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Abstract
G	protein-	coupled	receptors	(GPCRs)	are	valuable	therapeutic	targets	for	many	dis-
eases.	A	central	question	of	GPCR	drug	discovery	is	to	understand	what	determines	
the	agonism	or	antagonism	of	ligands	that	bind	them.	Ligands	exert	their	action	via	the	
interactions	in	the	ligand	binding	pocket.	We	hypothesized	that	there	is	a	common	set	
of receptor interactions made by ligands of diverse structures that mediate their ac-
tion	and	that	among	a	large	dataset	of	different	ligands,	the	functionally	important	in-
teractions	will	be	over-	represented.	We	computationally	docked	~2700 known β2AR	
ligands to multiple β2AR	structures,	 generating	 ca	75	000	docking	poses	and	pre-
dicted	all	atomic	interactions	between	the	receptor	and	the	ligand.	We	used	machine	
learning	(ML)	techniques	to	identify	specific	interactions	that	correlate	with	the	ago-
nist	or	antagonist	activity	of	these	ligands.	We	demonstrate	with	the	application	of	
ML	methods	that	it	is	possible	to	identify	the	key	interactions	associated	with	agonism	
or antagonism of ligands. The most representative interactions for agonist ligands 
involve	K972.68×67,	F194ECL2,	S2035.42×43,	S2045.43×44,	S2075.46×641,	H2966.58×58,	 and	
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1  |  INTRODUC TION

G-	protein-	coupled	 receptors	 (GPCRs)	 remain	 a	 therapeutically	
important family of proteins with over 100 receptors targeted by 
500 drugs approved for clinical use.1 The human β2-	adrenoceptor 
(β2AR)2,3 responds to stimulation by the endogenous agonist li-
gands	 adrenaline	 and	 noradrenaline	 by	 inducing	 Gs-	mediated	
cAMP	signaling	and	is	a	valuable	target	for	small	molecule	smooth	
muscle	 relaxants	 used	 to	 treat	 asthma	 and	 other	 pulmonary	 dis-
eases.4,5	 Endogenous	 agonist	 activity	 can	 be	 readily	 inhibited	 by	
so-	called	antagonist	drugs	 that	prevent	 receptor	 activation	by	oc-
cupying the binding pocket without activation and blocking agonist 
access.	 A	 large	 number	 of	 ligands	 have	 been	 developed	 to	 target	
β-	adrenoceptors	 (βAR)	 over	 the	 last	 60 years	 since	 the	 pioneering	
discovery	of	beta-	blockers	by	Sir	James	Black.5– 9

All	 GPCRs	 share	 a	 common	 architecture	 of	 a	 bundle	 of	 seven	
transmembrane	 helices	 (TMs),	 with	 the	 ligand	 binding	 pocket	 ac-
cessible	 from	 the	 extracellular	 space	 and	 an	 intracellular	 effector	
binding site that becomes available following transition into an ac-
tive receptor conformation.10	One	of	the	key	features	of	GPCRs	is	
that they are highly dynamic and adopt many distinct conformations 
that	 are	 important	 for	 the	 engagement	 of	 signaling	 partners,	 e.g.,	
activation	of	the	Gs	protein	or	arrestins.11 It is generally thought that 
ligands	control	GPCR	activity	by	preferentially	stabilizing	active	or	
inactive conformations.12	With	35	 reported	structures	with	13	di-
verse	ligands	in	inactive	and	active	states	reported,	β2AR	is	one	of	
the	best-	studied	GPCRs	from	a	structural	perspective.

Structure-	based	drug	design	has	become	an	integral	part	of	the	
modern	drug	discovery	process.	Approaches	to	link	ligand	structure	
to its activity are generally based on the ligand chemical structure 
(similar	 chemical	 structures	 have	 similar	 activity	 paradigms)	 or	 by	
considering the interactions between the ligand and the receptor. 
Structural	 Interaction	 Fingerprints	 that	 describe	 the	 interactions	
of ligands with proteins13– 15 have proven to be a very successful 
approach	to	score	binding	poses	of	 ligands.	A	number	of	different	
interaction	 fingerprints	 have	 been	 developed,	with	more	 complex	
ones that incorporate atomic interactions and different types of 
non-	covalent	 interactions	 having	 superior	 performance.16	 Several	
studies have attempted to link structural properties of the ligands 
and	the	interactions	they	make	to	the	receptor	to	their	functionality,	

based on available crystallographic structures and complemented 
with ligand docking17,18 or MD simulations.19 These studies show 
significant	promise	in	using	interaction	fingerprints	to	rationalize	the	
link	between	structure	and	function,	however,	the	results	of	these	
studies	were	limited	to	the	experimentally	available	structural	data	
that cover only a very small fraction of known β2AR	 ligands.	This	
limited their general ability to generate the new chemical knowledge 
needed	to	answer	the	key	question	in	the	drug	discovery	pipeline—	
what	is	the	next	molecule	to	make?

Ligands	 exert	 their	 action	 on	GPCRs	 via	 the	 interactions	 they	
make	 in	 the	 ligand	 binding	 pocket.	We	 hypothesized	 that	 despite	
the observed structural diversity of ligands targeting a particular re-
ceptor,	there	should	be	common	interacting	atoms	within	the	ligand	
binding	pocket	that	mediate	their	action.	Unfortunately,	the	35	ex-
perimentally determined structures is a very small dataset to obtain 
a comprehensive representation of the interaction pattern between 
ligands	and	the	receptor.	We	reasoned	that	among	a	large	dataset	of	
different	ligands	and	their	respective	binding	poses,	the	functionally	
important atomic interactions the ligands make with a particular re-
ceptor	will	be	over-	represented.	To	investigate	this	hypothesis,	we	
assembled a database of ~2700 known β2AR	ligands	and	computa-
tionally	docked	 them	to	multiple	experimentally	determined	β2AR	
structures,	generating	ca	75	000	docking	poses	(Figure 1A,B).	This	
produced	 a	 large	 synthetic	 dataset	 suitable	 for	Machine	 Learning	
applications.	For	each	of	the	docking	poses,	we	generated	a	detailed	
Atomic	Interaction	Fingerprint	(AIF),	which	comprises	a	list	of	all	the	
pairs of atoms involved in the interaction between a receptor and 
a ligand and a classification of each pairwise interaction as one of 
fifteen	types	of	bond.	In	total,	there	were	ca	1100	possible	interac-
tion descriptors that we interchangeably call features (Figure 1C)	in	
our	dataset.	Using	pairwise	correlation	and	Machine	Learning	(ML)	
approaches,	we	identified	specific	interactions	between	the	ligands	
and the β2AR	that	correlated	with	their	reported	agonist	or	antago-
nist activity at the receptor (Table S1).	In	addition	to	a	common	set	of	
interactions	that	were	present	for	both	ligand	types,	agonists	make	
specific	contacts	with	the	amino	acid	residues	H932.64×63

,	K97
2.68×67

, 
S2035.42×43

,	S204
5.43×44

,	S207
5.46×461

,	H296
6.58×58	and	K3057.32×31 in 

transmembrane	helices	TM2,	TM5,	TM6,	and	TM7	while	antagonists	
make	specific	interactions	with	W2866.48×48	and	Y3167.43×42 in TM6 
and TM7. This approach successfully identifies the key features of 

K3057.32×31.	Meanwhile,	the	antagonist	 ligands	made	interactions	with	W2866.48×48 
and	Y3167.43×42,	both	residues	considered	to	be	 important	 in	GPCR	activation.	The	
interpretation	of	ML	analysis	in	human	understandable	form	allowed	us	to	construct	
an	exquisitely	detailed	structure-	activity	relationship	that	identifies	small	changes	to	
the ligands that invert their pharmacological activity and thus helps to guide the drug 
discovery process. This approach can be readily applied to any drug target.

K E Y W O R D S
adrenoceptor,	docking,	drug	discovery,	GPCRs,	machine	learning,	structure-	activity	
relationship

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=29&familyId=4&familyType=GPCR
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the ligands in terms of the individual interactions they make with the 
receptor	to	exert	their	pharmacological	action.

Importantly,	we	were	able	to	discover	more	subtle	relationships	
where small changes to the ligand result in significant changes to 

their	pharmacology,	the	so-	called	activity cliffs encountered in every 
drug discovery program. This method represents a novel strategy for 
understanding the molecular mechanism of drug action on receptors 
and provides a valuable tool to guide the drug design process.

F I G U R E  1 Workflow	of	the	project.	(A)	Source	of	beta-	adrenoceptor	ligands	available	at	open	access	repositories	which	comprise	our	
2683	compound	dataset.	(B)	Molecular	docking	of	test	ligands	to	active	and	inactive	β2AR	structures	was	performed	using	Autodock	Vina.	
(C)	Interatomic	interaction	fingerprint	(AIF)	calculations	were	made	using	Arpeggio.	In	the	case	of	the	“filtered	dataset”,	the	generated	AIFs	
were filtered based on the presence of ionic interactions with D1133.32×32	and	N3127.39×38.
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2  |  MATERIAL S AND METHODS

2.1  |  Dataset preparation

A	dataset	was	compiled	using	 the	primary	open	access	 reposito-
ries	GPCRdb,20,21	ChEMBL,22	 ZINC,23	DrugBank,24	 and	Guide	 to	
Pharmacology.25	This	dataset	yielded	a	total	of	2643	unique	β2AR	
ligands,	 of	 which	 1317	 have	 reported	 pharmacological	 action,	
while 1326 compounds are binders with undetermined activity 
profiles.	 We	 classify	 ligands	 with	 known	 activity	 as	 either	 ago-
nists	 (including	partial	and	full	agonists)	or	antagonists	 (including	
inverse	agonists).

Each	 ligand	 was	 assigned	 an	 internal	 ID	 (ranging	 from	 1	 to	
2643),	and	 its	corresponding	SMILES	string	 (line	notation	encod-
ing	 its	molecular	 structure)	 and	 pharmacological	 action	 (agonist/
antagonist/binder)	 were	 retrieved	 from	 the	 relevant	 databases.	
The	 International	Chemical	 Identifier	key	 (InChIKey)	was	used	as	
a	unique	identifier	to	distinguish	between	ligands	across	the	data-
set.26	 Both	 InChIKey	 and	 physicochemical	 properties	 appended	
for	all	 compounds	were	acquired	using	 the	software	Open	Babel	
v3.1.1.27

2.2  |  Protein structures and ligand 
preparation and docking

The	active-	state	protein	coordinates	were	extracted	from	two	crys-
tal structures of human β2AR	bound	to	an	ultrahigh-	affinity	agonist	
(BI-	167107)	coupled	with	the	Gs	protein28	or/and	with	a	G	protein-	
mimicking	 nanobody	 (Nb6B9)29	 from	 the	Protein	Data	Bank	 (PDB	
code:	3SN6	and	4LDE,	respectively).	The	inactive-	state	protein	co-
ordinates	were	 extracted	 from	 the	 human	β2AR	bound	 to	 the	 in-
verse	agonist	carazolol	(PDB	code:	5JQH).30

Receptor	 structures	were	 aligned	 to	 use	 the	 same	 grid	 box	 of	
22 × 22 × 32	 Å	 at	 the	 orthosteric	 binding	 site,	 protonated,	 and	
charged,	yielding	a	protein	input	file	for	subsequent	docking	experi-
ments	using	UCSF	Chimera.31

The	SMILES	representation	of	ligands	along	with	their	internal	ID	
were	protonated	and	converted	to	a	spatial	data	file	(SDF)	and	pdbqt	
formats using Obabel.

The	 semi-	flexible	molecular	 docking	was	 carried	out	 using	 the	
software	AutoDock	Vina32 and generated up to 10 poses for every 
compound.	 In	 total,	 2643	 compounds	 were	 docked	 in	 three	 β-	
adrenoceptor	structures,	yielding	almost	27	000	docking	poses.

2.3  |  Interaction fingerprint 
calculations and filtering

The	inter-	atomic	receptor-	ligand	interaction	fingerprints	(AIFs)	were	
calculated for all docking poses generated for each compound using 
the	software	Arpeggio33	executed	in	Docker	environment,34 a soft-
ware container platform. This method accounts for the presence 

of	up	to	15	subtypes	of	interatomic	interactions,	classified	by	atom	
type,	distance,	and	angle	constraints.	The	output	was	presented	as	
binary	values,	with	a	1	denoting	the	presence	of	a	particular	defined	
interaction and 0 indicating an absence.

A	Python	script	was	written	to	filter	the	Arpeggio	results	(to	gen-
erate	the	“filtered	dataset”)	by	 imposing	minimum	constraints	that	
enforced certain features deemed essential for β2AR	 ligand	 bind-
ing,	which	eliminated	all	irrelevant	binding	poses	(around	50%	rows).	
Criteria important for binding were based on prior knowledge de-
rived	from	the	literature,	in	particular	the	presence	of	the	ionic/polar	
interaction between D1133.32	and	N3127.39 with the ethanolamine 
moiety of the ligands.

2.4  |  Generation of interaction matrix

A	Python	script	was	written	to	process	each	docking	pose	to	gen-
erate a single MxN	matrix	 for	 each	PDB,	where	M is ligand poses 
(samples	 as	 “ligand	 internal	 ID_docking	 pose	 number”)	 and	N are 
the	specific	atomic	 interaction	(features	as	“receptor	residue	num-
ber/interacting	atom—	ligand	interacting	atom	and	interaction	type”	
(e.g.	“lig	752_04”	and	“301/O—	N	Polar,”	respectively),	present	in	the	
whole ligand set. The value 1 corresponds to the occurrence of a 
particular	type	of	interaction	and	0	to	the	non-	occurrence	of	a	par-
ticular	 type	of	 interaction.	As	 the	AIF	 files	generated	by	Arpeggio	
only	contained	the	interaction	present	for	a	particular	docking	pose,	
the imputation of missing data was handled by setting any undefined 
(NaN)	values	to	0.	Finally,	we	excluded	the	three	subtypes	of	inter-
actions	reported	by	Arpeggio:	Clash,	VdW	Clash,	and	Proximal	from	
subsequent	analysis	as	they	provided	very	little	information	but	rep-
resented	around	60%	of	the	columns.	We	also	included	pharmaco-
logical	action	label	(“agonist”	or	“antagonist”,	if	known,	or	“binder”	if	
not	known)	for	each	ligand	binding	pose	in	the	same	data	table	as	an	
additional column.

2.5  |  Descriptive statistical analysis

A	descriptive	statistical	analysis	of	the	frequency	of	the	interatomic	
interactions	was	performed	using	 a	Python	 script.	 In	 this	manner,	
the	most	 frequently	occurring	features	 (those	observed	 in	at	 least	
10%	of	all	docking	poses)	contributing	to	agonism	and	antagonism	
were clearly identified across all interaction types and collated for 
further analysis. This resulted in the reduction of the number of fea-
tures from ca 1100 to ca 100.

Subsequently,	 we	 computed	 the	 pairwise	 correlation	 between	
the columns representing atomic interactions and the column rep-
resenting pharmacological action using Pearson's correlation coeffi-
cient (r)	method.	The	resulting	value	r	for	each	interaction	(feature)	
reflects how well it is correlated with the pharmacological action (ag-
onism	or	antagonism).	Plots,	graphs,	and	tables	were	generated	with	
Excel,	and	statistical	significance	was	determined	using	an	unpaired	
t-	test	using	Prism	8.

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=12065
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2.6  |  Machine learning dataset preparation

The	dataset	was	then	randomly	shuffled	and	split,	via	stratification,	
into	cross-	validation	and	final	hold-	out	datasets.	The	cross-	validation	
set was used for training and validation during hyperparameter opti-
mization.	The	hold-	out	dataset	comprised	20%	of	the	original	data-
set and allowed us to gauge whether the validation scores were good 
estimations	 of	 model	 performance	 when	 generalizing	 to	 unseen	
data.	The	hold-	out	set	was	not	used	during	any	training	or	optimiza-
tion procedures.

2.7  |  Model selection

2.7.1  |  Performance	metric

For	the	filtered	dataset	the	Random	Forest	classifier	and	for	the	un-
filtered	dataset	XGBoost	classifier	were	used.	Matthews	correlation	
coefficient	(MCC)	was	used	as	the	performance	metric	for	all	mod-
els.35 The MCC metric is defined as follows:

	where	TP	is	the	number	of	true	positives,	TN	the	number	of	true	neg-
atives,	FP	the	number	of	false	positives,	and	FN	the	number	of	false	
negatives. The MCC for binary classification weights both positive and 
negative	classes	equally,	while	also	being	robust	to	severe	class	imbal-
ances.	A	value	of	+1	indicates	a	perfect	positive	correlation,	that	is	a	
total	agreement	between	prediction	and	observation.	An	MCC	score	
of	0	indicates	no	correlation,	that	is	the	classifier	performs	no	better	
than	a	random	coin	flip.	Finally,	−1	indicates	a	perfect	negative	correla-
tion,	that	is	a	total	disagreement	between	prediction	and	observation.

2.7.2  | Model	performance	estimation

Model	 performance	was	 validated	 using	 repeated-	stratified-	k-	fold	
cross-	validation.	Cross-	validation	entails	splitting	the	dataset	into	k 
equally	sized	partitions,	termed	folds.	One	of	the	folds	is	extracted	
and used for validating a model on unseen data. The remaining folds 
are then used to train the model. This process is then repeated using 
each of the k folds as the validation set. The optimal model is the one 
that	has	the	best	performance	on	average	across	all	k-	folds.	Cross-	
validation generally provides a less optimistic estimation of model 
generalizability	on	unseen	data,	which	is	finally	tested	on	the	hold-
out	 set.	Due	 to	 class	 imbalances	 in	 the	data,	 stratification	 is	 used	
to ensure that the original distribution of classes is maintained in 
each	fold,	thus	preventing	any	fold	from	being	populated	by	a	single	
class.36	Model	estimation	can	be	noisy	and	so	by	performing	cross-	
validation over many repeats one obtains a more precise estimation 
of	true	model	performance.	Bootstrap	resampling	was	used	to	es-
timate model uncertainty.37 Confidence intervals were calculated 

with	 respect	 to	 a	99%	confidence	 level.	Bayesian	hyperparameter	
optimization	(BHO)	was	utilized	to	determine	high-	performing	model	
parameter	configurations	when	tested	on	unseen	data.	BHO	was	set	
to	maximize	the	mean	MCC	across	K-	folds	and	repeats,	model	un-
certainty	was	then	calculated	using	optimized	models	only.

Random forest classifier hyper parameters

Hyperparameter name Hyperparameter value

Criterion Gini

Estimators 2000

Max	depth 5

Max-	features 5

Splitter Best

Minimum samples split 2

Minimum samples leaf 1

Minimum weighted fraction leaf 0

Maximum	leaf	nodes Unlimited

Minimum impurity split None

Minimum impurity decrease None

XGBoost hyper parameters

Hyperparameter name Hyperparameter value

Eta 0.4306

gamma 0.2458

Learning	rate 0.05873

Max	delta	step 7

Max	depth 8

Minimum child weight 1.246

Number	of	estimators 1150

Scale	positive	weight 1

Subsample 0.7532

All	 other	 hyperparameters	 for	 XGBoost	 that	 are	 not	 specified	
were	kept	at	their	default	values	according	to	the	XGBoost	API	guide	
(https://xgboo	st.readt	hedocs.io/en/lates	t/param	eter.html).

2.7.3  | Model	feature	importance	analysis

The	 most	 important	 atomic	 interactions,	 for	 classifying	 agonist	
or	 antagonist	 ligands,	 were	 identified	 using	 the	 Shapley	 Additive	
Explanations	 (SHAP)	 method.38	 Shapley	 values	 are	 based	 upon	
coalition game theory and inform one how to fairly distribute the 
prediction	 of	 a	model	 among	 the	 features.	 The	 Shapley	 value	 for	
one feature is the average marginal contribution of a feature value 
across	 all	 the	possible	 combinations	of	 features.	More	 concretely,	
the	Shapley	value	assigns	an	importance	to	each	feature	by	calculat-
ing the effect on model prediction when including a particular fea-
ture compared to the model prediction when the feature is withheld. 
Mathematically	this	can	be	formalized	as:

MCC =
TP × TN − FP × FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

https://xgboost.readthedocs.io/en/latest/parameter.html


6 of 14  |     JIMÉNEZ-ROSÉS et al.

 where 𝑆 refers to a subset of features that does not contain the fea-
ture for which we are calculating 𝜙𝑖. 𝑆 ⋃ 𝑖 is the subset that contains 
features in 𝑆 and feature 𝑖.	Finally,	𝑆 ⊆ 𝑀/𝑖 represents all sets 𝑆 that are 
subsets of the total set of features 𝑀,	excluding	feature	𝑖. The compu-
tation	time	increases	exponentially	with	the	number	of	features;	thus	
we	used	the	TreeSHAP	algorithm	that	approximates	SHAP	values	for	
tree-	based	machine	 learning	models	 in	polynomial	 time.39 The main 
motivations	for	using	the	SHAP	feature	importance	method	over	other	
popular	methods,	such	as	Gini	and	Permutation	methods,	is	due	to	the	
following:

Consistency:	 The	 Gini	 feature	 importance	 method	 is	 sus-
ceptible to producing inconsistent feature importances that are 
biased to the specific ordering of features specified by their po-
sition,	as	split	nodes,	in	the	tree.	TreeSHAP	method	is	equivalent	
to averaging differences in model predictions over all possible 
orderings of the features and thus does not suffer from such 
inconsistencies.

Granular	 Interpretability:	 Although	 permutation	 importance	
is not biased to the specific structure of decision trees it only pro-
vides	a	global	understanding	of	the	most	important	features.	With	
TreeSHAP,	 observations	 get	 their	 own	 set	 of	 SHAP	 values	 and,	
therefore,	we	can	understand	feature	 importance	on	a	per	sample	
basis.

2.7.4  |  Determining	the	optimal	number	of	repeats

There	 is	an	exponential	relationship	between	the	number	of	times	
one	has	to	repeat	bootstrap	or	cross-	validation	and	the	level	of	pre-
cision to within which one would like to measure true model per-
formance.	This	leads	to	a	trade-	off	between	the	precision	and	time	
complexity	of	model	performance	estimation.	We	thus	estimate	the	
optimal	number	of	repeats	to	use	for	Bootstrap	and	cross-	validation	
resampling methods to an acceptable level of precision as:

where 𝑧	 is	the	ordinate	on	the	Normal	distribution	curve	that	corre-
sponds	to	a	particular	level	of	confidence	we	have	in	our	estimation,	
denoted α. 𝜎	is	the	population	standard	deviation,	and	𝛿 is the specified 
precision	of	 the	estimate.	We	estimate	 the	population	 standard	de-
viation	via	repeated	bootstrap	resampling,	thus	each	estimate	of	the	
number of repeats is specific to the variance of each model and its hy-
perparameter configuration (https://www.itl.nist.gov/div89 8/handb 
ook/ppc/secti on3/ppc333.htm).

A	 precision	 of	 1%	 (Marginal	 Error	=	 0.01)	was	 selected	 for	 all	
resampling	methods	(Figure	S1).	Therefore,	a	minimum	of	13	repeats	
for	 both	 the	RFC	 and	XGBoost	were	 used	 during	 cross-	validation	
and bootstrap resampling.

2.8  |  Nomenclature of targets and ligands

Key	 protein	 targets	 and	 ligands	 in	 this	 article	 are	 hyperlinked	
to corresponding entries in http://www.guide topha rmaco logy.
org,	 the	 common	portal	 for	 data	 from	 the	 IUPHAR/BPS	Guide	 to	
PHARMACOLOGY,3 and are permanently archived in the Concise 
Guide	to	PHARMACOLOGY	2021/22.2

3  |  RESULTS

3.1  |  β2AR agonists are on average bigger and 
more lipophilic compared to antagonists

To construct our dataset of currently known β2AR	 ligands	 we	
searched	 all	 available	 open	 access	 repositories	 such	 as	 GPCRdb,	
ChEMBL,	DrugBank,	Guide	to	Pharmacology,	and	ZINC.	The	curated	
database	included	2683	unique	β2AR	ligands,	of	which	1317	had	re-
ported pharmacological action (987 agonists and 330 antagonists/
inverse	 agonists).	 The	 remaining	 1366	 were	 classified	 as	 “known	
binders”	with	no	assigned	pharmacological	activity	(Figure 1A).

To understand if there are any obvious differences between 
agonists	and	antagonists,	we	compared	their	physicochemical	 (PC)	
properties	 predicted	 using	OpenBabel	 software.27	We	 found	 that	
many PC property values for agonists were statistically different 
from those for antagonists (unpaired t-	test,	p < .0001),	for	example,	
molecular	weight	 (MW)	 and	 lipophilicity	 (logP).	 The	MW	of	~70%	
of	agonist	ligands	was	in	the	350–	550 g/mol	range,	with	an	average	
of	 469 ± 108 g/mol.	 In	 contrast,	 the	 antagonist	 ligands	 were	 typi-
cally	smaller,	with	~70%	within	a	range	of	200–	400 g/mol	(average	
358 ± 108 g/mol).	 The	 logP	 values	 of	 ~70%	 of	 agonists	 are	 in	 the	
range	3–	7,	with	an	average	of	4.6 ± 1.6,	whereas	~70%	of	antagonist	
ligands	had	logP	values	in	the	range	0–	5	(average	3.1 ± 1.4).	Taken	to-
gether,	the	β2AR	agonists	profiled	here	tended	to	be	more	lipophilic	
and	 bigger	 in	 size.	On	 the	 contrary,	 endogenous	 agonists	 adrena-
line	and	noradrenaline	are	small	and	water-	soluble,	suggesting	that	
size	and	lipophilicity	are	not	an	intrinsic	prerequisite	of	all	agonists.	
We	observed	an	identical	linear	correlation	between	the	molecular	
weight and lipophilicity for both agonists and antagonists (Figure 2),	
suggesting that bigger compounds are more lipophilic. The likely 
explanation	 is	 that	 drug	discovery	 efforts	 have	 focused	on	devel-
oping β2AR	agonists	formulated	for	the	treatment	of	asthma.	They	
are delivered to the lungs via inhalation with higher hydrophobicity 
increasing	 their	 duration	of	 action	 at	 the	 target	 tissue.	 Therefore,	
although	 the	 observed	 differences	 in	 size	 and	 hydrophobicity	 are	
present	in	our	data	set,	they	are	unlikely	to	have	a	functional	role.

3.2  |  Generating atomic interaction fingerprints 
based on molecular docking poses

To obtain structural information on how ligands in the curated 
dataset	 interact	 with	 the	 receptor	 (i.e.,	 ligand	 binding	 poses),	 we	

𝜙i =
∑

S⊆M�i

|S| ! (|M| − |S| − 1) !

|M| !
[
f(S ∪ i) − f(S)

]
,

n = z2
a

(
�2

�2

)

https://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm
https://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm
http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/
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performed	molecular	docking	using	the	open-	source	AutoDock	Vina	
software.32	For	performance	reasons,	AutoDock	Vina	uses	a	semi-	
rigid	docking	approach	where	the	ligand	is	flexible	but	the	receptor	
is	rigid.	In	nature,	they	are	both	dynamic	but	this	has	the	potential	to	
create a very large conformational space that is impossible to enu-
merate,	and	the	answers	have	to	be	learned	from	a	limited	number	of	
examples.	We	included	three	representative	β2AR	structures	in	our	
study:	 the	active	conformational	states	 (i)	PDB	3SN6	stabilized	by	
the	Gs	protein28	and	(ii)	PDB	4LDE	stabilized	by	a	nanobody,29 and 
(iii)	the	inactive	conformational	state	PDB	5JQH.30

We	 obtained	 ~75	 000	 binding	 poses	 in	 total,	 ~25 000 poses 
for	 each	 PDB	 (up	 to	 10	 poses	 for	 ligand,	 for	 2683	 compounds)	
(Figure 1B).	Each	ligand	binding	pose	was	used	to	generate	an	atomic	
interaction	fingerprint	(AIF)	using	Arpeggio	software,33 in total we 
obtained ~75	000	AIF	files	(Figure 1C).	Each	AIF	included	~60	unique	
interactions on average between the atoms of the ligand and atoms 
of	the	receptor.	When	the	type	of	atoms	of	each	ligand	and	the	type	
of	bond	formed	are	considered,	this	resulted	in	over	1100	possible	
types of interaction across the complete ligand dataset.

It	is	important	to	consider	that	the	obtained	AIF	fingerprint	data-
set contains noise because not all of the predicted docking poses 
are likely to be relevant or functionally important. The limitations 
of the ligand docking algorithms result in multiple alternative bind-
ing	poses	with	very	similar	“quality	scores”,	with	only	one	of	the	top	
ten	 solutions	 likely	 to	 correspond	 to	 the	 experimentally	 observed	
binding	pose.	While	crystallographic	structures	typically	represent	
one	ligand	binding	pose,	they	tend	to	represent	the	lowest	energy	
state	of	the	system.	On	the	contrary,	molecular	dynamics	simulation	
and	biophysical	experiments	suggest	that	ligands	are	dynamic	when	
bound to the receptor.40	Therefore,	it	is	important	to	consider	mul-
tiple	ligand	docking	poses	in	the	analysis.	We	rationalized	that	in	a	
large	dataset	of	different	ligands	and	their	respective	binding	poses,	
the functionally important atomic interactions between the ligands 
and	the	receptor	will	be	over-	represented	while	the	influence	of	the	
noise	(irrelevant	binding	poses)	would	average	out.

We	 improved	 the	 signal-	to-	noise	 ratio	 within	 our	 dataset	 by	
excluding	 irrelevant	 binding	 poses	 using	 prior	 knowledge	 based	

on crystallographic data (Figure 1C,	 filtering	 panel).	 The	 majority	
(ca	97%)	of	β2AR	ligands	have	a	prevalent	β-	hydroxy-		amine	motif	
that	makes	 specific	 interactions	with	 the	 receptor.	We,	 therefore,	
excluded	poses	 that	did	not	display	 this	 ionic	 interaction	between	
the	oxygen	of	D1133.32×32 and the nitrogen atom of ethanolamine 
of	the	ligands	and	the	hydrogen	bond	between	the	oxygen	atom	of	
N3127.39×38	and	either	the	NH	or	beta-	hydroxyl	groups	in	the	ligand	
scaffold;	these	have	been	observed	in	every	experimental	crystallo-
graphic structure of the β2AR.	After	applying	this	filter,	we	obtained	
~31 500 atomic interaction files (~10	500	poses	and	AIF	files	for	each	
PDB),	reducing	the	size	of	the	original	dataset	by	~55%.	We	refer	to	
this	as	the	“filtered	dataset.”	As	the	filtering	step	also	removed	~3%	
of ligands in our dataset that did not contain the β-	hydroxy-	amine	
motif	or	did	not	produce	 suitable	poses,	we	have	also	 included	 in	
our	analysis	the	“full	dataset”	consisting	of	~75	000	AIF	files	with	no	
filtering for comparison.

3.3  |  Data- driven analysis reveals key interactions 
that drive agonism and antagonism of ligands

We	constructed	a	ligand-	receptor	interaction	matrix,	organizing	the	
atom-	atom	 interactions	 and	 their	 types	 in	 the	 columns	 and	 each	
binding	pose	in	rows	for	each	PDB.	We	defined	the	ligand	binding	
site as all residues that interact with at least one ligand binding pose 
in the dataset resulting in 30 residues in total (Table S2).	The	atoms	
of the ligand binding site provide a constant reference coordinate 
system	to	describe	ligand-	receptor	interactions.	We	defined	atomic	
interaction	 between	 specific	 atoms	 of	 the	 receptor,	 the	 specific	
atom	(C,	N,	O,	etc)	 in	the	 ligand,	and	the	nature	of	 the	 interacting	
bond	 (polar,	 ionic,	 hydrophobic,	 etc).	 This	 strategy	 allowed	 us	 to	
encode	 the	 ligand-	receptor	 interaction	matrix	 that	 accommodates	
diverse ligands irrespective of their structural scaffold.

Using	Pearson's	pairwise	correlation	between	the	 independent	
variables describing the presence or absence of an atomic inter-
action and the dependent variable denoting agonist/antagonist 
properties	of	the	 ligands,	we	 identified	atom-	atom	interactions	 (or	

F I G U R E  2 Physicochemical	(PC)	
properties of the ligands (agonist 
in	blue	and	antagonist	in	orange)	
predicted	using	OpenBabel	software.	
Correlation between lipophilicity and 
molecular	weight.	Spearman	correlation	
coefficient is 0.62 for agonist and 0.76 for 
antagonists.
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features)	that	are	associated	with	agonism	or	antagonism	in	the	fil-
tered	dataset.	From	about	100	commonly	observed	interactions,	we	
find that the most representative interactions for agonist ligands 
are	 hydrophobic/aromatic	 contacts	 involving	 K972.68×67,	 F194ECL2,	
H2966.58×58,	 and	 K3057.32×31 and polar/ionic/hydrogen bond con-
tacts	 with	 S2035.42×43,	 S2045.43×44,	 S2075.46×641,	 and	 H2966.58×58. 
The antagonists made specific hydrophobic/aromatic contacts with 
W2866.48×48	 and	 Y3167.43×42 and polar/ionic/hydrogen bond con-
tacts	with	Y3167.43×42 (Figure 3A and Table S3).

While	the	majority	of	interactions	had	the	same	impact	on	re-
ceptor	 function	 (mediating	agonism	or	antagonism)	 for	all	atoms	
of	the	individual	residue,	in	some	cases	(D1133.32×32,	D19245.51×51,	
F19345.52×52,	 T195ECL2,	 F2896.51×51,	 F2906.52×52,	 Y3087.35×34,	
N3127.39×38)	this	depended	on	the	individual	atoms	of	the	residue	
and the nature of the interacting bond (Table S3).	 For	 example,	
the	 polar/ionic/hydrogen	 contact	 of	 the	 carbonyl	 oxygen	 (OD1,	
as	defined	by	the	Protein	Data	Bank	format41)	of	D1133.32×32 with 
an	oxygen	atom	of	a	ligand	is	predictive	of	agonism	while	interac-
tion with a nitrogen atom is predictive of antagonism. Contacts 
made	by	hydroxyl	oxygen	(OD2)	of	D1133.32×32 have the opposite 
effect: interaction with a nitrogen atom of the ligand corresponds 
to	agonism,	while	interaction	with	an	oxygen	atom	results	in	an-
tagonism.	 In	 another	 example,	 polar	 contacts	 of	 the	 sidechain	
nitrogen	 (ND2)	 of	 N3127.39×38	 with	 oxygen	 atoms	 in	 the	 ligand	
corresponded to agonism while interaction with nitrogen leads to 
antagonism.

The	 full	 dataset	 was	 a	 more	 complex	 challenge	 as	 it	 contains	
more noise in terms of the number of different poses and also a more 
diverse	 range	 of	 ligands.	 Nonetheless,	 we	 also	 observed	 around	
100	 common	 interactions,	 which	 were	 mostly	 the	 same	 as	 those	
determined	 for	 the	 filtered	dataset.	However,	 several	 interactions	
changed their relative importance (Figure 3B);	for	example,	the	im-
portance	of	S2045.43×44	as	a	determinant	of	agonism	was	reduced,	
while	W3137.40×39	became	more	predictive	of	agonism.	However,	the	
core	 set	 of	 agonist-	associated	 interactions	made	with	 S2035.42×43,	
S2075.46×461,	and,	F194ECL2,	H2966.58×58,	K3057.32×31,	and	K972.68×67 
remained the same.

To validate the performance of the Pearson's pairwise correla-
tion,	we	computed	the	maximum	Matthews	Correlation	Coefficient	
(MCC)	which	measures	the	quality	of	binary	classifications	when	the	
classes	are	of	different	sizes	as	in	our	case	(ca	75%	are	agonists).	For	
the	filtered	dataset,	taking	the	maximum	MCC	with	a	cut-	off	score	
of	0.37,	we	obtained	a	pharmacological	classification	(agonist	or	an-
tagonist)	with	a	MCC	of	0.43	which	corresponds	to	the	accuracy	of	
prediction	of	79%	(Figure	S2A).	For	the	full	dataset	(cut-	off	=	0.51),	
the	 MCC	 and	 accuracy	 decreased	 to	 0.29	 and	 67%,	 respectively	
(Figure	 S2B).	An	 important	 consideration	 for	 interpretation	of	 the	
prediction accuracy is that the training dataset may contain errors: 
compounds	that	are	“wrongly”	assigned	to	a	particular	class	(e.g.,	ag-
onist	or	antagonist).	Therefore,	we	would	not	expect	the	predictors	
to	be	100%	accurate	during	the	validation	step.

As	the	pairwise	correlation	approach	 identifies	the	relative	 im-
portance	 of	 individual	 interactions,	we	 applied	ML	 strategies	 (see	

methods	for	details)	that	can	detect	more	complex	patterns	 in	the	
data	than	pairwise	correlation	analysis.	We	trained	a	Random	Forest	
Classifier	(RFC)42	on	the	filtered	dataset	and	XGBoost43 on the full 
dataset.	RFC	constructs	a	multitude	of	decision	trees	and	averages	
them	to	improve	the	predictive	performance	and	control	overfitting,	
reaching	MCC	values	in	the	training	of	0.81	and	an	accuracy	of	92%	
on	the	filtered	dataset	(Figure	S3 and S5A).	The	XGBoost	algorithm	
that	 iteratively	 constructs	 optimized	 decision	 trees	 guided	 by	 the	
results of the previous steps performed remarkably well on the full 
dataset	(Figure	S4 and S5B),	with	a	prediction	performance	on	the	
holdout	set	of	0.78	MCC	and	93%	accuracy	after	full	Bayesian	opti-
mization.	This	suggests	that	there	are	predictive	patterns	in	both	the	
filtered and full datasets not captured by a simple predictor based on 
pairwise correlations.

It	 is,	 however,	 a	 considerable	 challenge	 to	 interpret	 what	 the	
ML	algorithms	have	actually	learned.	We	extracted	the	feature	im-
portance	for	RFC	trained	on	the	filtered	dataset	(Figure 4A,B)	and	
the	 feature	 importance	 for	 XGBoost	 trained	 on	 the	 full	 dataset	
(Figure 4C,D),	using	the	Shapley	Additive	Explanations	(SHAP)	val-
ues which reflect the contribution of each feature to the prediction. 
In	most	cases,	the	presence	of	a	particular	interaction	is	predictive	of	
agonism	or	antagonism.	However,	in	a	minority	of	cases,	the	absence	
of	the	interaction	was	more	important	for	predictions	(e.g.,	193/CB-	-
1/C	hydrophobic).

Overall,	 while	 the	 relative	 order	 of	 importance	 of	 individual	
features	 varied	 depending	 on	 the	model,	we	 observed	 the	 same	
set of interactions that were predictive of agonism or antagonism 
for both models (Table S4).	The	application	of	pairwise	correlation	
analysis	 and	ML	methods	 allowed	us	 to	 identify	 the	 key	 interac-
tions associated with agonism or antagonism of ligands (Figures 3 
and 5).

4  |  DISCUSSION

While	an	observation	that	on	average	agonists	are	larger	and	more	
hydrophobic could potentially be used to distinguish them from an-
tagonists in the βAR	 ligand	dataset,	 the	pharmacological	action	of	
ligands	on	GPCRs	is	far	more	specific	than	a	simple	function	of	their	
size	or	hydrophobicity.

4.1  |  Specific ligand- receptor interactions 
determine their pharmacological activity

While	ML	algorithms	can	successfully	classify	compounds	into	ago-
nists	and	antagonists,	understanding	what	their	decision	is	based	on	
and translating this information into a language humans can under-
stand is crucial for their usefulness for drug discovery.44	 Studying	
the ligand binding poses of thousands of ligands docked in the β2AR	
binding	 pocket	 allowed	 us	 to	 identify	 the	 key	 ligand-	receptor	 in-
teractions which dictate a molecule's propensity to cause agonism 
or antagonism. The structurally diverse nature of the test set that 
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consisted of all ligands with reported activity in publicly accessible 
databases	allowed	us	to	 identify	several	 “hot	spots”	mediating	the	
agonism or antagonism of ligands acting on β2AR.	 Agonism	 was	
mediated by residues in TM2 and TM5 and further facilitated by 
residues in TM6 and TM7. It is entirely plausible that certain ligands 
can successfully pull these TM regions together causing receptor 
activation	in	the	process.	In	contrast,	our	data	suggest	that	antago-
nism	is	mediated	by	the	interaction	of	ligands	with	W2866.48×48,	the	
so-	called	toggle	switch,	that	has	 long	been	proposed	to	play	a	key	
role	in	the	activation	of	GPCRs.45,46 The second mediator of antago-
nism	is	Y3167.43×42	which	 is	 involved	 in	the	so-	called	3–	7	 lock	that	
has	previously	been	identified	as	 important	for	GPCR	activation.47 
Engaging	these	key	residues	in	the	ligand	binding	pocket	likely	pre-
vent the conformational rearrangements necessary for activation of 
the receptor.

4.2  |  Potential for developing more fine- grained 
models of ligand activity

While	the	assembled	data	classify	compounds	as	agonist	or	antago-
nist,	the	pharmacological	activity	of	compounds	covers	a	spectrum	
from	a	very	strong	antagonist	(aka	inverse	agonist)	to	that	of	a	very	
strong	agonist	(aka	full	agonist).	Another	class	of	GPCR	ligands,	so-	
called	 biased	 ligands,	 changes	 the	 balance	 between	 activating	 G	
protein	and	arrestin	signaling	pathways,	with	a	potential	to	increase	
their therapeutic benefits.11,48 It is likely that such partial and biased 
ligands	would	also	 show	a	distinct	AIF	 that	 is	 somewhat	different	
from	the	all-	inclusive	agonist	AIF	we	have	identified	in	the	current	
work.	However,	a	large	experimental	dataset	of	partial	or	biased	ago-
nists	would	be	needed	to	explore	this	hypothesis,	ideally	collected	in	
a	uniform	screen	to	minimize	experimental	and	interpretational	bias.	

F I G U R E  3 Schematic	representation	of	the	interactions	predicted	using	the	pairwise	correlation	approach.	(A)	filtered	dataset	and	(B)	
full	dataset.	The	type	of	interaction	is	summarized	in	squared	shape	for	hydrophobic	and	aromatic	contacts,	round	shape	for	the	polar,	
ionic,	and	hydrogen	bond	contacts,	and	a	combination	of	both.	The	dotted	purple	lines	represent	ionic	and/or	hydrogen	bond	contacts.	The	
ethanolamine	moiety	of	the	BI-	167107	ligands	is	highlighted	in	light	blue.
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F I G U R E  4 Feature	importance	of	the	RFC	(A,	B)	and	XGBoost	ML	(C,	D)	models	applying	the	SHAP	value	method.	(A,	C)	The	x-	axis	is	the	
average	magnitude	change	in	model	output	when	a	feature	is	“hidden”	from	the	model.	Higher	SHAP	values	indicate	higher	importance	of	
the	feature.	(B,	D)	Local	SHAP	values	per	sample	(each	ligand	pose)	are	sorted	by	the	mean	absolute	SHAP	value	method.	Gray	represents	a	
value	of	0,	thus	indicating	the	absence	of	a	particular	atomic	interaction	for	a	specific	sample.	Black	represents	a	value	of	1,	thus	indicating	
the	presence	of	a	particular	atomic	interaction	for	a	specific	sample.	The	x-	axis	shows	how	the	presence	or	absence	of	an	atomic	feature	
increases	or	decreases	the	likelihood	of	a	sample	being	classified	as	an	antagonist.	The	data	are	plotted	for	all	samples	in	the	dataset,	
showing	the	distribution	of	important	values.	The	units	of	the	x-	axis	using	RFC	and	XGBoost	are	log	odds.
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The	analysis	of	the	learning	performance	of	RFC	and	XGBoost	clas-
sifiers	(Figure	S5)	suggests	that	reasonable	performance	is	achieved	
with	 a	 limited	 dataset	 (ca	 300–	450	 compounds),	 although	 further	
increases	 in	 the	dataset	 size	 resulted	 in	 improved	performance.	 It	
is	 likely	 that	 an	 even	 larger	 dataset	would	 be	 required	 to	 predict	
continuous	rather	than	a	binary	structure-	activity	relationship	from	
AIFs.

Our methodology can be readily applied to any receptor (or 
drug	 target)	 for	which	an	extensive	set	of	 ligands	has	been	devel-
oped	and	characterized,	and	where	in silico	docking	experiments	can	
be performed. This can include data already in the public domain 
or	 through	 examining	 the	 results	 of	 an	 in house (e.g., commercial) 
drug-	target	screening	campaign.	The	advantage	here	is	that	in	many	
cases the same signaling assay will have been used to profile all the 
compounds,	 improving	 the	consistency	of	 the	dataset.	This	would	
allow	the	relative	 importance	of	each	atom-	atom	interaction	to	be	

assessed	as	a	modifier	of	signaling	output.	Also,	it	may	be	possible	
to	isolate	functional	readouts	(e.g.,	β-	arrestin	versus	G	protein)	and	
therefore	make	predictions	about	functional	bias.	Further	tantaliz-
ing possibilities include the use of automated internet metasearch of 
publications and patents to assemble such datasets and reduce the 
number	of	compounds	described	as	“known	binders”	if	they	are	not	
available yet.

4.3  |  Potential for developing predictors of 
pharmacological activity for novel ligands

Being	able	to	understand	which	atoms	of	the	ligand	drive	agonist	or	
antagonist activity significantly increases the value of in silico dock-
ing	campaigns.	 Importantly,	 it	opens	doors	to	a	more	rational	en-
gineering	of	ligands	with	improved	and	optimized	pharmacological	

F I G U R E  5 Schematic	representation	of	the	interactions	for	the	machine	learning	approach.	(A)	RFC	for	the	filtered	dataset	and	(B)	
XGBoost	for	the	full	dataset.	The	type	of	interaction	is	summarized	in	squared	shape	for	hydrophobic	and	aromatic	contacts,	round	shape	
for	the	polar,	ionic,	and	hydrogen	bond	contacts,	and	a	combination	of	both.	The	dotted	purple	lines	represent	ionic	and/or	hydrogen	bond	
contacts.	The	black	outlines	represent	the	atomic	interactions	with	higher	feature	importance.	The	ethanolamine	moiety	of	the	BI-	167107	
ligands is highlighted in light blue.
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properties—	facilitating	 the	 design	 of	 new	 ligands	 not	 present	 in	
the large virtual libraries and thus opening up a chemical space 
many orders of magnitude larger than the largest virtual libraries 
available.

From	 a	 computation	 perspective,	 it	 is	 a	 relatively	 straight-	
forward task to generate a prediction of ligand pharmacological ac-
tivity based on the model learned and the predicted binding pose of 
the	ligand	and	the	corresponding	AIF.	However,	large-	scale	docking	
experiments	produce	multiple	possible	ligand	binding	poses,	and	the	
existing	scoring	functions	do	not	allow	for	reliable	identification	of	
the	 “correct”	 binding	 pose.	 The	 structural	 diversity	 of	 the	 ligands	
complicates the analysis even further as overlaying the predicted 
binding	 pose	 with	 the	 available	 experimental	 data	 is	 not	 always	
informative.

4.4  |  Limitations on the ability to correctly predict 
ligand activity

Our data strongly support the hypothesis that individual atomic 
interactions are correlated with ligand pharmacological activity. 
This	is	learned	from	a	large	dataset	of	ligand	binding	poses,	where	
“correct”	 binding	 poses	 are	 a	 minority	 but	 the	 machine	 learning	
methods	we	used	identified	the	structure-	activity	relationship	be-
cause	“wrong”	binding	poses	averaged	themselves	out.	Prediction	
of	pharmacological	activity,	in	contrast,	is	100%	dependent	on	hav-
ing a correct binding pose for the ligand. This is a problem that 
has	not	yet	been	solved	in	a	satisfactory	manner,	and	it	limits	the	
performance	of	any	structure-	based	activity	prediction	method.	It	
is clear that the future progress in our ability to predict the pharma-
cological activity of novel ligands will be closely correlated with our 
ability to correctly predict their ligand binding poses. The analysis 
of	the	structural	properties	of	ligands	(Figure	S6)	with	“correct”	and	
“wrong”	predicted	activity	did	not	identify	any	specific	clusters	of	
ligands for which the prediction failed. This observation supports 
the	idea	that	the	quality	of	prediction	is	determined	by	the	quality	
of	 the	 binding	 pose	 prediction.	 To	 summarize,	 the	 observed	 cor-
relations are informative and potentially useful to design novel 
ligands	with	 desired	 pharmacological,	 their	 application	 in	 a	 com-
pletely	automated	pipeline	needs	further	optimization	of	docking	
algorithms.

5  |  CONCLUSIONS

These results strongly support the hypothesis that the interatomic 
interactions between the receptor and its ligands are central to 
differentiate between their agonist and antagonist effects at the 
β2AR.	 The	 overview	 obtained	 of	 the	 interatomic	 interactions	 be-
tween receptor and ligand which correlate with an action will help 
the synthesis of new previously unseen compounds with a specific 
pharmacological	activity.	While	the	specific	interatomic	interactions	

between β2AR	and	 its	 ligands	 that	we	describe	 are	unlikely	 to	be	
generalizable	to	other	GPCRs	(with	the	exception	of	closely	related	
receptors such as β1AR),	the	same	hypothesis	and	ML	approach	can	
be	applied	to	other	targets.	The	growth	of	GPCR	ligand	databases	
provides a rich data source to facilitate the application of this ap-
proach	to	other	GPCRs,	while	conceptually	this	approach	could	be	
applied to any drug target.

The ability to predict the pharmacological action of a ligand 
based on its ligand binding pose will significantly advance drug dis-
covery projects contributing to a reduction of attrition during drug 
development. The tools presented have the potential to focus the 
efforts of chemists proposing new candidate molecules based on 
existing	scaffolds	and	offer	the	opportunity	to	identify	completely	
new scaffolds that may be more amendable to modifications from 
large-	scale	docking	experiments,	thus	opening	up	a	chemical	space	
of many orders of magnitude larger than the largest virtual libraries 
available.
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