abundance conferred resistance [7]. 16S rRNA sequencing
offers the tantalising possibility of catering the development
of models that cater the prediction subsequent infection
with antibiotic-resistant bacteria [11].

Beyond gastrointestinal disorders, several studies
suggest that 16S microbiome biomarkers may be useful
for differentiating Alzheimer’s from dementia, as well as
detecting schizophrenia, Parkinson’s disease, inflammatory
bowel disease, colorectal and other cancers, osteoporosis,
bipolar disorder, andother immune-relateddiseases [12–22].
Other applications include predicting Crohn’s disease
relapse and drug responses [23, 24].

Metagenomic diagnostics

Metagenomic sequencing provides a more precise micro-
biome data resolution which can detect fungal and viral
commensals [9, 25]. In addition to the increasingly accurate
species-level resolution, it also detects specific genes that
are being expressed in themicrobiome, providing functional
information [26]. Some studies leverage this extra layer of
information to generate diagnostics, though it isn’t always
clear whether they provide a cost-effective advantage.

Thus far, several studies have employed metagenomic
features or variables generated from experiments to
diagnose early-stage colorectal cancer, different stages of
Parkinson’s disease, fatty-liver disease, schizophrenia, as
well as other brain and gut disorders [27–31]. Importantly,
future diagnostic metagenomic based approach may be
able to facilitate the early detection of neurodegenerative
diseases or depict particular patient drug-responses within
psychiatric settings [32].

Metabolomic diagnostics

Fecal metabolomics provides more functional information
that can be used to detect microbiome metabolites, such
as short-chain fatty acids, tryptophan metabolites and
secondary bile acids [33]. Since it is used less frequently

than other methods, it has been employed by fewer diag-
nostic applications compared to those utilising 16S or
metagenomic data. Nevertheless, metabolomics datasets
have been proven useful for differentiating healthy
controls from patient cohorts suffering from certain
cancers, myasthenia gravis, lupus, cardiovascular disease,
liver disease, and other disorders [29, 34–37].

Outlook

The high number of features or variables within the
microbiome, as well as its key role in physiology renders
it an ideal source of diagnostic biomarkers across multiple
diseases. Most studies select differentially abundant
microbial features that are applied within diagnostic
models. Predominantly, these microbial features are
detected through 16S, whole genome metagenomics, or
metabolomics. However, many studies still lack consis-
tency and replicability and have yet to be validated in
clinical trial settings.

Emergent problems in microbiome
datasets

Both sequencing, as well as metabolomic, microbiome
datasets are compositional nature [38–40]. Simply put,
sequencing technology imposes an arbitrary detection
limit of individual elements. Similarly, to a forest or other
ecosystems, the abundance of one species or metabolite
affects the abundance of other elements – prohibiting
these elements to be treated as independent variables.

It follows that each detected element is present within
this interdependent composition, rendering them more
challenging to interpret and analyze [38, 41]. Thus we
cannot consider this data as true counts of elements in the
gut environment, but insteadwe need to contemplate them
as a proportional count of molecules associated with mi-
crobes in the gut [38].

Normalization to account for sparsity and
zeroes

The first step in analyzing any raw counts table involves
normalizing the values it contains to allow for their
comparison. However, typically, upon inspecting such
data, it becomes obvious that it is sparse, and unevenly
distributed. Moreover, such data usually contains several
zeroes which need to be properly interpreted as true zeros
or artefacts [38, 42].
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Running robust multivariate comparisons involves
generating Monte Carlo samples of the Dirichlet distribu-
tion within each sample before normalization [39, 43].
While many studies use rarefaction subsampling methods,
these, typically, result in information loss across the
overall composition [44]. Although, Ddta can be trans-
formed using simple log-ratios, such an approach does not
sufficiently address the sparsity and zeroes within the
dataset [39, 40]. Tools, such as ALDEx2, allow users to
perform central, isometric, or additive log ratios for
normalization that conserves the relationships between
elements better [39, 43].

Distance and ordination

Typically machine learning discriminationmodels attempt
to separate two ormore independent groups based on their
unique features or variables. However, many common
forms of ordination, typically employed in microbiome
data analysis, employ non-compositional methods, such
as UniFrac, Bray-Curtis, and Jensen-Shannon divergence
[38, 41]. The Aitchison’s distance is a more reliable method
for measuring distance or volatility of compositions over
time, providing a geometric measure of distance between
principal components [41, 45].

Differential abundance and effect size

Following amultivariate statistics analysis, the abundance
and effect size differences need to be determined. While
95% confidence intervals and effect size cut-offs may
help identify salient features within a dataset, there is no
specific cut-off to indicate clinical or real-world relevance
[33]. It is unclear if it is necessary for some microbes or
metabolites to reach a certain threshold before exerting
strong effects. Small changes in other important microbes
by contrast, could destabilize a microbial ecosystem if
thesemicrobes serve as important hubs within the network
[46–50].

Correlation, causality and directionality

The compositional nature of microbiome datasets dictate
that any correlations and comparisons are susceptible to
negative correlation bias [38, 51, 52], an affect that neces-
sitated the development of methods, such as SparCC and
SpiecEasi [38]. While there aren’t any robust methods for

determining causality and directionality, most research
methods are now focusing on proportionality i.e., how
much of a particular phenotype is explained by a feature
within the dataset [53–59]. While Granger causality has
also been suggested as a potential method for microbiome
analysis, it is seldom used and yet to be validated [58].
It should finally be noted that whether any amount of data
or any method development will ever suffice to determine
causality is still questionable [60].

Outlook

The compositional nature of microbiome data imposes
several challenges and biases that renders their analysis
challenging. In addition to the sparsity and zeroes within
the data, methods need to account for negative correlation
bias, as well as many other uncertainties relating to the
importance of different effect sizes.

Machine learning methods and
workflows

There are many different types of machine learning
methods, broadly split into supervised and unsupervised
learning. In supervised learning, data is fully labelled
whereas in unsupervised clustering, no data is labelled.
Different types of semi-supervised approaches classify a
small portion of the dataset for use as a test set.

Unsupervised clustering

Unsupervised clustering methods, such as K-means, have
been implemented to characterize microbial features
across stages of periodontitis [61]. Principal component
analysis is a valuable approach to cluster compositional
data, measuring distances based on the Aitchison’s metric
to determine whether there is a significant difference
between two different groups of samples [38, 39, 41]. Non-
negative matrix factorization and t-distributed stochastic
neighbor embedding (t-SNE) are seldom used with micro-
biome datasets – though they may be appropriate for
describing some cohorts [62].

For multifactorial disease datasets, such as depression
related data, unsupervised clustering might provide
powerful means for feature-based stratification that could
indicate the best course of treatment.
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Supervised learning

Supervised learning methods are far more common across
microbiome studies and are especially useful in identifying
associations between host phenotypes and microbial fea-
tures [62]. These methods are used for classification or
regression analyses.

Regression

Lasso, ridge, and elastic net are different types of penalized
regression. These are especially useful when there are
many more features within the data than sample size. The
penalty function is important to prevent overinflation
within the regression model [62]. The L1 penalty is used in
lasso regressionwhich shrinks the size of coefficientswhile
setting the values of coefficients for unimportant features
to zero; additionally, if two variables show collinearity,
only one of these two variables will have a non-zero coef-
ficient [63, 64].

In ridge regression, the L2 square root function penalty
is used to shrink values near zero though it does not remove
these variables [65]. Since the variables are included as
non-zero coefficients, their effects are incorporated into the
machine learning model. Meanwhile the lasso net method
is a linear combination of lasso and ridge, retaining all
features as distinct groups of variables [62, 66].

In the literature, regression methods are used across
different microbiome studies to identify brain, immune,
diabetic, and gastrointestinal disorders as well as cancers
based on a host phenotype [19, 28, 67–71].

Classification

The support vector machine (SVM) approach employs
linear or non-linear distances and margins to segregate
different groups [72]. Linear applications use L1 and L2
penalty functions along with the SVM, thereby retrieving
the most salient differentiating features and determining
the maximal boundary between multiple groups, a task
not performed by simple L1 or L2 regression. A compari-
son to common regression methods demonstrated that
microbiome models using various SVMs, although out-
performing random forest methods, don’t always outper-
form simpler L2 regressions [73]. However, a scoping review
of different machine learning techniques revealed an
opposing trend, with random forest performingwell against
other types of models [74].

The random forest approach uses a re-samplingmethod,
termed bootstrapping, along with random selection, to

generate different types of classifier decision trees [75]. It
determines the variable importance of different features from
these decision trees, allowing users to select the most salient
metabolites or genes.Whenusedappropriately, thesemodels
can detect features of colorectal cancer [76]. These pre-
selected important features are also useful in future mecha-
nistic studies.

Another popular method used within the microbiome
literature involves linear discriminant analysis, part of the
LEfSe package [77]. It is similar to a supervised version of
Principal Component analysis albeit inappropriate for
compositional datasets [38].

Artificial neural networks and deep learning

Advances over the last decade allowed for bioinformatics
approaches to employ advanced approaches, such as
artificial neural networks. These networks relay an input
layer of information, an activation function that combines
the information, and finally an output function [62]. By
manipulating the number of computational layers, or how
many times data is passed back and forth between input
and output, users can increase or decrease the complexity
and power of the model. The goal of an artificial neural
network is to find the ideal weights for different features to
optimize classification [62, 78, 79].

Deep learning models, such as tensor flow, employ
many more layers, allowing them to outperform other al-
gorithms when handling large amounts of data [62]. This,
however, comes at the expense of model and feature
interpretability. Some tools also combine Bayesian pre-
diction with deep learning, to assess whether some known
host features, combinedwithmicrobiome data, can predict
disease [80].

Reinforcement learning

Other machine learning methods employ rules instead
of labels to guide the model development [81]. These
methods could be harnessed for finding bacterial proteins
or metabolites whose structures may fit human protein
receptors.

Machine learning and AI workflows

Many python-based tools incorporate genomic data into
reproducible workflows. The BioBakery workflow encom-
passes several different tools for metagenomic analysis
developedwithin theHuttenhower lab;many of these tools
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use linear discriminant analysis [82]. The individual pro-
grams and components within this workflow can also be
adapted to integrate multi-omics data [83]. Microbiome
Analyst is another example of a complete workflow albeit
one that incorporates several tools that are inappropriate
for compositional data analysis [84, 85].

DeepMicro converts high-dimensional data into low-
dimensional representations thereby rendering their
interpretation and analysis easier [86]. NFnetFu is a new
pipeline demonstrated to perform well compared to other
commonly used microbiome pipelines and tools, using a
novel combination of approaches to process the data [87].
Briefly, an adaptive neuro fuzzy inference system pre-
processes the data to overcome sparsity, even across
smaller sample sizes, while maintaining the collinearity
and relationships between features [87]. Then, a density-
based clustering method is applied to reduce the collin-
earity into a simplermatrix for further analysis, followedby
a lasso L1 regression [87]. Finally, it concludes with a taxon
set enrichment analysis to identify relevant biological
networks within the dataset [87]. A graphical overview is
presented in the Figure 1.

Outlook

While there exist numerous different types of machine
learning models and bioinformatics applications and
frameworks, it is often difficult to select the best one
without benchmarking them. Additionally, it is unclear
where the increase of the model complexity leads to better
predictions or more actionable insights. Among existing
machine learning algorithms, linear discriminant analysis
is most commonly used across microbiome studies to
identify differential features between groups [77].

Fecal microbiota transplantation
(FMT) as diagnostic process

Fecal microbiota transplantation (FMT) is the delivery of
solutions of fecal material from donors entering the
digestive system of a receiver in an attempt to actively
affect the patient’s microbiological diversity and bestow a
therapeutic advantage [88, 89]. FMT originated in Chinese

Figure 1: Machine learning-based analysis approaches employing microbiome datasets.
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civilization over 1,700 years ago in the 4th century, when a
well conventional Chinese medical practitioner entitled Ge
Hong effectively cured sufferers of foodborne poisoning
and/or chronic diarrhea via oral utilizing a humanoid fecal
suspension recognized as “yellow soup” [90, 91]. Dr. Ben
Eiseman, Chief of Surgery at Denver General Hospital,
along with his team commented on their successful usage
of fecal enemas to cure four individuals with pseudo-
membranous colitis [92]. Scientists didn’t recognize that
the illness they had been treating, pseudomembranous
colitis, has been induced by a virulent bacteria called
Clostridioides difficile until 1978, 20 years later [93].

Individuals can receive fecal microbiome through a
number of methods, involving enema [94], nasogastric
or nasoduodenal tubes [95] colonoscopy [96], or oral
capsules [97, 98]. Furthermore, it is increasingly normal
to use refrigerated or freeze-dried feces via anonymously,
pre-screened, fit contributors. Despite other antimicrobial
treatments, FMT does not produce an underlining dys-
biosis which makes the sufferer vulnerable to infections
[99]. The processes that enable FMT to prevent infections
are still being studied [100], but they most probably
include intestinal ecological restorations, intestinal flora
composition and functioning, andmicrobe-host signaling
transmission.

Emerging medical research, including animal model
research, is increasingly pointing to the value of FMT
in inflammatory bowel disease and metabolic syndrome
patient treatment. FMT has also been proposed as a
viable therapy for various psychiatric diseases, notably
autism spectrum disorder. Although experimental ani-
mal models have revealed that FMT is effective in pre-
venting energy metabolism disorder and other disorders
linked to the gutmicrobiome these results should be
carefully considered [101].

Outlook and challenges

As outlined previously, microbiome data offers immense
therapeutic potential but remains challenging to analyse
and interpret for a variety of reasons including its compo-
sitional structure nature that introduces a negative correla-
tion bias, collinearity and sparsity (i.e., multiple types of
zeroesvalue). Currently, themajority of existingmicrobiome
diagnostic approaches suffer from proper validation which
result in leakage or overfitting [4].

Lost in translation

Assume that the comparison between a disease and a
control group reveals that a microbe is differentially
expressed and quantified – how is its clinical relevance
then determined? There are no standard cut-offs for effect
sizes nor any requirements for reporting 95% confidence
intervals and frequently the confidence interval for these
differentially abundant features includes zero [33]. But
even if these challenges are addressed there remains the
issue of determining the directionality of the microbiome
diversity impact, as well as the proportion of the disease
phenotype that is attributed to the unique microbial fea-
tures. Moreover, and perhaps more importantly, there
needs to be a systematic framework in place that will
enable the testing and validation of the efficacy and
hypotheses generated through these studies by other lab-
oratories and/or clinical settings.

Applying macro-ecological approaches

Nonetheless,microbiome researchers continue to adapt and
develop classic macro-ecological microbiome approaches.
Future applications may include developing machine
learning models with multi-label classification capacity
[102] as well as capable of taking into account volatility
and temporal microbiome changes [45, 103]. Given that
there is no “standard” or “healthy”microbiome, it remains a
challenge to develop replicable diagnostic microbiome
pipelines.

This necessitates the need of including more personal-
ized information accompanied by a description of
potential factors impacting ecosystems. Many studies
now carefully integrate dietary information along with
other types of metadata to define the impact of a patient
specific microbiome [3, 50, 81, 104–107]. Unfortunately, it
isn’t always clear whether the increasing complexity
resulting from the application of advanced machine
learning approaches, that take into account larger and
more diverse datasets, is beneficial and to what degree.
Undeniably, in certain contexts, simple linear regression
can still outperformmore expensive, time-consuming and
resource heavy approaches [108].

Fecal microbiota transplantation is now a recognised
therapy for Clostridium Difficle Infection, Inflammatory
Bowel Disease, as well as for several intestinal disorders
[94]. Next-generation sequencing technology improvements
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have dramatically increased the scope of microbiome vari-
ations that may be defined [109], enabling the discovery
of dysbiosis biomarkers, as well as the development of
increasingly tailored therapy methods, to enhance the
effectiveness or accessibility of FMT. Several majors, as well
as linked difficulties, should be solved in an attempt to
enhance FMT procedures. Firstly, the definition of a “good
health” or “perfectly natural” microbe needs to be clearly
determined in an attempt to get a deterministic compre-
hension of host-microbiome interactions. Then the defini-
tion of a “good health” or “regular” microbe needs to be
clearly stated in sequence to enable more easy detection
as well as adjustment of dysbiotic states. Finally, modifi-
cations in gastrointestinal microbiology have to be effec-
tively characterized in the literature Although FMT has clear
limitations, it offers the potential of a readily available
treatment approach that benefits from reduced toxic effects
in comparison to existing synthetic pharmaceutical based
approaches.

Outlook

Despite an abundance of recent, novel machine learning
approaches and frameworks developed within the context
of translational research, very few examples have been
demonstrated to successful achieve and materialise such
translations in clinical contexts. Each tool has its own
advantages and limitations, which need to be considered
when selecting a workflow or algorithm. Moreover, it is
vital to assess the performance of the workflow against
other standard algorithms and workflows. Nevertheless,
we anticipate the future development and use of machine
learning models as invaluable diagnostic or pre-screening
tools.
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