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Abstract
Acute myeloid leukaemia (AML) creates an immunosuppressive environment to conventional T cells through Arginase 2 
(ARG2)-induced arginine depletion. We identify that AML blasts release the acute phase protein serum amyloid A (SAA), 
which acts in an autocrine manner to upregulate ARG2 expression and activity, and promote AML blast viability. Following 
in vitro cross-talk invariant natural killer T (iNKT) cells become activated, upregulate mitochondrial capacity, and release 
IFN-γ. iNKT retain their ability to proliferate and be activated despite the low arginine AML environment, due to the upregu-
lation of Large Neutral Amino Acid Transporter-1 (LAT-1) and Argininosuccinate Synthetase 1 (ASS)-dependent amino 
acid pathways, resulting in AML cell death. T cell proliferation is restored in vitro and in vivo. The capacity of iNKT cells 
to restore antigen-specific T cell immunity was similarly demonstrated against myeloid-derived suppressor cells (MDSCs) in 
wild-type and Jα18−/− syngeneic lymphoma-bearing models in vivo. Thus, stimulation of iNKT cell activity has the potential 
as an immunotherapy against AML or as an adjunct to boost antigen-specific T cell immunotherapies in haematological or 
solid cancers.

Keywords  iNKT · AML · ASS · LAT-1 · Arginine · Cancer

Introduction

T cell immunotherapies, notably chimeric-antigen receptor T 
(CAR-T) cells against CD19 or CD22 on acute lymphoblas-
tic leukaemia (ALL) blasts, have demonstrated the poten-
tial to generate clinically significant immune responses in 

haematological malignancies [1]. However, in AML acti-
vating T cell immunity against blasts remains challenging. 
Strategies to induce T cell cytotoxicity against AML blasts 
including upregulation of peptide antigen presentation, 
release of T cells from immune checkpoint inhibition, and 
engineering of antigen-specific or chimeric-antigen recep-
tors have not consistently demonstrated activity in clinical 
trials [2–4].
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The failure of T cell responses against AML blasts is 
dependent on the interplay of both T cell factors and blast 
phenotype. T cells from AML patients are reported to dem-
onstrate increased exhaustion, conversion to a Treg pheno-
type, and failure to generate an immune synapse that leads 
to activation of cytotoxicity [5, 6]. Concurrently, blasts 
evade T cell responses through the downregulation of HLA-
dependent antigen presentation, expression of inhibitory cell 
surface molecules, release of immunosuppressive cytokines, 
and consumption of amino acids critical to T cell expan-
sion [7, 8]. These immunosuppressive strategies are simi-
larly employed by the non-malignant population MDSCs 
to impair T cell expansion in the setting of solid and hae-
matological cancers [9–11]. Previously, we identified that 
arginine catabolism by ARG2 contributes to both AML blast 
viability and suppression of peptide antigen-specific T cell 
responses in patients [7, 12–14]. ARG2 immunomodulatory 
activity has since been described in a number of pathologi-
cal settings, and however, the factors which regulate the 
enzyme’s expression are still poorly understood, including 
in AML. Inflammatory cytokines may drive malignant trans-
formation or expansion in some AML patients at diagnosis 
[15].

Although T cells represent a major component of the 
body’s response to cancer, the potential of other immune 
populations to generate anti-leukaemia immunity or sup-
port T cell immunity in solid cancers has not been fully 
exploited. Here, we investigate how iNKT cells are adapted 
to the immunosuppression created by AML or MDSCs, 
resulting in a direct reduction of cancer burden and restora-
tion of T cell function.

Methods

Patient samples and study approvals

Blood samples were obtained from 72 AML patients at diag-
nosis treated at University Hospitals Birmingham and Bir-
mingham Children’s Hospital, UK. An additional cohort of 
samples (n = 42) was collected from AML patients ineligible 
for intensive chemotherapy treated with either azacitidine 
or azacitidine and vorinostat in a multi-centre, randomised 
phase II trial (RAVVA; NCT01617226) [14]. Fresh periph-
eral blood mononuclear cells (PBMCs) were separated 
using a Lymphoprep (StemCell Technologies) gradient and 
enriched based on CD33 or CD34 expression using anti-
human CD33 or anti-human CD34 magnetic beads (Milte-
nyi) following manufacturer’s instructions. All samples were 
processed in assays within 12 h of blood sampling. Periph-
eral blood samples from healthy donors were obtained from 
the University of Birmingham. In accordance with the Dec-
laration of Helsinki, all samples were obtained after written, 
informed consent prior to inclusion in the study. Regional 
Ethics Committee (REC Number 10/H0501/39) approval for 
the study was granted.

Flow cytometric analysis

Whole blood and PBMCs were stained with human CD1d 
PBS-57 Tetramer (NIH Tetramer Centre, Emory USA) at 
37 °C for 20 min. Following a wash in FACS Buffer, cells 
were stained for surface antigens: anti-human CD3 (clone 
UCHT1/HIT3a), CD33 (clone HIM3.4/WM5.3), CD34 
(clone 581), FPR2 (clone K102B9), TLR2 (clone TL2.2), 
TLR4 (clone HTAR5), CD1d (clone 541), CD40 (clone 
5C3), CD40L (clone 24–31), FAS (clone DX2), CD69 
(clone FN50), CD38 (clone HB-7) antibodies (BioLeg-
end), TCR Vα24 (clone REA948), TCR Vβ11 (clone REA 
559) (Miltenyi Biotec) on ice for 30 min, where indicated. 
For murine analysis, cells were stained with murine CD1d 
PBS-57 tetramer (NIH Tetramer Service, USA), SIIN-
FEKL tetramer (Biolegend), and anti-murine CD11b (clone 
M1/70), GR1 (clone 1A8), CD45.1 (clone A20), CD45.2 
(clone 104), CD1d (clone 1B1) and CD3 (clone 17A2) (eBi-
osciences) as indicated. Propidium iodide (PI) (Biolegend) 
was used to assess viability. Intracellular staining for IFN-γ 
(clone 4S.B3; BioLegend), CD107a (clone H4A3; Bioleg-
end), or ASS1 (Abcam), and goat anti-rabbit IgG (isotype 
control;Abcam) proteins was determined according to manu-
facturer’s instructions (BioLegend). Where indicated CFSE 

Fig. 1   SAA upregulates ARG2 in AML blasts. a ELISA for SAA 
in the plasma from n = 72 newly diagnosed AML patients prior 
to treatment, compared to levels in n = 27 healthy donors. P value 
determined by unpaired t-test. b Plasma SAA concentrations remain 
unchanged in n = 20 AML patients treated with cycles of azacitidine/
vorinostat as measured by ELISA. P value determined by paired 
t-test. c Confocal microscopy of AML blasts from patients show-
ing intracellular expression of SAA. DAPI—blue, SAA—green, 
(n = 2 individual donors). d Increased SAA in the supernatants of 
AML blasts cultured for 48 h in R10%, measured by ELISA (n = 18 
patients). Each dot is the mean of duplicates. P value determined by 
unpaired t-test. e SAA (10 μg/ml) leads to upregulation of ARG2 in 
AML cells, measured by western blot at 72  h. Actin is shown as a 
loading control. Representative of n = 3 individual experiments. f 
Increased arginase activity in AML patients’ blasts and cell lines fol-
lowing SAA (10 μg /ml) treatment for 72 h, as measured by the con-
version of arginine into urea. Each dot is the mean of duplicate sam-
ples. P value determined by paired t-test
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(Thermo Fisher Scientific) was used to assess AML or iNKT 
proliferation. CFSE (1:1000 dilution) was added to target 
cells for 20 min at 37 °C. The assay was quenched with 
complete media for 5 min, before washing and resuspend-
ing. Cells were analysed using a Beckman Coulter Cytoflex 
flow cytometer and analysed using FlowJo and CytExpert 
software (Tree Star Inc).

Murine experiments

Generation of the immortalised MLL-AF9 murine AML cell 
line has been previously described [14, 16, 17]. MLL-AF9 
cells were thawed and resuspended and 0.5 × 106 MLL-AF9 
cells were transplanted intravenously into sublethally irradi-
ated (4.5 Gy) B6.SJL-Ptprca Pepcb/BoyJ (CD45.1 +) mice 
recipients. αGalCer (2 μg/mouse) or vehicle was injected 
intravenously as indicated in the individual experiments, 
before the mice were sacrificed at day 17 post-bone marrow 

transplant. Serum was collected by tail vein sampling on 
Day 12. AML donor cells (CD45.2 +), iNKT and T cell fre-
quency were identified by flow cytometry of the blood, bone 
marrow flushed from the legs, and mechanically disrupted 
spleens following red cell lysis. All vehicle controls were 
treated with PBS iv.

EG7 lymphoma cells (5 × 105) were engrafted subcuta-
neously into C57BL/6 and iNKT cell-deficient mice (Jα18 
TCR gene segment, TCRa J+m1Tgi, Jα18−/−). Mice were 
injected with 1 μg αGalCer /mouse following ovalbumin 
(OVA) vaccine injection (106 PFU/mouse) as described pre-
viously [18]. Tumour progression, MDSC and OVA-specific 
T cell expansion were measured. Splenocytes from OT-1 T 
cell receptor (TCR) transgenic mice (5 × 106) were injected 
into C57BL/6 and Jα18−/− mice, followed by OVA-peptide 
(20 ng/ml) pulsed dendritic cells (2 × 106). MDSCs were 
previously isolated by MACS sorting (MDSC Isolation Kit, 
Miltenyi Biotec) from EG7 tumours engrafted in mice as 
described above. 2 × 106 MDSCs were injected iv followed 
by αGalCer (2 μg /mouse) where indicated.

Wild-type C57BL/6 mice were treated with 10 mg/kg 
recombinant human arginase (BCT-100, BCTI, Hong Kong) 
or PBS iv daily. On day 2, mice were treated with αGalCer 
(2 μg /mouse) or vehicle iv and all mice were sacrificed on 
day 5. Blood, bone marrow, and spleens were analysed by 
flow cytometry as before. Procedures were carried out in 
accordance with UK Home Office Guidelines.

Expansion of human iNKT cells

Human iNKT cells were isolated as previously described 
[18]. In short, PBMCs were isolated from healthy donors' 
buffy coats by density gradient centrifugation over Lym-
phoprep™ (StemCell Technologies). PBMCs were cultured 
in complete RPMI, supplemented with β-mercaptoethanol 
(1X) (SIGMA), in the presence of αGalactosylceramide 
(αGalCer, 100 ng/ml) (BioVision) for 14 days. After 3 days 
1000U/ml IL-2 (Novartis) was added to cultures. iNKT 
cells were isolated by sorting PBMCs labelled with CD1d 
tetramer (NIH Tetramer service, USA) using a BD FACS 
Aria Fusion cell sorter. Thereafter, cells were co-cultured 
with allogenic irradiated PBMCs stimulated with PHA 
(1 µg/ml) (Gibco) and fed every 3–4 days with fresh medium 
containing 1000 U/ml IL-2 to create ‘iNKT cell lines’. iNKT 
cell frequncy was determined using CD1d tetramer (NIH 
Tetramer Service, Emory USA), Vα24 antibody and Vβ11 
(Miltenyi Biotec). Where indicated primary human iNKT 
cells were isolated fresh by flow sorting, using human CD1d 
PBS-57 Tetramer (NIH Tetramer Centre, Emory USA).

Fig. 2   iNKT cells are activated following cross-talk with AML blasts. 
a AML blasts suppress T cell proliferation in a mixed leukocyte reac-
tion assay (allogeneic T cells and dendritic cells co-cultured for 96 h). 
n = 12 AML patients. Each dot is the mean of duplicates. P value 
determined by paired t-test. b The percentage of CD3 + T cells in the 
blood of healthy donors (n = 19) and AML patients (n = 37) at diag-
nosis measured by flow cytometry. P value determined by unpaired 
t-test. c The percentage of iNKT cells in the blood of healthy donors 
(n = 19) and AML patients (n = 37) at diagnosis, measured by flow 
cytometry with CD1d tetramer staining. P value determined by 
unpaired t-test. d Anti-CD3/anti-CD28 antibody-driven iNKT cell 
line proliferation (n = 7 donors) is unaffected by in  vitro culture in 
low arginine conditions as determined by flow cytometry, after 96 h. 
Proliferation of T cells (n = 7donors) is suppressed in low arginine. 
Each dot represents the mean of duplicate samples. P value deter-
mined by paired t-test. e αGalCer (100 ng/ml) presentation by AML 
blasts induces iNKT cell line proliferation, as measured by flow 
cytometry after 72 h. Each dot represents the mean of duplicate sam-
ples. P value determined by paired t-test. f) Mitochondrial oxygen 
consumption rates (OCR) in the absence and presence of oligomycin 
were assessed in iNKT cells ± THP1 or KG1a ± αGalCer (100 ng/ml 
pulsed for 4  h) to establish maximal respiratory capacity of iNKT 
cell line, expressed as fold change between BAM 15-induced OCR 
and baseline OCR. g Spare respiratory capacity of iNKT cell lines 
was calculated as the difference between BAM 15-induced OCR and 
baseline OCR, expressed as percentage of maximal respiration. Gly-
colytic proton efflux rates (glycoPER) in the absence and presence 
of oligomycin were probed in iNKT cell lines to establish baseline 
rates of glycolysis h and compensatory glycolysis (i), respectively. 
Mitochondrial OCR were corrected for non-mitochondrial respira-
tion by subtracting OCR following rotenone and antimycin addition. 
GlycoPER were corrected for non-glycolytic acidification by subtract-
ing remaining PER following 2-DG addition. Data are means ± SEM 
from 4 cell donors assessed from two independent microplates each 
containing 3–4 well replicates per donor. Statistical differences were 
assessed using one-way ANOVA with Fisher’s LSD post hoc test
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iNKT cell rescue of T cell proliferation assay

T cells were prepared from healthy donors as described 
above. 2 × 105  T cells, enriched by negative selection 
(Miltenyi Biotec), were cultured with allogenic irradiated 
(5000 rad) dendritic cells (DC, 0.5 × 105), in 200 RPMI 5% 
human serum (Sigma) in 96 well flat bottom plates. Cells 
were incubated at 370C, 5% CO2 for 4 days. 1 mCi/ well 
3H-thymidine (PerkinElmer Life Sciences) was added for 
12–16 h. 3H-thymidine incorporation was measured using a 
Wallac Microbeta Jet 1450 reader (PerkinElmer). AML inhi-
bition of T cell proliferation was carried out by co-culturing 
AML blasts from patients with healthy donor T cells and 
irradiated DCs. To test the ability of iNKT cells to overcome 
AML-induced suppression of T cell proliferation 0.25 × 105 
iNKT cells were first co-cultured with AML blasts (1 × 105) 
for 8 h, in the presence of αGalCer (100 ng/ml). After 8 h, 
the cells were washed and T cells and DC were added to 
cultures according to the protocol above. Data are expressed 

as a percentage of T cell proliferation driven by allogenic 
irradiated DCs in the presence of AML cells, as compared to 
allogenic PBMC proliferation in the absence of AML cells 
(100%). Where indicated iNKT cells were cultured with 
anti-CD3 (3 μg/ml)/anti-CD28 (2 μg /ml) in the presence of 
JPH203 (0.125 mM; J-Pharma, Japan). DMSO was used as 
a vehicle control.

iNKT‑AML cytotoxicity assay

AML patient blasts and AML cell lines were cultured with 
iNKT cells and αGalCer (100 ng/ml) for 24 h, 48 h, and 
72 h. Supernatants were harvested to determine cytokine 
release, and viability of AML blasts was determined by 
flow cytometry, using propidium iodide (BD Pharmingen) 
staining.

Statistics

A Mann–Whitney t-test was used to determine the statisti-
cal significance of the difference in unpaired observations 
between 2 groups (GraphPad Prism, USA). A Wilcoxon 
matched paired t test was used to determine the statistical 
significance of the difference in paired observations between 
2 groups (GraphPad Prism, USA). p values are two-tailed 
and where values were < 0.05,they were considered statisti-
cally significant. For bioenergetic analyses, statistical differ-
ences were assessed using one-way ANOVA with Fisher’s 
LSD post hoc test.

Results

Serum amyloid A1 (SAA1) upregulates ARG2 in AML 
blasts

AML blasts induce a low arginine environment in which the 
immune system must function (Supp Fig. 1a, b). We have 
previously shown that inflammatory mediators can modu-
late the phenotype of immunosuppressive myeloid cells, and 
hypothesised such factors could control ARG2 expression in 
AML blasts [19]. Evaluation of the plasma of AML patients 
at diagnosis identified no significant differences in the con-
centrations of Th1/ Th2 cytokines (Supp Fig. 1c, d). How-
ever, SAA levels were significantly raised in AML patients 
compared to healthy controls (Fig. 1a), and persistent dur-
ing treatment in a second cohort of patients (Fig. 1b) [14]. 
Confocal microscopy revealed blasts express SAA (Fig. 1c), 
which can be released (Fig. 1d) [20, 21].

Fig. 3   iNKT cells remain activated within the low arginine AML 
environment in  vitro and in  vivo. a αGalCer (100  ng/ml) presenta-
tion by AML blasts induces iNKT cell line proliferation, which is 
unaffected by low arginine media conditions as measured by flow 
cytometry after 72 h (blasts from n = 7 AML patients). Each dot rep-
resents the mean of duplicate samples. P value determined by paired 
t-test. b iNKT cell lines cultured with AML blasts for 72  h (n = 17 
AML patients) in the presence or absence of 100  ng/ml αGalCer, 
release IFN-γ into culture supernatants as measured by ELISA. 
Each dot represents the mean of duplicates. P value determined by 
paired t-test. c αGalCer (100  ng/ml) presentation by AML blasts 
(n = 6 AML patients) induces iNKT cell line IFN-γ release in  vitro 
after 72 h, which is unaffected by low arginine conditions as meas-
ured by ELISA. Representative data of duplicate experiments. P 
value determined by paired t-test. d Schematic depicting experi-
mental design. C57BL/6J mice were treated with PBS or recombi-
nant Arginase (BCT-100, 10 mg/kg) in combination with vehicle or 
2  μg /mouse αGalCer as indicated. iNKT cell expansion secondary 
to αGalCer treatment (iv) is unaffected in C57BL/6J mice (n = 8) 
treated with BCT-100 recombinant human Arginase (rhArginase) 
(iv) as determined by flow cytometry. Representative of two indi-
vidual experiments. P value determined by paired t-test. e Schematic 
depicting experimental design. CD45.1 + B6.SJL/J mice were irra-
diated (4.5  Gy) and engrafted with murine MLL-AF9 AML blasts 
(CD45.2). Following engraftment mice were treated with vehicle or 
2 μg /mouse αGalCer as indicated. iNKT cells (CD1d tetramer posi-
tive) proliferate following treatment of MLL-AF9 leukaemia bearing 
mice (n = 15) with αGalCer as measured by flow cytometry. Data 
from n = 3 individual experiments. P value determined by unpaired 
t-test. f Flow cytometry plots of iNKT cells from MLL-AF9 leukae-
mia bearing mice (n = 14) treated with 2 μg /mouse αGalCer showing 
upregulation of IFN-γ production as measured by intracellular stain-
ing. iNKT cells are detected by CD1d tetramer staining. Control mice 
with no AML or αGalCer are shown for comparison. Representative 
data from two individual experiments
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staining. Data from n = 2 individual experiments. d Geometric means 
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increased ASS expression compared to non-leukaemia control mice 
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vidual experiments. P value determined by unpaired t-test
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AML blasts were treated with recombinant SAA, leading 
to an increase in blast viability ex vivo (Supp Fig. e, f). Eval-
uation of cell lines and patients’ blasts identified expression 
of the SAA receptors Toll-like Receptors: TLR2, TLR4, and 
Formyl-Peptide Receptor 2 (FPR2) (Supp Fig. 2a). Sequen-
tial blockade reveals SAA signals through FPR2 (Supp 
Fig. 2b, c), contributing to local inflammation by increasing 
the production and release of IL-1β (Supp Fig. 2d, e). Nota-
bly, SAA leads to the upregulation of intracellular ARG2 
expression and activity (Fig. 1e, f), and a corresponding 
reduction in extracellular arginine (Supp Fig. 2f).

iNKT cells are adapted to the low arginine 
microenvironment through LAT‑1 and ASS1 
expression

The failure of immune surveillance contributes to leukae-
mia progression. Although we and others have shown that T 
cells numbers are suppressed in the low arginine AML niche 
ex vivo (Fig. 2a), and in patients (Fig. 2b), we observe that 
the specialised population of invariant natural killer T cells 
(iNKT) remains unchanged (Fig. 2c, Supp Fig. 3a) [7]. To 
investigate the capacity of iNKT to respond in low arginine 
conditions, sorted cells were stimulated using anti-CD3/
anti-CD28 antibodies (Supp Fig. 3b). Although iNKT cells 
proliferated under low arginine, conventional T cell prolif-
eration was suppressed (Fig. 2d).

iNKT cells recognise glycolipid antigens presented by 
myeloid cells via the MHC-like molecule CD1d in combina-
tion with CD40 co-stimulation. Flow cytometry identified 
CD1d and CD40 are expressed on patients’ blasts (Supp 

Fig. 3c, d). Next, we investigated antigen-specific iNKT 
proliferation by AML under stimulation with αGalCer, a 
synthetic glycolipid that is an established activator of iNKT 
cells used in experimental models and clinical trials [22]. 
Antigen-induced iNKT proliferation was unaffected by AML 
conditions (Fig. 2e, Supp Fig. 3e). Oxidative and glycolytic 
flux of iNKT cells was probed using an Agilent Seahorse 
XFe96 Analyzer. Despite modest differences, neither basal 
mitochondrial nor ADP phosphorylation-linked respiration 
were significantly altered between iNKT cells and those co-
cultured with AML ± αGalCer (Supp Fig. 3f–i). However, 
crosstalk of iNKT cells with AML significantly lowered 
maximal mitochondrial respiratory capacity of iNKT cells 
from 9.5-fold of basal to threefold of basal when treated 
with αGalCer (Fig. 2f). Spare respiratory capacity was also 
significantly lower (Fig. 2g). No significant differences were 
observed on either maximal respiratory capacity or spare 
respiratory capacity in iNKT cells co-cultured with the 
CD1d negative line KG1a ± αGalCer (Fig. 2f, g). Glycolytic 
Proton Efflux Rate (GlycoPER) was significantly increased 
in iNKT cells after AML crosstalk (Fig. 2h), and oligomy-
cin-induced compensatory glycoPER is lower in iNKT cells 
after crosstalk with THP1 but not KG1a ± αGalCer (Fig. 2i). 
Consistent with this, rates of ATP synthesis linked to glyco-
lysis were significantly increased in iNKT cells after THP1 
co-culture ± αGalCer when compared to iNKT cells alone 
or those co-cultured with KG1a ± αGalCer (Supp Fig. 3j). 
These data suggest a dependence on glycolytic flux to meet 
cellular ATP demand in the early phase of activation in 
iNKT cells. Notably, the lower spare respiratory capacity 
and increased glycolytic rates of ATP synthesis observed 
after iNKT cells are cultured with CD1d + AML are consist-
ent with the metabolic changes that occur upon naïve T cell 
activation [23, 24].

Functional evidence for the above activation findings was 
confirmed. Stimulation of iNKT proliferation by AML with 
αGalCer was unaffected, even under lower arginine condi-
tions in vitro (Fig. 3a). Culture of iNKT with AML blasts 
leads to activation-induced IFN-γ production and release 
(Supp Figs. 4a, 3b), which is also unaffected by low argi-
nine media conditions in vitro (Fig. 3c). Increased levels of 
the activation markers CD69, CD38 and FAS are similarly 
observed in both conditions (Supp Fig. 4b, c).

To support these findings immunocompetent, mice were 
depleted of arginine using recombinant arginase (Supp 
Fig. 4d). In vivo iNKT cells retained the capacity to expand 
(Fig. 3d, Supp Fig. 4e) and release IFN-γ (Supp Fig. 4f) on 
αGalCer antigen stimulation. In an immunocompetent AML 
murine model (MLL-AF9) that replicated a low arginine 
environment (Supp Fig. 1b), we similarly demonstrate iNKT 

Fig. 6   iNKT cell activation induces AML cell death. a αGalCer 
(100  ng/ml) enhances iNKT cell line cytotoxicity against AML 
blasts after 72 h of culture. Representative flow cytometry of n = 18 
patients, gated on propidium iodide staining versus forward scat-
ter (FSC) of AML blasts. b Pooled analysis demonstrating αGalCer 
(100 ng/ml) enhances iNKT cell line cytotoxicity against AML blasts 
(n = 18 donors) as measured by flow cytometry. (1iNKT:4AML 
blasts). P value determined by paired t-test. c Representative flow 
cytometry of iNKT cells, gating on CD1d tetramer versus CD107a, 
after iNKT co-culture with AML blasts. Two representative patients 
of n = 7 total. d iNKT cells undergo degranulation, exemplified by 
CD107a upregulation, following αGalCer (100 ng/ml) induced cross-
talk with AML (n = 3 cell lines and n = 4 AML patient samples) for 
72  h. Each dot is the mean of duplicates. e Increased granzyme B 
expression in iNKT cell lines after 72 h of cross-talk with n = 3 AML 
cell lines and n = 3 AML patients as measured by ELISPOT. Each dot 
is the mean of duplicates. f iNKT cell activation with αGalCer (2 μg /
mouse on days 5 and 10 iv) in vivo leads to a reduction in MLL-AF9 
leukaemia burden in the bone marrow, spleen, and blood (n = 15 mice 
untreated mice and n = 15 mice treated with αGalCer). AML blasts 
(CD45.2) were measured by flow cytometry. Data from n = 3 individ-
ual experiments. P value determined by unpaired t-test
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cells proliferate in bone marrow, spleen, and blood environ-
ments of AML-bearing mice (Fig. 3e) [14, 17]. Activated 
iNKT within the bone marrow produce and release IFN-γ 
(Fig. 3f, Sup Fig. 4g, h).

We hypothesised that the iNKT cells may be adapted 
to low arginine environments by switching away from 
arginine metabolism. Sorted iNKT cells activated in low 
arginine conditions were subject to ultra-high performance 
liquid chromatography mass spectrometry (UHPLC-MS) 
analysis and demonstrated metabolic perturbations in the 
arginine and proline metabolism pathway as expected. 
Pathway enrichment analysis revealed changes in valine, 
leucine and isoleucine biosynthesis, glycine, serine and 
threonine metabolism, alanine, aspartate and glutamate 
metabolism, and cysteine and methionine metabolism. 
(Supplementary Table 1) Consistent with this, isolated 
iNKT cells post-cross-talk with AML cell lines have 
upregulation of the transmembrane amino acid transporter 
LAT-1 (SLC7A5) which mediates uptake of neutral amino 
acids (Fig. 4a) [25]. LAT1 upregulation is increased with 
accompanying p38 phosphorylation (Fig. 4a). Inhibition 
of p38 phosphorylation abrogates iNKT IFN-γ release 
and cytotoxicity (Fig. 4b, c). Inhibition of LAT-1 with the 
small molecule inhibitor JPH-203 impairs human iNKT 
proliferation (Fig. 4d), and IFN-γ release (Fig. 4e), with 
no effect on viability (Supp Fig. 4i).

Complimentary to data shown in Fig. 2, iNKT cells in 
the presence of citrulline exposed to THP1 ± αGalCer pre-
sent significant metabolic changes as measured by Sea-
horse assay (Supp Fig. 5a–h). The absence of citrulline also 
impairs antigen-induced IFN-γ release (Fig. 4f). Citrulline is 
transported by LAT-1 and catabolised by ASS1, an enzyme 

which infers resistance to a low arginine microenvironment 
(Supp Fig. 5g). After cross-talk with CD1d + AML (THP-
1), ASS1 expression is upregulated in freshly isolated iNKT 
cells (Fig. 5a, and Supp Fig. 5h–j) with concurrent increased 
enzyme activity (Fig. 5b). Minimal change in the expression 
of other enzymes within the arginine metabolism pathway 
was seen (Arginase 1—ARG1, ARG2, Ornithine Transcar-
bamylase—OTC, Argininosuccinate Lyase—ASL) (Supp 
Fig. 5k). Confirming these findings ASS1 enzyme expres-
sion is similarly increased in murine iNKT cells within the 
AML environment in vivo (Fig. 5c–e).

CD1d‑iTCR‑dependent cross‑talk induces AML 
apoptosis

Having demonstrated that iNKT cells are functional in the 
AML niche we investigated the impact of iNKT cells on 
AML disease burden. iNKT cells are cytotoxic to blasts 
on antigen presentation (Fig.  6a, b, Supp Fig.  6a) in a 
CD1d-CD40-dependent manner (Supp Fig. 6b, c). Blockade 
of CD1d prevents IFN-γ release (Supp Fig. 6d). iNKT cells 
undergo degranulation exemplified by CD107a upregulation 
(Fig. 6c and d), and granzyme release (Fig. 6e). The result is 
induction of AML blast apoptosis characterised by Caspases 
9,3 and PARP cleavage (Supp Fig. 6e, Supp Fig. 7a). In vivo 
activation of iNKT cells with αGalCer similarly leads to a 
significant reduction in CD1d + AML (Supp Fig. 7b) burden 
in the blood, spleen, and bone marrow (Schematic Figs. 3e 
and 6f).

iNKT rescue antigen‑specific T cell proliferation 
in other myeloid‑derived immunosuppressive 
microenvironments

Physiological antigen-specific conventional T cell expan-
sion in AML patients or patients with solid cancers is often 
incapable of controlling cancer progression. Clinical trials of 
T cell therapies remain suboptimal outside of B-cell malig-
nancies, due to poor T cell persistence and activation and 
the impact of MDSCs [26, 27]. As we show that iNKT cells 
can function within a low arginine microenvironment we 
investigated their role as an adjunct to T cell immunotherapy 
in two further models. Co-culture of allo-antigen-driven T 
cells with AML blasts led to a reduction in T cell prolifera-
tion, which was restored in the presence of activated iNKT 

Fig. 7   iNKT cells control MDSC numbers in an EG7 lymphoma 
model. a Schematic depicting experimental design. C57BL/6J or 
Jα18−/− mice were engrafted with EG7 cells subcutaneously. 15 days 
later mice were sacrificed. b MDSCs are increased in the spleens of 
Jα18−/− mice (n = 6) compared to wild-type (WT; n = 6), as meas-
ured by flow cytometry. P value determined by unpaired t-test. c 
Lymphoma (EG7) growth is faster in (n = 6) Jα18−/− mice compared 
to wildtype (WT; (n = 6). P value determined by unpaired t-test. d 
Schematic depicting experimental design. C57BL/6J were engrafted 
with EG7 cells subcutaneously. Mice were treated with iv αGalCer 
2 μg /mouse or vehicle on days 10 and 14, before being sacrificed on 
day 17. e iNKT cells expand in the tumours and spleens of EG7 lym-
phoma-bearing following αGalCer (n = 10 mice per group, vs n = 5 
no tumour-bearing mice controls). Data of two individual experi-
ments. P value determined by unpaired t-test. f MDSCs are reduced 
in the tumours and spleens of EG7 lymphoma-bearing mice follow-
ing αGalCer 2 μg /mouse (n = 10 mice per group, vs n = 5 no tumour-
bearing mice controls). Data two individual experiments. P value 
determined by unpaired t-test
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cells (Supp Fig. 7c). These findings are recapitulated in vivo 
with AML-bearing mice (MLL-AF9) similarly undergoing 
a rescue of T cell frequency in the spleen and bone marrow 
after αGalCer treatment (Supp Fig. 7d).

MDSCs and AML blasts share phenotypic and immuno-
suppressive similarities [9–11]. Therefore, we investigated 
the function of iNKT in a second immunocompetent sys-
tem, using a syngeneic lymphoma model that induces CD1d 
positive MDSCs in vivo (Supp Fig. 7e, f). EG7 lymphoma 
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cells were engrafted into wild-type and iNKT cell-deficient 
mice (Jα18−/− mice) (Fig. 7a). Jα18−/− mice have a relative 
increase in MDSCs (Fig. 7b) and developed larger tumours 
(Fig. 7c) compared to WT mice. To evaluate the potential 
role of iNKT activation in MDSC control, EG7 tumour-bear-
ing mice were treated with αGalCer (Fig. 7d) leading to an 
increase in iNKT cell frequency in the tumours and spleens 
(Fig. 7e), and associated IFN-γ release into the serum (Supp 
Fig. 7g), with a reduction in the MDSCs in these tissues 
(Fig. 7f). We confirmed iNKT cells within the EG7 tumour 
microenvironment express ASS1, regardless of αGalCer 
treatment (Supp Fig. 8a, b).

Next to evaluate the impact of iNKT activation on con-
ventional T cell immunity, antigen-specific T cells were 
induced with OVA-peptide vaccine (Fig. 8a). Vaccine alone 
led to no significant control of tumour growth (Fig. 8b). 
However, combination with αGalCer led to a significant 
slowing of tumour growth (Fig. 8b), reduction of MDSC 
frequency in blood (Fig. 8c) and an enhanced OVA-specific 
T cell proliferation (Fig. 8d and Supp Fig. 8c).

To confirm the capacity of activated iNKT to overcome 
MDSC inhibition of conventional T cells, MDSCs from EG7 
lymphoma-bearing mice were adoptively transferred into 
wild-type (WT) and Jα18−/− naïve mice (Fig. 8e). MDSCs 
abolished in vivo expansion of adoptively transferred OT-I 
splenocytes following peptide priming (Fig. 8f and Supp 
Fig. 8d). In contrast, when the transfer of MDSCs was 
followed by an injection of αGalCer in Jα18−/− mice, no 
expansion of adoptively transferred OT-I cells was observed 
(Fig. 8f, Supp Fig. 8d).

Discussion

We demonstrated that iNKT cells function within the immu-
nosuppressive environments created by AML or MDSCs to 
reduce myeloid numbers and enhance antigen-specific T cell 
responses. AML and MDSCs share a number of character-
istics, not least their myeloid origin, but also the downregu-
lation of HLA-DR and suppression of T cell proliferation. 
One of the most well-characterised suppressive mediators 
in MDSCs is the expression of ARG1, which catabolises 
arginine to deprive T cells [28, 29]. The regulation of ARG1 
expression in MDSCs by IL-4, HIF-1α, and STAT3 is well 
established; however, the factors which regulate ARG2 in 
tumour cells have received less attention to date [30, 31]. 
Here, we show that serum amyloid A is produced by AML 
blasts and promotes blast viability through FPR2. Notably, 
SAA also regulates IDO expression in AML blasts [32]. 
SAA has been reported to regulate ARG1 and ARG2 in 
endothelial cells or macrophages, which may promote mye-
loid cell survival during infection and inflammation [33–35]

Previously, we and others have shown that although T 
cells can recognise a number of peptide antigens presented 
by AML blasts in the context of HLA molecules, the capac-
ity to meaningfully boost these responses in clinical tri-
als is challenging[14, 36]. The identification that CD1d is 
expressed on AML blasts provides an opportunity to use 
non-peptide-based strategies to target AML. The number 
of iNKT cells in different cohorts of AML patients may 
vary[37, 38]. The role of iNKT cells as critical to anti-
leukaemia immune surveillance was highlighted in a study 
demonstrating that the failure of iNKT cells to reconstitute 
in AML patients post-T cell-depleted HLA-haploidentical 
haematopoietic stem cell transplant (HSCT) correlated with 
relapse [39]. To date no clinical trials of iNKT cells against 
AML have taken place. The use of exogenous glycolipids, 
namely αGalCer, has the potential to translate our find-
ings for therapeutic benefit. αGalCer remains an attractive 
therapeutic as it is relatively cheap to synthesise and has 
already completed Phase I and II clinical trials in adult solid 
tumours, demonstrating an excellent safety profile. We have 
shown αGalCer is capable to induce a number of critical 
effects including an increase of iNKT numbers, activation-
induced IFN-γ release, a direct iNKT-derived cytotoxic-
ity against AML blasts in vivo, and restoration of T cell 
function—expanding the rationale from previous in vitro 
reports [40, 41]. Interestingly, the potential of αGalCer-
induced iNKT cell expansion has been harnessed in a hybrid 
fashion through the preclinical development of anti-CD19 
iNKT CAR-T cells for lymphoma [42]. As AML blasts 
can directly present αGalCer to iNKT cells, the need for 
a loaded-dendritic cell vaccine or allogeneic approaches is 

Fig. 8   iNKT cells control MDSC numbers in an EG7 lymphoma 
model. a Schematic depicting experimental design. C57Bl/6J mice 
were engrafted with EG7 cells subcutaneously. Mice were treated 
with iv αGalCer 2 μg /mouse or vehicle on day 10. Two groups were 
treated with OVA-vaccine on day 14. b Lymphoma (EG7) growth is 
inhibited in OT-1 mice treated with OVA and 2 μg /mouse αGalCer 
(n = 8 mice per group). P value determined by unpaired t-test. c EG7 
lymphoma-bearing mice (C57BL/6J), treated with OVA-vaccine and 
2 μg /mouse αGalCer (n = 8 mice per group), have a corresponding 
decrease in the total number of MDSCs in the blood. P value deter-
mined by unpaired t-test. d Representative flow cytometry plot, 
gated on CD8 versus SIINFEKL-tetramer positive T cells, demon-
strating increased SIINFEKL antigen-specific T cells in the blood of 
EG7 lymphoma-bearing mice (n = 8) treated with OVA-vaccine and 
2  μg /mouse αGalCer. e Schematic depicting experimental design. 
C57BL/6J or Jα18−/− mice were administered OVA-peptide-loaded 
dendritic cells (DC) and adoptively transferred tumour-derived 
MDSCs. Following the administration of αGalCer (2  μg /mouse) 
and OT1 splenocytes iv mice were sacrificed on day 10. f Antigen-
specific T cells expansion is inhibited by the lack of iNKT cells in 
Jα18−/− mice adoptively transferred with tumour-derived MDSCs. 
Representative flow cytometry gating of SIINFEKL tetramer labelled 
T cells from the spleens. Representative data of two individual exper-
iments
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also circumvented making the drug readily deliverable even 
to fragile AML populations such as children and the elderly.

We find that iNKT cells can function within the low argi-
nine conditions created by AML, that is hostile to T cells. 
Although T cells require arginine for proliferation and acti-
vation, we show that iNKT cells do not express the cellular 
machinery for arginine catabolism (Arginase 1 or Arginase 
2) but instead upregulate amino acid uptake via SLC7A5 
(LAT-1) which feed forward into the ASS1 pathway. The 
binding partner of SLC transporters, CD98, has previously 
been reported on murine iNKT cells [43]. These findings 
help explain how iNKT cells can also function to abol-
ish ARG1 + MDSCs that suppress T cells in the setting of 
influenza [44]. As such iNKT cells have a seemingly unique 
adaptation to the amino acid metabolic microenvironment 
of tumours, identifying a new niche functionality for these 
relatively rare immune cells. We highlight that αGalCer acti-
vation of iNKT cells leads to a secondary enhancement of 
antigen-specific T cell immunity not only in AML but in 
solid cancer—a hitherto unutilised finding. Although as a 
single agent αGalCer-iNKT responses against solid tumours 
in clinical trials have been disappointing, our data suggest 
a better strategy is to combine αGalCer-induced iNKT acti-
vation as an adjuvant to T cell immunotherapies. We show 
that iNKT activation abrogates the expansion and immuno-
suppressive activity of tumour-associated MDSCs in immu-
nocompetent murine models and allows antigen-specific T 
cells to eradicate tumour burden. In many respects, this 
mimics the multi-cellular immunological response that is 
physiologically generated on immune activation against for-
eign pathogens [45]. Targeting of MDSCs remains a major 
challenge in the era of cellular immunotherapy, due to the 
heterogeneity of MDSC phenotype both within patients and 
across diseases. Although MDSC depletion with cytotoxic 
chemotherapy remains an approach used prior to CAR-T/ 
adoptive T cell administration, the short-lived effectiveness 
of such an approach likely contributes to the failure of T 
cell therapies in solid cancers [46]. As iNKT cells are pro-
duced endogenously by patients and circulate both through 
the blood and tumour compartments, iNKT cells could be 
activated in patients by treatment with αGalCer or ex vivo 
using apheresed and expanded products. Thus, iNKT cell 
therapy could be given alongside other immune therapies, 
such as CAR-T, and provide a sustainable, translatable and 
low toxicity approach to enhance immunotherapy.

Key points

iNKT cells cross-talk with AML blasts via CD1d-dependent 
signalling, resulting in AML apoptosis and reduction of leu-
kaemic burden in vivo. iNKT upregulate LAT-1/ ASS1 in 

low arginine environments leading to activation of antigen-
specific T cells and tumour clearance.
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