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RESEARCH

Using VIIRS nightlights to estimate 
the impact of the 2015 Nepal earthquakes
Thomas Tveit1*, Emmanuel Skoufias2 and Eric Strobl1 

Abstract 

We use Visible Infrared Imaging Radiometer Suite (VIIRS) nightlight data to model the impact of the 2015 Nepal earth-
quakes. More specifically, the data—showing nightlight emissions—are used to examine the extent to which there 
is a difference in nightlight intensity between cells damaged in the earthquake versus undamaged cells based on (1) 
mean comparisons; and (2) fixed effect regression models akin to the double difference method. The analysis is car-
ried out for the entire country as well as smaller regions in and around the Central area and Kathmandu, which were 
the hardest hit areas. Overall, the regressions find a significant and negative effect from the initial shock, followed by 
a positive net effect from aid and relief efforts, which is consistent with what one would expect to find. However, the 
mean analysis results are inconclusive and there is substantial noise in the nightlight measurements due to how the 
values are produced and persistent cloud cover over Nepal.
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Introduction
The Gorkha earthquake that struck Nepal on 25 April 
2015 is one of the biggest natural hazards of the last dec-
ade. The widespread damages totalled USD 10 billion in 
monetary damages, leaving 8857 dead, 22,304 injured 
and tens of thousands homeless. In addition to the main 
earthquake, several significant aftershocks also occurred, 
causing additional damages and deaths. Following any 
natural hazard of this scale, it is important to quickly and 
accurately identify the areas which are most in need of 
aid and where one can expect the highest damages, both 
in terms of casualties and monetary losses. The two are 
often correlated as the level of human activity usually 
coincides with economic output. Often, the identification 
of damages are done by on the ground observations or by 
manually examining images taken from air or from space, 
but over the last two decades a growing body of litera-
ture has focused on using remotely sensed data and auto-
mated algorithms to analyze and detect changes caused 

by natural hazards, see for example Elliott et  al. (2015), 
Klomp (2016), Skoufias et  al. (2017), Nguyen and Noy 
(2019) or Gao et al. (2020).

The aim of this paper is to build upon this literature by 
showcasing how high-resolution nightlight and popula-
tion data can be used to quantify highly localized changes 
in economic activity as proxied by monthly nightlight 
data. By using population data as a secondary layer, we 
seek to avoid several known issues with the nightlight 
value measurements, such as blooming, airglow contami-
nation and rural area values being more poorly correlated 
with economic activity. In addition, while existing articles 
have focused on identifying affected areas immediately 
after impact, this paper uses mean analysis and fixed 
effects regressions to quantify the initial impact and tem-
poral effect over the 12  months ex-post. This is similar 
to Gao et  al. (2020), but whereas they examined purely 
based on nightlight change, we use objectively measured 
earthquake data to identify nightlight cells that were 
impacted by the earthquake and compared these with 
cells that experienced no damage.

The methodology of this paper is the same as used in 
Skoufias et al. (2021), where the authors found that VIIRS 
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nightlight data provided limited results when analyzing 
larger countries and numerous natural hazards. In this 
paper, we use the same method, but across a smaller area 
and on a more damaging hazard, making it arguably an 
ideal setting for performing such an analysis. In short, 
we use contour maps from the United States Geological 
Survey (USGS) to identify damaged areas and model the 
local damage at a cell level from vulnerability curves pro-
vided by International and Regional Development (2001). 
The damage data is then geomapped alongside the VIIRS 
and population data, which act as a proxy for the eco-
nomic activity and hence the asset exposure. Finally, 
the combined data is used to identify and quantify what 
impact the damage has on nightlight values in two dif-
ferent analysis. The first is a mean comparison between 
damaged and non-damaged nightlight cells and the other 
is a fixed effect regression.

The nightlights data used in literature has primarily 
been from two sources: the Defense Meteorological Sat-
ellite Program (DMSP) and the VIIRS. The former is dis-
continued and consists of annual data from 1992 through 
2013 with the data released being grid cells at 30 arc-sec-
ond resolution (approximately 1 km by 1 km at equator) 
where each cell has a normalized digital number (DN) 
value from 0 to 63. The VIIRS data is more recent (April 
2012 and onwards), has improved spatial and temporal 
detail with monthly releases at a grid cell resolution of 
15 arc-seconds and the DN values have no upper bound. 
However, despite the advantages of the VIIRS data, it 
does have some limitations. Firstly, it is much more vola-
tile than the DMSP data and due to stray light correction 
it can contain negative light values. Furthermore, some 
months have no measurements because of cloud cover. 
Despite these shortcomings, the VIIRS data values does 
show some correlation with local GDP (Zhao et al. 2017) 
and we will use it as a proxy for economic activity in this 
article.

To improve upon the VIIRS data and attempt to 
decrease the volatility, we will use a settlement layer as 
a secondary layer to better identify areas with human 
activity. Using secondary data sources to increase the 
likelihood of correctly identifying human settlements 
have previously been used for poverty (Jean et al. 2016) 
and urban extent (Baragwanath et  al. 2019). The data 
used is from Worldpop (2017), which utilizes satellite 
images and census data to construct a high-resolution 
layer of human settlement patterns. The inclusion of the 
additional data is used to exclude non-populated cells 
and to better distinguish rural and urban areas.

Finally, to identify and model local damage, we con-
struct a damage index based on ShakeMaps from the 
USGS. The damage estimates are then combined with 
the economic activity proxy and two types of analysis are 

performed on the combined data. First, a simple mean 
comparison is performed where we compare the night-
light values between affected and non-affected cells for 
the 12 months before and after the earthquake. Secondly, 
we run a fixed effect regression model to identify and 
quantifyimpact over the first 12  months ex-post. Both 
analysis are performed on a national nightlight set as 
well as sets on smaller regions that were more severely 
impacted by the earthquakes.

The mean analysis results are not significant, poten-
tially due to the general volatility and measurement 
errors in the data. However, it could also be caused by an 
influx of aid and recovery to all areas of Nepal and not 
just the ones experiencing the most damage, i.e. if aid is 
not well targeted one would experience the same pattern 
across all cells. When performing a pre-post analysis of 
the mean results, we do find that there is a significant dif-
ference in the trajectories of the two groups. To further 
support this, the fixed effects regressions did yield sig-
nificant results, with an initial negative and significant 
shock in the month of the disaster, followed by a statisti-
cally significant increase in light for 4–6 months, before 
tapering off and becoming insignificant. The first nega-
tive shock followed by a positive effect is consistent with 
what one could expect from a large-scale disaster, where 
at first infrastructure is damaged and necessary aid is 
not present, followed by an influx of aid and relief efforts 
over the coming months. Following this phase, one would 
expect a decrease in nighlight values as the initial relief 
efforts are discontinued. Additionally, after 12  months 
one can potentially expect the VIIRS values to reflect a 
“new” normal and any significant effects found after that 
are unlikely to be directly related to the earthquake.. 
However, the regression results include an unexpected 
and sudden positive spike 12  months after the earth-
quakes. The cause for this is unknown and the most likely 
explanation is that it is caused by noise in the measure-
ments. The regressions were run with several different 
specifications as robustness checks, but the main results 
remained unchanged.

The remainder of the paper starts with an overview of 
Nepal, the earthquakes and the base data, followed by a 
general methodology overview, the analysis results and 
finally a conclusion.

Materials and methods
Nepal and the 2015 earthquakes
Nepal is a mountainous country bordering India to the 
south, west and east and Tibet (China) to the north. It 
is a small country at roughly 147,000 square kilometers 
and has a population of approximately 29 million people. 
Its nominal GDP in 2019 is USD30.6 billion. On a per 
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capita purchasing power adjusted basis, Nepal ranks at 
the 162nd position globally per the World Bank.

In addition, Nepal is prone to disasters due to a com-
bination of the vulnerability of the building environment 
and the population, its geographical location, topogra-
phy and climate. Nepal is frequently affected by different 
types of natural hazards such as landslides, floods and 
avalanches, stemming from the topography and the cli-
mate. Due to lack of irrigation, drought and fire are other 
frequent natural hazards. Finally, Nepal is situated along-
side a major east–west tectonic boundary plate where 
earthquakes are frequent. INFORM earthquake exposure 
rank them at an 9.9 out of 10 (INFORM 2019).

In 2015, Nepal suffered two major earthquakes. The 
first—and largest—earthquake struck on 25 April 2015 
and is often referred to as the Gorkha Earthquake. Fig-
ure 1 shows the magnitude and size of the 7.8 MW earth-
quake relative to Nepal and the epicenter in the Gorkha 
District. According to the UN office for Disaster Risk 
Reduction the total damages added up to USD 10 bil-
lion—approximately one third of the total GDP—with 

8857 mortalities and 22,304 injured. In addition, tens 
of thousands were made homeless. Some damages were 
also due to landslides caused by the earthquake as seen 
in Xu et  al. (2017). In this paper, we will treat all dam-
ages as earthquake damages as the effect on nightlights 
will be the same and the cause of the damage is the earth-
quake. Furthermore, to disentangle the two at a regional 
or national scale would require significant manual labor.

In the wake of the Gorkha earthquake there were sev-
eral aftershocks, with the largest one being a magnitude 
7.3 MW occurring on 12 May 2015 to the east of Kath-
mandu in the districts of Dolakha and Sindhupalchowk. 
There were 153 dead and 3275 injured following this 
earthquake.

The data used to identify the damaged areas and model 
the damage are from contour maps generated by seis-
mological ground stations (International and Regional 
Development 2001; Agency 2006; De Groeve et al. 2008). 
These contour maps—ShakeMaps from USGS—are used 
as a basis for localized impact and they provide several 
key parameters such as peak ground acceleration (PGA), 

Fig. 1 Nepal and the Gorkha earthquake. The underlying blue colour shows Nepal, whereas the green to red outlines the extent and intensity of 
the earthquake, with red being the most impacted areas. Source: USGS Shakemap and ArcGIS Basemap
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peak ground velocity (PGV) and modified Mercalli inten-
sity (MMI). The maps use data from seismic stations and 
combine this with information on ground conditions and 
earthquake depth to interpolate and construct a grid of 
points spaced 0.0167 degrees apart.

Population layer
To properly capture economic activity through night-
lights it is important to correctly identify areas with peo-
ple, hence avoiding stray lights or other sources of light 
that are not connected to human activity. One method is 
to use a human settlement layer as a secondary data set, 
such as in Corbane et  al. (2016). One assumes that the 
settlement layer provides a better static map of the spa-
tial distribution of people and then the nightlight data 
provide a temporal and spatial overview of how the eco-
nomic activity is distributed within the populace.

In this paper, we use the Worldpop datasets to identify 
settlement areas in Nepal (Worldpop 2017). These data-
sets have a spatial gridcell resolution of approximately 
100  m at the equator and estimate the number of per-
sons per square for the years 2010, 2011 (based on cen-
sus data), 2015 and 2020. This article uses only the 2015 
estimates as these are from the same year as the earth-
quakes. Worldpop constructed the population files by 
using national totals and then adjust these to match UN 
population estimates. The adjustment is done by a Ran-
dom Forest model, which generates a weighted popula-
tion density layer and then this layer is used as a basis to 
place the population according to the assumed real geo-
graphical distribution.

In addition to identifying economic activity, the settle-
ment layers will be used to designate a cell as rural and 
urban based upon population density.

VIIRS
To find and identify areas with economic activity and 
their exposure to natural hazards, satellite images of 
nighttime lights will be used as a proxy. Since natural 
hazards are highly localized, one would prefer high-res-
olution spatially disaggregated economic data, although 
nightlights have been used successfully to model local 
economic activity (Henderson et  al. 2012; Gillespie 
et  al. 2014; Hodler and Raschky 2014; Michalopoulos 
and Papaioannou 2014). These articles use the annual 
DMSP data with 30-arc second grids, whereas more 
recent papers have also utilized the VIIRS Day/Night 
Band (DNB) provided by The Earth Observations Group 
(EOG) at NOAA/NCEI, see for example Chen and Nord-
haus (2015), Zhao et al. (2017, 2018) or (2020). The latter 
data set provides monthly data from April 2012 till pre-
sent, whereas DMSP contains nightlight data for the years 
1992 through 2013, making DMSP unusable for studying 

the Nepal earthquake. Recently, Sahoo et al. (2020) have 
utilized machine learning methods to intercalibrate 
between the two data sets and construct a longer annual 
data set. However, an increase in the length of the tempo-
ral dimension at the cost of temporal detail is not benefi-
cial in this study. Additionally, data that is prior to 2012 is 
unlikely to impact on the 2016 estimated effects.

The use of VIIRS in economic analysis was done early 
in its lifetime by Chen and Nordhaus (2015), where they 
found promising results for VIIRS as an economic and 
population indicator, also when compared to the DMSP 
product. However, the same authors found that VIIRS 
was not useful in growth predictions and that the asso-
ciation between economic activity and light values were 
dependent upon the chosen area size, with state level 
analysis performing worse than metropolitan area level 
analysis (Chen and Nordhaus 2019). They hypothesized 
that this was in part due to the economic activity type 
in metropolitan areas and that they are more likely to be 
related to electric light. In a more recent working paper, 
Gibson et al. (2019) also find that VIIRS performs poorly 
in rural, low-density areas in Indonesia, while it performs 
well and much better than DMSP data in urban areas. 
The VIIRS products have also seen use in the natural dis-
aster literature with Zhao et  al. (2018) using the under-
lying NPP-VIIRS DNB Daily Data to analyze selected 
natural disasters, including the Gorkha earthquake. They 
found that the images could be used in damage detection 
and for identifying power outages, but that the analysis 
was limited by cloud coverage. This article will not use 
the daily data because of computational limitations when 
focusing on much longer temporal and spatial effects.

The VIIRS data provide two variables: the average 
monthly light radiance from DNB and the number of 
cloud free days. Some months will have no cloud free 
days, meaning that no radiance value is provided. This is 
accounted for by calculating an interpolated value from 
the values of the month prior and after.1 In addition, a 
known problem for low light value cells is that one often 
finds negative light values due to airglow contamination 
(Uprety et  al. 2019). Optimally, one would want to cor-
rect for this and identify the real underlying value and 
decrease the volatility exhibited. Recently, two published 
articles (one about the Gorkha earthquake) have explored 
methodologies for correcting the measurements through 
trend decompositions (Gao et al. 2020; Zhao et al. 2020). 
However, lacking any established methodology, we 
experimented by using simple threshold testing to iden-
tify how it would affect the analysis.

1 Using the value of the month of the previous year was also explored, but the 
overall value mean change was less than 0.01 and there were only 1 cell that 
was affected by the earthquake that had no radiance value.
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Figure 2 show the distribution of VIIRS values below 2 
for all populated areas and the number of cloud free days 
per month.2 It identifies significant clustering between 
the values 0 and 0.5, containing more than 85 percent 
of the total observations. Furthermore, more than 5% of 
the total have a negative value. Analyzing the range from 
negative to 0.3, one finds that 75% of all points fall within 
this range, implying that a large proportion of our obser-
vations have negative or very small values. These are only 
points that have been identified as being populated,3 
meaning that they should be relatively free of disturbance 
from non-human sources.

Even when limiting the observations to cells with pop-
ulation in excess of 50 (approximately 30% of populated 
cells), the distribution stays similar with 98 percent of 
light values being below 2, 95% below 1, 58% below 0.3 
and 3% being negative. This distribution pattern is con-
sistent independently of which population threshold is 
chosen. When looking at population numbers above 
1000 (less than 0.5% of the total) 9% of the points still 
have nightlight values below 0.3 albeit less than 0.01% of 
points have values below 0, implying that VIIRS is poten-
tially only useful for urbanized areas with a high popula-
tion density.

Figure  3 provides an overview of the distribution of 
cloud free days, with each pillar representing the per-
centage of observations for all months depending on the 
number of cloud free observations. From this, we find 
that no months have more than 23 cloud free days and 
only 1% of months have 20 or more observations. At 

the same time, almost 10% of the monthly observations 
had 0 or 1 cloud free days, with 4% of the sample hav-
ing no observations. The months with no cloud free days 
were included either through interpolation or by using 
the prior year’s value. The median and mean are 10, and 
more than 12% of months had one or less cloud free days. 
Hence, the monthly nightlight values are calculated based 
on a rather small subsample of days per month. How-
ever, for a natural hazard which is not correlated with the 
weather, such as earthquakes, this is unlikely to bias the 
results. In the data, April 2015 had a maximum number 
of cloud free days at just 16, and a mean and median at 9, 
whereas May had a maximum number of cloud free days 
at 19 with a mean of 11 and median of 12. Overall, the 
year of 2015 was quite similar to the total sample, with 
a max of 20, mean of 9 and median of 10. However, the 
relatively low number of cloud free days for April could 
potentially impact the analysis. Another factor that could 
bias the results would be the monsoon season months 
from June through August, this will be commented upon 
in the discussion section.

General empirical strategy
The approach chosen is the same as in Skoufias et  al. 
(2021), where the authors constructed damage indices 
that were combined with population and nightlight data 
to estimate the impact different natural hazard types had 
on local nightlight emissions across 5 different South 
East Asian countries.

The damage index is based on the USGS Shakemaps 
and the damage modeling is done using two data sets, 
the objective earthquake intensity data expressed by PGA 
and building inventory data. The latter data is the USGS 

Fig. 2 VIIRS value distribution for VIIRS values below 2 Fig. 3 Days with no cloud cover in a month across all months. The 
X-axis shows how many days per month that were cloud free, i.e. that 
had a light value measurement. The Y-axis shows the distribution of 
number of cloud free days per month. Adding up all columns equal 1

2 Values below 2 constitute approximately 99.3 percent of the total. This was 
done due to the maximum VIIRS value being 154 and hence a density graph 
would be meaningless going from − 0.71 to 154. Also, any bin above 2 is very 
small and would not contribute to the graph.
3 See next section for details on population layers.
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building inventory for earthquake assessment, which pro-
vides estimates of the proportions (based on total num-
ber of buildings) of building types observed by country; 
see Jaiswal and Wald (2008). For Nepal the building type 
information was compiled from a World Housing Ency-
clopedia (WHE) survey. The WHE survey uses fraction 
of population who lives or works in buildings of differ-
ent types as their definition of how the building mass is 
split up. The distribution of building types and mass are 
assumed to be homogenous within areas due to the lack 
of more granular spatial data. This is a strong assump-
tion, but without detailed local data it is not possible to 
correct for. Preferably, one would want an extensive data-
base with building by building damage, such as in Wang 
et al. (2016).

From the building and intensity data, we derive dam-
age curves based on the curves constructed by the Global 
Earthquake Safety Initiative (GESI) project; see Interna-
tional and Regional Development (2001). GESI divide 
buildings into 9 different categories, which are then rated 
on different quality measures such as design, construc-
tion and materials used. Depending on the rating and 
whether the building is in a rural or urban area, one out 
of 16 damage curves (8 for urban and 8 for rural) are cho-
sen as most likely to correlate to a building of the specific 
category and quality. In this article, it is assumed that all 
buildings in a category is of the same quality given that 
we have no further distributional or locational data.

More formally, to derive a cell i specific earthquake 
damage index, ED, the following equation is applied:

where DR is the damage ratio according to the peak 
ground acceleration, pga , and the urban–rural qualifi-
cation k of cell i , defined for a set of 8 different building 
quality q categories.

The next step is to match the localized damage data 
with any intersecting VIIRS cell and assign the nightlight 
value to the corresponding month. For light cells that 
intersected several damage cells an average value was 
used. As earthquake damage estimates were modeled 
based on centroids, only the centroid intersection was 
used.

Finally, population data was aggregated up to the same 
cell size as the VIIRS data and then matched to sum-
marize the total population in each nightlight cell. To 
include a cell in the data set, the aggregated population 
had to be a minimum of 5. This is based on the average 
household size in Nepal in 2010 being 5 (Libois and Som-
ville 2018). Additionally, a cell was designated as either 
urban or rural depending on the number of people liv-
ing in it. Our base case was 20, but numerous thresholds 

EDi,q,t = DR
pgak ,q
i,k ,t q = 0, . . . , 7

were explored, without it affecting the results signifi-
cantly in either direction.

Following the construction of the data sets, two ana-
lytical methods were utilized to potentially identify and 
quantify the effect the earthquakes had on nightlight 
values. The first was a simple mean analysis. It consisted 
of two graphs; one with the mean of the nightlight val-
ues of cells that were struck by an earthquake and one 
with the cells that were not affected. Furthermore, it was 
broken down into two categories, one comparing light 
value means across all cells in Nepal and one comparing 
means only across cells in regions that were affected by 
the earthquakes.

The second set of analysis consists of fixed effects 
regressions with additional controls for time and spa-
tial effects. To correct for potential heteroscedasticity, 
Driscoll-Kraay standard errors are used (Driscoll and 
Kraay 1998). The regression equation is as follows:

where Li,t is the light level in cell i in month t and EDi,q,t 
represents the damage curve value in the same cell and at 
the same time. Lags are allowed from month t to t − 12. 
β0 is the intercept, θi are the cell fixed effects and ei,t is the 
error term.

The regressions are lagged for the 12  months following 
the hazards to allow for any short- and mid-term effects to 
materialize with the coefficients giving the effect that the 
earthquakes have on the nightlights for the month when the 
earthquake happens and the 12 subsequent months. The 
regression is run both nationally and at a province level.

A flow chart providing an overview of the method-
ology and data can be found in Fig.  4. Furthermore, an 
overview of the different data sources with resolutions 
and temporal and spatial scope can be found in Table 1. 
Finally, Fig. 5 provides a graphical comparison of the res-
olution of the different data sets.

Results
Figure  6 show the results from the mean analysis com-
paring the means of nightlight cells in the entire country 
(top panel) and the two most affected regions—Central 
and Western—in the bottom panel. The comparison is 
between cells that were damaged by the earthquake and 
cells that were not. In both cases, the nightlight values 
follow the same pattern implying that there is no differ-
ence between the two subgroups of cells.

Figure 7 shows the results for the second set of analy-
sis, the fixed effect regressions for the entire country 
and for Central and Western. The coefficient values and 

Li,t = β0 +

12∑

n=0

βn+1EDi,q,t−n + θi + ei,t
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significance are similar across both sets, with an initial 
negative shock during the month of the Gorkha earth-
quake followed by a positive effect for months 1 through 
8. The positive effect is most pronounced for the first 

4–6 months, before it tapers off. Months 6, 7, 10 and 11 
are insignificant in the province analysis. In month 9, 
the country results show a negative and significant coef-
ficient value, whereas Central and Western stay positive. 

Fig. 4 Flow chart for methodology

Table 1 Overview of the different data sources

a Heavily dependent on time of year, i.e. during summer the hemispheres will have less nighttime coverage
b EMost are 0.0167°, but for Nepal it is 0.0333
c Earlier earthquakes are also covered, but the development did not start until 1996

Data source Type of data Spatial resolution Temporal res Temporal coverage Spatial coverage

VIIRS Nightlights 15 arc-seconds Monthly 2012-present 75 N  65Sa

Worldpop Population 3 or 30 arc-seconds Annually or less 2000-present Global

ShakeMaps Earthquake 0.0167°b One per EQ 1996-presentc Global
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Afterwards, months 10 and 11 show a negative trend for 
both sets, while month 12 exhibits a strongly significant 
and positive jump.

Discussion
The aim of the paper was to get highly localized impact 
estimates by using VIIRS data combined with high-reso-
lution population layers and spatially disaggregated dam-
age data. The nightlight data has shown in prior studies, 
some of which use the Gorkha earthquake as their case 
study, that one can identify local effects from natural dis-
asters (Zhao et al. 2018; Gao et al. 2020). A key assump-
tion is that damage can be linked to economic output. 
This is not necessarily true for cases where the damages 
are structural or human in nature. However, it is assumed 
that our modelled structural damages will affect the 
nightlight values, which has shown a close link with eco-
nomic output, see for example Henderson et al. (2012) or 
Michalopoulos and Papaioannou (2014).

Our analysis rests on several assumptions, which can 
differ based on the area and time span being analyzed. 
Firstly, the population data is used to define which areas 

are populated and whether any populated area is consid-
ered to be rural or urban.4 The former threshold was set 
at 5, which is in line with an average household size in 
Nepal. Whereas for the latter numerous thresholds were 
explored, ranging from 5 (all urban) to 100. However, 
the choice had little impact on the regression or mean 
results. When running the regressions for urban areas 
only, i.e. only for cells that were deemed to be urban, the 
coefficient values change, but the significance and direc-
tion of the signs are the same as for the primary analysis. 
In addition, we visually inspected the data to check for 
any differences depending on which year of population 
was chosen. We found no discernible difference in terms 
of populated areas and when comparing the population 
per pixel between years, the differences were very small 
and indicative of a simple application of growth trend 
that has been interpolated across the cells.

Secondly, when modeling the damage, the building 
quality assumption will have an impact on the sustained 

Fig. 5 Comparison of the spatial resolution of the ShakeMap, the VIIRS nightlight data and the WorldPop data

4 We also considered which data set to use as our population basis. We did 
use 2015, and when comparing the data with 2011, the differences are very 
small and implies that a simple growth trend has been used to adjust the pop-
ulation numbers.
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damage as well as the final impact estimates on night-
lights. When the analysis was performed, we did find a 
non-negligible effect on the estimates but lacking any 
meaningful information a mean quality assumption of 
4 was used.

Related to the first two points, assuming that the 
building types and quality are homogenously dis-
tributed across Nepal is not likely to be true given 
the diverse topography and climate of Nepal. How-
ever, lacking more detailed data on the distribution it 
is neigh on impossible to correct for. The rural/urban 
distinction might help alleviate some of the issues and 
given how the results did not change with differing 
thresholds it gives some confidence in the results.

Fourthly, the nightlight values depend on two 
assumptions. The first one regards missing nightlight 
values, usually missing due to lack of cloud free obser-
vations. When no value was present, it was linearly 
interpolated from the last light value before the missing 
observation and the first light value after the observa-
tion. Another option that was explored, was to use the 
prior year’s value, but this did not affect the final esti-
mates. The second assumption was related to the treat-
ment of VIIRS values close to or below 0. When the 
VIIRS images are processed a dark offset is deducted 
from the raw day/night value. This offset is sometimes 
severely impacted by airglow leading to negative light 

Fig. 6 Mean of nightlight cell values for Nepal and the Central and Western districts split between cells that were affected by earthquakes and 
those that were not
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values. To account for this in our analysis, several 
options were explored. Firstly, the regressions were run 
with any light value below 0.1 set to 0. Then absolute 
values were used with any absolute value below thresh-
olds of 0.1, 0.3 and 0.5 set to 0. Overall, the threshold 
choice only had a minor quantitative impact on the 
coefficients. Recently, the papers from Gao et al. (2020) 
and Zhao et al. (2020) show that one can—and probably 

should—detrend and clean the data to get more con-
sistent and less volatile nightlight values.

Finally, the nightlight data shows that during monsoon 
season, the number of cloud free days is on average very 
low. This is partially corrected for by interpolating the 
nightlight values for the month before and after a month 
with no cloud free days and also tested for by using the 
previous year’s nightlight value. This is not optimal and 

Fig. 7 Regression results for Nepal and the Central and Western districts
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could impact the estimates depending on how the lack 
of observations is distributed, but we are unaware of any 
other or better way to correct for the lack of observations.

As for the results, the mean comparisons of the night-
light values in Fig.  5 yielded no difference between 
affected cells and cells that were not damaged by the 
earthquake. As can be seen, the trends are the same 
for both sets of cells and there are several peaks and 
throughs throughout the period, some of which may be 
seasonal. The nightlight values exhibit a low during the 
winter months and a high in fall and late fall. Some of this 
effect could be due to measurement differences and cloud 
cover, but it might also be caused by differences in use of 
energy and covering up lights during the winter months. 
The lack of difference between the two means could be 
due to aid and relief efforts targeting all areas but given 
the inherent volatility and noise in the VIIRS values it 
is more likely that any quantitative effects on the local 
economy has not been strong enough to be captured by 
the VIIRS data when performing such a simple analy-
sis. To further test this we performed a pre-post analy-
sis where we compared the change in nightlight value for 
the month before the earthquake (March) with the value 
for May and June. In this instance, the cells affected by 
the earthquake experienced a slightly smaller drop in 
absolute values (− 0.049 vs − 0.057). However, due to 
the higher mean absolute value of the affected cells, the 
percentage change was − 16% versus − 22%. When per-
forming a t-test between the two sample means, we find 
the difference to be significant at a 5% level, indicating 
that the affected cells experienced a smaller drop than 
the non-affected ones. One possible explanation for 
this could be the influx of aid or an inherent difference 
between the two groups. To explore this further, we per-
formed a mean comparison between the nightlight val-
ues for both affected and non-affected cells for May and 
June in 2012–2014 versus the mean in 2015. Once again, 
we find that the growth for the affected cells is bigger, i.e. 
the nightlight value for affected cells is relatively higher 
than for the non-affected cells. This could indicate that 
the two groups of cells are on different trajectories, that 
potentially the affected cells are in more urban areas. This 
could also explain why the fixed effects regressions iden-
tify a significant difference.

The regression results did find that a statistical and sig-
nificant effect occurred in cells that were damaged by the 
earthquakes. One potential explanation for the nightlight 
value impact could be that in the month of the quake, 
there is a nightlight loss due to the damages. Then, in 
the following months, there is an increased activity from 
aid, repairs and rebuilding. Finally, one sees a decline fol-
lowed by a negative effect that could signify the end of 
the rebuilding efforts and the aid influx. However, the 

sudden and significant coefficient increase in month 12 
differs from the expected pattern, which is a return to 
non-significance and coefficient values close to 0, i.e. the 
earthquake should not impact nightlight values for a very 
long period of time. When exploring the underlying data 
and general information about Nepal, we found no spa-
tial or seasonal pattern in the data or information about 
new power plants or other events that could have caused 
the spike, leading us to believe that it might be due to the 
general volatility of the data. Increasing the lag period is 
also problematic as it will decrease the sample size and 
is likely to capture other events that can potentially bias 
the results. Once the VIIRS data is available for longer 
periods both pre and post events it will be more feasible 
to do longer lags and potentially identify more long-term 
effects, although it can always be argued that any long-
term impact—in particular when one does month by 
month analysis—are unlikely to be correctly quantified 
due to the many factors that impact light and the meas-
urements. However, this can be an interesting avenue for 
future research.

Finally, Fig. 8 depicts a comparison between our mod-
elled damage, gridded out via a kriging algorithm, and 
the Copernicus Emergency Management Service (EMS) 
grading map for Kathmandu. The Copernicus map uses 
satellite images from DigitalGlobe and Pleiades CNES at 
0.5 m resolution to visually compare ex-post and ex-ante 
images and identify changes and potential damages. The 
focus in the Copernicus maps is at a building level, while 
our modelling focuses on a much more aggregate level 
making the two data sets difficult to compare. In addition, 
the Copernicus maps are only produced for 8 areas that 
cover approximately 35 square kilometres each. With this 
in mind, Fig. 7 is provided as a visual comparison of how 
our model performed versus the Copernicus map. Look-
ing at the main area of damage as identified in the Coper-
nicus map, we find that the outlined rectangular cell 
with the most damaged buildings map is seemingly more 
damaged than the neighbouring cells. However, looking 
at the overall map, the marked cell does not stand out. 
This is most likely due to a combination of much lower 
resolution data as well as the kriging algorithm, which 
leads to a smoothing of the damages.

Conclusion
Having used the VIIRS data as an economic proxy one 
finds that the earthquakes in Nepal in 2015 did impact 
the local economic activity if one uses fixed effects 
regressions. Overall, there is an initial decrease when 
the shock occurs, followed by an increase in activity 
once aid and relief efforts have started. This is consist-
ent with what one would expect, however, with the 
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amount of noise and cloud cover in the underlying 
VIIRS data some caution is in order.

Potential future research within the area could focus 
on other large-scale earthquakes or natural hazard 
types as the methodology is easily scaled and depends 
on few inputs. Another option is to explore other algo-
rithms or secondary data to potentially achieve more 
consistent and comparable nightlight measurements.
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