
 
 

University of Birmingham

Trans6D
Zhang, Zhongqun; Chen, Wei; Zheng, Linfang; Leonardis, Ales; Chang, Hyung Jin

DOI:
10.1007/978-3-031-25085-9_7

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zhang, Z, Chen, W, Zheng, L, Leonardis, A & Chang, HJ 2023, Trans6D: transformer-based 6D object pose
estimation and refinement. in L Karlinsky, T Michaeli & K Nishino (eds), Computer Vision – ECCV 2022
Workshops. 1 edn, Lecture Notes in Computer Science, vol. 13808, Springer, Cham, pp. 112–128, 7th
International Workshop on Recovering 6D Object Pose, Tel-Aviv, Israel, 23/10/22. https://doi.org/10.1007/978-3-
031-25085-9_7

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/978-3-031-25085-9_7. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 29. Apr. 2024

https://doi.org/10.1007/978-3-031-25085-9_7
https://doi.org/10.1007/978-3-031-25085-9_7
https://doi.org/10.1007/978-3-031-25085-9_7
https://birmingham.elsevierpure.com/en/publications/a14a6095-af38-4d79-98b8-aa81deb1563d
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Jin Chang1
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Abstract. Estimating 6D object pose from a monocular RGB image
remains challenging due to factors such as texture-less and occlusion. Al-
though convolution neural network (CNN)-based methods have made re-
markable progress, they are not efficient in capturing global dependencies
and often suffer from information loss due to downsampling operations.
To extract robust feature representation, we propose a Transformer-
based 6D object pose estimation approach (Trans6D). Specifically, we
first build two transformer-based strong baselines and compare their per-
formance: pure Transformers following the ViT (Trans6D-pure) and hy-
brid Transformers integrating CNNs with Transformers (Trans6D-hybrid).
Furthermore, two novel modules have been proposed to make the Trans6D-
pure more accurate and robust: (i) a patch-aware feature fusion module.
It decreases the number of tokens without information loss via shifted
windows, cross-attention, and token pooling operations, which is used
to predict dense 2D-3D correspondence maps; (ii) a pure Transformer-
based pose refinement module (Trans6D+) which refines the estimated
poses iteratively. Extensive experiments show that the proposed ap-
proach achieves state-of-the-art performances on two datasets.

Keywords: 6D Object Pose Estimation; Transformer

1 Introduction

In this paper, we are interested in estimating the 6D pose of objects from monoc-
ular RGB images. 6D object pose estimation has been gaining attention as it
can be applied in many fields such as augmented reality, robotic manipulation,
autonomous driving, etc. However, estimating the 6D pose from a monocular
RGB image is still challenging, especially when the target object is under heavy
occlusion or in changing illumination conditions.

With the explosive growth of deep learning, deep Convolutional Neural Net-
works (CNNs) have greatly improved monocular 6D object pose estimation [23],
even at times surpassing RGB-D-based methods [23,1,32]. Recent works in this
field can be roughly divided into two categories: i) approaches that use a CNN
to regress the 6D poses directly [41,39,38,37,8,34,5] and ii) indirectly [31,30]. A
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common drawback of the methods in the first category is their poor general-
ization ability due to the large search space of the rotation [41,15]. The second
category overcomes this limitation by either utilizing CNNs to detect the 2D key-
points of the objects [35,31] or estimating the dense 2D-3D correspondence maps
between the input image and the available 3D models [18,43]. Given the corre-
spondences, one can recover the 6D pose parameters via Perspective-n-Point
(PnP) algorithm [2]. Great success has been achieved with these approaches.
However, these CNN-based methods are not efficient in capturing non-local spa-
tial relationships. Therefore, their performance is limited in both accuracy and
robustness. The codes will be publicly available on our website.

Even though Transformer [11] is originally designed for Natural Language
Processing (NLP) tasks, recent works [14,9,42,27,4,22] show that both “Pure
Transformer” and “CNN+Transformer” have the potential to become the uni-
versal models for computer vision tasks. The self-attention mechanism [42] makes
them particularly effective in capturing the global dependencies. Therefore, we
are interested in designing an algorithm that can leverage the advantage of Trans-
formers in the 6D object pose estimation task.

In this work, we propose Trans6D, a simple yet effective framework that
employs Transformers for 6D pose estimation. Firstly, we build two strong base-
line frameworks (Trans6D-pure and Trans6D-hybrid) using Transformer. Among
them, Trans6D-pure applies the ViT [12] directly, while Trans6D-hybrid uses
ResNet-34 to learn local feature maps and then uses Transformer encoders to
capture global dependencies. Since dividing the image into small patches will
impact the accuracy of 6D object pose regression tasks, the Trans6D-Hybrid
significantly outperforms the Trans6D-pure.

Secondly, we propose two novel modules to improve the performance of the
Trans6D-pure: (i) a patch-aware feature fusion (PAFF) module is proposed to
predict the 2D-3D correspondence map. We reshape the tokens from the last
layer of Trans6D-pure into feature maps. Inspired by the pooling operation and
stridden convolution in CNN, the PAFF module proposes to use token pooling
and shifted windows to reduce the dimension of feature maps. To avoid infor-
mation loss and alleviate the impact of image division, the PAFF module uses
cross-attention to fuse the local feature of tokens in each window. (ii) The pure
Transformer-based pose refinement module (Trans6D+) is introduced to use the
input image and the initial pose estimation to learn an accurate transformation
between the predicted object pose and the ground-truth pose.

Experimental results on two widely used benchmark datasets, LINEMOD [16]
and Occlusion LINEMOD [3], demonstrate that Trans6D has state-of-the-art
performances. The contributions of the paper are summarised:

– Two Transformer-based strong baselines are proposed and assessed for 6D
object pose estimation, which achieve comparable performance with CNN-
based frameworks.

– A patch-aware feature fusion (PAFF) module is designed to decrease the
number of tokens without information loss, which is used to predict dense
2D-3D correspondence maps.
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– A pure Transformer-based Refinement (Trans6D+) module is introduced to
refine the estimated poses iteratively.

– For the first time, we show a simple but effective method based on Transform-
ers achieves state-of-the-art performance, 96.9% on the LINEMOD dataset
and 57.9% on the Occlusion LINEMOD dataset.

2 Related Work

2.1 6D Object Pose Estimation

Recent work in this field can be roughly divided into two categories: direct
methods and correspondence-based approaches.

Direct methods use CNN-based networks to regress a 6D pose from a single
RGB image directly. For Instance, PoseCNN [41] predicted 2D localization, depth
information, and rotation from a CNN backbone. However, the direct methods
usually exhibit poor generalization ability due to the large search space of the
rotation and the lack of depth information. Therefore, Oberweger et al. [29] and
BB8 [32] attempted to limit the rotation range; they discretize the pose space
and seem the prediction of rotation as classification rather than regression. G2L-
Net [6] harnesses the embedding vector features to regress the 6D pose. GDR [40]
regress dense correspondences first and then use patch-PnP to learning 6D pose
from the correspondences.

The correspondence-based methods are prevalent recently. These methods
first built 2D-3D correspondence maps, then computed the 6D pose via PnP
with the RANSAC algorithm. For example, Pixel2Pose [30] used an auto-encoder
architecture to estimate the 3D coordinates per pixel to build dense correspon-
dences, while PVNet [31], PVN3D [15], and PointPoseNet [7] adopted a voting
net to select 2D keypoint or 3D keypoint respectively to build dense corre-
spondences. Furthermore, HybridPose [35] suggested predicting hybrid corre-
spondences (including keypoints, edge vectors, and symmetry) to enhance the
robustness. DPOD [43] first estimateed multi-instance correspondences and then
used a learning-based refiner to improve the accuracy. It is the first approach that
unifies the correspondence-based rotation estimation and the direct regression-
based translation estimation.

2.2 Vision Transformer

Transformer architecture was built for the NLP task, consisting of the multi-
head self-attention mechanisms and feed-forward layer, to capture the long-term
correlation between words. Recently, there is a growing interest in Transformer
based computer-vision tasks. On the one hand, pure Transformer [12,21,24] is
attracting more and more attention. ViT [12] applied pure Transformer directly
to image classification tasks and attains excellent results compared to the state-
of-the-art CNN-based method. TransReID [14] showed that a pure Transformer-
based model can be used for the object ReID task. On the other hand, “CNN +
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Fig. 1. An overview of the proposed Trans6D-pure and Trans6D-hybrid
baselines. Given an input image of the target object, Trans6D-pure encodes the image
as a sequence of patches and then models the global dependencies among each patch
via ViT-like Transformer Layers. Trans6D-hybrid first extracts feature maps using a
CNN-based backbone and flatten them to a sequence, then feeds the sequence into
Transformer Layers. Output token marked with ∗ is served as the global feature. The
global feature is then used to regress 3D rotation and 3D translation.

Transformer” [4,44] also has better performance. DETR [4] extracted features
from CNN-backbone, then viewed object detection as a direct set prediction
problem that was suitable for Transformer structure. TransPose [42] predicted
2D heatmaps for human pose estimation by Transformer encoder and CNN,
while METRO [27] tried to model non-local interactions among body joints and
mesh vertices for human mesh reconstruction.

3 Methodology

In Figure1 and Figure2, we show an overview of our proposed framework that
estimates the 6D object pose from a single RGB image. The input to Trans6D
is an image of size 256× 256 which contains only one object with a known class.
The outputs of Trans6D-pure and Trans6D-hybrid are the predicted 3D trans-
lation and 3D rotation, while the outputs of Trans6D and Trans6D+ are 2D-3D
correspondence maps of size 64 × 64. Given the correspondences, 6D pose is
calculated by PnP and RANSAC algorithm. Our method consists of three mod-
ules: Two Transformer-based strong baselines, the Patch-Aware Feature Fusion
(PAFF) Module, and the Pure Transformer-based Pose Refinement Module. In
the following subsections, we describe each module in detail.
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Fig. 2. An overview of the proposed Trans6D and Trans6D+. Trans6D is based
on Trans6D-pure. The outputs of Trans6D-pure are reshaped as a feature map and feed
it into patch-aware feature fusion (PAFF) module to downsample the tokens. Instead of
directly regressing the 6D pose, Trans6D predicts the 2D-3D correspondence maps and
compute the 6D pose by PnP algorithm. Trans6D+ renders the object at the estimated
pose and learns to align the real image and the rendered image incrementally.

Following GDR-Net [40], the 6D pose is represented as a decoupled way,
composed of a continuous 6-dimensional representation for rotationR6d in SO(3)
and a scale-invariant representation for translation tSITE .

3.1 Transformer-based Baselines for 6D Object Pose Estimation

We build two Transformer-based strong baselines for 6D object pose estima-
tion, which are based on pure Transformers following the ViT (Trans6D-pure)
and hybrid Transformers integrating CNNs with Transformers (Trans6D-hybrid)
separately.

Trans6D-hybrid Trans6D-hybrid consists of two components: a CNN back-
bone to extract low-level image feature maps; a Transformer Encoder to capture
global dependencies between feature vectors, and each feature vector is distin-
guished by the position embedding, as shown in Figure 1.

We employ a Convolutional Neural Network (CNN), ResNet34 [13], as the
backbone for feature extraction. This backbone is pre-trained on ImageNet clas-
sification task [10], therefore Transformer can easily benefit from large-scale pre-
trained CNNs. Given an initial image ximg ∈ R3×H0×W0 , the CNN-based back-
bone generates a feature map with lower-resolution f ∈ RC×H×W . Specifically,
C = 512 and H,W = H0

32 ,
W0

32 .
The Transformer encoder is employed to model interaction among all the

pixel-level features in the image. First, we transform the feature dimension to
f ∈ Rd×H×W by a 1 × 1 convolution. Since the Transformer encoder expects
a sequence as input, we then flattened the feature into a sequence f ∈ RL×d,
where L = H ×W , and this sequence is fed into the Transformer Encoder. As
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shown in Figure 1, we follow the standard Transformer architecture as closely
as possible, which consists of a multi-head self-attention module and a fully
connected feed-forward network (FFN).

Since the Transformer architecture is permutation-invariant, position em-
bedding aims at giving an order to the sequence of the image feature map.
Following [4], 2D Sine position embedding is used in Trans6D-hybrid. The out-
put sequence of Transformer is reshaped to feature maps. We utilize a global
average pooling operation to extract the global feature, which is fed into two FC
layers to regress the 6D pose. The whole process can be formulated as:

R6d, tSITE = FCLayers(GAP(Transformer(f))) (1)

Trans6D-pure Given an image ximg ∈ RC×H0×W0 , Trans6D-pure first di-
vides the images into non-overlapping P × P patches

{
xi
n | i = 1, 2, · · · , P

}
.

These patches is then flattened into a sequence of 2D patches xp ∈ RN×(P 2·C) by
a linear projection F , P 2 is dimension of each feature vector and N = HW/P 2.
An extra learnable embedding token (∗) is added into the input sequences and
this token is used to extract a global feature. Different from Trans6D-hybrid,

position embeddings zpos ∈ R(1+P 2)×NC in Tran6D-pure are learnable. Overall,
The input feature matrix can be formulated as:

Z =
[
x∗;F

(
x1
n

)
;F

(
x2
n

)
; · · · ;F

(
xP
n

)]
+ zpos (2)

where [ ] represented concatenation operations. Then, we feed the feature into
Transformer encoder layers. The whole process can be express as:

R6d, tSITE = FCLayers(Transformer(Z)[0, :]) (3)

3.2 Patch-Aware Feature Fusion

Instead of directly regressing the 6D pose, Trans6D predicts 2D-3D correspon-
dence maps. Standard ViT architecture [12] cannot be directly applied in a dense
prediction task because they use a constant dimensionality of the hidden embed-
dings for all transformer layers. However, downsampling operations in CNNs (e.g.
pooling) suffer from information loss. Furthermore, the patch division might also
greatly impact the prediction because it corrupts the image structure. To solve
the aforementioned problems, We design a patch-aware feature fusion (PAFF)
module that can not only downsample the number of tokens without information
loss but also alleviate the impact by patch division, as shown in Figure 3.

The output of Trans6D-pure consists of the global token Z∗ and a sequence
of patch tokens

{
Zi | i = 1, 2, · · · , N

}
. As shown in Figure 2, we first reshape

the patch tokensZ ∈ Rl×c as a feature map f ∈ Rh×w×c in the spatial di-
mension. After obtaining the re-organized feature map, we apply token pooling
operation (1D convolution with 1D maxpooling) to downsample the feature map

to Z ′ ∈ Rh
4 ×

w
4 ×c. Z ′ will serve as the learnable queries

{
qi | i = 1, 2, · · · , N

4

}
in
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Fig. 3. Illustration of Patch-Aware Feature Fusion. We design a PAFF module
which can not only downsample the number of tokens without information loss but
also alleviate the impact by patch division.

PAFF module. However, simply adding a token pooling will decrease the model’s
representation ability. Inspired by the strided convolution in CNN, we split the
feature map into overlapping patches with a sliding window. As shown in Fig-
ure 3, the patch tokens in each window are fed into PAFF module with the global
token. Supposing each window contains k × k + 1 patches and the sliding stride
is s, the number of windows is

h

4
× w

4
=

⌊
h− k

s
+ 1

⌋
×
⌊
w − k

s
+ 1

⌋
. (4)

The tokens of each sliding window server as query and key, and we compute their
cross-attention (CA) [4] with the learnable queries. Thus the local information
can be aggregated. The outputs of CA network is concatenated with each other,
then they will be reshaped again to feature maps f ′ ∈ Rh

4 ×
w
4 ×D and regress to

2D-3D correspondences map M2D3D ∈ Rh
4 ×

w
4 ×4 by Linear Unflatten.

3.3 Pure Transformer-based Pose Refinement

In order to further improve the performance of Trans6D, we propose a pure
Transformer-based pose refinement (Trans6D+) module. Inspired by DPOD [43],
our refiner aims at regress the residual of rotation and translation with the loss
function:

Rpose =
1

M

∑
j

min
x∈Ms

∥∥∥(Rxj + t)−
(
R̂ixk + t̂i

)∥∥∥ (5)

where Ms represents the randomly selected 3D points from the object’s 3D
model.R and t is the the ground truth of 6D pose, while R̂ and t̂ is the predicted
rotation and translation.
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In Figure 2, we show the pipeline of our Trans6D+. Given the 3D model of
an object and the predicted 6D pose parameters, we first render the object at
the initial pose and crop the image around the object. The rendered image em-
beds the initial pose information and our idea is to make the Trans6D+ learning
to align these two images incrementally. Trans6D+ contains two parallel Trans-
former branches, one receives the real image as input while the other extracts
the feature from rendered image. Similar to Tran6D-pure, rendered image is
also divided into the same number of patches with real image branch (fc), and

then flattened them into a sequence of 2D patches fr ∈ RN×(P 2·C) by a linear
projection. Then patches from two branches are subtracted and fed into the
Transformer encoder layers to extract the global dependencies. An extra learn-
able embedding token x∗ is added into the input sequences and this token is used
to extract a global feature. Finally, the residual of rotation ∆R and translation
∆t is regressed by the global feature. The whole process can be formulated as:

∆R,∆t = FCLayers(Transformer(fc − fr)[0, :]) (6)

3.4 Training

To train the transformer encoder, we apply loss functions on top of the trans-
former outputs, the network predicts a confidence value for each pixel to indicate
whether it belongs to the object. The corresponding loss function is defined as

LCorr =α · ℓ1

nc=3∑
j=1

(
M̄vis ◦

(
M̂XYZj

− M̄XYZj

))
+ β · ℓ1

(
M̂vis − M̄vis

) , (7)

where M̄XY Z represents the 3D coordinate of the available 3D model, M̄vis

represents the visible masks.
Once we get the confidence map and the correspondence map, the coordinates

belong to the object can be obtained by setting a threshold for the confidence.
However, the size of the object in an RGB image is different from the original
image since we use a detector. To build the 2D-3D correspondences, we map the
pixel from the coordinates map back to the RGB image.

4 Experiments

In this section, we first conduct ablation studies on the effectiveness of each mod-
ule in Trans6D, and then evaluate Trans6D on prevalent benchmark datasets.
The results show that our method achieves state-of-the-art performance.

4.1 Implementation Details

We implemented our framework using Pytorch and conducted all the experi-
ments on an Intel i7-4930K CPU with one GTX 2080 Ti GPU. During training,
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we use Adam [28] for optimization. Also, we set the initial learning rate as 1e-4
and halve it every 50 epochs. The maximum epoch is 300. For object detection
part, we fine-tune the YOLO-V3 [33] architecture which is pre-trained on the
ImageNet [10] to locate the 2D object and fixed its size to 256× 256.

4.2 Datasets

LINEMOD: is a widely used dataset for 6D object pose estimation. It consists
of 13 objects, each containing about 1.2k images with ground-truth poses for a
single object. This dataset exhibits many challenges for pose estimation: texture-
less objects, cluttered scenes, and lighting condition variations. Following [26],
we select 15% of the RGB images for training and 85% for testing. We also
render 1000 images for each object as a supplement to the training set.
Occlusion LINEMOD: is a widely used dataset for 6D object pose estima-
tion under severe occlusion. It consists of 8 objects, each containing about 1214
images with more occlusion are provided for testing. All Occlusion LINEMOD
datasets are used for testing.

4.3 Evaluation Metrics

We evaluate Trans6D using average 3D distance of model points (ADD) met-
ric [17].
ADD Metric. This metric computes the mean distance between two trans-
formed object model using the estimated pose and the ground-truth pose. When
the distance is less than 10% of the model’s diameter, it is claimed that the
estimated pose is correct. It can be computed by:

1

|M|
∑
x∈M

∥(R · x+T)− (R̃ · x+ T̃)∥, (8)

where |M| is the number of points in the object model. x represents the point

in object 3D model, R and T are the ground truth pose, and R̃ and T̃ are the
estimated pose. For symmetric objects, we use the ADD-S metric [2], where the
mean distance is computed based on the closest point distance. :

1

|M|
∑

x1∈M|

min
x2∈M

∥∥∥(R · x1 +T)−
(
R̃ · x2 + T̃

)∥∥∥ , (9)

4.4 Ablation Studies

Compared to other methods [26], our proposed Trans6D has three novelties.
First, we build two Transformer-based baselines for 6D pose estimation: pure

Transformers-based Trans6D-pure and Trans6D-hybrid combining CNNs with
Transformers. As shown in Table 1, we compare Trans6D-hybrid (ResNet34
+ Transformer) with CNN-based method (ResNet34 + CNN Head) using the
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Table 1. Ablation studies of the effectiveness of two Transformer-based
baselines on LINEMOD dataset. The metric we used to measure performance
is ADD(-S) metric. ‘CNN” means CNNs-based method,‘Trand6D-p”and ‘Trans6D-h”
denote Trans6D-pure and Trans6D-hybrid, respectively.

Metric ADD(-s)

Method CNN Trans6D-p Trans6D-h

ape 11.43% 42.33% 49.11%

benchvise 95.05% 94.18% 96.46%

camera 75.49% 88.04% 91.84%

can 89.57% 92.87% 95.02%

cat 51.50% 77.73% 81.51%

driller 97.36% 94.01% 96.79%

duck 23.19% 54.34% 55.99%

eggbox 99.53% 96.63% 98.75%

glue 94.21% 89.14% 93.02%

holepuncher 68.22% 87.26% 89.49%

iron 93.77% 94.80% 96.75%

lamp 97.02% 94.86% 98.21%

phone 82.72% 90.15% 92.96%

Average 75.04% 84.34% 87.73%

Table 2. Ablation studies of the effectiveness of patch-aware feature fusion
(PAFF) Module on Occlusion LINEMOD dataset. The metrics we used to
measure performance are ADD(-S). “SW” means sliding windows operation, “TP”
means token pooling operation and “CA” means cross-attention network.

Method SW TP CA ADD(-S)

EXP1 × ✓ × 40.9%
EXP2 ✓ ✓ × 43.1%
EXP3 × ✓ ✓ 45.4%
EXP4 ✓ × ✓ 50.6%

Table 3. Ablation studies of the effectiveness of pure Transformer-based
refinement (Trans6D+) Module on LINEMOD dataset. The metrics we used
to measure performance are ADD(-S). Compared approaches: PVNet [31], DPOD [43],
DeepIm [25]

PVNet +DPOD +DeepIm +Trans6D+

85.56% 92.83% 87.13% 95.95%

DPOD +DPOD +DPIM +Trans6D+

82.98% 95.15% 88.6% 95.86%
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Table 4. Quantitative evaluations on LINEMOD dataset. We use ADD met-
ric to evaluate the methods. For symmetric objects Egg Box and Glue, we use the
ADD-S metric. Note that, we summarize the pose estimation results reported in the
original papers on LINEMOD dataset. Baseline approaches: BB8 [32], Pix2Pose [30],
DPOD [43], PVNet [31], CDPN [26], Hybrid [35], GDRN [40].

Method BB8 Pix2Pose DPOD PVNet CDPN Hybrid GDRN Trans6D Trans6D+

Refinement × × ×(✓) × × ✓ × × ✓
Ape 40.4% 58.1% 53.3% (87.7%) 43.6% 64.4% 63.1% - 68.1% 88.3%
Bench Vise 91.0% 97.5% 95.3% (95.3%) 99.9% 97.8% 99.9% - 99.5% 99.4%
Camera 55.7% 60.9% 90.4% (96.0%) 86.9% 91.7% 90.4% - 93.7% 97.8%
Can 64.1% 84.4% 94.1% (99.7%) 95.5% 95.9% 98.5% - 99.4% 99.1%
Cat 62.6% 65.0% 60.4% (94.7%) 79.3% 83.8% 89.4% - 87.9% 93.2%
Driller 74.4% 76.3% 97.7% (98.8%) 96.4% 96.2% 98.5% - 97.1% 99.5%
Duck 44.3% 43.8% 66.0% (86.3%) 52.6% 66.8% 65.0% - 67.9% 87.8%
Egg Box 57.8% 96.8% 99.7% (99.9%) 99.2% 99.7% 100.0% - 100% 100%
Glue 41.2% 79.4% 93.8% (96.8%) 95.7% 99.6% 98.8% - 98.3% 99.8%
Hole Puncher 74.8% 52.8% 65.8% (86.9%) 81.9% 85.8% 89.7% - 93.5% 96.7%
Iron 84.7% 83.4% 99.8% (100%) 98.9% 97.9% 100.0% - 99.9% 99.9%
Lamp 76.5% 82.0% 88.1% (96.8%) 99.3% 97.9% 99.5% - 99.5% 99.7%
Phone 54.0% 45.0% 74.2% (94.7%) 92.4% 90.8% 94.9% - 98.7% 99.5%

Average 62.7% 72.4% 83.0% (95.2%) 86.3% 89.9 % 91.3% 93.7% 92.6% 96.9%

Table 5. Quantitative evaluations on Occlusion LINEMOD dataset. We use
the ADD metric to evaluate the methods. For symmetric objects Egg Box and Glue, we
use the ADD-S metric. Note that, we summarize the pose estimation results reported
in the original papers on LINEMOD dataset. Baseline approaches: PoseCNN [41],
Pix2Pose [30], DPOD [43], PVNet [31], Single-Stage [19], HybridPose [35], GDRN [40].

Method PoseCNN Pix2Pose PVNet Single-Stage DPOD Hybrid GDRN Trans6D Trans6D+

Refinement × × × × ✓ ✓ × × ✓
Ape 9.6% 22.0% 15.8% 19.2% - 20.9% 46.8% 31.2% 36.9%
Can 45.2% 44.7% 63.3% 65.1% - 75.3% 90.8% 85.1% 91.6%
Cat 0.9% 22.7% 16.7% 18.9% - 24.9% 40.5% 38.3% 42.5%
Driller 41.4% 44.7% 65.7% 69.0% - 70.2% 82.6% 66.5% 70.8%
Duck 19.6% 15.0% 25.2% 25.3% - 27.9% 46.9% 35.0% 41.1%
Egg Box 22.0% 25.2% 50.2% 52.0% - 52.4% 54.2% 52.9% 56.3%
Glue 38.5% 32.4% 49.6% 51.4% - 53.8% 75.8% 54.3% 62.0%
Hole Puncher 22.1% 49.5% 39.7% 45.6% - 54.2% 60.1% 57.7% 61.9%

Average 24.9% 32.0% 40.8% 43.3% 47.3 % 47.5% 62.2% 52.6% 57.9%

same backbone, and also assess the performance of Trans6D-pure and Trans6D-
hybrid. We observe that (i) using Transformer instead of CNN to estimate 6D
parameters increased the accuracy from 75.04% to 87.73% when evaluated with
ADD(-S) metric on LINEMOD dataset. (ii) The Trans6D-Hybrid (87.73%) sig-
nificantly outperforms the Trans6D-pure(84.34%). The reason is that the pure
Transformer-based method divides the image into small patches, which seriously
impact the accuracy of regression tasks.
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Table 6. Quantitative evaluations on YCB-Video Datasets. We use 2D-Proj,
ADD AUC and ADD(-S) metrics. The threshold of the ADD(-S) metric is 2 cm. Note
that, we summarize the pose estimation results reported in the original papers on
LINEMOD dataset. State-of-the-art approaches: PoseCNN [41], DeepIM [25], Ameni
et al. [36], PVNet [31], Singel-Stage [20], GDR-Net [40]

Methods PoseCNN DeepIM PVNet Single-Stage GDR-Net Ameni et al. Trans6D Trans6D+

2D-Proj. - - 47.4% - - 55.6% 53.2% 62.4%

ADD AUC 61.3% 81.9% 73.4% - 84.4% 83.1% 82.5% 85.9%

ADD(-S) 21.3% - - 53.9% 60.1% 73.6% 67.7% 75.2%

Second, we propose the patch-aware feature fusion (PAFF) module, which is
used to predict dense 2D-3D correspondence maps. PAFF module decreases the
number of tokens without information loss via shifted windows, cross-attention,
and token pooling operations. We compare the impact of the three operations
and show the results in Table 2. As it can be seen that using the token pooling
operation only exhibits the worst performance since it will decrease the model’s
representation ability. When combining the cross-attention with either sliding
window or token pooling operations, the method has better performance than
combining the sliding window and token pooling. It is because that the cross-
attention can aggregate the local information. Therefore, combining those three
operations can avoid information loss and alleviate the impact of image division.
Moreover, cross-attention play a decisive role.

Third, we propose a pure Transformer-based pose refinement module. In ta-
ble 3, we compare our Trans6D+ with DPOD and DeepIM using the same initial
pose and number of iterations. Trans6D+ achieves almost 13% improvement on
the PVNet while DPOD only has 7% improvement.

4.5 Comparison with State of the Arts

Object 6D pose estimation on LINEMOD: In Table 4, we compare our
approach with state-of-the-art methods on LINEMOD Dataset. We use 15% of
each object sequence to train and the rest of the sequence to test on LINEMOD
dataset following other methods. The numbers in brackets are the results without
post-refinement.

We use Trans6D-pure as our baseline. From Table1 and Table 4, we can see
that Trans6D outperforms the baseline by 8.3% in ADD metric. Trans6D also
outperforms Pix2Pose by 20.2% predicts the 2D-3D correspondence by CNN
encoder, while we use Transformer to regress such correspondence. Trans6D+
improves the Trans6D by 4.3% and achieves the state-of-the-art performance.
Comparing to the second-best method GDR-Net [40] that using hybrid presen-
tation to estimate the 6D pose, our method outperforms it by 3.2% in ADD
accuracy. DPOD has two results, one is only using correspondence to estimate
the 6D pose and Trans6D outperforms it by 9.6%, the other is a result after
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Fig. 4. Qualitative pose estimation results on LINEMOD and Occlusion
LINEMOD dataset. Green 3D bounding boxes denote ground truth. Blue 3D bound-
ing boxes represent our results. Our results match ground truth well.

refinement and Trans6D+ outperforms it by 1.7%. In Figure 4, we provide a
visual comparison of predict pose versus ground truth pose.

Object 6D pose estimation on Occlusion LINEMOD: We use the model
trained on the LINEMOD dataset for testing on the Occlusion LINEMOD
dataset. Table 5 compares our method with other state-of-the-art methods [31,40]
on Occlusion LINEMOD dataset in terms of ADD metric. From Table 5, we
can see that Trans6D+ achieves a comparable accuracy (57.9%) and Trans6D
achieves 52.6%. The improved performance demonstrates that the proposed
method, enables Trans6D robust to partial occlusion.

Object 6D pose estimation on YCB-Video [41] dataset: YCB-Video
dataset contains 92 real video sequences for 21 YCB object instances. This
dataset is challenging due to the image noise and occlusions. By following PoseCNN,
we report the results on three metrics, 2D-Proj, ADD AUC and ADD(-S) met-
rics. From Table6, we can see that Trans6D outperforms the baseline, PoseCNN,
by 53.9% in ADD(-s) metric. Trans6D+ improves the Trans6D by 7.5% and
achieves the state-of-the-art performance. Comparing to the second-best method,
Ameni et al. [36] which also using pose refinement, our method outperforms it
by 1.6% in ADD(-s) accuracy and 2.8% in AUC of ADD metric.
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5 Conclusions

In this paper, we present a novel 6D object pose estimation framework build
upon Transformers. We first construct two Transformer-based baselines and
then compare their performance. One of the baselines uses pure Transformers
(Trans6D-pure), and the other integrates CNNs with Transformers (Trans6D-
hybrid). Then, we introduce two novel modules to improve the performance of
the Trans6D-pure. The first is the patch-aware feature fusion (PAFF) module,
which predicts the 2D-3D dense correspondence maps without information loss.
The second is the pure Transformer-based pose refinement (Trans6D+) mod-
ule, which iteratively refines the estimated pose. Our experiments demonstrate
that the proposed method (Trans6D) achieves state-of-the-art performance in
the LINEMOD and Occlusion LINEMOD datasets.

Furthermore, our method can be naturally extended to estimate the 6D ob-
ject pose from the point cloud because the point cloud is sequence data and
therefore suitable for Transformer. Despite the state-of-the-art performance, our
method is not memory-friendly due to stacking a lot of self-attention modules.
In future work, we plan to overcome the memory problem and extend Trans6D
to more challenging scenes.
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