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HARDY UNCERTAINTY PRINCIPLE AND UNIQUE

CONTINUATION PROPERTIES OF COVARIANT

SCHRÖDINGER FLOWS

J.A. BARCELÓ, L. FANELLI, S. GUTIÉRREZ, A. RUIZ, AND M.C. VILELA

Abstract. We prove a logarithmic convexity result for exponentially weighted
L2-norms of solutions to electromagnetic Schrödinger equation, without need-

ing to assume smallness of the magnetic potential. As a consequence, we can

prove a unique continuation result in the style of the Hardy uncertainty princi-
ple, which generalize the analogous theorems which have been recently proved

by Escauriaza, Kenig, Ponce and Vega.

1. Introduction

This paper is concerned with sharp decay profiles, at two distinct times, of L2-
solutions to an electromagnetic Schrödinger equation of the type

(1.1) ∂tu = i (∆A + V )u,

where u = u(x, t) : Rn+1 → C, A = A(x) : Rn → Rn, V = V (x, t) : Rn → C, and
we use the notations

∇A := ∇− iA, ∆A := (∇− iA)2.

Our main goal is to start with a project devoted to understand sufficient conditions
on solutions to (1.1), the coefficients A, V , and the behavior of the solutions at
two different times which ensure the rigidity u ≡ 0. This follows a program which
has been developed for the magnetic free case A ≡ 0 by Escauriaza, Kenig, Ponce
and Vega in the last few years in the sequel of papers [4, 5, 6, 7, 8], and more
recently with Cowling in [2]. Their main motivations is the connection between
unique continuation properties of Schrödinger evolutions and the so called Hardy
uncertainty principle (see e.g. [17]), which can be briefly stated as follows:

If f(x) = O
(
e−|x|

2/β2
)

and its Fourier transform f̂(ξ) = O
(
e−4|ξ|2/α2

)
, then

αβ < 4⇒ f ≡ 0

αβ = 4⇒ f is a constant multiple of e
− |x|

2

β2 .
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Due to the strict connection between the Fourier transform F and the solution to
the free Schrödinger equation with initial datum f in L2, namely

u(x, t) := eit∆f(x) = (2πit)−
n
2 ei

|x|2
4t F

(
ei
|·|2
4t f

)( x
2t

)
,

the Hardy uncertainty principle has a PDE’s-counterpart, which can be stated as
follows:

If u(x, 0) = O
(
e−|x|

2/β2
)

and u(x, T ) := eiT∆u(x, 0) = O
(
e−|x|

2/α2
)

, then

αβ < 4T ⇒ u ≡ 0

αβ = 4T ⇒ u(x, 0) is a constant multiple of e
−
(

1
β2

+ i
4T

)
|x|2

.

The corresponding L2-versions of the previous results were proved in [16] and affirm
the following:

e|x|
2/β2

f ∈ L2, e4|ξ|2/α2

f̂ ∈ L2, αβ 6 4⇒ f ≡ 0

e|x|
2/β2

u(x, 0) ∈ L2, e|x|
2/α2

eiT∆u(x, 0) ∈ L2, αβ 6 4T ⇒ u ≡ 0.

Obviously, without loss of generality, we might restrict our attention to the case
T = 1. An interesting survey about this topic can be found in [1].

One of the major contributions of the authors of [2, 4, 5, 6, 7, 8] was to deeply
understand the relation between these kind of properties and the logarithmic con-
vexity property of exponentially weighted L2-norms of solutions to Schrödinger
equations (see also [3], [9] for analogous results concerning unique continuation
from the infinity). This permits to perform purely real analytical proofs, and then
allows rough coefficients in the differential equations, which are difficult to be han-
dled by Fourier transform or general complex analysis tools. For example, in [6] and
[7] the authors considered any bounded potential of the form V = V1(x) + V2(x, t),
possibly being V2 complex-valued, without assuming any Sobolev regularity and
any smallness condition on the two components; in this situation, they were able
to establish the analog to the above statements, in the cases αβ < 2 first ([6]), and
the sharp αβ < 4 later ([7]), for T = 1. The strategy can be roughly summarized
as follows:

• Assume e|x|
2/β2

u(x, 0), e|x|
2/α2

ei∆u(x, 1) ∈ L2 and prove a logarithmic
convexity estimate for the quantity H(t) := ‖eg(x,t)u(t)‖L2 of the type
H(t) . H(0)tH(1)1−t, where g is a suitable function, bounded with respect
to t and quadratically growing with respect to x. This shows that a gaussian
decay at times 0 and 1 is preserved (and in fact improved) for intermediate
times.

• Start a self-improvement argument, by suitably moving the center of the

gaussian as ea(t)|x+b(t)|2 , based on analytical estimates (Carleman estimates;
this leads up to the non-sharp result αβ < 2, see [6]) or on the logarithmic
convexity itself (this leads to the sharp result αβ < 4, see [7]), which finally
gives the rigidity u ≡ 0.

Amazingly, proving these results in a rigorous way represents not just a considerable
technical difficulty, but also a conceptual obstacle which, if avoided, could bring
to misleading results. To overcome this problem, the above mentioned authors
introduce a small artificial dissipation term in the equation which turns out to be
fundamental, and finally let it tend to zero.
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It is quite natural to claim that, with some efforts, some small first-order terms
can be introduced in the argument by Escauriaza, Kenig, Ponce and Vega without
loosing the results. The aim of this paper is to understand in which way the un-
certainty can be described in the presence of first-order perturbations in covariant
form, as in (1.1) when A 6= 0. Precisely, our goal here is to obtain similar re-
sults without assuming any smallness conditions on A and possibly respecting the
mathematical properties of the quantities which are behind these kinds of models.

We continue to introduce the terminology and notation required to state the
main results of this paper.

Let A = (A1(x), . . . , An(x)) : Rn → Rn, with n > 2, be a vector field, which
we will usually refer to as a magnetic potential, and denote the magnetic field by
B(x) = DA(x)−DAt(x), the anti-symmetric gradient of A, namely

B ∈Mn×n(R), Bjk(x) := Akj (x)−Ajk(x).

From now on, given a scalar function f , we always use the notation fk(x) = ∂xkf(x),
while an upper index will denote the component of a vector. In dimension n = 2, B
is identified with the scalar function B=̃curlA = A1

2 − A2
1; the same identification

holds in dimension n = 3, where now curlA is a vector field and

vtB = v × curlA ∀v ∈ R3,

the cross denoting the vectorial product in R3. Since equation (1.1) is gauge in-
variant (see Section 2.1 below), it is always important to keep in mind that the
physically meaningful quantity is the magnetic field B, while the potential A is a
mathematical construction. This fact has to be considered when we state a the-
orem, since a meaningful result should not depend on a particular choice of the
gauge.

As it will be clear in the sequel, another relevant object is the vector-field Ψ(x) :=
xtB(x); in 3D, it can be interpreted, modulo its intensity, as a tangential projection
of curlA, since

xtB(x) = x× curlA(x) = |x|Bτ (x), n = 3

following the notation Bτ = xt

|x|B introduced in [10]. As we see in (1.5) below,

xtB is essentially the only component of B on which one needs to make suitable
assumptions, in order to obtain a Hardy uncertainty principle.

We can now state the main result of this paper.

Theorem 1.1. Let n > 3, and let u ∈ C([0, 1];L2(Rn)) be a solution to

(1.2) ∂tu = i (∆A + V1(x) + V2(x, t))u

in Rn × [0, 1], with A = A(x) : Rn → Rn, V1 = V1(x) : Rn → R, V2 = V2(x, t) :
Rn+1 → C. Assume that

(1.3)

∫ 1

0

A(sx) ds ∈ Rn

is well defined at almost every x ∈ Rn. Moreover, denote by B = B(x) = DA−DAt,
Bjk = Akj −A

j
k and assume that there exists a unit vector v ∈ Sn−1 such that

(1.4) vtB(x) ≡ 0.
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In addition, assume that

‖xtB‖2L∞ :=
MA

4
<∞(1.5)

‖V1‖L∞ := M1 <∞(1.6)

sup
t∈[0,1]

∥∥∥∥e |·|2

(αt+β(1−t))2 V2(·, t)
∥∥∥∥
L∞

esupt∈[0,1]‖=V2(·,t)‖L∞ := M2 <∞(1.7) ∥∥∥∥e |·|2β2 u(·, 0)

∥∥∥∥
L2

+

∥∥∥∥e |·|2α2 u(·, 1)

∥∥∥∥
L2

<∞,(1.8)

for some α, β > 0. Then, αβ < 2 implies u ≡ 0.

Remark 1.2. Among various consequences, conditions (1.3), (1.5) and (1.6) imply
the self-adjointness in L2 of the hamiltonian HA := −∆A + V1, with form-domain
H1(Rn), after a suitable reduction to the so called Crönstrom (or transversal)
gauge (see Section 2.1 and Proposition 2.6 below). Hence the Schrödinger flow
eitHA is well defined for any t ∈ R by the Spectral Theorem, and unitary in L2, so
that given u(x, 0) ∈ L2 there exists a unique solution u ∈ C([0, 1];L2(Rn)) of the
integral equation

u(·, t) = eitHAu(·, 0) +

∫ t

0

ei(t−s)HAV2(·, s)u(·, s) ds,

provided (1.7).
In addition, also the heat flow etHA is well defined for positive times, and this

will be used in the sequel.

Remark 1.3. Notice that no smallness conditions on A, V1, V2 are required in the
statement of Theorem 1.1. On the other hand, condition (1.4) naturally comes into
play once we prove a Carleman estimate (Lemma 4.1 below), which is one of the
tools to prove Theorem 1.1. We remark that we cannot prove the result in dimension
n = 2, which remains as an open question, since there are no 2× 2-antisymmetric
matrices with non-trivial kernel.

The clearest examples of fields B satisfying our assumptions can be constructed
as follows. Denote by

M2k−1 =


J

. . .

J
0 0

 , M2k =


J

. . .

J
0 0
0 0

 ,

with J :=

(
0 1
−1 0

)
and k > 2. Now define for n > 3

B(x) =
xt

|x|2
Mn

and notice that the assumptions of Theorem 1.1 are satisfied. In particular, in
dimension n = 3 we can identify the above B with

B(x) = |x|−2(−x2, x1, 0) = curl

(
x1x3

|x|2
,
x2x3

|x|2
,
−x2

1 − x2
2

|x|2

)
.
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This is, as far as we understand, also a quite interesting hint about the fact that
Theorem 1.1 is presumably not true, in total generality, for any magnetic field B,
and it will be matter of future work.

Remark 1.4. The constraint αβ < 2 in Theorem 1.1 is far from the sharp αβ < 4
obtained in [7] in the magnetic-free case A ≡ 0. Actually, we use here the argument
introduced in [6], involving the use of a Carleman estimate, which cannot lead
to a better result. In addition, already at this level, we see the necessity of the
condition (1.4), which is a quite interesting fact. Presumably, when looking for
the sharp result, some additional phenomena, involving the presence a non trivial
magnetic field, should come into play. This will hopefully be matter of future work.

Theorem 1.1 has several consequences regarding uniqueness of solutions to (1.1),
both in the linear and nonlinear cases (i.e. V2(x, t) = |u(x, t)|p), which we will not
investigate in this paper (see [6, 7] for details).

The main tool to prove theorem 1.1 is the following logarithmic convexity result.

Theorem 1.5 (logarithmic convexity). Let n > 2, and consider a solution u ∈
C([0, 1];L2(Rn)) to

(1.9) ∂tu = i (∆A + V1(x) + V2(x, t))u

in Rn × [0, 1], with A = A(x) : Rn → Rn, V1 = V1(x) : Rn → R, V2 = V2(x, t) :

Rn+1 → C. Denote by B = B(x) = DA−DAt, Bjk = Akj −A
j
k and assume that

(1.10)

∫ 1

0

A(sx) ds ∈ Rn

is well defined at almost every x ∈ Rn. Moreover, assume that

‖xtB‖2L∞ :=
MA

4
<∞(1.11)

‖V1‖L∞ := M1 <∞(1.12)

sup
t∈[0,1]

∥∥∥∥e |·|2

(αt+β(1−t))2 V2(·, t)
∥∥∥∥
L∞

esupt∈[0,1]‖=V2(·,t)‖L∞ := M2 <∞(1.13) ∥∥∥∥e |·|2β2 u(·, 0)

∥∥∥∥
L2

+

∥∥∥∥e |·|2α2 u(·, 1)

∥∥∥∥
L2

<∞,(1.14)

for some α, β > 0. Then, the function

Θ(t) := log

∥∥∥∥e |·|2

(αt+β(1−t))2 u(·, t)
∥∥∥∥αt+β(1−t)

L2

is convex in [0, 1]. In addition, there exists a constant N = N(α, β) > 0 such that∥∥∥∥e |·|2

(αt+β(1−t))2 u(·, t)
∥∥∥∥
L2

(1.15)

6 eN[MA+M1+M2+M2
1 +M2

2 ]
∥∥∥∥e |·|2β2 u(·, 0)

∥∥∥∥
β(1−t)

αt+β(1−t)

L2

∥∥∥∥e |·|2α2 u(·, 1)

∥∥∥∥ αt
αt+β(1−t)

L2∥∥∥∥√t(1− t)e |x|2

(αt+β(1−t))2∇Au(x, t)

∥∥∥∥
L2(Rn×[0,1])

(1.16)

6 eN[MA+M1+M2+M2
1 +M2

2 ]
(∥∥∥∥e |·|2β2 u(·, 0)

∥∥∥∥
L2

+

∥∥∥∥e |·|2α2 u(·, 1)

∥∥∥∥
L2

)
.
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Remark 1.6. Notice that in this case condition (1.4) is not needed; as a conse-
quence, we can also handle the 2D case, which is included in the statement. We
finally remark that both Theorems 1.1 and 1.5 hold in dimension n = 1, since in this
case any reasonable magnetic potential can be gauged away by the Fundamental
Theorem of Calculus.

The strategy of the proof of Theorem 1.5 is as follows:

• by gauge transformation, we reduce to the case in which x · A ≡ 0 (see
section 2.1) below;
• we add a small dissipation term which regularizes the solution and gives

a useful preservation property for the exponentially weighted L2-norms of
the solution (Lemma 2.10);
• by conformal (or Appell) transformation (see Lemma 2.7), we reduce to the

case α = β;
• we prove Theorem 1.5 in the case α = β (Lemmata 2.14, 2.16);
• we translate the result in terms of the original solution, by inverting the

conformal transformation, obtaining the final result.

Once Theorem 1.5 is proved, then Theorem 1.1 follows as an application of a Car-
leman inequality (Lemma 4.1).

Acknowledgements. The authors wish to thank Luis Escauriaza and Luis Vega
for some useful discussions about the topic of the paper, and Vladimir Georgiev for
addressing them to the topic of Section 2.1 below.

2. Preliminaries

We devote this section to collect some preliminary results which will be needed
in the proofs of our main results.

In order to prove the main theorems in a rigorous way, we need to add a dissipa-
tion term to equation (1.1), which permits to assure that a gaussian decay at time
0 is preserved during the time evolution. For this reason, we study in this section
some abstract properties regarding the solutions to

(2.1) ∂tu = (a+ ib) (∆Au+ V (x, t)u+ F (x, t)) ,

with a, b ∈ R, A = A(x, t) : Rn+1 → Rn, V (x, t), F (x, t) : Rn+1 → C.

2.1. The Cronström gauge. Our first tool is the gauge invariance of equation
(2.1). We need to review some algebraic properties of magnetic Schrödinger oper-
ators, pointing our attention on the so called Cronström (or transversal) gauge.

Equation (2.1) is gauge invariant in the following sense: if u solves (2.1), and we

denote by Ã = A+∇ϕ, with ϕ = ϕ(x) : Rn → R, then the function ũ = eiϕu is a
solution to

(2.2) ∂tũ = (a+ ib)
(
∆Ãũ+ V (x, t)ũ+ eiϕF (x, t)

)
.

Indeed, it is quite simple to verify that ∆Ã(eiϕu) = eiϕ∆Au.

Definition 2.1. A connection ∇− iA(x) is said to be in the Cronström gauge (or
transversal gauge) if A · x = 0, for any x ∈ Rn.

The following Lemma shows the transformation which permits to reduce a suit-
able potential to the Cronström gauge.



HARDY UNCERTAINTY PRINCIPLE IN MAGNETIC FIELDS 7

Lemma 2.2. Let A = A(x) = (A1(x), . . . , An(x)) : Rn → Rn, for n > 2 and

denote by B = DA−DAt ∈Mn×n(R), Bjk = Akj −A
j
k, and Ψ(x) := xtB(x) ∈ Rn.

Assume that the two vector quantities

(2.3)

∫ 1

0

A(sx) ds ∈ Rn,
∫ 1

0

Ψ(sx) ds ∈ Rn

are finite, for almost every x ∈ Rn; moreover, define the (scalar) function

(2.4) ϕ(x) := x ·
∫ 1

0

A(sx) ds ∈ R.

Then, the following two identities hold:

Ã(x) := A(x)−∇ϕ(x) = −
∫ 1

0

Ψ(sx) ds(2.5)

xtDÃ(x) = −Ψ(x) +

∫ 1

0

Ψ(sx) ds.(2.6)

Proof. A simple proof of identity (2.5) can be found e.g. in [12]. For the sake of
completeness, we write it below. A direct computation shows that

ϕj(x) =
∂

∂xj
ϕ(x) =

∫ 1

0

Aj(sx) ds+

∫ 1

0

n∑
k=1

sxkA
k
j (sx) ds

=

∫ 1

0

Aj(sx) ds+

∫ 1

0

n∑
k=1

sxkA
j
k(sx) ds+

∫ 1

0

n∑
k=1

sxkBjk(sx) ds

=

∫ 1

0

Aj(sx) ds+

∫ 1

0

s
d

ds

[
Aj(sx)

]
ds+

∫ 1

0

Ψj(sx) ds.

Integrating by parts now yields (2.5).
We now pass to the proof of (2.6). By (2.5), we can now compute

[DÃ(x)]kj = [D(A−∇ϕ)]kj(x)

= − ∂

∂xk

∫ 1

0

n∑
h=1

sxh

(
Ajh(sx)−Ahj (sx)

)
ds

= −
∫ 1

0

s
(
Ajk(sx)−Akj (sx)

)
ds−

n∑
h=1

∫ 1

0

s2xh

(
Ajh −A

h
j

)
k

(sx) ds.

Integrating by parts we obtain[
xtDÃ(x)

]j
=

n∑
k=1

xk[D(A−∇ϕ)]kj(x)

= −
n∑
k=1

∫ 1

0

sxk

(
Ajk(sx)−Akj (sx)

)
ds−

n∑
h=1

n∑
k=1

∫ 1

0

s2xhxk

(
Ajh −A

h
j

)
k

(sx) ds

= −
n∑
k=1

∫ 1

0

sxk

(
Ajk(sx)−Akj (sx)

)
ds−

n∑
h=1

∫ 1

0

s2xh
d

ds

[
Ajh(sx)−Ahj (sx)

]
ds

=

n∑
k=1

∫ 1

0

sxk

(
Ajk(sx)−Akj (sx)

)
ds−

n∑
k=1

xk

(
Ajk(x)−Akj (x)

)
,

which proves (2.6). �
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Corollary 2.3. Under the same assumptions of Lemma 2.2, we have:

(2.7) x · Ã(x) ≡ 0, x · xtDÃ(x) ≡ 0.

Proof. The proof is a quite immediate consequence of (2.5), (2.6), and the fact that
B is an anti-symmetric matrix. �

Remark 2.4. Notice that conditions (1.10) and (1.11) in Theorem 1.5 obviously
imply (2.3), hence Lemma 2.2 and Corollary 2.3 are applicable under the assump-
tions of our main Theorems.

Example 2.5 (Aharonov-Bohm). The following is possibly the most relevant ex-
ample of a 2D-magnetic potential for which Lemma 2.2 and Corollary 2.3 do not
apply. Define the 2D-Aharonov-Bohm potential as

A(x) = |x|−2(−x2, x1).

In dimension n = 2, the antisymmetric gradient B = DA−DAt is identified with
the scalar quantity B = curlA = A1

2 −A2
1. Writing

A(x) = ∇⊥ log(|x|),

where ∇⊥ is the orthogonal gradient, chosen with the correct orientation, gives
B = curlA = ∆ log(|x|) = 2πδ. This shows that Ψ(x) = xtB(x) ≡ 0; if formula
(2.5) were true in this case, it would give that A ≡ 0, which is a contradiction. In
fact, (2.3) does not hold in this case, since A is too singular.

In similar ways, it is possible to construct such examples of potentials A, in
every dimension, satisfying xtB = 0 with A 6= 0, which are not in contradiction
with identity (2.5) since they do not satisfy (2.3).

2.2. Self-adjointness. We now state a standard result about the self-adjointness
of HA = −∆A − V1.

Proposition 2.6. Let A = A(x) = (A1(x), . . . , An(x)) : Rn → Rn, V1 = V1(x) :

Rn → R and denote by B = DA − DAt ∈ Mn×n(R), Bjk = Akj − Ajk, and

Ψ(x) := xtB(x) ∈ Rn, for n > 2. Assume that

(2.8)

∫ 1

0

A(sx) ds ∈ Rn,

is finite, for almost every x ∈ Rn; moreover, assume that

(2.9) V1(x) ∈ L∞ xtB(x) ∈ L∞,

and define Ã by (2.5). Finally, consider the quadratic form

q̃(ϕ,ψ) :=

∫
∇Ãϕ · ∇Ãψ dx+

∫
V1ϕψ dx.

Then q̃ is the form associated to a unique self-adjoint operator HÃ = −∆Ã−V1(x),

with form domain H1(Rn).

Proof. The proof is completely standard. Indeed, notice that both q and q̃ are

well defined on H1, since V1 ∈ L∞ and Ã ∈ L∞, thanks to (2.9) and Lemma 2.2.
Moreover, the norm

‖|ψ|‖2 := q̃(ψ,ψ) + C‖ψ‖2L2
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is equivalent to the H1-norm, for some C > 0 sufficiently large, by the same reasons
as above; this show that the form q̃ is closed. Finally, the form is semibounded, i.e.

q̃(ψ,ψ) > −C‖ψ‖2L2 ,

by the same arguments. In conclusion, the thesis follows from Theorem VIII.15 in
[14]. �

2.3. The Appell transformation. Following the strategy in [6], we now introduce
a conformal transformation, usually referred to as the Appell transformation, as
another tool for the proofs of our main results. As we see in the sequel, it permits
to reduce matters in Theorem 1.5 to the situation in which u(0) and u(1) have the
same gaussian decay, namely α = β.

Lemma 2.7. Let A = A(y, s) = (A1(y, s), . . . , An(y, s)) : Rn+1 → Rn, V =
V (y, s), F = F (y, s) : Rn → C, u = u(y, s) : Rn × [0, 1]→ C be a solution to

(2.10) ∂su = (a+ ib) (∆Au+ V (y, s)u+ F (y, s)) ,

with a+ ib 6= 0, and define, for any α, β > 0, the function
(2.11)

ũ(x, t) :=

( √
αβ

α(1− t) + βt

)n
2

u

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
e

(α−β)|x|2
4(a+ib)(α(1−t)+βt) .

Then ũ is a solution to

(2.12) ∂tũ = (a+ ib)

(
∆Ãũ+ i

(α− β)Ã · x
(a+ ib)(α(1− t) + βt)

ũ+ Ṽ (x, t)ũ+ F̃ (x, t)

)
,

where

Ã(x, t) =

√
αβ

α(1− t) + βt
A

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)(2.13)

Ṽ (x, t) =
αβ

(α(1− t) + βt)2
V

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)(2.14)

F̃ (x, t) =

( √
αβ

α(1− t) + βt

)n
2 +2

F

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
e

(α−β)|x|2
4(a+ib)(α(1−t)+βt) .

(2.15)

Proof. The proof is basically an explicit computation. Let us denote by

g(t) :=

√
αβ

α(1− t) + βt
, c :=

√
β

α
, y = xg(t), s = ctg(t)

h(x, t) :=
(α− β)|x|2

4(a+ ib)(α(1− t) + βt)
=

(α− β)c

4(a+ ib)β
g(t)|x|2.

With these notations, we easily get

ũ(x, t) = g
n
2 ehu(y, s)

∂tũ = g
n
2 eh

[
g2∂su+ 2(a+ ib)g∇xh · ∇yu+

(α− β)c

β
g
(n

2
+ h
)
u

]
.
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On the other hand, we have

∇xũ = g
n
2 eh (g∇yu+ u∇xh) ,

and therefore

g
n
2 ehg∇yu = ∇xũ− ũ∇xh.

Moreover,

∆xũ = g
n
2 eh

[
g2∆yu+ 2g∇xh · ∇yu+

(
|∇xh|2 + ∆xh

)
u
]

g
n
2 ehg2∆yu = ∆xũ− 2∇xh · ∇xũ+ |∇xh|2ũ− ũ∆xh.

Now expand the operator ∆A = (∇− iA) · (∇− iA), in order to rewrite equation
(2.10) as
(2.16)

∂su = (a+ ib)
(
∆yu− i(divyA)u− 2iA · ∇yu− |A|2u+ V (y, s)u+ F (y, s)

)
;

finally, since

Ã = gA, divxÃ = g2divyA, Ṽ = g2V, F̃ = g
n
2 +2ehF,

the thesis (2.12) follows from (2.16) and the above identities. �

Corollary 2.8. With the same notations of Lemma 2.7, denoting by

(2.17) y =:

√
αβx

α(1− t) + βt
, s =:

βt

α(1− t) + βt
,

we have, for any γ ∈ R,

∥∥∥eγ|·|2 ũ(·, t)
∥∥∥
L2

=

∥∥∥∥e[ γαβ

(αs+β(1−s))2
+

(α−β)a
4(a2+b2)(αs+β(1−s))

]
|·|2
u(·, s)

∥∥∥∥
L2

(2.18)

∥∥∥eγ|·|2 F̃ (·, t)
∥∥∥
L2

=
αβ

(α(1− t) + βt)2

∥∥∥∥e[ γαβ

(αs+β(1−s))2
+

(α−β)a
4(a2+b2)(αs+β(1−s))

]
|·|2
F (·, s)

∥∥∥∥
L2

(2.19)

∥∥∥√t(1− t)eγ|x|2∇Ãũ∥∥∥
L2(Rn×[0,1])

=

∥∥∥∥√s(1− s)e[ γαβ

(αs+β(1−s))2
+

(α−β)a
4(a2+b2)(αs+β(1−s))

]
|y|2

(2.20)

×
(
αs+ β(1− s)√

αβ
∇Au+

(α− β)y

2(a+ ib)
√
αβ

u

)∥∥∥∥
L2(Rn×[0,1])∥∥∥√t(1− t)eγ|x|2 |x|ũ∥∥∥

L2(Rn×[0,1])

(2.21)

=

∥∥∥∥√s(1− s)e[ γαβ

(αs+β(1−s))2
+

(α−β)a
4(a2+b2)(αs+β(1−s))

]
|y|2 |y|

√
αβ

αs+ β(1− s)
u

∥∥∥∥
L2(Rn×[0,1])

.

We omit here the details of the proof of the previous Corollary, which are straight-
forward after Lemma 2.7.
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2.4. Logarithmic convexity. We now pass to study, from an abstract point of
view, the evolution of weighted solutions to (2.1) with gaussian weights.

Lemma 2.9. Let u = u(x, t) : Rn+1 → C be a solution to (2.1) where a, b ∈ R,
A = A(x, t) : Rn+1 → Rn, V, F : Rn+1 → C, and denote by v := eϕu, with
ϕ = ϕ(x, t) : Rn+1 → R. Then v solves

(2.22) ∂tv = (S +A) v + (a+ ib) (V (x, t)v + eϕF (x, t)) ,

where

S = a
(
∆A + |∇xϕ|2

)
− ib (∆xϕ+ 2∇xϕ · ∇A) + ϕt(2.23)

A = ib
(
∆A + |∇xϕ|2

)
− a (∆xϕ+ 2∇xϕ · ∇A) .(2.24)

In addition, the following identities hold:

St = 2a (=At · ∇A +∇xϕ · ∇xϕt) + 2b (=∇xϕt · ∇A −∇xϕ ·At) + ϕtt(2.25)

∫
Rn

[S,A]f f dx = (a2 + b2)

(
4

∫
Rn
∇Af ·D2

xϕ∇Af dx−
∫
Rn
|f |2∆2

xϕdx

(2.26)

+4

∫
Rn
|f |2∇xϕ ·D2

xϕ∇xϕdx− 4=
∫
Rn
f(∇xϕ)tB · ∇Af dx

)
+ 2b=

∫
Rn
f∇xϕt · ∇Af dx+ 2a

∫
Rn
|f |2∇xϕ · ∇xϕt dx,

where St := (∂tS), (D2
xϕ)jk = ∂2ϕ

∂xj∂xk
, ∆2

xϕ := ∆x(∆xϕ), B = DA −DAt, Bjk =

Akj −A
j
k and [S,A] = SA −AS denotes the commutator between S and A.

Notice that S is a symmetric operator and A is skew-symmetric, with respect to
the inner product in L2. The proof of Lemma 2.9 is based on explicit computations
and will be omitted. We mention the paper [10] for the computation of [∆A,∆xϕ+
2∇xϕ · ∇A], which is the only term in [S,A] one has to compute with a bit of care.

We now prove a dissipation result for equation (2.1), which depends on the fact
that a > 0, and which permits to justify the proofs of the results in the sequel.

Lemma 2.10. Let −∆A be self-adjoint in L2 and let u ∈ L∞
(
[0, 1];L2(Rn)

)
∩

L2
(
[0, 1];H1(Rn)

)
be a solution to

(2.27) ∂tu = (a+ ib) (∆Au+ V (x, t)u+ F (x, t)) ,

in Rn × [0, 1], with a > 0, b ∈ R, A = A(x) : Rn → Rn, and V, F : Rn+1 → C.
Then, for any γ > 0, T ∈ [0, 1], we have

e−MT

∥∥∥e γa

a+4γ(a2+b2)T
|·|2
u(·, T )

∥∥∥
L2

(2.28)

6 ‖eγ|·|
2

u(·, 0)‖L2 +
√
a2 + b2

∥∥∥e γa

a+4γ(a2+b2)t
|x|2

F (x, t)
∥∥∥
L1([0,T ];L2(Rn))

,

with MT := ‖a(<V )+− b=V ‖L1([0,T ];L∞(Rn)), (<V )+ being the positive part of <V .

Proof. The proof is based on a standard energy method. First notice that, since
−∆A is self-adjoint, solutions u ∈ L∞

(
[0, 1];L2(Rn)

)
∩L2

(
[0, 1];H1(Rn)

)
to (2.27)

do exist by means of the Duhamel principle.
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Let v = eϕ(x,t)u, satisfying (2.22) by Lemma 2.9. Formally, multiplying (2.22)
by v, integrating in dx and taking the real parts, we obtain by (2.23), (2.24) that

1

2

d

dt
‖v‖2L2 = <

∫
Sv v dx+ <

{
(a+ ib)

∫ (
|v|2V + eϕFv

)
dx

}
(2.29)

= −a
∫
|∇Av|2 dx+ a

∫
|∇xϕ|2|v|2 dx+

∫
ϕt|v|2 dx

+ 2b=
∫
v∇xϕ · ∇Av dx+ <(a+ ib)

∫ (
|v|2V + eϕFv

)
dx.

We can easily estimate

<(a+ ib)

∫
|v|2V dx 6

∥∥a(<V )+ − b(=V )
∥∥
L∞
‖v‖2L2(2.30)

<(a+ ib)

∫
eϕFv dx 6

√
a2 + b2 ‖eϕF‖L2 ‖v‖L2 .(2.31)

Analogously, by Cauchy-Schwartz we have

(2.32) 2b=
∫
v∇xϕ · ∇Av dx 6 a

∫
|∇Av|2 dx+

b2

a

∫
|∇xϕ|2|v|2 dx;

as a consequence, by (2.29) and (2.32) we obtain

(2.33) <
∫
Sv v dx 6

∫ {(
a+

b2

a

)
|∇xϕ|2 + ϕt

}
|v|2 dx,

and the choice

(2.34) ϕ(x, t) =
γa

a+ 4γ(a2 + b2)t
|x|2 ⇒ ϕt(x, t) = −

(
a+

b2

a

)
|∇xϕ|2

gives in turn that

(2.35) <
∫
Sv v dx 6 0.

By (2.29), (2.30), (2.31), (2.35), with the choice (2.34), we finally obtain

d

dt
‖v(·, t)‖2L2

6 2
∥∥a(<V )+ − b(=V )

∥∥
L∞
‖v(·, t)‖2L2 + 2

√
a2 + b2 ‖eϕF‖L2 ‖v(·, t)‖L2 ,

which implies (2.28).
In order to make the previous argument rigorous, since the exponentially weighted

L2-norms involved in the integration by parts are not finite in principle, it is suffi-
cient to work with truncated and mollified weights of the following form:

ϕR(x, t) =

{
ϕ(x, t), if |x| < R

ϕ(R, t), if |x| > R,
ϕR,ε := (θε ∗ ϕR)(x),

θε(x) being a radial mollifier. Then the result can be obtained by performing
the same computation as above and then letting ε go to 0 and R to ∞; we omit
straightforward details. �

Remark 2.11. Notice that the dissipation estimate (2.28) has been proved for sta-
tionary magnetic potentials A = A(x). In the time-dependent case A = A(x, t), the
same result would require some additional assumptions on the time derivative At,
since we need the self-adjointness property, which at this level seem quite artificial.
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The next result, proved by Escauriaza, Kenig, Ponce and Vega in [5, 6], is the
abstract core of Theorem 1.5. It is concerned with the connection between the
positivity of St + [S,A] and the logarithmic convexity of weighted L2-norms with
gaussian weights.

Lemma 2.12 (logarithmic convexity). Let S be a symmetric operator, A a skew-
symmetric one, both with coefficients depending on x and t, f = f(x, t) : Rn+1 → C
be a sufficiently regular function, G a positive function, and denote by

(2.36) H(t) =

∫
Rn
|f |2 dx.

Assume that

(2.37) |∂tf − (S +A)f | 6M1|f |+G in Rn × [0, 1], St + [S,A] > −M0,

for some M0,M1 > 0 and

(2.38) M2 := sup
t∈[0,1]

‖G(t)‖L2

‖f(t)‖L2

<∞.

Then the function ψ(t) := logH(t) is convex in [0, 1]. In particular, if

(2.39) H(0) <∞ ⇒ H(t) <∞ for any t ∈ [0, 1],

then there exist a universal constant N > 0 such that

(2.40) H(t) 6 eN(M0+M1+M2+M2
1 +M2

2 )H(0)1−tH(1)t,

for any t ∈ [0, 1].

Remark 2.13. The proof of Lemma 2.12 is based on the computation of the time
derivatives Ḣ(t), Ḧ(t). An explicit (formal) computation gives

d2

dt2
H(t) = 2∂t<

∫
v(∂t − S −A)v dx+ 2

∫
v(St + [S, A])v dx(2.41)

+ ‖∂tv −Av + Sv‖2L2 − ‖∂tv −Av − Sv‖2L2 .

This, together with the computation of the first derivative Ḣ(t), shows that, under

conditions (2.37), (2.38), the second derivative d2

dt2 log(H(t)) is positive. Assump-
tion (2.39) is then the essential information one needs in order to conclude the
convexity inequality (2.40). The validity of condition (2.39) depends on an energy
estimate of the type (2.28) and needs to be checked each time when Lemma 2.12 is
applied to explicit operators S,A, as we see in the following results.

The proof of Lemma 2.12 can be found in [5, 6].

We can finally prove the main results of this section.

Lemma 2.14. Let u ∈ L∞
(
[0, 1];L2(Rn)

)
∩ L2

(
[0, 1];H1(Rn)

)
be a solution to

(2.42) ∂tu = (a+ ib) (∆Au+ V (x, t)u+ F (x, t)) ,

in Rn × [0, 1], with a > 0, b ∈ R, A = A(x, t) : Rn+1 → Rn, and V, F : Rn+1 → C.
Assume that

(2.43) x ·A(x) ≡ 0 ≡ x ·At(x).
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Moreover, let γ > 0 and assume that

(2.44) sup
t∈[0,1]

‖V (t, ·)‖L∞ := M1 <∞, sup
t∈[0,1]

∥∥∥eγ|·|2F (·, t)
∥∥∥
L2

‖u(·, t)‖L2

:= M2 <∞;

in addition, denote by B = B(x, t) = DxA−DxA
t and assume

(2.45)
1

γ
sup
t∈[0,1]

‖At(·, t)‖2L∞ + 4γ(a2 + b2) sup
t∈[0,1]

‖xtB(·, t)‖2L∞ := MA <∞.

Finally, assume

(2.46)
∥∥∥eγ|·|2u(·, 0)

∥∥∥
L2

+
∥∥∥eγ|·|2u(·, 1)

∥∥∥
L2
<∞;

finally, define H(t) =
∥∥∥eγ|·|2u(·, t)

∥∥∥
L2

and assume that (2.39) holds. Then, H(t)

is finite and logarithmically convex in [0, 1]; in particular, there exists a constant
N = N(γ, a, b) such that
(2.47)

H(t) 6 eN[MA+
√
a2+b2(M1+M2)+(a2+b2)(M2

1 +M2
2 )]
∥∥∥eγ|·|2u(·, 0)

∥∥∥1−t

L2

∥∥∥eγ|·|2u(·, 1)
∥∥∥t
L2
,

for any t ∈ [0, 1].

Remark 2.15. Before the proof, we need another remark about condition (2.39)
in the statement. The result ensuring, in concrete situations, the validity of (2.39),
is Lemma 2.10. Notice that in the statement of Lemma 2.14 we work with magnetic
potentials A = A(x, t) which possibly depend on time, while the time dependence
is not permitted in Lemma 2.10. In fact, as we see in the next section, in the
proof of Theorem 1.5, after applying the Appell transformation, a natural time
dependence of the magnetic potential appears. On the other hand, condition (2.39)
will hold in the the next section as a heritage of the same property before the
Appell transformation, and no additional assumptions on ∂tA will be needed. This
explains why we prefer to assume (2.39) in the previous statement without giving
explicit conditions under which it is satisfied.

Proof of Lemma 2.14. We need to check that Lemma 2.12 is applicable.
Denote again by v = eϕ(x,t)u, with ϕ(x, t) = ϕ(x) := γ|x|2. By Lemma 2.9, v

satisfies

∂tv = Sv +Av + (a+ ib) (V (x, t)v + eϕF ) ,

where S and A are given by (2.23), (2.24), respectively. We can estimate

(2.48) |∂tv − (S +A)v| 6
√
a2 + b2 (M1|v|+ eϕ|F |) ,

which proves the first of the two conditions in (2.37), with G :=
√
a2 + b2eϕ|F |.

Hence we just need to check the second condition in (2.37). By formulas (2.25) and
(2.26) with the choice ϕ(x) = γ|x|2 we obtain

∫
v (St + [S,A]) v dx = 2a=

∫
vAt · ∇Av dx− 4bγ

∫
|v|2x ·At dx

(2.49)

+ (a2 + b2)

{
8γ

∫
|∇Av|2 dx+ 8γ=

∫
vxtB · ∇Av dx+ 32γ3

∫
|v|2|x|2 dx

}
.
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The second term at the right-hand side of (2.49) vanishes, due to (2.43). By
Cauchy-Schwartz, we can estimate∣∣∣∣2a=∫ vAt · ∇Av dx

∣∣∣∣ 6 1

γ

∫
|At|2|v|2 dx+ γa2

∫
|∇Av|2 dx(2.50) ∣∣∣∣8γ(a2 + b2)=

∫
vxtB · ∇Av dx

∣∣∣∣ 6 4γ(a2 + b2)

∫
|xtB|2|v|2 dx(2.51)

+ 4γ(a2 + b2)

∫
|∇Av|2 dx;

by (2.49), (2.50), (2.51) it turns out that

∫
v (St + [S,A]) v dx > 3γ(a2 + b2)

∫
|∇Av|2 dx+ 32γ3(a2 + b2)

∫
|v|2|x|2

(2.52)

−

(
1

γ
sup
t∈[0,1]

‖At‖2L∞ + 4γ(a2 + b2) sup
t∈[0,1]

‖xtB‖2L∞

)∫
|v|2 dx.

Neglecting the positive terms in the last inequality, we have proved that

(2.53) St + [S,A] > − 1

γ
sup
t∈[0,1]

‖At‖2L∞ − 4γ(a2 + b2) sup
t∈[0,1]

‖xtB‖2L∞ = −MA.

In addition, we have

(2.54) sup
t∈[0,1]

√
a2 + b2

∥∥∥eγ|·|2F (·, t)
∥∥∥
L2

‖v(·, t)‖L2

6
√
a2 + b2M2.

The thesis now follows by Lemma 2.12.
In order to obtain a completely rigorous proof of Lemma 2.14 we need a last

remark. The positive dissipation a > 0 provides the sufficient interior regularity for
Lemma 2.10 to hold. In the next section, when we apply Lemma 2.14 to a concrete
situation, in order to justify all the above computations we need to work with the
following multipliers. Given a > 0 and ρ ∈ (0, 1), define

ϕa(x) =

{
γ|x|2, if |x| < 1

γ 2|x|2−a−a
2−a if |x| > 1

and replace ϕ = γ|x|2 by ϕa,ρ = θρ ? ϕa, being θρ a smooth delta-sequence. One
can easily check that all the above computations are then justified as a limit when
a, ρ→ 0. See [6] for further details. �

In an analogous way, we prove the following result:

Lemma 2.16. Under the same assumptions as in Lemma 2.14, there exists a

constant N = N
(

1
γ ,

1
a2+b2

)
> 0 such that

∥∥∥√t(1− t)eγ|x|2∇Au(x, t)
∥∥∥
L2(Rn×[0,1])

+ γ
∥∥∥√t(1− t)eγ|x|2 |x|u(x, t)

∥∥∥
L2(Rn×[0,1])

(2.55)

6 N

[
(M1 +

√
MA + 1) sup

t∈[0,1]

∥∥∥eγ|·|2u(·, t)
∥∥∥
L2

+ sup
t∈[0,1]

∥∥∥eγ|·|2F (·, t)
∥∥∥
L2

]
.
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Proof. Denote again by v = eγ|x|
2

u; we can hence write

∇Au = −2γxe−γ|x|
2

v + e−γ|x|
2

∇Av.

Consequently, we can estimate

∥∥∥√t(1− t)eγ|x|2∇Au(x, t)
∥∥∥
L2(Rn×[0,1])

+ γ
∥∥∥√t(1− t)eγ|x|2 |x|u(x, t)

∥∥∥
L2(Rn×[0,1])

(2.56)

6 3γ
∥∥∥√t(1− t)|x|v(x, t)

∥∥∥
L2(Rn×[0,1])

+
∥∥∥√t(1− t)∇Av(x, t)

∥∥∥
L2(Rn×[0,1])

.

By (2.41), we easily estimate

d2

dt2
H(t) > 2∂t<

∫
v(∂t − S −A)v dx+ 2

∫
v(St + [S, A])v dx(2.57)

− ‖∂tv −Av − Sv‖2L2
x
.

On the other hand, integrating twice by parts we get

(2.58)

∫ 1

0

t(1− t) d
2

dt2
H(t) dt = H(1) +H(0)− 2

∫ 1

0

H(t) dt 6 2 sup
t∈[0,1]

‖v(·, t)‖2L2 ,

since H(t) > 0. Integrating by parts and applying Cauchy-Schwartz and estimate
(2.48), we obtain

2

∫ 1

0

∫
t(1− t)∂t<v(∂t − S −A)v dx dt

(2.59)

= −2

∫ 1

0

∫
(1− 2t)<v(∂t − S −A)v dx dt

> −

(
sup
t∈[0,1]

‖∂tv − Sv −Av‖2L2 + sup
t∈[0,1]

‖v(·, t)‖2L2

)

> −1

2

{[
(a2 + b2)M2

1 + 1
]

sup
t∈[0,1]

‖v(·, t)‖2L2 + (a2 + b2) sup
t∈[0,1]

∥∥∥eγ|·|2F (·, t)
∥∥∥2

L2

}
.

On the other hand, by (2.52) we get

2

∫ 1

0

∫
t(1− t)v(St + [S,A])v dx dt > −MA

3
sup
t∈[0,1]

‖v(·, t)‖2L2

(2.60)

+ 2γ(a2 + b2)

{∥∥∥√t(1− t)∇Av∥∥∥2

L2(Rn×[0,1])
+ γ2

∥∥∥√t(1− t)|x|v∥∥∥2

L2(Rn×[0,1])

}
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while by (2.48) we conclude that

−
∫ 1

0

t(1− t) ‖∂tv − Sv −Av‖2L2 dt(2.61)

> − sup
t∈[0,1]

‖∂tv − Sv −Av‖2L2

∫ 1

0

t(1− t) dt

> −1

6

(
a2 + b2

){
M2

1 sup
t∈[0,1]

‖v(·, t)‖2L2 + sup
t∈[0,1]

∥∥∥eγ|·|2F (·, t)
∥∥∥2

L2

}
.

Collecting (2.57), (2.58), (2.59), (2.60), (2.61) we have∥∥∥√t(1− t)∇Av∥∥∥2

L2(Rn×[0,1])
+ γ2

∥∥∥√t(1− t)|x|v∥∥∥2

L2(Rn×[0,1])

6

[
M2

1

3γ
+

15 + 2MA

12γ(a2 + b2)

]
sup
t∈[0,1]

‖v(·, t)‖2L2 +
1

3γ
sup
t∈[0,1]

∥∥∥eγ|·|2F (·, t)
∥∥∥2

L2
,

which, together with (2.56), proves the claim (2.55).
Also in this case, the proof can be made rigorous by a quite standard argument

in the spirit of the one in Lemma 2.14. �

All the tools we need to prove Theorem 1.5 are now ready.

3. Proof of Theorem 1.5

For the proof of Theorem 1.5, we now put together the informations we got in the
previous Section. It is sufficient to prove the result in the case α < β; for the proof
in the case α > β replace u(x, t) by u(x, 1 − t), while in the case α = β the proof
essentially reduces to Lemma 2.14 and 2.16 (see Remark 3.3 below). Therefore,
from now on we assume

α < β.

We divide the proof of Theorem 1.5 into four steps.

3.1. Step I: the gauge reduction. Thanks to assumption (2.43) and Lemma 2.2,
it is now sufficient to prove Theorem 1.5 for the function ũ = eiϕu, where ϕ is the

gauge change defined in (2.4). The new potential is Ã, defined in (2.5). By abuse
of notations, we will skip the tildes; hence, from now on, the additional (and not
restrictive) assumption

(3.1) x ·A ≡ 0

holds, together with the identities (2.5), (2.6), which in our new notations read as

(3.2) A(x) = −
∫ 1

0

Ψ(sx) ds; xtDA(x) = −Ψ(x) +

∫ 1

0

Ψ(sx) ds,

with Ψ(x) = xtB(x) = xt(DA(x)−DAt(x)), which also gives

(3.3) x · xtDA ≡ 0.

In particular, (1.11) and (3.2) also imply that

(3.4) ‖A‖2L∞ + ‖xtDA‖2L∞ + ‖xtB‖2L∞ 6MA.
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3.2. Step II: the heat regularization. We now regularize equation (1.9) adding
a small dissipation term. Denote by

HA := −∆A − V1

and rewrite equation (1.9) as

(3.5) ∂tu = −i(HAu− F (x, t)), F (x, t) := V2(x, t)u.

Since HA is self-adjoint by Proposition 2.6, we can define, by Spectral Theorem,
the mixed flow e(ε+i)tHA , for any ε > 0. This gives, by parabolic regularity, the
function
(3.6)

uε(·, t) := e(ε+i)tHAu(·, 0) = eεtHAu(t) ∈ L∞([0, 1];L2(Rn)) ∩ L2([0, 1];H1(Rn)),

solving (uniquely) the equation

(3.7)

{
∂tuε = (ε+ i) (∆Auε + V1(x)uε + Fε(x, t)) ,

uε(0) = u(0),

with Fε(·, s) := i
ε+ie

εtHA (V2u(·, s)) (see e.g. [13, 15]). The positive dissipation now
permits to apply Lemma 2.10, which is useful in the sequel to make rigorous the
applications of Lemma 2.14. We can now prove the following simple result.

Lemma 3.1. Denote by

(3.8) α2
ε = α2 + 4ε β2

ε = β2 + 4ε.

The function uε defined in (3.6) satisfies the following inequalities:∥∥∥∥e |·|2β2ε uε(·, 0)

∥∥∥∥
L2

6

∥∥∥∥e |·|2β2 u(·, 0)

∥∥∥∥
L2

(3.9) ∥∥∥∥e |·|2α2
ε uε(·, 1)

∥∥∥∥
L2

6 eε‖V1‖L∞
∥∥∥∥e |·|2α2 u(·, 1)

∥∥∥∥
L2

(3.10)

‖uε(·, t)‖L2 6 eε‖V1‖L∞‖u(·, t)‖L2(3.11)

‖Fε(·, t)‖L2 6 eε‖V1‖L∞‖V2‖L∞‖u(·, t)‖L2(3.12) ∥∥∥∥e |·|2

(αεt+βε(1−t))2 Fε(·, t)
∥∥∥∥
L2

6 eε‖V1‖L∞
∥∥∥∥e |·|2

(αεt+βε(1−t))2 V2(·, t)
∥∥∥∥
L∞
‖u(·, t)‖L2 ,(3.13)

for any t ∈ [0, 1].

Proof. Inequality (3.9) is immediate.
In order to prove (3.10), let us introduce the function w(·, t) := e−εtHAu(·, 1),

solving the equation

∂tw = −εHAw = ε(∆Aw + V1w).

Then (3.10) follows applying inequality (2.28) to w, with γ := 1
α2 and T = 1.

To prove (3.11) write uε(·, t) := eεtHAu(t) and apply again (2.28), with γ = 0
and T = t.

For the proof of (3.12), introduce the function w(·, t) := eεtHA(V2u(·, t)) and
apply again (2.28), with γ = 0, T = t. Finally, by the application of inequality
(2.28) to the same function, with γ = 1

(αt+β(1−t))2 and T = t, the proof of (3.13)

easily follows. �
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3.3. Step III: the Appell transformation. We now apply the Appell transfor-
mation to the function uε. Let αε, βε be the same as in (3.8) and define

ũε(x, t) :=

( √
αεβε

αε(1− t) + βεt

)n
2

×(3.14)

× uε
( √

αεβε
αε(1− t) + βεt

x,
βε

αε(1− t) + βεt
t

)
e

αε−βε
4(ε+i)(αε(1−t)+βεt)

|x|2 .

Since x ·A ≡ 0 due to step I, by Lemma 2.7 we have that ũε solves

(3.15) ∂tũε = (ε+ i)
(

∆Ãε
ũε + Ṽε(x, t)ũε + F̃ε(x, t)

)
,

where

Ãε(x, t) =

√
αεβε

αε(1− t) + βεt
A

( √
αεβε

αε(1− t) + βεt
x

)
(3.16)

Ṽε(x, t) =
αεβε

(αε(1− t) + βεt)2
V1

( √
αεβε

αε(1− t) + βεt
x

)
(3.17)

F̃ε(x, t) =

( √
αεβε

αε(1− t) + βεt

)n
2 +2

×(3.18)

× Fε
( √

αεβε
αε(1− t) + βεt

x,
βε

αε(1− t) + βεt
t

)
e

(αε−βε)|x|2
4(ε+i)(αε(1−t)+βεt) .

In addition, by Corollary 2.8, for any γ ∈ R we have∥∥∥eγ|·|2 ũε(·, t)∥∥∥
L2

=

∥∥∥∥e[ γαεβε
(αεs+βε(1−s))2

+
(αε−βε)ε

4(ε2+1)(αεs+βε(1−s))

]
|·|2
uε(·, s)

∥∥∥∥
L2

(3.19) ∥∥∥eγ|·|2 F̃ε(·, t)∥∥∥
L2

=
αεβε

(αε(1− t) + βεt)2
×(3.20)

×
∥∥∥∥e[ γαεβε

(αεs+βε(1−s))2
+

(αε−βε)ε
4(ε2+1)(αεs+βε(1−s))

]
|·|2
Fε(·, s)

∥∥∥∥
L2

,

for s = βεt
αε(1−t)+βεt .

The goal is to apply Lemma 2.14 to the function ũε. In order to do this, we now
need two more results regarding the evolution of the L2

x-norms of u and ũε.

Lemma 3.2. Denote by

(3.21) N1 := esupt∈[0,1]‖=V2(·,t)‖L∞ .

The following inequalities hold

1

N1
‖u(·, 0)‖L2 6 ‖u(·, t)‖L2 6 N1‖u(·, 0)‖L2

(3.22)

d

dt
‖ũε(·, t)‖L2 6 ε

β

α
eε‖V1‖L∞N1‖u(·, 0)‖L2

(
‖V1‖L∞ + sup

t∈[0,1]

‖V2(·, t)‖L∞
)
,

(3.23)

for any t ∈ [0, 1], where u is a solution to (1.9) and ũε is the function defined in
(3.14).
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Proof. Formally, multiplying (1.9) by u, integrating in dx and taking the real part
of the resulting identity, (3.22) immediately follows. This argument is rigorous for
solutions u ∈ C([0, 1];H1); a standard approximation argument permits to conclude
the same for L2-solutions.

With the same argument, which is now rigorous since ũε is in H1, by equation
(3.15) we easily obtain

(3.24)
d

dt
‖ũε(·, t)‖L2 6 ε

(∥∥∥Ṽε(·, t)∥∥∥
L∞
‖ũε(·, t)‖L2 +

∥∥∥F̃ε(·, t)∥∥∥
L2

)
,

and by (3.17) we easily estimate

(3.25) M1,ε :=
∥∥∥Ṽε(·, t)∥∥∥

L∞
6 sup
t∈[0,1]

αεβε
(αεt+ βε(1− t))2

‖V1‖L∞ 6
β

α
M1 <∞,

M1 being the constant defined in (1.12). Taking γ = 0 in (3.19), since α < β we
get

‖ũε(·, t)‖L2 6 ‖uε(·, s)‖L2 ,

and by the last inequality, together with (3.11) and (3.22) we conclude that

(3.26) ‖ũε(·, t)‖L2 6 eε‖V1‖L∞ ‖u(·, s)‖L2 6 eε‖V1‖L∞N1 ‖u(·, 0)‖L2 .

Arguing in a similar way, by (3.20) with γ = 0, (3.12) and (3.22) we get

∥∥∥F̃ε(·, t)∥∥∥
L2
6
β

α
‖Fε(·, s)‖L2 6

β

α
eε‖V1‖L∞ ‖V2(·, s)‖L∞ ‖u(·, s)‖L2

(3.27)

6
β

α
eε‖V1‖L∞ sup

[t∈0,1]

‖V2(·, s)‖L∞ N1 ‖u(·, 0)‖L2 .

Inequality (3.23) now follows from (3.24), (3.25), (3.26) and (3.27). �

We are finally ready to check the applicability of Lemma 2.14 to ũε.
First, taking γ = 1

αεβε
=: γε in (3.19), since α < β we get

(3.28)
∥∥∥eγε|·|2 ũε(·, 0)

∥∥∥
L2
6

∥∥∥∥e |·|2β2ε uε(·, 0)

∥∥∥∥
L2

<∞,

by (3.9) and (1.14) (here we also used the fact that s = 0 when t = 0).
Analogously, by (3.10), (1.14) and the fact that s = 1 when t = 1, we obtain

(3.29)
∥∥∥eγε|·|2 ũε(·, 1)

∥∥∥
L2
6

∥∥∥∥e |·|2α2
ε uε(·, 1)

∥∥∥∥
L2

<∞.

Taking now γ = γε in (3.20), by (3.13) and (3.22) we easily estimate

(3.30)
∥∥∥eγε|·|2 F̃ε(·, t)∥∥∥

L2
6
β

α
eε‖V1‖L∞

∥∥∥∥e |·|2

(αs+β(1−s))2 V2(·, s)
∥∥∥∥
L∞

N1‖u(·, 0)‖L2 .

On the other hand, taking γ = 0 in (3.19) gives

(3.31) lim
ε→0
‖ũε(·, t)‖L2 = lim

ε→0

∥∥∥∥e (αε−βε)ε
4(ε2+1)(αεs+βε(1−s))

|·|2
uε(·, s)

∥∥∥∥
L2

= ‖u(·, s)‖L2 .

Now, by Lemma 3.2

(3.32)
d

dt
‖ũε(·, t)‖L2 6 C,
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for some C = C
(
ε, α, β, ‖V1‖L∞ , ‖u(·, 0)‖L2 , supt∈[0,1] ‖V2(·, t)‖L∞

)
and for any

t ∈ [0, 1]. By (3.31) and (3.32) we hence obtain that

‖ũε(·, t)‖L2 → ‖u(·, s)‖L2 ,

as ε → 0, uniformly in [0, 1], and in particular, by (3.22), there exists 0 < ε0 =
ε0(‖u(·, 0)‖L2 , N1) such that

(3.33) ‖ũε(·, t)‖L2 >
‖u(·, 0)‖L2

2N1
,

for any t ∈ [0, 1] and any ε ∈ (0, ε0). By (3.30) and (3.33) we finally obtain
(3.34)

M2, ε := sup
t∈[0,1]

∥∥∥eγε|·|2 F̃ε(·, t)∥∥∥
L2

‖ũε(·, t)‖L2

6 2N2
1

β

α
eε‖V1‖L∞ sup

s∈[0,1]

∥∥∥∥e |·|2

(αs+β(1−s))2 V2(·, s)
∥∥∥∥
L∞

<∞,

by assumptions (1.12), (1.13), for ε > 0 small enough; this ensures the validity of
the second condition (2.44) (the first condition in (2.44) is quite immediate, thanks
to (3.17) and (1.12)).

We now pass to condition (2.45). By (3.16), writing gε(t) :=
√
αεβε/(αε(1− t) +

βεt) we explicitly compute

∂tÃε(x, t) = g′ε(t)
[
A(xgε(t)) + gε(t)x

tDA(xgε(t))
]

(3.35)

xtB̃ε(x, t) := xt(DÃε −DÃtε)(x, t) = g2
ε (t)xtB(xgε(t)).(3.36)

Writing

g′ε(t) =
(αε − βε)√

αεβε
g2
ε (t)

and estimating

sup
t∈[0,1]

g2
ε (t) 6

βε
αε
,

we easily obtain, using the above identities, (1.11) and (3.4),

MÃ,ε :=
1

γε
sup
t∈[0,1]

∥∥∥∂tÃε(·, t)∥∥∥2

L∞
+ 4γε(ε

2 + 1) sup
t∈[0,1]

∥∥∥xt · B̃(·, t)
∥∥∥2

L∞
(3.37)

6
2(α2

ε + β2
ε )β2

ε

α2
ε

(
‖A‖2L∞ + ‖xtDA‖2L∞

)
+

4(ε2 + 1)

α2
ε

‖xtB‖2L∞

6
4

α2
ε

[
(α2
ε + β2

ε )β2
ε + ε2 + 1

]
MA <∞,

MA being the constant in (1.11).
Finally, notice that from (3.1) and (3.16), and from (3.3) and (3.35) it follows

that

x · Ãε ≡ 0, and x · ∂tÃε ≡ 0,

respectively.
The above argument shows that we can apply the results in Lemmata 2.14 and

2.16 to obtain
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∥∥∥eγε|·|2 ũε(·, t)∥∥∥
L2

(3.38)

6 eN1[MÃ,ε+
√
ε2+1(M1,ε+M2,ε)+(ε2+1)(M2

1,ε+M
2
2,ε)]

∥∥∥eγε|·|2 ũε(·, 0)
∥∥∥1−t

L2

∥∥∥eγε|·|2 ũε(·, 1)
∥∥∥t
L2∥∥∥√t(1− t)eγε|x|2∇Ãε ũε(x, t)∥∥∥L2(Rn×[0,1])

+ γε

∥∥∥√t(1− t)eγε|x|2 |x|ũε(x, t)∥∥∥
L2(Rn×[0,1])

(3.39)

6 N2,ε

[
(M1,ε + 1) sup

t∈[0,1]

∥∥∥eγε|·|2 ũε(·, t)∥∥∥
L2

+ sup
t∈[0,1]

∥∥∥eγε|·|2 F̃ε(·, t)∥∥∥
L2

]
,

with N1 an universal constant and N2,ε = N2,ε (ε, γε) > 0.

3.4. Step IV: conclusion of the proof. It is now simple to conclude the proof
of Theorem 1.5. Indeed, it is sufficient to rewrite estimates (3.38) and (3.39) in
terms of the function uε(t), using Corollary 2.8; finally, (1.15) and (1.16) follow by
taking the limit as ε tends to 0. We omit further details.

Remark 3.3. In the case α = β the same proof as above holds, in a much simpler
version. Indeed, in this case it is useless to apply the Appell transformation and
the proof can be directly performed on the function uε, by means of Lemmata 2.14
and 2.16.

4. Proof of Theorem 1.1

Lemma 4.1 (Carleman estimate). Let n > 3, A = A(x, t) : Rn+1 → Rn, denote
by B = DA−DAt and assume that xtB ∈ L∞. In addition, assume that

(4.1) x ·At(x) ≡ 0, v ·At(x) ≡ 0, and vtB(x) ≡ 0,

for any x ∈ Rn and some unit vector v ∈ Sn−1. Then, for any ε > 0, µ > 0,
g = g(x, t) ∈ C∞0 (Rn+1), and R > 8µε−

1
2 ‖xtB‖L∞ , the following inequality holds:

R

4

√
ε

µ

∥∥∥∥eµ|x+Rt(1−t)v|2− (1+ε)R2t(1−t)
16µ g(x, t)

∥∥∥∥
L2(Rn+1)

(4.2)

6

∥∥∥∥eµ|x+Rt(1−t)v|2− (1+ε)R2t(1−t)
16µ (∂t − i∆A) g(x, t)

∥∥∥∥
L2(Rn+1)

.

Proof. For simplicity, we can assume without loss of generality that v = e1 =
(1, 0, . . . , 0). Let

f(x, t) := eµ|x+Rt(1−t)e1|2− (1+ε)R2t(1−t)
16µ g(x, t).

Then we have

(4.3) eµ|x+Rt(1−t)e1|2− (1+ε)R2t(1−t)
16µ (∂t − i∆A) g = (∂t − S −A) f,

S and A being the ones in (2.23) and (2.24), respectively, with a = 0 and b = 1.
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Following the usual method to prove Carleman estimates (see [11]), we now write

‖(∂t − S −A) f‖2L2(Rn+1)(4.4)

= ‖(∂t −A) f‖2L2(Rn+1) + ‖Sf‖2L2(Rn+1) − 2<
∫ ∫

Sf(∂t −A) f dx dt

>
∫ ∫

(St + [S,A]) f f dx dt.

Applying now (2.25) and (2.26) with the choices a = 0, b = 1, and

ϕ(x, t) = µ |x+Rt(1− t)e1|2 −
(1 + ε)R2t(1− t)

16µ
,

noticing that ∇ϕ ·At ≡ 0 by the first two conditions in (4.1), an easy computation
involving the completion of two squares leads to

∫ ∫
(St + [S,A]) f f dx dt

(4.5)

= 32µ3

∫ ∫
|f |2

∣∣∣∣x+Rt(1− t)e1 −
R

16µ2
e1

∣∣∣∣2 +
εR2

8µ

∫ ∫
|f |2 + 8µ

∫ ∫
|∇A,x′f |2

+ 8µ

∫ ∫ ∣∣∣∣∂1
Af + i

R(1− 2t)

2
f

∣∣∣∣2 + 8µ=
∫ ∫

f (x+Rt(1− t)e1)
t
B · ∇Af,

where ∇A = ∇ − iA := (∂1
A, . . . , ∂

n
A), ∇A,x′ := (0, ∂2

A, . . . , ∂
n
A). Notice that, since

et1B = 0 and B is anti-symmetric, we can write

f (x+Rt(1− t)e1)
t
B · ∇Af = fxtB · ∇Af = fxtB ·

(
∇Af + i

R(1− 2t)

2
e1f

)(4.6)

= fxtB · ∇A,x′f + fxtB ·
(
∂1
Af + i

R(1− 2t)

2
f

)
e1.(4.7)

Therefore, by Cauchy-Schwartz and the elementary inequality ab 6 δa2+ 1
4δ b

2, with
the choice δ := 8µ, we can estimate

∣∣∣∣8µ= ∫ ∫ f (x+Rt(1− t)e1)
t
B · ∇Af

∣∣∣∣
(4.8)

6 4µ‖xtB‖2L∞
∫ ∫

|f |2 + 8µ

∫ ∫ ∣∣∣∣∂1
Af + i

R(1− 2t)

2
f

∣∣∣∣2 + 8µ

∫ ∫
|∇A,x′f |2 .

In conclusion, by (4.5) and (4.8), neglecting the term with cubic growth in µ we
get ∫ ∫

(St + [S,A]) f f >

[
εR2

8µ
− 4µ‖xtB‖2L∞

] ∫ ∫
|f |2.

The last inequality, together with (4.3), (4.4) and the conditionR > 8µε−
1
2 ‖xtB‖L∞ ,

completes the proof of (4.2). �

Proof of Theorem 1.1. With the tools introduced up to now, the proof of Theorem
1.1 is now reduced to a typical argument in the Carleman’s spirit.
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Let u ∈ C([0, 1];L2(Rn)) be the solution to (1.2). As in the first step of the

previous section, we first reduce to the Cronström gauge, passing from A to Ã by
means of Lemma 2.2. It is hence sufficient to prove that ũ = eiϕu ≡ 0, where ϕ is
given by (2.4). From now on, by abuse of notation, we keep calling u the gauged

function ũ and by A the transformed potential Ã, which satisfy identities (2.5),
(2.6), (2.7).

Now apply the Appell transformation (Lemma 2.7) with a = 0 and b = 1, to
obtain the new function ũ in (2.11), satisfying

∂tũ = i
(

∆Ãu+ Ṽ ũ
)
,

where Ã and Ṽ are defined by (2.13) and (2.14), respectively, and V := V1 + V2.

Assumption (1.8) then gives that ‖eγ|x|2 ũ(0)‖L2 + ‖eγ|x|2 ũ(1)‖L2 < ∞, for any
γ > 1

2 .
In addition, by estimates (3.38) and (3.39), in the limit as ε tends to 0, we have

(4.9) sup
t∈[0,1]

∥∥∥eγ|·|2 ũ(·, t)
∥∥∥
L2

+
∥∥∥√t(1− t)eγ|·|2∇Ãũ(·, t)

∥∥∥
L2(Rn×[0,1])

=: Nγ <∞.

Now, let R > 8µε−
1
2 ‖xtB‖L∞ , as in the statement of Lemma 4.1, and let M > 0,

to be chosen later. Then, localize the function ũ as follows: let θM (x), ηR(t) be two
smooth functions such that

θM ≡ 1 if |x| 6M θM ≡ 0 if |x| > 2M

ηR(t) ≡ 1 if t ∈
[

1

R
, 1− 1

R

]
ηR(t) ≡ 0 if t ∈

[
0,

1

2R

]
∪
[
1− 1

2R
, 1

]
,

and define

g(x, t) = θM (x)ηR(t)ũ(x, t).

It turns out that g solves

(4.10)
(
∂t − i∆Ã

)
g = iṼ g + θMη

′
Rũ− i

(
2∇θM · ∇Ãũ+ ũ∆θM

)
ηR.

Assume without loss of generality that the magnetic field B satisfies the condition
(1.4) with v = e1.

Now choose

(4.11) µ 6
γ

1 + ε
,

for some fixed small ε > 0. Notice that, in the support of the second term of the
right-hand side of (4.10), we have

(4.12) µ |x+Rt(1− t)e1|2 −
(1 + ε)R2t(1− t)

16µ
6 γ|x|2 +

γ

ε
;

analogously, in the support of the last term of the right-hand side of (4.10) we have

(4.13) µ |x+Rt(1− t)e1|2 −
(1 + ε)R2t(1− t)

16µ
6 γ|x|2 +

γR2

ε
.

By condition (1.4) with v = e1, (2.6), (2.7), identity (3.35) with ε = 0 and the fact

that B is anti-symmetric, we get x · ∂tÃ ≡ 0 ≡ e1 · ∂tÃ. Hence, applying (4.2) to g,
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by (4.10), (4.12), (4.13) and the bounds for θM , ηR and their derivatives we easily
get

R

∥∥∥∥eµ|x+Rt(1−t)v|2− (1+ε)R2t(1−t)
16µ g

∥∥∥∥
L2(Rn×[0,1])

(4.14)

6 Nε,µ
∥∥∥Ṽ ∥∥∥

L∞(Rn×[0,1])

∥∥∥∥eµ|x+Rt(1−t)v|2− (1+ε)R2t(1−t)
16µ g

∥∥∥∥
L2(Rn×[0,1])

+Nε,µRe
γ
ε sup

[0,1]

∥∥∥eγ|·|2 ũ(·, t)
∥∥∥
L2

+NεM
−1e

γR2

ε

∥∥∥eγ|x|2 (|ũ|+ |∇Ãũ|)∥∥∥
L2(Rn×[ 1

2R ,1−
1

2R ])
,

with Nε,µ = 4
√
µ/ε. Notice that, choosing R > 2Nε

∥∥∥Ṽ ∥∥∥
L∞(Rn×[0,1])

, the first term

in the right-hand side of the last inequality can be hidden in the left-hand side.
Moreover, by (4.9), we have that

(4.15) lim
M→∞

NεM
−1e

γR2

ε

∥∥∥eγ|x|2 (|ũ|+ |∇Ãũ|)∥∥∥
L2(Rn×[ 1

2R ,1−
1

2R ])
= 0,

for any fixed R. Finally, choose

M := f(ε)
R

8
,

for some positive function f(ε) such that f(ε) < 1−ε2 and f(ε)→ 0 as ε tends to 0.
Notice that g ≡ ũ in Bf(ε)R/8×[(1−ε)/2,(1+ε)/2]; in this set, one can easily estimate

µ |x+Rt(1− t)v|2 − (1 + ε)R2t(1− t)
16µ

>
R2

16µ

{
µ2
[
(1− ε2)2 − (1− ε2)f(ε)

]
− 1

4
(1 + ε)

}
.

Consequently, choosing

(4.16) µ2 >
1

4
· 1 + ε

(1− ε2)2 − (1− ε2)f(ε)

one obtains that

µ |x+Rt(1− t)v|2 − (1 + ε)R2t(1− t)
16µ

> 0

in Bf(ε)R/8×[(1−ε)/2,(1+ε)/2], in which we also have g ≡ ũ. Comparing (4.11) and

(4.16), we see that they are compatible if and only if γ > 1
2 , i.e. αβ > 2, as required

in the statement of Theorem 1.1.
Therefore, by (4.14), and the above considerations, there exist C(γ, ε), Nγ,ε > 0

such that

(4.17) ReC(γ,ε)R2

‖ũ(x, t)‖
L2

(
BR

8
×[ 1−ε

2 , 1+ε2 ]
) 6 Nγ,εR,

for any R > max{8µε− 1
2 ‖xtB‖L∞ , 2Nε‖Ṽ ‖L∞(Rn×[0,1])}. By (3.22) in Lemma 3.2,

(4.9) and (4.17) we now conclude that there exists a constant N = N(γ, ε, V )
depending on Nγ , ε and sup[0,1] ‖V ‖L∞ such that

eC(γ,ε)R2

‖ũ(·, 0)‖L2 6 N(γ, ε, V ).

Letting R tend to infinity, this implies that ũ ≡ u ≡ 0. �
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