UNIVERSITYOF
 BIRMINGHAM

University of Birmingham Research at Birmingham

Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments

Kuhn, D.; Lapinskas, J.; Osthus, D.; Patel, V.

DOI:

10.1112/plms/pdu019

License:
Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
Kuhn, D, Lapinskas, J, Osthus, D \& Patel, V 2014, 'Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments', London Mathematical Society. Proceedings, vol. 109, no. 3, pp. 733-762. https://doi.org/10.1112/plms/pdu019

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Eligibility for repository : checked 14/08/2014

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
-Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
-User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
-Users may not further distribute the material nor use it for the purposes of commercial gain.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments

Daniela Kühn, John Lapinskas, Deryk Osthus and Viresh Patel

Abstract

A conjecture of Thomassen from 1982 states that, for every k, there is an $f(k)$ so that every strongly $f(k)$-connected tournament contains k edge-disjoint Hamilton cycles. A classical theorem of Camion, that every strongly connected tournament contains a Hamilton cycle, implies that $f(1)=1$. So far, even the existence of $f(2)$ was open. In this paper, we prove Thomassen's conjecture by showing that $f(k)=O\left(k^{2} \log ^{2} k\right)$. This is best possible up to the logarithmic factor. As a tool, we show that every strongly $10^{4} k \log k$-connected tournament is k-linked (which improves a previous exponential bound). The proof of the latter is based on a fundamental result of Ajtai, Komlós and Szemerédi on asymptotically optimal sorting networks.

1. Introduction

1.1. Main result

A tournament is an orientation of a complete graph and a Hamilton cycle in a tournament is a (consistently oriented) cycle that contains all the vertices of the tournament. Hamilton cycles in tournaments have a long and rich history. For instance, one of the most basic results about tournaments is Camion's theorem, which states that every strongly connected tournament has a Hamilton cycle [10]. This is strengthened by Moon's theorem [21], which implies that such a tournament is even pancyclic, that is, contains cycles of all possible lengths. Many related results have been proved; the monograph by Bang-Jensen and Gutin [5] gives an overview that also includes many recent results.

In 1982, Thomassen [26] made a very natural conjecture on how to guarantee not just one Hamilton cycle, but many edge-disjoint ones: he conjectured that, for every k, there is an $f(k)$ so that every strongly $f(k)$-connected tournament contains k edge-disjoint Hamilton cycles (see also the recent surveys $[\mathbf{4}, \mathbf{1 7}]$). This turned out to be surprisingly difficult: not even the existence of $f(2)$ was known so far. Our main result shows that $f(k)=O\left(k^{2} \log ^{2} k\right)$.

Theorem 1.1. There exists $C>0$ such that, for all $k \in \mathbb{N}$ with $k \geqslant 2$, every strongly $C k^{2} \log ^{2} k$-connected tournament contains k edge-disjoint Hamilton cycles.

In Proposition 5.1, we describe an example that shows that $f(k) \geqslant(k-1)^{2} / 4$, that is, our bound on the connectivity is asymptotically close to best possible. Thomassen [26] observed

[^0]that $f(2)>2$ and conjectured that $f(2)=3$. He also observed that one cannot weaken the assumption in Theorem 1.1 by replacing strong connectivity with strong edge-connectivity; see Section 5.

To simplify the presentation, we have made no attempt to optimize the value of the constant C. Our exposition shows that one can take $C:=10^{12}$ for $k \geqslant 20$. Rather than proving Theorem 1.1 directly, we deduce it as an immediate consequence of two further results, which are both of independent interest: we show that every sufficiently highly connected tournament is highly linked (see Theorem 1.3) and show that every highly linked tournament contains many edge-disjoint Hamilton cycles (see Theorem 1.2).

1.2. Linkedness in tournaments

Given sets A, B of size k in a strongly k-connected digraph D, Menger's theorem implies that D contains k vertex-disjoint paths from A to B. In a k-linked digraph, we can even specify the initial and final vertex of each such path (see Section 2 for the precise definition).

Theorem 1.2. There exists $C^{\prime}>0$ such that, for all $k \in \mathbb{N}$ with $k \geqslant 2$, every $C^{\prime} k^{2} \log k$ linked tournament contains k edge-disjoint Hamilton cycles.

The bound in Theorem 1.2 is asymptotically close to best possible, as we shall discuss below. We will show that $C^{\prime}:=10^{7}$ works for all $k \geqslant 20$. (As mentioned earlier, we have made no attempt to optimize the value of this constant.)

It is not clear from the definition that every (very) highly connected tournament is also highly linked. In fact, for general digraphs this is far from true: Thomassen [28] showed that, for all k, there are strongly k-connected digraphs that are not even 2-linked. On the other hand, he showed that there is an (exponential) function $g(k)$ so that every strongly $g(k)$-connected tournament is k-linked [27]. The next result shows that we can take $g(k)$ to be almost linear in k. Note that this result together with Proposition 5.1 shows that Theorem 1.2 is asymptotically best possible up to logarithmic terms.

Theorem 1.3. For all $k \in \mathbb{N}$ with $k \geqslant 2$, every strongly $10^{4} k \log k$-connected tournament is k-linked.

For small k, the constant 10^{4} can easily be improved (see Theorem 4.5). The proof of Theorem 1.3 is based on a fundamental result of Ajtai, Komlós and Szemerédi $[\mathbf{1}, \mathbf{2}]$ on the existence of asymptotically optimal sorting networks. Though their result is asymptotically optimal, it is not clear whether this is the case for Theorem 1.3. In fact, for the case of (undirected) graphs, a deep result of Bollobás and Thomason [8] states that every $22 k$ connected graph is k-linked (this was improved to $10 k$ by Thomas and Wollan [25]). Thus, one might believe that a similar relation also holds in the case of tournaments.

Conjecture 1.4. There exists $C>0$ such that, for all $k \in \mathbb{N}$, every strongly $C k$-connected tournament is k-linked.

Similarly, we believe that the logarithmic terms can also be removed in Theorems 1.1 and 1.2.

Conjecture 1.5. (i) There exists $C^{\prime}>0$ such that, for all $k \in \mathbb{N}$, every $C^{\prime} k^{2}$-linked tournament contains k edge-disjoint Hamilton cycles.
(ii) There exists $C^{\prime \prime}>0$ such that, for all $k \in \mathbb{N}$, every strongly $C^{\prime \prime} k^{2}$-connected tournament contains k edge-disjoint Hamilton cycles.

Note that Conjectures 1.4 and $1.5(\mathrm{i})$ together imply Conjecture 1.5(ii).

1.3. Algorithmic aspects

Both Hamiltonicity and linkedness in tournaments have also been studied from an algorithmic perspective. Camion's theorem implies that the Hamilton cycle problem (though NP-complete in general) is solvable in polynomial time for tournaments. Chudnovsky, Scott and Seymour [11] solved a long-standing problem of Bang-Jensen and Thomassen [6] by showing that the linkedness problem is also solvable in polynomial time for tournaments. More precisely, for a given tournament on n vertices, one can determine in time polynomial in n whether it is k-linked and if yes, one can produce a corresponding set of k paths (also in polynomial time). Fortune, Hopcroft and Wyllie [13] showed that, for general digraphs, the problem is NP-complete even for $k=2$. We can use the result in $[\mathbf{1 1}]$ to obtain an algorithmic version of Theorem 1.2. More precisely, given a $C^{\prime} k^{2} \log k$-linked tournament on n vertices, one can find k edge-disjoint Hamilton cycles in time polynomial in n (where k is fixed). We discuss this in more detail in Section 9. Note that this immediately results in an algorithmic version of Theorem 1.1.

1.4. Related results and spanning regular subgraphs

Proposition 5.1 actually suggests that the 'bottleneck' to finding k edge-disjoint Hamilton cycles is the existence of a k-regular subdigraph: it states that if the connectivity of a tournament T is significantly lower than in Theorem 1.1, then T may not even contain a spanning k regular subdigraph. There are other results that exhibit this phenomenon: if T is itself regular, then Kelly's conjecture from 1968 states that T itself has a Hamilton decomposition. Kelly's conjecture was proved very recently (for large tournaments) by Kühn and Osthus [18].

Erdős raised a 'probabilistic' version of Kelly's conjecture: for a tournament T, let $\delta^{0}(T)$ denote the minimum of the minimum out-degree and the minimum in-degree. He conjectured that, for almost all tournaments T, the maximum number of edge-disjoint Hamilton cycles in T is exactly $\delta^{0}(T)$. In particular, this would imply that, with high probability, $\delta^{0}(T)$ is also the degree of a densest spanning regular subdigraph in a random tournament T. This conjecture of Erdős was proved by Kühn and Osthus [19], based on the main result in [18].

It would be interesting to obtain further conditions that relate the degree of the densest spanning regular subdigraph of a tournament T to the number of edge-disjoint Hamilton cycles in T. For undirected graphs, one such conjecture was made in [16]: it states that, for any graph G satisfying the conditions of Dirac's theorem, the number of edge-disjoint Hamilton cycles in G is exactly half the degree of a densest spanning even-regular subgraph of G. An approximate version of this conjecture was proved by Ferber, Krivelevich and Sudakov [12]; see, for example, $[\mathbf{1 6}, \mathbf{1 9}]$ for some related results.

The methods used in the current paper are quite different from those used, for example, in the papers mentioned in Subsection 1.4. A crucial ingredient is the construction of highly structured dominating sets (see Section 3 for an informal description). We believe that this approach will have further applications. Indeed, Kühn, Osthus and Townsend [20] have recently developed it to give an affirmative answer to the following question of Thomassen (see [23]): given any positive integers k_{1}, \ldots, k_{t}, does there exist an integer $f\left(k_{1}, \ldots, k_{t}\right)$ such that every strongly $f\left(k_{1}, \ldots, k_{t}\right)$-connected tournament T admits a partition of its vertex set into vertex classes V_{1}, \ldots, V_{t} such that, for all $1 \leqslant i \leqslant t$, the subtournament $T\left[V_{i}\right]$ is strongly k_{i}-connected?

In fact, [20] contains a stronger result, which has further applications to a problem on cycle factors.

1.5. Organization of the paper

In the next section, we introduce the notation that will be used for the remainder of the paper. In Section 3, we give an overview of the proof of Theorem 1.2. In Sections 4 and 5, we give the relatively short proofs of Theorem 1.3 and Proposition 5.1. In Section 6, we show that, given a 'linked domination structure' (as introduced in the proof sketch), we can find a single Hamilton cycle (Lemma 6.7). In Section 7, we show that, given several suitable linked domination structures, we can repeatedly apply Lemma 6.7 to find k edge-disjoint Hamilton cycles. In Section 8, we show that any highly linked tournament contains such suitable linked domination structures. Finally, Section 9 contains some concluding remarks.

2. Notation

The digraphs considered in this paper do not have loops and we allow up to two edges between any pair x, y of distinct vertices, at most one in each direction. A digraph is an oriented graph if there is at most one edge between any pair x, y of distinct vertices, that is, if it does not contain a cycle of length 2 .

Given a digraph D, we write $V(D)$ for its vertex set, $E(D)$ for its edge set, $e(D):=|E(D)|$ for the number of its edges and $|D|$ for its order, that is, for the number of its vertices. We write $H \subseteq D$ to mean that H is a subdigraph of D, that is, $V(H) \subseteq V(D)$ and $E(H) \subseteq E(D)$. Given $X \subseteq V(D)$, we write $D-X$ for the digraph obtained from D by deleting all vertices in X, and $D[X]$ for the subdigraph of D induced by X. Given $F \subseteq E(D)$, we write $D-F$ for the digraph obtained from D by deleting all edges in F. We write $V(F)$ for the set of all endvertices of edges in F. If H is a subdigraph of D, then we write $D-H$ for $D-E(H)$.

We write $x y$ for an edge directed from x to y. Unless stated otherwise, when we refer to paths and cycles in digraphs, we mean directed paths and cycles, that is, the edges on these paths and cycles are oriented consistently. Given a path $P=x \cdots y$ from x to y and a vertex z outside P which sends an edge to x, we write $z x P$ for the path obtained from P by appending the edge $z x$. The length of a path or cycle is the number of its edges. We call the terminal vertex of a path P the head of P and denote it by $h(P)$. Similarly, we call the initial vertex of a path P the tail of P and denote it by $t(P)$. The interior $\operatorname{Int}(P)$ of a path P is the subpath obtained by deleting $t(P)$ and $h(P)$. Thus, $\operatorname{Int}(P)=\emptyset$ if P has length at most 1 . Two paths P and P^{\prime} are internally disjoint if $P \neq P^{\prime}$ and $V(\operatorname{Int}(P)) \cap V\left(\operatorname{Int}\left(P^{\prime}\right)\right)=\emptyset$. A path system \mathcal{P} is a collection of vertex-disjoint paths. We write $V(\mathcal{P})$ for the set of all vertices lying on paths in \mathcal{P} and $E(\mathcal{P})$ for the set of all edges lying on paths in \mathcal{P}. We write $h(\mathcal{P})$ for the set consisting of the heads of all paths in \mathcal{P} and $t(\mathcal{P})$ for the set consisting of the tails of all paths in \mathcal{P}. If $v \in V(\mathcal{P})$, then we write v^{+}and v^{-}for the successor and predecessor of v on the path in \mathcal{P} containing v. A path system \mathcal{P} is a path cover of a directed graph D if every path in \mathcal{P} lies in D and together the paths in \mathcal{P} cover all the vertices of D. If $X \subseteq V(D)$ and \mathcal{P} is a path cover of $D[X]$, then we sometimes also say that \mathcal{P} is a path cover of X.

If x is a vertex of a digraph D, then $N_{D}^{+}(x)$ denotes the out-neighbourhood of x, that is, the set of all those vertices y for which $x y \in E(D)$. Similarly, $N_{D}^{-}(x)$ denotes the in-neighbourhood of x, that is, the set of all those vertices y for which $y x \in E(D)$. We write $d_{D}^{+}(x):=\left|N_{D}^{+}(x)\right|$ for the out-degree of x and $d_{D}^{-}(x):=\left|N_{D}^{-}(x)\right|$ for its in-degree. We denote the minimum out-degree of D by $\delta^{+}(D):=\min \left\{d_{D}^{+}(x): x \in V(D)\right\}$ and the maximum out-degree of D by $\Delta^{+}(D):=$ $\max \left\{d_{D}^{+}(x): x \in V(D)\right\}$. We define the minimum in-degree $\delta^{-}(D)$ and the maximum in-degree $\Delta^{-}(D)$ similarly. The minimum degree of D is defined by $\delta(D):=\min \left\{d_{D}^{+}(x)+d_{D}^{-}(x): x \in\right.$ $V(D)\}$ and its minimum semi-degree by $\delta^{0}(D):=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$. Whenever $X, Y \subseteq$
$V(D)$ are disjoint, we write $e_{D}(X)$ for the number of edges of D having both endvertices in X, and $e_{D}(X, Y)$ for the number of edges of D with tail in X and head in Y. We write $N_{D}^{+}(X):=\bigcup_{x \in X} N_{D}^{+}(x)$ and define $N_{D}^{-}(X)$ similarly. In all these definitions, we often omit the subscript D if the digraph D is clear from the context.

A digraph D is strongly connected if, for all $x, y \in V(D)$, there is a directed path in D from x to y. Given $k \in \mathbb{N}$, we say a digraph is strongly k-connected if $|D|>k$ and, for every $S \subseteq V(D)$ of size at most $k-1, D-S$ is strongly connected. We say a digraph D is k-linked if $|D| \geqslant 2 k$ and, whenever $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ are $2 k$ distinct vertices of D, there exist vertex-disjoint paths P_{1}, \ldots, P_{k} such that P_{i} is a path from x_{i} to y_{i}.

Given a digraph D and sets $X, Y \subseteq V(D)$, we say that X in-dominates Y if each vertex in Y is an in-neighbour of some vertex in X. Similarly, we say that X out-dominates Y if each vertex in Y is an out-neighbour of some vertex in X.

A tournament T is transitive if there exists an ordering v_{1}, \ldots, v_{n} of its vertices such that $v_{i} v_{j} \in E(T)$ if and only if $i<j$. In this case, we often say that v_{1} is the tail of T and v_{n} is the head of T.

Given $k \in \mathbb{N}$, we write $[k]:=\{1, \ldots, k\}$. We write log for the binary $\operatorname{logarithm}$ and $\log ^{2} n:=$ $(\log n)^{2}$.

3. Sketch of the proof of Theorem 1.2

In this section, we give an outline of the proof of Theorem 1.2. An important idea is the notion of a 'covering edge'. Given a small (pre-determined) set S of vertices in a tournament T, this will mean that it will suffice to find a cycle covering all vertices of $T-S$. More precisely, let T be a tournament, let $x \in V(T)$ and suppose that C is a cycle in T covering $T-x$. If $y z \in E(C)$ and $y x, x z \in E(T)$, then we can replace $y z$ by $y x z$ in C to turn C into a Hamilton cycle. We call $y z$ a covering edge for x. More generally, if $S \subseteq V(T)$ and C is a cycle in T spanning $V(T)-S$ such that C contains a covering edge for each $x \in S$, then we can turn C into a Hamilton cycle by using all these covering edges. Note that this idea still works if C covers some part of S. On the other hand, note that S needs to be fixed at the beginning; this is different from the recently popularized 'absorbing method' (see, for example, [15, 24]).

Another important tool will be the following consequence of the Gallai-Milgram theorem: suppose that G is an oriented graph on n vertices with $\delta(G) \geqslant n-\ell$. Then the vertices of G can be covered with ℓ vertex-disjoint paths. We use this as follows: suppose that we are given a highly linked tournament T and have already found i edge-disjoint Hamilton cycles in T. Then the Gallai-Milgram theorem implies that we can cover the vertices of the remaining oriented graph by a set of $2 i$ vertex-disjoint paths. Very roughly, the aim is to link together these paths using the high linkedness of the original tournament T.

To achieve this aim, we introduce and use the idea of 'transitive dominating sets'. Here a transitive out-dominating set A_{ℓ} has the following properties:
(a) A_{ℓ} out-dominates $V(T) \backslash A_{\ell}$, that is, every vertex of $V(T) \backslash A_{\ell}$ receives an edge from A_{ℓ};
(b) A_{ℓ} induces a transitive tournament in T.

Transitive in-dominating sets B_{ℓ} are defined similarly.
Now suppose that we have already found i edge-disjoint Hamilton cycles in a highly linked tournament T. Let T^{\prime} be the oriented subgraph of T obtained by removing the edges of these Hamilton cycles. Suppose that we also have the following 'linked dominating structure' in T^{\prime}, which consists of:
(a) small disjoint transitive out-dominating sets A_{1}, \ldots, A_{t}, where $t:=2 i+1$;
(b) small disjoint transitive in-dominating sets B_{1}, \ldots, B_{t};

Figure 1. Illustrating the paths Q_{i} and P_{i} as well as the edges linking them up via the linked domination structure.
(c) a set of short vertex-disjoint paths P_{1}, \ldots, P_{t}, where each P_{ℓ} is a path from the head b_{ℓ} of B_{ℓ} to the tail a_{ℓ}^{\prime} of A_{ℓ}.

Recall that the head of a transitive tournament is the vertex of out-degree zero and the tail is defined analogously. The paths P_{ℓ} are found at the outset of the proof, using the assumption that the original tournament T is highly linked. (Note that T^{\prime} need not be highly linked.)

Let A^{*} denote the union of the A_{i} and let B^{*} denote the union of the B_{i}. Note that $\delta\left(T^{\prime}-\right.$ $\left.A^{*} \cup B^{*}\right) \geqslant\left|T^{\prime}-\left(A^{*} \cup B^{*}\right)\right|-1-2 i=\left|T^{\prime}-\left(A^{*} \cup B^{*}\right)\right|-t$. So the Gallai-Milgram theorem implies that we can cover the vertices of $T^{\prime}-A^{*} \cup B^{*}$ with t vertex-disjoint paths Q_{1}, \ldots, Q_{t}. Now we can link up successive paths using the above dominating sets as follows. The final vertex of Q_{1} sends an edge to some vertex b in B_{2} (since B_{2} is in-dominating). Either b is equal to the head b_{2} of B_{2} or there is an edge in $T^{\prime}\left[B_{2}\right]$ from b to b_{2} (since $T^{\prime}\left[B_{2}\right]$ is a transitive tournament). Now follow the path P_{2} from b_{2} to the tail a_{2}^{\prime} of A_{2}. Using the fact that $T^{\prime}\left[A_{2}\right]$ is transitive and that A_{2} is out-dominating, we can similarly find a path of length at most 2 from a_{2}^{\prime} to the initial vertex of Q_{2}. Continuing in this way, we can link up all the paths Q_{ℓ} and P_{ℓ} into a single cycle C which covers all vertices outside $A^{*} \cup B^{*}$ (and some of the vertices inside $\left.A^{*} \cup B^{*}\right)$. The idea is illustrated in Figure 1.

In our construction, we will ensure that the paths P_{ℓ} contain a set of covering edges for $A^{*} \cup B^{*}$. So C also contains covering edges for $A^{*} \cup B^{*}$, and so we can transform C into a Hamilton cycle as discussed earlier.

A major obstacle to the above strategy is that in order to guarantee the P_{ℓ} in $T^{\prime}-A^{*} \cup B^{*}$, we would need the linkedness of T to be significantly larger than $\left|A^{*} \cup B^{*}\right|$ (and thus larger than $\left.\left|A_{\ell}\right|\right)$. However, there are many tournaments where any in- or out-dominating set contains $\Omega(\log n)$ vertices (consider a random tournament). This leads to a linkage requirement on T which depends on n (and not just on k, as required in Theorem 1.2).

We overcome this problem by considering 'almost dominating sets': instead of out-dominating all vertices outside A_{ℓ}, the A_{ℓ} will out-dominate almost all vertices outside A_{ℓ}. (Analogous comments apply to the in-dominating sets $B_{\ell .}$.) This means that we have a small 'exceptional set' E of vertices that are not out-dominated by all of the A_{ℓ}. The problem with allowing an exceptional set is that if the tail of a path Q_{ℓ} in our cover is in the exceptional set E, we cannot extend it directly into the out-dominating set A_{ℓ} as in the above description. However, if we make sure that the A_{ℓ} include the vertices of smallest in-degree of T, then we can deal with this issue. Indeed, in this case we can show that every vertex $v \in E$ has in-degree $d^{-}(v)>2|E|$,

Figure 2. Illustrating our construction of a digraph D which corresponds to a sorting network for $k=4$. Here, D is used to link x_{i} to y_{i}. In the notation of the proof of Theorem 1.3, we have $\pi(3)=1$.
say, so we can always extend the tail of a path out of the exceptional set if necessary (and then into an almost out-dominating set A_{ℓ} as before). Unfortunately, we may 'break' one of the paths P_{ℓ} in the process. However, if we are careful about the place where we break it and construct some 'spare' paths at the outset, then it turns out that the above strategy can be made to work.

4. Connectivity and linkedness in tournaments

In this section, we give the proof of Theorem 1.3. We will also collect some simple properties of highly linked directed graphs which we will use later on. The proof of Theorem 1.3 is based on an important result of Ajtai, Komlós and Szemerédi [1, 2] on sorting networks. Roughly speaking, the proof idea of Theorem 1.3 is as follows. Suppose that we are given a highly connected tournament T and we want to link an ordered set X of k vertices to a set Y of the same size. Then we construct the equivalent of a sorting network D inside $T-Y$ with 'initial vertices' in X and 'final vertices' in a set Z. The high connectivity of T guarantees an 'unsorted' set of $k Z Y$-paths that avoid the vertices in $D-Z$. One can then extend these paths via D to the appropriate vertices in X. In this way, we obtain paths linking the vertices in X to the appropriate ones in Y. An example is shown in Figure 2.

We now introduce the necessary background on non-adaptive sorting algorithms and sorting networks; see [14] for a more detailed treatment. In a sorting problem, we are given k registers R_{1}, \ldots, R_{k}, and each register R_{i} is assigned a distinct element from [k], which we call the value of R_{i}; thus there is some permutation π of $[k]$ such that value i has been assigned to register $R_{\pi(i)}$. Our task is to sort the values into their corresponding registers (so that value i is assigned to R_{i}) by making a sequence of comparisons: a comparison entails taking two registers and reassigning their values so that the higher value is assigned to the higher register and the lower value to the lower register. A non-adaptive sorting algorithm is a sequence of comparisons specified in advance such that, for any initial assignment of k values to k registers, applying the prescribed sequence of comparisons results in every value being assigned to its corresponding register.

Ajtai, Komlós and Szemerédi [1, 2] proved, via the construction of sorting networks, that there exists an absolute constant C^{\prime} and a non-adaptive sorting algorithm (for k registers and values) that requires $C^{\prime} k \log k$ comparisons, and this is asymptotically best possible. It is known that we can take $C^{\prime}:=3050$ (see [22]) (results of this type are often stated in terms of the depth of a sorting network rather than the number of comparisons).

The next theorem is a consequence of the above. Before we can state it, we first need to introduce some notation. A comparison c, which is part of some non-adaptive sorting algorithm for k registers, will be denoted by $c=(s ; t)$, where $1 \leqslant s<t \leqslant k$, to indicate that c is a comparison in which the values of registers R_{s} and R_{t} are compared (and sorted so the higher value is assigned to the higher register).

Theorem 4.1 (see [1, 2, 22]). Let $C^{\prime}:=3050$ and $k \in \mathbb{N}$ be such that $k \geqslant 2$. Then there exist $r \leqslant C^{\prime} k \log k$ and a sequence of comparisons c_{1}, \ldots, c_{r} satisfying the following property: for any initial assignment of k values to k registers, applying the comparisons in sequence results in register R_{i} being assigned the value i for all $i \in[k]$.

We now show how to obtain a structure within a highly connected tournament that simulates the function of a non-adaptive sorting algorithm. Each comparison in the sorting algorithm will be simulated by a 'switch', which we now define. An (a_{1}, a_{2})-switch is a digraph D on five distinct vertices $a_{1}, a_{2}, b, b_{1}, b_{2}$, where either $E(D)=\left\{a_{1} b, b b_{1}, b b_{2}, a_{2} b_{1}, a_{2} b_{2}\right\}$ or $E(D)=$ $\left\{a_{2} b, b b_{1}, b b_{2}, a_{1} b_{1}, a_{1} b_{2}\right\}$. We call b_{1} and b_{2} the terminal vertices of the $\left(a_{1}, a_{2}\right)$-switch. Note that, for any permutation π of $\{1,2\}$, there exist vertex-disjoint paths P_{1}, P_{2} of D such that P_{i} joins a_{i} to $b_{\pi(i)}$ for $i=1,2$.

Proposition 4.2. Let T be a tournament. Given distinct vertices $a_{1}, a_{2} \in V(T)$, if $d_{T}^{+}\left(a_{1}\right), d_{T}^{+}\left(a_{2}\right) \geqslant 7$, then T contains an $\left(a_{1}, a_{2}\right)$-switch.

Proof. We may choose disjoint sets $A_{1} \subseteq N_{T}^{+}\left(a_{1}\right) \backslash\left\{a_{2}\right\}$ and $A_{2} \subseteq N_{T}^{+}\left(a_{2}\right) \backslash\left\{a_{1}\right\}$ with $\left|A_{1}\right|=\left|A_{2}\right|=3$. Consider the bipartite digraph H induced by T between A_{1} and A_{2}. It is easy to check that there exists $b \in A_{1} \cup A_{2}$ with $d_{H}^{+}(b) \geqslant 2$. Let b_{1} and b_{2} be two out-neighbours of b in H. Now the vertices $a_{1}, a_{2}, b, b_{1}, b_{2}$ with suitably chosen edges from T form an $\left(a_{1}, a_{2}\right)$-switch (with terminal vertices b_{1} and b_{2}).

Given $k \in \mathbb{N}$, we write S_{k} for the set of permutations of $[k]$ and $i d_{k}$ for the identity permutation of $[k]$. The following structural lemma for tournaments is at the heart of the proof of Theorem 1.3. It constructs the equivalent of a sorting network in a tournament of high minimum out-degree.

Lemma 4.3. Let $C^{\prime}:=3050$ and $k \in \mathbb{N}$ be such that $k \geqslant 2$. Let T be a tournament with $\delta^{+}(T) \geqslant\left(3 C^{\prime}+5\right) k \log k$ and let $x_{1}, \ldots, x_{k} \in V(T)$ be distinct vertices. Then there exists a digraph $D \subseteq T$ and distinct vertices $z_{1}, \ldots, z_{k} \in V(D)$ with the following properties:
(i) $x_{1}, \ldots, x_{k} \in V(D)$;
(ii) $|D| \leqslant\left(3 C^{\prime}+1\right) k \log k$;
(iii) for any $\pi \in S_{k}$, we can find vertex-disjoint paths P_{1}, \ldots, P_{k} such that P_{i} joins $x_{\pi(i)}$ to z_{i} for all $i \in[k]$.

Proof. Consider the sorting problem for k registers, and apply Theorem 4.1 to obtain a sequence c_{1}, \ldots, c_{r} of $r \leqslant C^{\prime} k \log k$ comparisons such that, for any $\pi \in S_{k}$, if value i is initially assigned to register $R_{\pi(i)}$, then applying the comparisons c_{1}, \ldots, c_{r} results in every value being assigned to its corresponding register. Given $\pi \in S_{k}$, we write $\pi_{q} \in S_{k}$ for the permutation such that after applying the first q comparisons c_{1}, \ldots, c_{q}, value i is assigned to register $R_{\pi_{q}(i)}$ for all i; thus $\pi_{r}=i d_{k}$.

Let D_{0} be the digraph with vertex set $\left\{x_{1}, \ldots, x_{k}\right\}$ and empty edge set. We inductively construct digraphs $D_{0} \subseteq D_{1} \subseteq \cdots \subseteq D_{r} \subseteq T$ and, for each D_{q}, we maintain a set $Z_{q}=$ $\left\{z_{1}^{q}, \ldots, z_{k}^{q}\right\}$ of k distinct final vertices such that the following hold.
(a) $\left|D_{q}\right|=3 q+k$;
(b) whenever $\pi \in S_{k}$ is a permutation, there exist vertex-disjoint paths $P_{1}^{q}, \ldots, P_{k}^{q}$ in D_{q} such that P_{i}^{q} joins $x_{\pi(i)}$ to $z_{\pi_{q}(i)}^{q}$ for all $i \in[k]$.

Assuming the above statement holds for $q=0, \ldots, r$, then taking $D:=D_{r}$ with $z_{i}:=z_{i}^{r}$ for all $i \in[k]$ proves the lemma. Indeed $\left|D_{r}\right|=3 r+k \leqslant 3 C^{\prime} k \log k+k \leqslant\left(3 C^{\prime}+1\right) k \log k$ and $\pi_{r}=i d_{k}$.

Having already defined D_{0}, let us describe the inductive step of our construction. Suppose that, for some $q \in[r]$, we have constructed $D_{q-1} \subseteq T$ and a corresponding set $Z_{q-1}=$ $\left\{z_{1}^{q-1}, \ldots, z_{k}^{q-1}\right\}$ of final vertices. Let $s, t \in[k]$ with $s<t$ be such that $c_{q}=(s ; t)$. Define the tournament $T^{\prime}:=T-\left(V\left(D_{q-1}\right) \backslash\left\{z_{s}^{q-1}, z_{t}^{q-1}\right\}\right)$. Then T^{\prime} has minimum out-degree at least

$$
\left(3 C^{\prime}+5\right) k \log k-\left|D_{q-1}\right| \geqslant\left(3 C^{\prime}+5\right) k \log k-3 r-k \geqslant 5 k \log k-k \geqslant 7,
$$

and so, in particular, $d_{T^{\prime}}^{+}\left(z_{s}^{q-1}\right), d_{T^{\prime}}^{+}\left(z_{t}^{q-1}\right) \geqslant 7$. Thus, we may apply Proposition 4.2 to obtain a $\left(z_{s}^{q-1}, z_{t}^{q-1}\right)$-switch σ in T^{\prime}. Write b_{1}, b_{2} for the terminal vertices of σ. Now D_{q} is constructed from D_{q-1} by adding the vertices and edges of σ to D_{q-1}; note that z_{s}^{q-1} and z_{t}^{q-1} are precisely the common vertices of D_{q-1} and σ. We define the set $Z_{q}=\left\{z_{1}^{q}, \ldots, z_{k}^{q}\right\}$ by setting $z_{i}^{q}:=z_{i}^{q-1}$ for all $i \neq s, t$ and $z_{s}^{q}:=b_{1}$ as well as $z_{t}^{q}:=b_{2}$. Note that $z_{1}^{q}, \ldots, z_{k}^{q}$ are distinct.

Finally, we check that conditions (a) and (b) hold for D_{q}. Condition (a) holds since D_{q} has exactly three more vertices than D_{q-1}. For (b), by induction we may assume that there are vertex-disjoint paths $P_{1}^{q-1}, \ldots, P_{k}^{q-1}$ in D_{q-1} such that P_{i}^{q-1} joins $x_{\pi(i)}$ to $z_{\pi_{q-1}(i)}^{q-1}$ for all $i \in[k]$. Choose vertex-disjoint paths Q_{s} and Q_{t} in σ such that
(a) if c_{q} swaps values in registers R_{s} and R_{t}, then Q_{s} joins z_{s}^{q-1} to z_{t}^{q} and Q_{t} joins z_{t}^{q-1} to z_{s}^{q};
(b) if c_{q} does not swap values in registers R_{s} and R_{t}, then Q_{s} joins z_{s}^{q-1} to z_{s}^{q} and Q_{t} joins z_{t}^{q-1} to z_{t}^{q}.
Now exactly two of the paths from $P_{1}^{q-1}, \ldots, P_{k}^{q-1}$ end at z_{s}^{q-1} and z_{t}^{q-1}, namely, those indexed by $\pi_{q-1}^{-1}(s)$ and $\pi_{q-1}^{-1}(t)$. We extend these two paths using Q_{s} and Q_{t}, and leave all others unchanged to obtain paths $P_{1}^{q}, \ldots, P_{k}^{q}$. It is straightforward to check that these paths are vertex-disjoint and that P_{i} joins $x_{\pi(i)}$ to $z_{\pi_{q}(i)}^{q}$ for all $i \in[k]$.

It is now an easy step to prove Theorem 1.3. We will use the following directed version of Menger's Theorem.

Theorem 4.4 (Menger's theorem). Suppose that D is a strongly k-connected digraph with $A, B \subseteq V(D)$ and $|A|,|B| \geqslant k$. Then there exist k vertex-disjoint paths in D each starting in A and ending in B.

Proof of Theorem 1.3. Set $C^{\prime}:=3050$ and $C:=3 C^{\prime}+6<10^{4}$. We must show that, given a strongly $C k \log k$-connected tournament T and distinct vertices $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in V(T)$, we can find vertex-disjoint paths R_{1}, \ldots, R_{k} such that R_{i} joins x_{i} to y_{i} for all $i \in[k]$.

Let $X:=\left\{x_{1}, \ldots, x_{k}\right\}, \quad Y:=\left\{y_{1}, \ldots, y_{k}\right\}$ and $T^{\prime}:=T-Y$. Note that T^{\prime} is strongly $\left(3 C^{\prime}+5\right) k \log k$-connected, and in particular $\delta^{+}\left(T^{\prime \prime}\right) \geqslant\left(3 C^{\prime}+5\right) k \log k$. Thus, we can apply Lemma 4.3 to T^{\prime} and x_{1}, \ldots, x_{k} to obtain a digraph $D \subseteq T^{\prime}$ and vertices $z_{1}, \ldots, z_{k} \in V(D)$ satisfying properties (i)-(iii) of Lemma 4.3. Let $Z:=\left\{z_{1}, \ldots, z_{k}\right\}$. Since $|D| \leqslant\left(3 C^{\prime}+1\right) k \log k$, the tournament $T^{\prime \prime}:=T-(V(D) \backslash Z)$ is strongly k-connected. Therefore, by Theorem 4.4, there exist k vertex-disjoint paths, with each path starting in Z and ending in Y. For each $i \in[k]$, let us assume that $P_{\pi(i)}$ is the path that joins z_{i} to $y_{\pi(i)}$, where π is some permutation of $[k]$. By Lemma 4.3, we can find vertex-disjoint paths Q_{1}, \ldots, Q_{k} in D such that Q_{i} joins $x_{\pi(i)}$ to z_{i}. Then the path $R_{i}:=Q_{\pi^{-1}(i)} P_{\pi^{-1}(i)}$ joins x_{i} to y_{i} and these paths are vertex-disjoint.

Batcher [7] (see also [14]) gave a construction of sorting networks which is asymptotically not optimal but which gives better values for small k. More precisely, it uses at most $2 k \log ^{2} k$ comparisons for $k \geqslant 3$. If we use these as a building block in the proof of Lemma 4.3 instead of the asymptotically optimal ones leading to Theorem 4.1, then we immediately obtain the following result, which improves Theorem 1.3 for small values of k.

Theorem 4.5. For all $k \in \mathbb{N}$ with $k \geqslant 3$, every strongly $12 k \log ^{2} k$-connected tournament is k-linked.

For $k=2$, the best bound is obtained by a result of Bang-Jensen [3], who showed that every strongly 5 -connected semi-complete digraph is 2 -linked, which is best possible even for tournaments.

We will now collect some simple properties of highly linked directed graphs that we will use later on. The first two follow straightforwardly from the definition of linkedness.

Proposition 4.6. Let $k \in \mathbb{N}$. Then a digraph D is k-linked if and only if $|D| \geqslant 2 k$ and, whenever $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ are ordered pairs of (not necessarily distinct) vertices of D, there exist internally disjoint paths P_{1}, \ldots, P_{k} such that P_{i} joins x_{i} to y_{i}.

Proposition 4.7. Let $k, \ell \in \mathbb{N}$ with $\ell<k$ and let D be a k-linked digraph. Let $X \subseteq V(D)$ and $F \subseteq E(D)$ be such that $|X|+2|F| \leqslant 2 \ell$. Then $D-X-F$ is $(k-\ell)$-linked.

The next lemma shows that, in a sufficiently highly linked digraph, we can link given pairs of vertices by vertex-disjoint paths which together do not contain too many vertices.

Lemma 4.8. Let $k, s \in \mathbb{N}$, and let D be a $2 k s$-linked digraph. Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ be ordered pairs of (not necessarily distinct) vertices in D. Then there exist internally disjoint paths P_{1}, \ldots, P_{k} such that P_{i} joins x_{i} to y_{i} for all $i \in[k]$ and $\left|P_{1} \cup \cdots \cup P_{k}\right| \leqslant|D| / s$.

Proof. By Proposition 4.6, there exist internally disjoint paths $P_{1}^{1}, \ldots, P_{k}^{2 s}$ such that P_{i}^{j} joins x_{i} to y_{i} for all $i \in[k]$ and all $j \in[2 s]$. For any j, the interiors of $P_{1}^{j}, \ldots, P_{k}^{j}$ contain at least $\left|P_{1}^{j} \cup \cdots \cup P_{k}^{j}\right|-2 k$ vertices. So the disjointness of the paths implies that there is a $j \in[2 s]$ with $\left|P_{1}^{j} \cup \cdots \cup P_{k}^{j}\right|-2 k \leqslant|D| / 2 s$. The result now follows by setting $P_{i}:=P_{i}^{j}$ and noting that $2 k \leqslant|D| / 2 s$.

5. Nearly extremal example

The aim of this section is to prove the following proposition, which shows that the bound on the connectivity in Theorem 1.1 is close to best possible.

Proposition 5.1. Fix $n, k \in \mathbb{N}$ with $k \geqslant 2$ and $n>k^{2}+k+2$. There exists a strongly $\left\lfloor k^{2} / 4\right\rfloor$-connected tournament T of order n such that if $D \subseteq T$ is a spanning r-regular subdigraph, then $r \leqslant k$. In particular, T contains at most k edge-disjoint Hamilton cycles.

It is easy to see that the above tournament T is also $\Omega\left(k^{2}\right)$-linked. This shows that the bound in Theorem 1.2 has to be at least quadratic in k.

Proof. Let $\ell \in \mathbb{N}$. We will first describe a tournament $T_{\ell}=\left(V_{\ell}, E_{\ell}\right)$ of order $2 \ell+1$ which is strongly ℓ-connected. We then use T_{ℓ} as a building block to construct a tournament as desired in the proposition.
Let $V_{\ell}:=\left\{v_{0}, \ldots, v_{2 \ell}\right\}$ and let E_{ℓ} consist of the edges $v_{i} v_{i+t}$ for all $i=0, \ldots, 2 \ell$ and all $t \in[\ell]$, where indices are understood to be modulo $2 \ell+1$. One may think of T_{ℓ} as the tournament with vertices $v_{0}, \ldots, v_{2 \ell}$ placed in order, clockwise, around a circle, where the out-neighbours of each v_{i} are the ℓ closest vertices to v_{i} in the clockwise direction, and the in-neighbours are the ℓ closest vertices in the anticlockwise direction. Note that T_{ℓ} is regular. Note also that, for any distinct $x, y \in V_{\ell}$, we can find a path in T_{ℓ} from x to y by traversing vertices from x to y in clockwise order; this remains true even if we delete any $\ell-1$ vertices from T_{ℓ}.

Next we construct a tournament $T_{m, \ell}=\left(V_{m, \ell}, E_{m, \ell}\right)$ as follows. We take $V_{m, \ell}$ to be the disjoint union of sets $A_{\ell}:=\left\{a_{0}, \ldots, a_{2 \ell}\right\}, B_{\ell}:=\left\{b_{0}, \ldots, b_{2 \ell}\right\}$ and $C_{m}:=\left\{c_{1}, \ldots, c_{m}\right\}$. The edges of $T_{m, \ell}$ are defined as follows: $T_{m, \ell}\left[A_{\ell}\right]$ and $T_{m, \ell}\left[B_{\ell}\right]$ are isomorphic to T_{ℓ} (with the natural labelling of vertices), and $T\left[C_{m}\right]$ is a transitive tournament that respects the given order of the vertices in C_{m} (that is, $c_{i} c_{j}$ is an edge if and only if $i<j$). Each vertex in A_{ℓ} is an in-neighbour of all vertices in C_{m} and each vertex in B_{ℓ} is an out-neighbour of all vertices in C_{m}. Finally, a vertex $a_{i} \in A_{\ell}$ is an in-neighbour of a vertex $b_{j} \in B_{\ell}$ if and only if $i \neq j$. Note that $\left|T_{m, \ell}\right|=m+4 \ell+2$.

Claim 1. The tournament $T_{m, \ell}$ is strongly ℓ-connected.

To see that $T_{m, \ell}$ is strongly ℓ-connected, we check that if $S \subseteq V_{m, \ell}$ with $|S| \leqslant \ell-1$, then $T_{m, \ell}-S$ is strongly connected. Write $A_{\ell}^{\prime}, B_{\ell}^{\prime}$ and C_{m}^{\prime}, respectively, for $A_{\ell} \backslash S, B_{\ell} \backslash S$ and $C_{m} \backslash S$. Note that there is at least one edge of $T_{m, \ell}-S$ from B_{ℓ}^{\prime} to A_{ℓ}^{\prime}, which we may assume by symmetry to be $b_{0} a_{0}$. Ordering the vertices of $T_{m, \ell}$ as $a_{0}, \ldots, a_{2 \ell}, c_{1}, \ldots, c_{m}, b_{1}, \ldots, b_{2 \ell}, b_{0}$ and removing the vertices of S from this ordering gives a Hamilton cycle in $T_{m, \ell}-S$. Thus, $T_{m, \ell}-S$ must be strongly connected. This completes the proof of Claim 1.

Claim 2. Let $m, \ell \in \mathbb{N}$ be such that $m>\sqrt{4 \ell}$. Then, for every r-regular spanning subdigraph $D \subseteq T_{m, \ell}$, we have $r \leqslant \sqrt{4 \ell}$.

Suppose for a contradiction that $D \subseteq T_{m, \ell}$ is an r-regular spanning subdigraph with $r:=$ $\lfloor\sqrt{4 \ell}\rfloor+1>\sqrt{4 \ell}$. Since D is regular, we have $e_{D}\left(A_{\ell}, \bar{A}_{\ell}\right)=e_{D}\left(\bar{A}_{\ell}, A_{\ell}\right)$, where $\bar{A}_{\ell}:=V(D) \backslash$ A_{ℓ}. Noting that $r \leqslant m$, consider the first r vertices c_{1}, \ldots, c_{r} of C_{m}. Since $N_{D}^{-}\left(c_{i}\right) \subseteq N_{T_{m, \ell}}^{-}\left(c_{i}\right)=$ $A_{\ell} \cup\left\{c_{1}, \ldots, c_{i-1}\right\}$ and $\left|N_{D}^{-}\left(c_{i}\right)\right|=r$, we have $\left|N_{D}^{-}\left(c_{i}\right) \cap A_{\ell}\right| \geqslant r-i+1$, so that $e_{D}\left(A_{\ell},\left\{c_{i}\right\}\right) \geqslant$ $r-i+1$. Thus,

$$
e_{D}\left(\bar{A}_{\ell}, A_{\ell}\right)=e_{D}\left(A_{\ell}, \bar{A}_{\ell}\right) \geqslant e\left(A_{\ell},\left\{c_{1}, \ldots, c_{r}\right\}\right) \geqslant r+\cdots+1=\binom{r+1}{2} .
$$

But $e_{D}\left(\bar{A}_{\ell}, A_{\ell}\right) \leqslant e_{T_{m, \ell}}\left(\bar{A}_{\ell}, A_{\ell}\right)=2 \ell+1$, so $\binom{r+1}{2} \leqslant 2 \ell+1$. This is easily seen to contradict $r>\sqrt{4 \ell}$ for all $\ell \in \mathbb{N}$. This completes the proof of Claim 2.

To prove the proposition, we set $\ell:=\left\lfloor k^{2} / 4\right\rfloor$ and $m:=n-4 \ell-2$, and take T to be $T_{m, \ell}$. Thus, $|T|=\left|T_{m, \ell}\right|=m+4 \ell+2=n$. By Claim 1, T is strongly $\left\lfloor k^{2} / 4\right\rfloor$-connected. Since $n>k^{2}+k+2 \geqslant 4 \ell+\sqrt{4 \ell}+2$, we have $m>\sqrt{4 \ell}$, so Claim 2 implies that if $D \subseteq T=T_{m, \ell}$ is a spanning r-regular subdigraph, then $r \leqslant \sqrt{4 \ell} \leqslant k$.

As mentioned in Section 1, Thomassen [26] observed that no lower bound on the strong edge-connectivity of a tournament can guarantee two edge-disjoint Hamilton cycles. (Recall that a digraph D is strongly k-edge-connected if $|D| \geqslant 2$ and, for every $S \subseteq E(D)$ of size at most $k-1$, then $T-S$ is strongly connected.) Here, for completeness, we provide an explicit example for Thomassen's observation.

Let $T=(V, E)$ be a tournament where V is the disjoint union of three sets, A, B and $C=\left\{x_{1}, x_{2}\right\}$, and where x is a distinguished vertex of B. We choose $T[A]$ and $T[B]$ to be any strongly k-edge-connected tournament and let $x_{1} x_{2} \in E(T)$. All edges between A and C are directed from A to C; all edges between B and C are directed from C to B and all edges between A and B are directed from A to B except edges between A and x, which are directed from x to A.

It is easy to check that T is strongly k-edge-connected and that all Hamilton cycles in T use the edge $x_{1} x_{2}$. Hence, there are tournaments with arbitrarily high strong edge-connectivity but with no two edge-disjoint Hamilton cycles.

6. Finding a single Hamilton cycle in suitable oriented graphs

We first state two simple, well-known facts concerning the degree sequences of tournaments.

Proposition 6.1. Let T be a tournament on n vertices. Then T contains at least one vertex of in-degree at most $n / 2$, and at least one vertex of out-degree at most $n / 2$.

Proposition 6.2. Let T be a tournament on n vertices and let $d \geqslant 0$. Then T has at most $2 d+1$ vertices of in-degree at most d and at most $2 d+1$ vertices of out-degree at most d.

We will also use the following well-known result due to Gallai and Milgram (see, for example, [9]). (The independence number of a digraph T is the maximal size of a set $X \subseteq V(T)$ such that $T[X]$ contains no edges.)

Theorem 6.3. Let T be a digraph with independence number at most k. Then T has a path cover consisting of at most k paths.

The following corollary is an immediate consequence of Theorem 6.3.

Corollary 6.4. Let T be an oriented graph on n vertices with $\delta(T) \geqslant n-k$. Then T has a path cover consisting of at most k paths.

Given a digraph T, we define a covering edge for a vertex v to be an edge $x y$ of T such that $x v, v y \in E(T)$. We call $x v$ and $v y$ the activating edges of $x y$. Note that if $x y$ is a covering edge for v and C is a cycle in T containing $x y$ but not v, then we can form a new cycle C^{\prime} with $V\left(C^{\prime}\right)=V(C) \cup\{v\}$ by replacing $x y$ with $x v y$ in C. We will see in Section 8 that covering edges are easy to find in strongly 2 -connected tournaments.

Recall that, given a path system \mathcal{P}, we write $h(\mathcal{P})$ for the set of heads of paths in \mathcal{P} and $t(\mathcal{P})$ for the set of tails of paths in \mathcal{P}. If $v \in V(\mathcal{P})$, then we write v^{+}and v^{-}, respectively, for the successor and predecessor of v on the path in \mathcal{P} containing v.

The following lemma allows us to take a path cover \mathcal{P} of a digraph and modify it into a path cover \mathcal{P}^{\prime} with no heads in some 'bad' set I, without adding any heads or tails in $I \cup J$
for some other 'bad' set J. Moreover, we can do this without losing any edges in some 'good' set $F \subseteq E(\mathcal{P})$, and without altering too many paths in \mathcal{P}. In our applications, F will consist of covering edges. We require that every vertex in I has high out-degree.

Lemma 6.5. Let T be a digraph. Let $I, J \subseteq V(T)$ be disjoint. Let $\mathcal{P}=\mathcal{P}_{1} \dot{\cup} \mathcal{P}_{2}$ be a path cover of T satisfying $h\left(\mathcal{P}_{2}\right) \cap I=\emptyset$. Let $F \subseteq E(\mathcal{P})$. Suppose $d^{+}(v)>3(|I|+|J|)+2|F|$ for all $v \in I$. Then there exists a path cover \mathcal{P}^{\prime} of T satisfying the following properties:
(i) $h\left(\mathcal{P}^{\prime}\right) \cap I=\emptyset$;
(ii) $h\left(\mathcal{P}^{\prime}\right) \cap J=h(\mathcal{P}) \cap J$;
(iii) $t\left(\mathcal{P}^{\prime}\right) \cap(I \cup J)=t(\mathcal{P}) \cap(I \cup J)$;
(iv) $F \subseteq E\left(\mathcal{P}^{\prime}\right)$;
(v) $\left|\mathcal{P}^{\prime}\right| \leqslant|\mathcal{P}|+\left|\mathcal{P}_{1}\right|$;
(vi) $\left|\mathcal{P}^{\prime} \cap \mathcal{P}_{2}\right| \geqslant\left|\mathcal{P}_{2}\right|-\left|\mathcal{P}_{1}\right|$.

If in addition $d^{+}(v)>3(|I|+|J|)+2|F|+\left|V\left(\mathcal{P}_{2}\right)\right|$ for all $v \in I$, then we may strengthen (vi) to $\mathcal{P}_{2} \subseteq \mathcal{P}^{\prime}$.

Proof. We will use the degree condition on the vertices in I in the hypothesis to repeatedly extend paths with heads in I out of I, breaking other paths in \mathcal{P} as a result. We must ensure that we do not create new paths with endpoints in $I \cup J$ in the process. Let $r:=\left|\mathcal{P}_{1}\right|$ and $\mathcal{P}^{0}:=\mathcal{P}$. We shall find path covers $\mathcal{P}^{1}, \ldots, \mathcal{P}^{r}$ of T such that the following properties hold for all $0 \leqslant i \leqslant r$:

```
(P1) \(\left|h\left(\mathcal{P}^{i}\right) \cap I\right| \leqslant r-i\);
(P2) \(h\left(\mathcal{P}^{i}\right) \cap J=h(\mathcal{P}) \cap J\);
(P3) \(t\left(\mathcal{P}^{i}\right) \cap(I \cup J)=t(\mathcal{P}) \cap(I \cup J)\);
(P4) \(F \subseteq E\left(\mathcal{P}^{i}\right)\);
(P5) \(\left|\mathcal{P}^{i}\right| \leqslant|\mathcal{P}|+i\);
(P6) \(\left|\mathcal{P}^{i} \cap \mathcal{P}_{2}\right| \geqslant\left|\mathcal{P}_{2}\right|-i\).
```

If this is possible, we may then take $\mathcal{P}^{\prime}:=\mathcal{P}^{r}$.
By hypothesis, \mathcal{P}^{0} satisfies (P1)-(P6). So suppose that we have found $\mathcal{P}^{0}, \ldots, \mathcal{P}^{i-1}$ for some $i \in[r]$. We then form \mathcal{P}^{i} as follows. If $\left|h\left(\mathcal{P}^{i-1}\right) \cap I\right| \leqslant r-i$, then we simply let $\mathcal{P}^{i}:=\mathcal{P}^{i-1}$. Otherwise, let $P \in \mathcal{P}^{i-1}$ be a path with head $v \in I$. We will form \mathcal{P}^{i} by extending the head v of P and breaking the path in \mathcal{P}^{i-1} which P now intersects into two subpaths. Define

$$
X:=\left\{x \in V(T):\left\{x^{+}, x, x^{-}\right\} \cap(I \cup J) \neq \emptyset\right\}
$$

We have

$$
d^{+}(v)>3(|I|+|J|)+2|F| \geqslant|X|+|V(F)| \geqslant|X \cup V(F)|
$$

and so there exists $w \in N^{+}(v) \backslash(X \cup V(F))$. Let Q be the path in \mathcal{P}^{i-1} containing w (note that we may have $Q=P$). Split Q into (at most) two paths and an isolated vertex by removing any of the edges $w^{-} w, w w^{+}$that exist, and let \mathcal{P}^{*} be the set of paths obtained from \mathcal{P}^{i-1} in this way. Let P^{*} be the path in \mathcal{P}^{*} containing v. (Note that $P^{*}=P$ unless $w \in V(P)$.) We then form \mathcal{P}^{i} by replacing P^{*} by $P^{*} v w$ in \mathcal{P}^{*}.

First suppose $w \in \operatorname{Int}(Q)$. Then \mathcal{P}^{i} is a path cover of T such that

$$
h\left(\mathcal{P}^{i}\right)=\left(h\left(\mathcal{P}^{i-1}\right) \backslash\{v\}\right) \cup\left\{w, w^{-}\right\} \quad \text { and } \quad t\left(\mathcal{P}^{i}\right)=t\left(\mathcal{P}^{i}\right) \cup\left\{w^{+}\right\}
$$

Since $w \notin X$, we have $w, w^{-} \notin I$ and hence

$$
\left|h\left(\mathcal{P}^{i}\right) \cap I\right|=\left|h\left(\mathcal{P}^{i-1}\right) \cap I\right|-1 \leqslant r-i
$$

Thus, (P1) holds. Similarly,

$$
\begin{aligned}
h\left(\mathcal{P}^{i}\right) \cap J & =h\left(\mathcal{P}^{i-1}\right) \cap J=h(\mathcal{P}) \cap J, \\
t\left(\mathcal{P}^{i}\right) \cap(I \cup J) & =t\left(\mathcal{P}^{i-1}\right) \cap(I \cup J)=t(\mathcal{P}) \cap(I \cup J),
\end{aligned}
$$

and so (P2) and (P3) hold. By similar arguments, $(\mathrm{P} 1)-(\mathrm{P} 3)$ also hold if w is an endpoint of Q. Since $w \notin V(F)$ and $F \subseteq E\left(\mathcal{P}^{i-1}\right)$, we have $F \subseteq E\left(\mathcal{P}^{i}\right)$ and (P4) holds. We see that (P5) holds too since $\left|\mathcal{P}^{i}\right| \leqslant\left|\mathcal{P}^{i-1}\right|+1$. Finally, we have altered at most two paths in \mathcal{P}^{i-1}. One of these had its head in I, so we have altered at most one path in $\mathcal{P}^{i-1} \cap \mathcal{P}_{2}$. Thus, (P6) holds.

If in addition we have

$$
d^{+}(v)>3(|I|+|J|)+2|F|+\left|V\left(\mathcal{P}_{2}\right)\right|
$$

then we may use almost exactly the same argument to prove the strengthened version of the result. Instead of choosing $w \in N^{+}(v) \backslash(X \cup V(F))$, we may choose $w \in N^{+}(v) \backslash(X \cup V(F) \cup$ $\left.V\left(\mathcal{P}_{2}\right)\right)$. We also strengthen (P6) to the requirement that $\mathcal{P}_{2} \subseteq \mathcal{P}^{i}$. The strengthened (P6) must hold in each step since we now have that $w \notin V\left(\mathcal{P}_{2}\right)$.

The following analogue of Lemma 6.5 for tails can be obtained by reversing the orientation of each edge of T.

Lemma 6.6. Let T be a digraph. Let $I, J \subseteq V(T)$ be disjoint. Let $\mathcal{P}=\mathcal{P}_{1} \cup \mathcal{P}_{2}$ be a path cover of T satisfying $t\left(\mathcal{P}_{2}\right) \cap I=\emptyset$. Let $F \subseteq E(\mathcal{P})$. Suppose $d^{-}(v)>3(|I|+|J|)+2|F|$ for all $v \in I$. Then there exists a path cover \mathcal{P}^{\prime} of T satisfying the following properties:
(i) $t\left(\mathcal{P}^{\prime}\right) \cap I=\emptyset$;
(ii) $t\left(\mathcal{P}^{\prime}\right) \cap J=t(\mathcal{P}) \cap J$;
(iii) $h\left(\mathcal{P}^{\prime}\right) \cap(I \cup J)=h(\mathcal{P}) \cap(I \cup J)$;
(iv) $F \subseteq E\left(\mathcal{P}^{\prime}\right)$;
(v) $\left|\mathcal{P}^{\prime}\right| \leqslant|\mathcal{P}|+\left|\mathcal{P}_{1}\right|$;
(vi) $\left|\mathcal{P}^{\prime} \cap \mathcal{P}_{2}\right| \geqslant\left|\mathcal{P}_{2}\right|-\left|\mathcal{P}_{1}\right|$.

If in addition $d^{-}(v)>3(|I|+|J|)+2|F|+\left|V\left(\mathcal{P}_{2}\right)\right|$ for all $v \in I$, then we may strengthen (vi) to $\mathcal{P}_{2} \subseteq \mathcal{P}^{\prime}$.

The following lemma is the main building block of the proof of Theorem 1.2. It will be applied repeatedly to find the required edge-disjoint Hamilton cycles. Roughly speaking, the lemma guarantees a Hamilton cycle, provided that we have well-chosen disjoint (almost) dominating sets A_{i} and B_{i} which are linked by short paths containing covering edges for all vertices in these dominating sets. (This is the linked dominating structure described in Sections 1 and 3.) An additional assumption is that we have not removed too many edges of our tournament T already. In general, the statement and proof roughly follow the sketch in Section 3, with the addition of a set $X \subseteq V(T)$.

The role of X is as follows. The sets A_{i} and B_{i} in the lemma dominate only almost all vertices of T, so we have some small exceptional sets E_{A} and E_{B} of vertices that are not dominated. We will use Lemmas 6.5 and 6.6 to extend a certain path system out of these exceptional sets E_{A} and E_{B}. For this we require that the vertices in $E_{A} \cup E_{B}$ have relatively high in- and out-degree. But T may have vertices that do not satisfy this degree condition. When we apply Lemma 6.7, these problematic vertices will be the elements of X.

LEmma 6.7. Let $C:=10^{6}, k \geqslant 20, t:=164 k$ and $c:=\lceil\log 50 t+1\rceil$. Suppose that T is an oriented graph of order n satisfying $\delta(T)>n-4 k$ and $\delta^{0}(T) \geqslant C k^{2}$. Suppose, moreover, that

Figure 3. Our linked domination structure and path cover at the beginning of the proof of Lemma 7.2.
T contains disjoint sets of vertices $A_{1}, \ldots, A_{t}, B_{1}, \ldots, B_{t}$ and X, a matching F, and vertexdisjoint paths P_{1}, \ldots, P_{t} such that the following conditions hold, where $A^{*}:=A_{1} \cup \cdots \cup A_{t}$ and $B^{*}:=B_{1} \cup \cdots \cup B_{t}$:
(i) $2 \leqslant\left|A_{i}\right| \leqslant c$ for all $i \in[t]$. Moreover, $T\left[A_{i}\right]$ is a transitive tournament whose head has out-degree at least $n / 3$ in T;
(ii) there exists a set $E_{A} \subseteq V(T) \backslash\left(A^{*} \cup B^{*}\right)$, such that each A_{i} out-dominates $V(T) \backslash$ $\left(A^{*} \cup B^{*} \cup E_{A}\right)$. Moreover, $\left|E_{A}\right| \leqslant d^{-} / 40$, where $d^{-}:=\min \left\{d_{T}^{-}(v): v \in E_{A} \backslash X\right\}$;
(iii) $2 \leqslant\left|B_{i}\right| \leqslant c$ for all $i \in[t]$. Moreover, $T\left[B_{i}\right]$ is a transitive tournament whose tail has in-degree at least $n / 3$ in T;
(iv) there exists a set $E_{B} \subseteq V(T) \backslash\left(A^{*} \cup B^{*}\right)$, such that each B_{i} in-dominates $V(T) \backslash\left(A^{*} \cup\right.$ $\left.B^{*} \cup E_{B}\right)$. Moreover, $\left|E_{B}\right| \leqslant d^{+} / 40$, where $d^{+}:=\min \left\{d_{T}^{+}(v): v \in E_{B} \backslash X\right\} ;$
(v) for all $i \in[t], P_{i}$ is a path from the head of $T\left[B_{i}\right]$ to the tail of $T\left[A_{i}\right]$ which is internally disjoint from $A^{*} \cup B^{*}$. Moreover, $\left|P_{1} \cup \cdots \cup P_{t}\right| \leqslant n / 20$;
(vi) $F \subseteq E\left(P_{1} \cup \cdots \cup P_{t}\right)$ and $V(F) \cap\left(A^{*} \cup B^{*}\right)=\emptyset$. Moreover, $F=\left\{e_{v}: v \in A^{*} \cup B^{*}\right\}$, where e_{v} is a covering edge for v and $e_{v} \neq e_{v^{\prime}}$ whenever $v \neq v^{\prime}$. In particular, $|F|=$ $\left|A^{*} \cup B^{*}\right| \leqslant 2 c t ;$
(vi) we have $X \subseteq V\left(P_{1} \cup \cdots \cup P_{t}\right), X \cap\left(A^{*} \cup B^{*}\right)=\emptyset$ and $|X| \leqslant 2 k t$.

Then T contains a Hamilton cycle.

Proof. Without loss of generality, suppose that $d^{-} \leqslant d^{+}$. (Otherwise, reverse the orientation of every edge in T.) Write a_{i} for the head of $T\left[A_{i}\right]$ and a_{i}^{\prime} for its tail. Similarly, write b_{i} for the head of $T\left[B_{i}\right]$ and b_{i}^{\prime} for its tail. Let

$$
A:=\left\{a_{1}, \ldots, a_{t}\right\}, \quad A^{\prime}:=\left\{a_{1}^{\prime}, \ldots, a_{t}^{\prime}\right\}, \quad B:=\left\{b_{1}, \ldots, b_{t}\right\} \quad \text { and } \quad B^{\prime}:=\left\{b_{1}^{\prime}, \ldots, b_{t}^{\prime}\right\} .
$$

Thus, the sets $A, A^{\prime}, B, B^{\prime}$ are disjoint, and by condition (v) the paths P_{i} join B to A^{\prime}. Let

$$
N:=V(T) \backslash\left(A^{*} \cup B^{*}\right), \quad T^{\prime}:=T\left[N \cup A^{\prime} \cup B\right] \quad \text { and } \quad \mathcal{P}_{2}:=\left\{P_{1}, \ldots, P_{t}\right\} .
$$

By Corollary 6.4, there exists a path cover \mathcal{P}_{1} of $N \backslash V\left(\mathcal{P}_{2}\right)$ with $\left|\mathcal{P}_{1}\right| \leqslant 4 k$. Then $\mathcal{Q}_{1}:=\mathcal{P}_{1} \dot{\cup} \mathcal{P}_{2}$ is a path cover of T^{\prime}. The situation is illustrated in Figure 3.

Claim. There exists an oriented graph $T^{\prime \prime}$ with $T^{\prime} \subseteq T^{\prime \prime} \subseteq T\left[V\left(T^{\prime}\right) \cup A \cup B^{\prime}\right]$ and a path cover \mathcal{Q} of $T^{\prime \prime}$ such that the following properties hold:
(Q1) $F \subseteq E(\mathcal{Q})$;
(Q2) $t(\mathcal{Q}) \cap E_{A}=\emptyset$;
(Q3) $h(\mathcal{Q}) \cap E_{B}=\emptyset$;
(Q4) $\left|\mathcal{Q} \cap \mathcal{P}_{2}\right| \geqslant\left|\mathcal{Q}_{1}\right|-20 k$;
(Q5) if a_{i} or b_{i}^{\prime} is in $V(\mathcal{Q})$, then $P_{i} \notin \mathcal{Q}$;
(Q6) $|\mathcal{Q}| \leqslant\left|\mathcal{Q}_{1}\right|+124 k$;
(Q7) no paths in $\mathcal{Q} \backslash \mathcal{P}_{2}$ have endpoints in $A^{*} \cup B^{*}$.
We will prove the claim by applying Lemmas 6.5 and 6.6 repeatedly to improve our current path cover. More precisely, we will construct path covers $\mathcal{Q}_{2}, \ldots, \mathcal{Q}_{6}$ such that eventually \mathcal{Q}_{6} satisfies (Q1)-(Q7). So we can take $\mathcal{Q}:=\mathcal{Q}_{6}$.

In order to be able to apply Lemmas 6.5 and 6.6 , we must first bound the degrees of the vertices in T^{\prime} from below. For all $v \in V\left(T^{\prime}\right)$, we have

$$
\begin{equation*}
d_{T^{\prime}}^{+}(v) \geqslant d_{T}^{+}(v)-\left|A^{*} \cup B^{*}\right| \stackrel{(\mathrm{i}),(\mathrm{iii})}{\geqslant} d_{T}^{+}(v)-2 c t \geqslant d_{T}^{+}(v)-\frac{\delta^{0}(T)}{5} \geqslant \frac{4}{5} d_{T}^{+}(v) . \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
d_{T^{\prime}}^{-}(v) \geqslant \frac{4}{5} d_{T}^{-}(v), \tag{2}
\end{equation*}
$$

for all $v \in V\left(T^{\prime}\right)$.
We will first extend the tails of paths in \mathcal{Q}_{1} out of E_{A}. We do this by applying Lemma 6.6 to T^{\prime} and $\mathcal{Q}_{1}=\mathcal{P}_{1} \dot{\cup} \mathcal{P}_{2}$ with $I:=E_{A} \backslash X, J:=X \cup A^{\prime} \cup B$ to form a new path cover \mathcal{Q}_{2} of T^{\prime} which will satisfy (Q1) and (Q2). By conditions (ii) and (v), no paths in \mathcal{P}_{2} have endpoints in I. By condition (vi), $F \subseteq E\left(\mathcal{Q}_{1}\right)$. Moreover,

$$
\begin{align*}
3(|I|+|J|)+2|F| & \leqslant 3\left|E_{A}\right|+3|X|+3\left|A^{\prime}\right|+3|B|+2|F| \\
& \leqslant(\text { (ii),(vii),(vi) } \tag{3}\\
\leqslant & \frac{3}{40} d^{-}+6 k t+6 t+4 c t<\frac{4}{5} d^{-} .
\end{align*}
$$

In the final inequality, we used the fact that $d^{-} \geqslant \delta^{0}(T) \geqslant C k^{2}$. Thus, for all $v \in I$, we have

$$
d_{T^{\prime}}^{-}(v) \stackrel{(2)}{\geqslant} \frac{4}{5} d_{T}^{-}(v) \stackrel{(\mathrm{ii})}{\geqslant} \frac{4}{5} d^{-} \stackrel{(3)}{>} 3(|I|+|J|)+2|F| .
$$

Thus, the requirements of Lemma 6.6 are satisfied, and we can apply the lemma to obtain a path cover \mathcal{Q}_{2} of T^{\prime}.

Lemma 6.6(iv) implies that \mathcal{Q}_{2} satisfies (Q1). Moreover, Lemma 6.6(v) and (vi) imply that

$$
\begin{align*}
& \left|\mathcal{Q}_{2}\right| \leqslant\left|\mathcal{Q}_{1}\right|+4 k \quad \text { as well as }\left|\mathcal{Q}_{2} \cap \mathcal{P}_{2}\right| \geqslant\left|\mathcal{P}_{2}\right|-4 k \geqslant\left|\mathcal{Q}_{1}\right|-8 k, \\
& \quad \text { and thus }\left|\mathcal{Q}_{2} \backslash \mathcal{P}_{2}\right| \leqslant 12 k, \tag{4}
\end{align*}
$$

where we have used that $\left|\mathcal{Q}_{1}\right|=\left|\mathcal{P}_{1}\right|+\left|\mathcal{P}_{2}\right| \leqslant\left|\mathcal{P}_{2}\right|+4 k$ for the second inequality above. Recall from condition (vii) that $X \subseteq V\left(\mathcal{P}_{2}\right)$ and $X \cap\left(A^{*} \cup B^{*}\right)=\emptyset$. Thus, no paths in \mathcal{Q}_{1} have endpoints in X. Moreover, since $t\left(\mathcal{P}_{2}\right)=B$ and $h\left(\mathcal{P}_{2}\right)=A^{\prime}$, no paths in \mathcal{Q}_{1} have tails in A^{\prime} or heads in B. Together with Lemma 6.6(i)-(iii), this implies that \mathcal{Q}_{2} satisfies (Q2) and
($\left.\mathrm{a}_{1}\right) t\left(\mathcal{Q}_{2}\right) \cap A^{\prime}=h\left(\mathcal{Q}_{2}\right) \cap B=\emptyset$;
(a2) $h\left(\mathcal{Q}_{2}\right) \cap X=\emptyset$.
We will now extend the heads of paths in \mathcal{Q}_{2} out of E_{B}. We do this by applying Lemma 6.5 to $T^{\prime},\left(\mathcal{Q}_{2} \backslash \mathcal{P}_{2}\right) \dot{\cup}\left(\mathcal{Q}_{2} \cap \mathcal{P}_{2}\right)$ with $I:=E_{B} \backslash X, J:=\left(E_{A} \backslash E_{B}\right) \cup X \cup A^{\prime} \cup B$ to form a new path cover \mathcal{Q}_{3} of T^{\prime} which will satisfy (Q1)-(Q4). As before, no paths in $\mathcal{P}_{2} \supseteq \mathcal{Q}_{2} \cap \mathcal{P}_{2}$ have
endpoints in I, and $F \subseteq E\left(\mathcal{Q}_{2}\right)$ by (Q1) for \mathcal{Q}_{2}. Moreover, similarly as in (3) we obtain

$$
\begin{aligned}
3(|I|+|J|)+2|F| & \leqslant 3\left|E_{B}\right|+3\left|E_{A}\right|+3|X|+3\left|A^{\prime}\right|+3|B|+2|F| \\
& \leqslant \frac{3}{40} d^{+}+\frac{3}{40} d^{-}+6 k t+6 t+4 c t<\frac{4}{5} d^{+} .
\end{aligned}
$$

(In the final inequality, we used our assumption that $d^{-} \leqslant d^{+}$.) Together with (1), this implies that $d_{T^{\prime}}^{+}(v) \geqslant 4 d^{+} / 5>3(|I|+|J|)+2|F|$ for all $v \in I$. Thus, the requirements of Lemma 6.5 are satisfied, and we can apply the lemma to obtain a path cover \mathcal{Q}_{3} of T^{\prime}.

By Lemma 6.5(iv), \mathcal{Q}_{3} satisfies (Q1). Lemma 6.5(v) implies that

$$
\begin{equation*}
\left|\mathcal{Q}_{3}\right| \leqslant\left|\mathcal{Q}_{2}\right|+\left|\mathcal{Q}_{2} \backslash \mathcal{P}_{2}\right| \stackrel{(4)}{\leqslant}\left|\mathcal{Q}_{2}\right|+12 k \stackrel{(4)}{\leqslant}\left|\mathcal{Q}_{1}\right|+16 k . \tag{5}
\end{equation*}
$$

Similarly, Lemma 6.5(vi) implies that

$$
\begin{equation*}
\left|\mathcal{Q}_{3} \cap \mathcal{P}_{2}\right| \geqslant\left|\mathcal{Q}_{2} \cap \mathcal{P}_{2}\right|-\left|\mathcal{Q}_{2} \backslash \mathcal{P}_{2}\right| \stackrel{(4)}{\geqslant}\left|\mathcal{Q}_{1}\right|-20 k . \tag{6}
\end{equation*}
$$

So \mathcal{Q}_{3} satisfies (Q4). Lemma 6.5(iii) and (Q2) for \mathcal{Q}_{2} together imply that \mathcal{Q}_{3} satisfies (Q2). Moreover, (a_{2}) and Lemma 6.5(i) and (ii) together imply that no path in \mathcal{Q}_{3} has its head in $\left(E_{B} \backslash X\right) \cup X \supseteq E_{B}$ and so \mathcal{Q}_{3} satisfies (Q3). Finally, (a_{1}) and Lemma 6.5(ii) and (iii) together imply that
$\left(\mathrm{b}_{1}\right)$ no paths in \mathcal{Q}_{3} have tails in A^{\prime} or heads in B.
We will now extend the paths in $\mathcal{Q}_{3} \backslash \mathcal{P}_{2}$ so that their endpoints lie in $A \cup B^{\prime}$ rather than $A^{\prime} \cup B$. More precisely, if $P \in \mathcal{Q}_{3} \backslash \mathcal{P}_{2}$ has head $a_{i}^{\prime} \in A^{\prime}$, then we replace P by $P a_{i}^{\prime} a_{i}$ (recall that $a_{i}^{\prime} a_{i} \in E(T)$ by condition (i) and $a_{i} \in A \subseteq V(T) \backslash V\left(\mathcal{Q}_{3}\right)$ by the definition of $\left.N\right)$. If $P \in$ $\mathcal{Q}_{3} \backslash \mathcal{P}_{2}$ has tail $b_{i} \in B$, then we replace P by $b_{i}^{\prime} b_{i} P$ (recall that $b_{i}^{\prime} b_{i} \in E(T)$ by condition (iii) and $\left.b_{i}^{\prime} \in B^{\prime} \subseteq V(T) \backslash V\left(\mathcal{Q}_{3}\right)\right)$. Let \mathcal{Q}_{4} be the path system thus obtained from \mathcal{Q}_{3}. Let $T^{\prime \prime}:=T\left[V\left(\mathcal{Q}_{4}\right)\right]$. Then

$$
T^{\prime} \subseteq T^{\prime \prime} \subseteq T\left[V\left(T^{\prime}\right) \cup A \cup B^{\prime}\right],
$$

and \mathcal{Q}_{4} is a path cover of $T^{\prime \prime}$ satisfying (Q1)-(Q4) and such that

$$
\begin{equation*}
\left|\mathcal{Q}_{4}\right|=\left|\mathcal{Q}_{3}\right| \quad \text { and } \quad \mathcal{Q}_{4} \cap \mathcal{P}_{2}=\mathcal{Q}_{3} \cap \mathcal{P}_{2} . \tag{7}
\end{equation*}
$$

Moreover, $h\left(\mathcal{Q}_{4} \backslash \mathcal{P}_{2}\right) \cap A^{\prime}=\emptyset$ and $t\left(\mathcal{Q}_{4} \backslash \mathcal{P}_{2}\right) \cap B=\emptyset$. Together with (b_{1}), this implies that
$\left(c_{1}\right)$ no paths in $\mathcal{Q}_{4} \backslash \mathcal{P}_{2}$ have endpoints in $A^{\prime} \cup B$.
Moreover, by construction of \mathcal{Q}_{4}, every vertex $a_{i} \in V\left(\mathcal{Q}_{4}\right) \cap A$ is a head of some path $P \in$ $\mathcal{Q}_{4} \backslash \mathcal{P}_{2}$ and this path P also contains a_{i}^{\prime} (so, in particular, $P_{i} \notin \mathcal{Q}_{4} \cap \mathcal{P}_{2}$). Similarly, every vertex in $b_{i}^{\prime} \in V\left(\mathcal{Q}_{4}\right) \cap B^{\prime}$ is a tail of some path $P \in \mathcal{Q}_{4} \backslash \mathcal{P}_{2}$ and this path P also contains b_{i} (in particular $P_{i} \notin \mathcal{Q}_{4} \cap \mathcal{P}_{2}$). Thus, (Q5) as well as the following assertion hold:
(c_{2}) no paths in \mathcal{Q}_{4} have heads in B^{\prime} or tails in A.
We will now extend the tails of paths in $\mathcal{Q}_{4} \backslash \mathcal{P}_{2}$ out of $A^{*} \cup B^{*}$. We do this by applying the strengthened form of Lemma 6.6 to $T^{\prime \prime},\left(\mathcal{Q}_{4} \backslash \mathcal{P}_{2}\right) \cup \dot{\cup}\left(\mathcal{Q}_{4} \cap \mathcal{P}_{2}\right)$ with $I:=B^{\prime}, J:=E_{A} \cup E_{B} \cup$ $A^{\prime} \cup A \cup B$ to form a new path cover \mathcal{Q}_{5} of $T^{\prime \prime}$ which still satisfies (Q1)-(Q5), and such that no path in $\mathcal{Q}_{5} \backslash \mathcal{P}_{2}$ has endpoints in $A^{\prime} \cup B^{\prime} \cup B$. Clearly, no paths in $\mathcal{P}_{2} \supseteq \mathcal{Q}_{4} \cap \mathcal{P}_{2}$ have tails in I, and $F \subseteq E\left(\mathcal{Q}_{4}\right)$ by (Q1). By condition (iii), we have $d_{T}^{-}(v) \geqslant n / 3$ for all $v \in I$. Together with (2), this implies that $d_{T^{\prime \prime}}^{-}(v) \geqslant d_{T^{\prime}}^{-}(v) \geqslant n / 4$ for all $v \in I$. Note also that $\left|V\left(\mathcal{P}_{2}\right)\right| \leqslant n / 20$
by condition (v). So similarly as in (3), it follows that

$$
\begin{aligned}
& 3(|I|+|J|)+2|F|+\left|V\left(\mathcal{Q}_{4} \cap \mathcal{P}_{2}\right)\right| \\
& \quad \leqslant 3\left(\left|A^{\prime}\right|+|A|+\left|B^{\prime}\right|+|B|+\left|E_{A}\right|+\left|E_{B}\right|\right)+2|F|+\left|V\left(\mathcal{P}_{2}\right)\right| \\
& \quad \leqslant 12 t+\frac{3}{20} d^{+}+4 c t+\frac{n}{20}<\frac{n}{4} \leqslant d_{T^{\prime \prime}}^{-}(v)
\end{aligned}
$$

for all $v \in I$. Thus, the requirements of the strengthened form of Lemma 6.6 are satisfied, and we can apply the lemma to obtain a path cover \mathcal{Q}_{5} of $T^{\prime \prime}$ such that $\mathcal{Q}_{5} \cap \mathcal{P}_{2} \supseteq \mathcal{Q}_{4} \cap \mathcal{P}_{2}$. Note that Lemma 6.6(ii) and (iii) imply that the endpoints of $\mathcal{Q}_{5} \backslash\left(\mathcal{P}_{2} \cap \mathcal{Q}_{4}\right)$ in J are the same as those of $\mathcal{Q}_{4} \backslash \mathcal{P}_{2}$. Together with (c_{1}), this implies that no paths in $\mathcal{Q}_{5} \backslash\left(\mathcal{P}_{2} \cap \mathcal{Q}_{4}\right)$ have endpoints in $A^{\prime} \cup B$. In particular, this means that $\mathcal{Q}_{5} \cap \mathcal{P}_{2}=\mathcal{Q}_{4} \cap \mathcal{P}_{2}$ and so
$\left(\mathrm{d}_{1}\right)$ no paths in $\mathcal{Q}_{5} \backslash \mathcal{P}_{2}$ have endpoints in $A^{\prime} \cup B$.
Thus, (Q5) for \mathcal{Q}_{4} implies that \mathcal{Q}_{5} satisfies (Q5) as well. Lemma 6.6(ii)-(iv), (vi) (strengthened) and (Q1)-(Q4) for \mathcal{Q}_{4} together imply that \mathcal{Q}_{5} satisfies (Q1)-(Q4). Moreover, Lemma 6.6(v) implies that

$$
\begin{align*}
& \left|\mathcal{Q}_{5}\right| \leqslant\left|\mathcal{Q}_{4}\right|+\left|\mathcal{Q}_{4} \backslash \mathcal{P}_{2}\right| \stackrel{(7)}{=}\left|\mathcal{Q}_{3}\right|+\left|\mathcal{Q}_{3} \backslash \mathcal{P}_{2}\right|=2\left|\mathcal{Q}_{3}\right|-\left|\mathcal{Q}_{3} \cap \mathcal{P}_{2}\right| \\
& \quad \stackrel{(5),(6)}{\leqslant}\left|\mathcal{Q}_{1}\right|+52 k .
\end{align*}
$$

By Lemma 6.6(i), (ii) and (c_{2}), we can also strengthen $\left(\mathrm{d}_{1}\right)$ to
$\left(\mathrm{d}_{2}\right)$ no paths in $\mathcal{Q}_{5} \backslash \mathcal{P}_{2}$ have endpoints in $A^{\prime} \cup B^{\prime} \cup B$ and no paths in \mathcal{Q}_{5} have tails in A.
Finally, we will extend the heads of paths in $\mathcal{Q}_{5} \backslash \mathcal{P}_{2}$ out of $A^{*} \cup B^{*}$. We do this by applying the strengthened form of Lemma 6.5 to $T^{\prime \prime},\left(\mathcal{Q}_{5} \backslash \mathcal{P}_{2}\right) \cup \dot{\cup}\left(\mathcal{Q}_{5} \cap \mathcal{P}_{2}\right)$ with $I:=A, J:=E_{A} \cup E_{B} \cup$ $A^{\prime} \cup B^{\prime} \cup B$ to form a new path cover \mathcal{Q}_{6} of $T^{\prime \prime}$ which will satisfy (Q1)-(Q7). Clearly, no paths in $\mathcal{P}_{2} \supseteq \mathcal{Q}_{5} \cap \mathcal{P}_{2}$ have heads in I, and $F \subseteq E\left(\mathcal{Q}_{5}\right)$ by (Q1). Similarly as before, condition (i) and (1) together imply that

$$
3(|I|+|J|)+2|F|+\left|V\left(\mathcal{Q}_{5}\right) \cap \mathcal{P}_{2}\right|<\frac{n}{4} \leqslant d_{T^{\prime \prime}}^{+}(v),
$$

for all $v \in I$. Thus, the requirements of the strengthened form of Lemma 6.5 are satisfied, and we can apply the lemma to obtain a path cover \mathcal{Q}_{6} of $T^{\prime \prime}$ such that $\mathcal{Q}_{6} \cap \mathcal{P}_{2}=\mathcal{Q}_{5} \cap \mathcal{P}_{2}$. (The fact that we have equality follows using a similar argument as in $\left(\mathrm{d}_{1}\right)$ above.)

Thus, (Q5) for \mathcal{Q}_{5} implies that \mathcal{Q}_{6} satisfies (Q5) as well. Lemma 6.5(ii)-(iv), (vi) (strengthened) and (Q1)-(Q4) for \mathcal{Q}_{5} together imply that \mathcal{Q}_{6} satisfies (Q1)-(Q4). Also, by Lemma $6.5(\mathrm{v})$, we have

$$
\left|\mathcal{Q}_{6}\right| \leqslant\left|\mathcal{Q}_{5}\right|+\left|\mathcal{Q}_{5} \backslash \mathcal{P}_{2}\right|=2\left|\mathcal{Q}_{5}\right|-\left|\mathcal{Q}_{5} \cap \mathcal{P}_{2}\right| \stackrel{(\mathbb{Q} 4),(8)}{\leqslant}\left|\mathcal{Q}_{1}\right|+124 k .
$$

So (Q6) holds. Moreover, by Lemma 6.5(i)-(iii), (d_{2}) and the fact that $\mathcal{Q}_{6} \cap \mathcal{P}_{2}=\mathcal{Q}_{5} \cap \mathcal{P}_{2}$, no paths in $\mathcal{Q}_{6} \backslash \mathcal{P}_{2}$ have endpoints in $A^{\prime} \cup A \cup B^{\prime} \cup B$. Since no vertex in $\left(A^{*} \cup B^{*}\right) \backslash\left(A^{\prime} \cup A \cup\right.$ $\left.B^{\prime} \cup B\right)$ lies in $V\left(T^{\prime \prime}\right)=V\left(\mathcal{Q}_{6}\right)$, this in turn implies (Q7). So the path system $\mathcal{Q}:=\mathcal{Q}_{6}$ is as required in the claim.

We will now use the fact that each A_{i} and each B_{i} is an almost dominating set in order to extend the paths in $\mathcal{Q} \backslash \mathcal{P}_{2}$ into those A_{i} and B_{i} that contain the endpoints of paths in $\mathcal{Q} \cap \mathcal{P}_{2}$. We then use the paths in $\mathcal{Q} \cap \mathcal{P}_{2}$ to join these extended paths into a long cycle C covering (at least) N, and with $F \subseteq E(C)$. Finally, we will deploy whatever covering edges we need from F in order to absorb any vertices in $A^{*} \cup B^{*}$ not already covered into C.

Let $\mathcal{R}:=\mathcal{Q} \backslash \mathcal{P}_{2}$ and $\mathcal{S}:=\mathcal{Q} \cap \mathcal{P}_{2}$. In order to carry out the steps above, we would like to have $|\mathcal{R}|=|\mathcal{S}|$ to avoid having any paths in \mathcal{S} left over. So we first split the paths in \mathcal{R} until we have exactly $|\mathcal{S}|$ of them. In this process, we wish to preserve (Q1)-(Q3), (Q5) and (Q7).

To show that this can be done, first note that, by (Q4) and (Q6), we have

$$
|\mathcal{R}|=\left|\mathcal{Q} \backslash \mathcal{P}_{2}\right| \leqslant 144 k=t-20 k \leqslant\left|\mathcal{Q}_{1}\right|-20 k \leqslant\left|\mathcal{Q} \cap \mathcal{P}_{2}\right|=|\mathcal{S}| .
$$

The number of edges in \mathcal{R} that are incident to vertices in $E_{A} \cup E_{B} \cup A^{*} \cup B^{*}$, or that belong to F, is bounded above by

$$
2\left(\left|E_{A}\right|+\left|E_{B}\right|+\left|A^{*}\right|+\left|B^{*}\right|\right)+|F| \leqslant \frac{d^{+}}{10}+6 c t \leqslant \frac{n}{4}
$$

On the other hand,

$$
\begin{aligned}
|E(\mathcal{R})| & =|V(\mathcal{R})|-|\mathcal{R}| \geqslant\left(n-\left|A^{*} \cup B^{*}\right|-\left|V\left(\mathcal{P}_{2}\right)\right|\right)-144 k \\
& \geqslant n-2 c t-\frac{n}{20}-144 k \geqslant \frac{n}{2}
\end{aligned}
$$

Hence,

$$
|E(\mathcal{R})|-2\left(\left|E_{A}\right|+\left|E_{B}\right|+\left|A^{*}\right|+\left|B^{*}\right|\right)-|F| \geqslant \frac{n}{4}>t \geqslant|\mathcal{S}| .
$$

We may therefore form a path cover \mathcal{R}^{\prime} of $T[V(\mathcal{R})]$ with $\left|\mathcal{R}^{\prime}\right|=|\mathcal{S}|$ by greedily removing edges of paths in \mathcal{R} that are neither incident to $A^{*} \cup B^{*} \cup E_{A} \cup E_{B}$ nor elements of F. Then $\mathcal{R}^{\prime} \cup \mathcal{S}$ satisfies (Q1)-(Q3), (Q5) and (Q7).

Next, we extend the paths in \mathcal{R}^{\prime} into $A^{*} \cup B^{*}$ and join them with the paths in \mathcal{S} to form a long cycle C. By relabelling the P_{i} if necessary, we may assume that $\mathcal{S}=\left\{P_{1}, \ldots, P_{\ell}\right\}$. Let R_{1}, \ldots, R_{ℓ} denote the paths in \mathcal{R}^{\prime} and, for each $j \in[\ell]$, let x_{j} be the tail of R_{j} and y_{j} the head of R_{j}. Recall from (Q2) and (Q7) that $x_{j} \notin A^{*} \cup B^{*} \cup E_{A}$. Hence, by condition (ii) there exists $x_{j}^{\prime} \in A_{j-1}$ with $x_{j}^{\prime} x_{j} \in E(T)$, where the indices are understood to be modulo ℓ. Similarly, $y_{j} \notin A^{*} \cup B^{*} \cup E_{B}$ by (Q3) and (Q7), and so, by condition (iv), there exists $y_{j}^{\prime} \in B_{j}$ with $y_{j} y_{j}^{\prime} \in E(T)$. Let $R_{j}^{\prime}:=x_{j}^{\prime} x_{j} R_{j} y_{j} y_{j}^{\prime}$. If $x_{j}^{\prime} \neq a_{j-1}^{\prime}$, then we extend R_{j}^{\prime} by adding the edge $a_{j-1}^{\prime} x_{j}^{\prime}$. Similarly, if $y_{j}^{\prime} \neq b_{j}$, then we extend R_{j}^{\prime} by adding the edge $y_{j}^{\prime} b_{j}$. In all cases, we still denote the resulting path from a_{j-1}^{\prime} to b_{j} by R_{j}^{\prime}.

Recall that P_{j} is a path from b_{j} to a_{j}^{\prime} for all $j \in[\ell]$. Moreover, we have $x_{j}^{\prime}, y_{j}^{\prime} \notin V\left(\mathcal{Q} \backslash \mathcal{P}_{2}\right)=$ $V\left(\mathcal{R}^{\prime}\right)$ for all $j \in[\ell]$. (Indeed, if $x_{j}^{\prime} \neq a_{j}$, then this follows, since for the oriented graph $T^{\prime \prime}$ defined in the claim, we have $V\left(T^{\prime \prime}\right) \cap A_{i} \subseteq\left\{a_{i}, a_{i}^{\prime}\right\}$. If $x_{j}^{\prime}=a_{j}$, then this follows since $P_{j} \in \mathcal{Q}$ and so (Q5) implies that $a_{j} \notin V(\mathcal{Q})$. The argument for y_{j}^{\prime} is similar.) Thus, $R_{1}^{\prime}, \ldots, R_{\ell}^{\prime}$ are pairwise vertex-disjoint and internally disjoint from the paths in \mathcal{S}. So we can define a cycle C by

$$
C:=R_{1}^{\prime} P_{1} R_{2}^{\prime} P_{2} \cdots P_{\ell-1} R_{\ell}^{\prime} P_{\ell} .
$$

Note that $N \subseteq V(C)$ since $\mathcal{R}^{\prime} \cup \mathcal{S}$ is a path cover of $T^{\prime \prime}$, and $F \subseteq E(C)$ by (Q1). Recall from condition (vi) that F consists of covering edges e_{v} for all $v \in A^{*} \cup B^{*}$ and that these e_{v} are pairwise distinct. Thus, each e_{v} lies on C and so neither of the two activating edges of e_{v} can lie on C. Writing $e_{v}=x_{v} y_{v}$, it follows from these observations that we may form a new cycle C^{\prime} by replacing $x_{v} y_{v}$ by $x_{v} v y_{v}$ in C for all $v \in\left(A^{*} \cup B^{*}\right) \backslash V(C)$. Then C^{\prime} is a Hamilton cycle of T, as desired.

7. Finding many edge-disjoint Hamilton cycles in a good tournament

In the proof of Theorem 1.2, we will find the edge-disjoint Hamilton cycles in a given highly linked tournament by repeatedly applying Lemma 6.7. In each application, we will need to set up all the dominating sets and paths required by Lemma 6.7. The following definition encapsulates this idea. (Recall that $\operatorname{Int}(P)$ denotes the interior of a path P.)

Definition 7.1. We say that a tournament T is (C, k, t, c)-good if it contains vertex sets $A_{1}^{1}, \ldots, A_{k}^{t}, B_{1}^{1}, \ldots, B_{k}^{t}, E_{A, 1}, \ldots, E_{A, k}, E_{B, 1}, \ldots, E_{B, k}$, edge sets F_{1}, \ldots, F_{k} and paths $P_{1}^{1}, \ldots, P_{k}^{t}$ such that the following statements hold, where $A_{i}^{*}:=A_{i}^{1} \cup \cdots \cup A_{i}^{t}, A^{*}:=$ $A_{1}^{*} \cup \cdots \cup A_{k}^{*}, B_{i}^{*}:=B_{i}^{1} \cup \cdots \cup B_{i}^{t}$ and $B^{*}:=B_{1}^{*} \cup \cdots \cup B_{k}^{*}$.
(G1) The sets $A_{1}^{1}, \ldots, A_{k}^{t}$ are disjoint and $2 \leqslant\left|A_{i}^{\ell}\right| \leqslant c$ for all $i \in[k]$ and $\ell \in[t]$. Moreover, each $T\left[A_{i}^{\ell}\right]$ is a transitive tournament whose head has out-degree at least $2 n / 5$ in T. Write $A:=\left\{h\left(T\left[A_{i}^{\ell}\right]\right): i \in[k], \ell \in[t]\right\}$.
(G2) The sets $B_{1}^{1}, \ldots, B_{k}^{t}$ are disjoint from each other and from A^{*}, and $2 \leqslant\left|B_{i}^{\ell}\right| \leqslant c$ for all $i \in[k]$ and $\ell \in[t]$. Moreover, each $T\left[B_{i}^{\ell}\right]$ is a transitive tournament whose tail has in-degree at least $2 n / 5$ in T. Write $B^{\prime}:=\left\{t\left(T\left[B_{i}^{\ell}\right]\right): i \in[k], \ell \in[t]\right\}$.
(G3) Write $d_{-}:=\min \left\{d^{-}(v): v \in V(T) \backslash\left(A \cup B^{\prime}\right)\right\}$. Each A_{i}^{ℓ} out-dominates $V(T) \backslash\left(A^{*} \cup\right.$ $\left.B^{*} \cup E_{A, i}\right)$. Moreover, $\left|E_{A, i}\right| \leqslant d_{-} / 50$ and $E_{A, i} \cap\left(A_{i}^{*} \cup B_{i}^{*}\right)=\emptyset$ for all $i \in[k]$.
(G4) Write $d_{+}:=\min \left\{d^{+}(v): v \in V(T) \backslash\left(A \cup B^{\prime}\right)\right\}$. Each B_{i}^{ℓ} in-dominates $V(T) \backslash\left(A^{*} \cup\right.$ $\left.B^{*} \cup E_{B, i}\right)$. Moreover, $\left|E_{B, i}\right| \leqslant d_{+} / 50$ and $E_{B, i} \cap\left(A_{i}^{*} \cup B_{i}^{*}\right)=\emptyset$ for all $i \in[k]$.
(G5) Each P_{i}^{ℓ} is a path from the head of $T\left[B_{i}^{\ell}\right]$ to the tail of $T\left[A_{i}^{\ell}\right]$. For each $i \in[k]$, the paths $P_{i}^{1}, \ldots, P_{i}^{t}$ are vertex-disjoint and $\left|P_{1}^{1} \cup \cdots \cup P_{k}^{t}\right| \leqslant n / 20$. For all $i \neq j$ and all $\ell, m \in[t], P_{i}^{\ell}$ and P_{j}^{m} are edge-disjoint and

$$
V\left(\operatorname{Int}\left(P_{i}^{\ell}\right)\right) \cap\left(A^{*} \cup B^{*}\right) \subseteq\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right) .
$$

(G6) We have $F_{i} \subseteq E\left(P_{i}^{t}\right)$ and $\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right) \subseteq V\left(P_{i}^{t}\right)$ for all $i \in[k]$.
(G7) The set $F_{1} \cup \cdots \cup F_{k}$ is a matching in $T-\left(A^{*} \cup B^{*}\right)$. For all $i \in[k]$, we have $F_{i}=\left\{e_{v}\right.$: $\left.v \in A_{i}^{*} \cup B_{i}^{*}\right\}$, where e_{v} is a covering edge for v and $e_{v} \neq e_{v^{\prime}}$ whenever $v \neq v^{\prime}$. Moreover, for each $i \in[k]$, let $F_{i}^{\text {act }}$ be the set of activating edges corresponding to the covering edges in F_{i}. Then $F_{i}^{\text {act }} \cap E\left(P_{j}^{\ell}\right)=\emptyset$ for all $i, j \in[k]$ and all $\ell \in[t]$.
(G8) We have $\delta^{0}(T) \geqslant C k^{2} \log k$.
For convenience, we collect the various disjointness conditions of Definition 7.1 into a single statement.
(G9) (a) the sets $A_{1}^{1}, \ldots, A_{k}^{t}, B_{1}^{1}, \ldots, B_{k}^{t}$ are disjoint;
(b) $\left(E_{A, i} \cup E_{B, i}\right) \cap\left(A_{i}^{*} \cup B_{i}^{*}\right)=\emptyset$ for all $i \in[k]$;
(c) $F_{1} \cup \cdots \cup F_{k}$ is a matching in $T-\left(A^{*} \cup B^{*}\right)$;
(d) for each $i \in[k]$, the paths $P_{i}^{1}, \ldots, P_{i}^{t}$ are vertex-disjoint;
(e) for all $i \neq j$ and all $\ell, m \in[t], P_{i}^{\ell}$ and P_{j}^{m} are edge-disjoint and $V\left(\operatorname{Int}\left(P_{i}^{\ell}\right)\right) \cap\left(A^{*} \cup\right.$ $\left.B^{*}\right) \subseteq\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right)$. In particular, $P_{i}^{1}, \ldots, P_{i}^{t}$ are internally disjoint from $A_{i}^{*} \cup B_{i}^{*}$.

The next lemma shows that, for suitable parameters $C, t=t(k)$ and $c=c(k)$, every (C, k, t, c)-good tournament contains k edge-disjoint Hamilton cycles. In the next section, we then show that there exists a constant $C^{\prime}>0$ such that any $C^{\prime} k^{2} \log k$-linked tournament is (C, k, t, c)-good (see Lemma 8.7). These two results together immediately imply Theorem 1.2.

As mentioned at the beginning of this section, in order to prove Lemma 7.2 , we will apply Lemma $6.7 k$ times. In the notation for Definition 7.1, our convention is that the sets with subscript i will be used in the i th application of Lemma 6.7 to find the i th Hamilton cycle.

Lemma 7.2. Let $C:=10^{7}, k \geqslant 20, t:=164 k, c:=\lceil\log 50 t+1\rceil$. Then any (C, k, t, c)-good tournament contains k edge-disjoint Hamilton cycles.

Proof. Let T be a (C, k, t, c)-good tournament and let $n:=|T|$. Let $A_{1}^{1}, \ldots, A_{k}^{t}, B_{1}^{1}, \ldots, B_{k}^{t}$, $E_{A, 1}, \ldots, E_{A, k}, E_{B, 1}, \ldots, E_{B, k}, F_{1}, \ldots, F_{k}, P_{1}^{1}, \ldots, P_{k}^{t}, d_{-}$and d_{+}be as in Definition 7.1. (Note
that this also implicitly defines sets $A_{1}^{*}, \ldots, A_{k}^{*}, A^{*}, A, B_{1}^{*}, \ldots, B_{k}^{*}, B^{*}, B^{\prime}$ and $F_{1}^{\text {act }}, \ldots, F_{k}^{\text {act }}$ as in Definition 7.1.) Our aim is to apply Lemma 6.7 repeatedly to find k edge-disjoint Hamilton cycles. So suppose that, for some $i \in[k]$, we have already found edge-disjoint Hamilton cycles C_{1}, \ldots, C_{i-1} such that the following conditions hold:
(a) C_{1}, \ldots, C_{i-1} are edge-disjoint from $T\left[A_{j}^{\ell}\right], T\left[B_{j}^{\ell}\right]$ and P_{j}^{ℓ} for all $i \leqslant j \leqslant k$ and all $\ell \in[t]$;
(b) $E\left(C_{1} \cup \cdots \cup C_{i-1}\right) \cap F_{j}^{\text {act }}=\emptyset$ for all $i \leqslant j \leqslant k$.

Intuitively, these conditions guarantee that none of the edges we will need in order to find C_{i}, \ldots, C_{k} are contained in C_{1}, \ldots, C_{i-1}. We have to show that $T-C_{1}-\cdots-C_{i-1}$ contains a Hamilton cycle C_{i} which satisfies (a) and (b) (with i replaced by $i+1$).

Define

$$
\begin{aligned}
T_{i} & :=T-\left(\bigcup_{j<i} C_{j} \cup \bigcup_{j>i} F_{j}^{\text {act }}\right)-\bigcup_{j>i, \ell \in[t]}\left(P_{j}^{\ell} \cup T\left[A_{j}^{\ell}\right] \cup T\left[B_{j}^{\ell}\right]\right), \\
E_{A, i}^{\prime} & \left.:=E_{A, i} \cup\left(\left(\bigcup_{j<i} N_{C_{j}}^{+}\left(A_{i}^{*}\right) \cup \bigcup_{j>i, \ell \in[t]} N_{P_{j}^{\ell}}^{+}\left(A_{i}^{*}\right) \cup A^{*} \cup B^{*}\right)\right\rangle\left(A_{i}^{*} \cup B_{i}^{*}\right)\right), \\
E_{B, i}^{\prime} & \left.:=E_{B, i} \cup\left(\left(\bigcup_{j<i} N_{C_{j}}^{-}\left(B_{i}^{*}\right) \cup \bigcup_{j>i, \ell \in[t]} N_{P_{j}^{\ell}}^{-}\left(B_{i}^{*}\right) \cup A^{*} \cup B^{*}\right)\right\rangle\left(A_{i}^{*} \cup B_{i}^{*}\right)\right), \\
X_{i} & :=\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right) .
\end{aligned}
$$

Then it suffices to find a Hamilton cycle C_{i} of T_{i}. We will do so by applying Lemma 6.7 to T_{i}, $A_{i}^{1}, \ldots, A_{i}^{t}, B_{i}^{1}, \ldots, B_{i}^{t}, P_{i}^{1}, \ldots, P_{i}^{t}, E_{A, i}^{\prime}, E_{B, i}^{\prime}, F_{i}$ and X_{i}. It therefore suffices to verify that the conditions of Lemma 6.7 hold.

We claim that, for each $v \in V\left(T_{i}\right)$, we have

$$
\begin{equation*}
d_{T_{i}}^{+}(v) \geqslant d_{T}^{+}(v)-(i-1)-(k-i)-1-c>d_{T}^{+}(v)-2 k \tag{9}
\end{equation*}
$$

Indeed, it is immediate that $d_{C_{1} \cup \ldots \cup C_{i-1}}^{+}(v)=i-1$. Since by (G9) for each $j>i$, the paths $P_{j}^{1}, \ldots, P_{j}^{t}$ are vertex-disjoint, v is covered by at most $k-i$ of the paths $P_{i+1}^{1}, \ldots, P_{k}^{t}$ and hence $d_{P_{i+1}^{1} \cup \cdots \cup P_{k}^{t}}^{+}(v) \leqslant k-i$. Recall from (G7) that $F_{1} \cup \cdots \cup F_{k}$ consists of one covering edge e_{v} for each $v \in A^{*} \cup B^{*}$. Moreover, by (G9), the set $F_{1} \cup \cdots \cup F_{k}$ is a matching in $T-\left(A^{*} \cup B^{*}\right)$ and $A_{1}^{1}, \ldots, A_{k}^{t}, B_{1}^{1}, \ldots, B_{k}^{t}$ are all disjoint. Thus, the digraph with edge set $F_{1}^{\text {act }} \cup \cdots \cup F_{k}^{\text {act }}$ is a disjoint union of directed paths of length 2 and therefore has maximum out-degree 1. Finally, since $A_{1}^{1}, \ldots, A_{k}^{t}, B_{1}^{1}, \ldots, B_{k}^{t}$ are disjoint, v belongs to at most one of $T\left[A_{1}^{1}\right], \ldots, T\left[A_{k}^{t}\right], T\left[B_{1}^{1}\right], \ldots, T\left[B_{k}^{t}\right]$. Moreover, $\Delta^{+}\left(T\left[A_{j}^{\ell}\right]\right), \Delta^{+}\left(T\left[B_{j}^{\ell}\right]\right) \leqslant c$ for all $j>i$ and all $\ell \in[t]$ by (G1) and (G2). So (9) follows. Similarly, we have

$$
\begin{equation*}
d_{T_{i}}^{-}(v)>d_{T}^{-}(v)-2 k \tag{10}
\end{equation*}
$$

In particular, $\delta\left(T_{i}\right)>n-4 k$, as required by Lemma 6.7.
We have $\delta^{0}(T)>C k^{2}$ by (G8), and hence $\delta^{0}\left(T_{i}\right)>10^{6} k^{2}$, as required by Lemma 6.7 . The disjointness conditions of Lemma 6.7 are satisfied by (G9) and the definition of X_{i}. Since $V\left(T_{i}\right)=V(T)$, it is immediate that $A_{i}^{1}, \ldots, A_{i}^{t}, B_{i}^{1}, \ldots, B_{i}^{t}, X_{i} \subseteq V\left(T_{i}\right)$. We claim that $P_{i}^{1}, \ldots, P_{i}^{t} \subseteq T_{i}$. Indeed, by (a) and (G5), each P_{i}^{ℓ} is edge-disjoint from $C_{1} \cup \cdots \cup C_{i-1}$ and from P_{j}^{m} for all $j>i$ and all $m \in[t]$. By (G7), each P_{i}^{ℓ} is edge-disjoint from $F_{1}^{\text {act }} \cup \cdots \cup F_{k}^{\text {act }}$. Moreover, by (G5), each P_{i}^{ℓ} is edge-disjoint from $T\left[A_{j}^{m}\right] \cup T\left[B_{j}^{m}\right]$ for all $j>i$ and all $m \in[t]$. Altogether this implies that $P_{i}^{1}, \ldots, P_{i}^{t} \subseteq T_{i}$. We have $F_{i} \subseteq E\left(P_{i}^{t}\right) \subseteq E\left(T_{i}\right)$ by (G6). It therefore suffices to prove that conditions (i)-(vii) of Lemma 6.7 hold.

Condition (v) follows from (G5). Condition (vi) follows from (G6) and (G7). (Note that (G7) implies that $F_{i}^{\text {act }} \cap F_{j}^{\text {act }}=\emptyset$ for all $i \neq j$. So (G7), (b) and the definition of T_{i} imply that
$F_{i}^{\text {act }} \subseteq T_{i}$.) By (G6), we have $X_{i} \subseteq V\left(P_{i}^{t}\right)$ and by (G1) and (G2) we have $\left|X_{i}\right| \leqslant\left|A \cup B^{\prime}\right|=2 k t$, so condition (vii) holds too.

It therefore remains to verify conditions (i)-(iv). We first check (i). We have $2 \leqslant\left|A_{i}^{\ell}\right| \leqslant c$ by (G1). Moreover, we claim that $T_{i}\left[A_{i}^{\ell}\right]=T\left[A_{i}^{\ell}\right]$ for all $\ell \in[t]$. Indeed, to see this, note that C_{1}, \ldots, C_{i-1} are edge-disjoint from $T\left[A_{i}^{\ell}\right]$ by (a); by (G9) for all $j>i$ and all $m \in[t]$ each path P_{j}^{m} and each $T\left[A_{j}^{m}\right], T\left[B_{j}^{m}\right]$ is edge-disjoint from $T\left[A_{i}^{\ell}\right]$; by (G7) all edges in $F_{j}^{\text {act }}$ for $j>i$ are incident to a vertex in $A_{j}^{*} \cup B_{j}^{*}$, and hence by (G9) none of these edges belongs to $T\left[A_{i}^{\ell}\right]$. Thus, $T_{i}\left[A_{i}^{\ell}\right]=T\left[A_{i}^{\ell}\right]$ is a transitive tournament by (G1). Finally, by (G1) the head of each $T\left[A_{i}^{\ell}\right]$ has out-degree at least $2 n / 5$ in T, and so by (9) out-degree at least $n / 3$ in T_{i}. Hence, condition (i) of Lemma 6.7 is satisfied. A similar argument shows that condition (iii) of Lemma 6.7 is also satisfied.

We will next verify that condition (ii) of Lemma 6.7 holds too. Condition (G9) and the definition of $E_{A, i}^{\prime}$ together imply that $E_{A, i}^{\prime} \cap\left(A_{i}^{*} \cup B_{i}^{*}\right)=\emptyset$. By (G3), each A_{i}^{ℓ} out-dominates $V(T) \backslash\left(A^{*} \cup B^{*} \cup E_{A, i}\right)$ in T, and hence out-dominates $V\left(T_{i}\right) \backslash\left(A^{*} \cup B^{*} \cup E_{A, i} \cup N_{T-T_{i}}^{+}\left(A_{i}^{*}\right)\right)$ in T_{i}. However, it follows from (G9), all $j>i$ and all $\ell, m \in[t]$, no edge in $F_{j}^{\text {act }}$ has an endpoint in A_{i}^{ℓ} and that $A_{i}^{\ell} \cap A_{j}^{m}=A_{i}^{\ell} \cap B_{j}^{m}=\emptyset$. Hence, by (G9), we have that

$$
N_{T-T_{i}}^{+}\left(A_{i}^{*}\right)=\bigcup_{j<i} N_{C_{j}}^{+}\left(A_{i}^{*}\right) \cup \bigcup_{j>i, \ell \in[t]} N_{P_{j}^{e}}^{+}\left(A_{i}^{*}\right) .
$$

It therefore follows from the definitions of $E_{A, i}^{\prime}$ and T_{i} that A_{i}^{ℓ} out-dominates $V\left(T_{i}\right) \backslash\left(A_{i}^{*} \cup\right.$ $\left.B_{i}^{*} \cup E_{A, i}^{\prime}\right)$ in T_{i} for all $\ell \in[t]$.

So, in order to check that condition (ii) of Lemma 6.7 holds, it remains only to bound $\left|E_{A, i}^{\prime}\right|$ from above. To do this, first note that by (G9), each vertex in A_{i}^{*} is contained in at most $k-i$ of the paths $P_{i+1}^{1}, \ldots, P_{k}^{t}$. Moreover, $\left|E_{A, i}\right| \leqslant d_{-} / 50$ by (G3). It therefore follows from the definition of $E_{A, i}^{\prime}$, (G1) and (G2) that

$$
\begin{aligned}
\left|E_{A, i}^{\prime}\right| & \leqslant\left|E_{A, i}\right|+\left|\bigcup_{j<i} N_{C_{i}}^{+}\left(A_{i}^{*}\right)\right|+\left|\bigcup_{j>i, \ell \in[t]} N_{P_{j}^{e}}^{+}\left(A_{i}^{*}\right)\right|+\left|A^{*}\right|+\left|B^{*}\right| \\
& \leqslant \frac{d_{-}}{50}+(i-1)\left|A_{i}^{*}\right|+(k-i)\left|A_{i}^{*}\right|+2 k c t \leqslant \frac{d_{-}}{50}+k c t+2 k c t \leqslant \frac{d_{-}}{45} .
\end{aligned}
$$

The last inequality follows since $d_{-} \geqslant \delta^{0}(T) \geqslant C k^{2} \log k$ by (G8). Since $E_{A, i}^{\prime}$ is disjoint from $A_{i}^{*} \cup B_{i}^{*}$, we have $E_{A, i}^{\prime} \backslash X_{i}=E_{A, i}^{\prime} \backslash\left(A \cup B^{\prime}\right)$. Hence, for all $v \in E_{A, i}^{\prime} \backslash X_{i}$ we have

$$
d_{T_{i}}^{-}(v) \stackrel{(10)}{\geqslant} d_{T}^{-}(v)-2 k \stackrel{(\mathrm{G} 3)}{\geqslant} d_{-}-2 k \geqslant \frac{19}{20} d_{-},
$$

and so

$$
\left|E_{A, i}^{\prime}\right| \leqslant \frac{d_{-}}{45} \leqslant \frac{1}{40} \min \left\{d_{T_{i}}^{-}(v): v \in E_{A, i}^{\prime} \backslash X_{i}\right\} .
$$

This shows that condition (ii) of Lemma 6.7 is satisfied. The argument that (iv) holds is similar. We may therefore apply Lemma 6.7 to find a Hamilton cycle C_{i} in T_{i}, as desired.

8. Highly linked tournaments are good

The aim of this section is to prove that any sufficiently highly linked tournament is (C, k, t, c)good. We first show that it is very easy to find covering edges for any given vertex, we will use the following lemma to find matchings F_{1}, \ldots, F_{k} consisting of covering edges as in Definition 7.1.

Lemma 8.1. Suppose that T is a strongly 2 -connected tournament, and $v \in V(T)$. Then there exists a covering edge for v.

Proof. Since T is strongly connected and $|T|>1$, we have $N^{+}(v), N^{-}(v) \neq \emptyset$. Since $T-v$ is strongly connected, there is an edge $x y$ from $N^{-}(v)$ to $N^{+}(v)$. But then $x v, v y \in E(T)$, so $x y$ is a covering edge for v, as desired.

The next lemma will be used to obtain paths $P_{1}^{1}, \ldots, P_{k}^{t}$ as in Definition 7.1. Recall that we require $F_{i} \subseteq E\left(P_{i}^{t}\right)$ and $\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right) \subseteq V\left(P_{i}^{t}\right)$ for all $i \in[k]$. We will ensure the latter requirement by first covering $\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right)$ with few paths and then linking these paths together, hence the form of the lemma.

Lemma 8.2. Let $s \in \mathbb{N}$ and let T be a digraph. Let $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ be distinct vertices of T, and let $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{k}$ be (possibly empty) path systems in $T-\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ with $E\left(\mathcal{Q}_{i}\right) \cap E\left(\mathcal{Q}_{j}\right)=\emptyset$ whenever $i \neq j$. Write

$$
\begin{equation*}
m:=k+\sum_{i=1}^{k}\left|\mathcal{Q}_{i}\right|+\left|\bigcup_{i=1}^{k} V\left(\mathcal{Q}_{i}\right)\right|, \tag{11}
\end{equation*}
$$

and suppose that T is 2 sm-linked. Then there exist edge-disjoint paths $P_{1}, \ldots, P_{k} \subseteq T$ satisfying the following properties:
(i) P_{i} is a path from x_{i} to y_{i} for all $i \in[k]$;
(ii) $Q \subseteq P_{i}$ for all $Q \in \mathcal{Q}_{i}$ and all $i \in[k]$;
(iii) $V\left(P_{i}\right) \cap V\left(P_{j}\right) \subseteq V\left(\mathcal{Q}_{i}\right) \cap V\left(\mathcal{Q}_{j}\right)$ for all $i \neq j$;
(iv) $\left|P_{1} \cup \cdots \cup P_{k}\right| \leqslant|T| / s+\left|V\left(\mathcal{Q}_{1}\right) \cup \cdots \cup V\left(\mathcal{Q}_{k}\right)\right|$.

Proof. For all $i \in[k]$, let $a_{i}^{1} \cdots b_{i}^{1}, \ldots, a_{i}^{t_{i}} \cdots b_{i}^{t_{i}}$ denote the paths in \mathcal{Q}_{i}. Let $F \subseteq E(T)$ denote the set of all those edges that form a path of length 1 in $\mathcal{Q}_{1} \cup \cdots \cup \mathcal{Q}_{k}$. Let

$$
T^{\prime}:=T\left[\left(V(T) \backslash \bigcup_{i=1}^{k} V\left(\mathcal{Q}_{i}\right)\right) \cup \bigcup_{i=1}^{k} \bigcup_{j=1}^{t_{i}}\left\{a_{i}^{j}, b_{i}^{j}\right\}\right]-F .
$$

Note that $E\left(T^{\prime}\right) \cap\left(E\left(\mathcal{Q}_{1}\right) \cup \cdots \cup E\left(\mathcal{Q}_{k}\right)\right)=\emptyset$. Define sets X_{1}, \ldots, X_{k} of ordered pairs of vertices of T^{\prime} by

$$
X_{i}:= \begin{cases}\left\{\left(x_{i}, a_{i}^{1}\right),\left(b_{i}^{1}, a_{i}^{2}\right), \ldots,\left(b_{i}^{t_{i}-1}, a_{i}^{t_{i}}\right),\left(b_{i}^{t_{i}}, y_{i}\right)\right\} & \text { if } \mathcal{Q}_{i} \neq \emptyset, \\ \left\{\left(x_{i}, y_{i}\right)\right\} & \text { if } \mathcal{Q}_{i}=\emptyset,\end{cases}
$$

and let $X:=X_{1} \cup \cdots \cup X_{k}$. Let $\ell:=2 s m-2 s|X|$. Since $\left|V(T) \backslash V\left(T^{\prime}\right)\right|+|F| \leqslant \mid V\left(\mathcal{Q}_{1}\right) \cup \cdots \cup$ $V\left(\mathcal{Q}_{k}\right) \mid$ and $|X|=k+\sum_{i=1}^{k}\left|\mathcal{Q}_{i}\right|$, it follows that

$$
2 \ell=4 s(m-|X|) \stackrel{(11)}{=} 4 s\left|\bigcup_{i=1}^{k} V\left(\mathcal{Q}_{i}\right)\right| \geqslant\left|V(T) \backslash V\left(T^{\prime}\right)\right|+2|F| .
$$

Thus, by Proposition 4.7, T^{\prime} is $2 s|X|$-linked. We may therefore apply Lemma 4.8 to X in order to obtain, for each $i \in[k]$, a path system \mathcal{P}_{i} whose paths link the pairs in X_{i} and such that, whenever $i \neq j$, we have $E\left(\mathcal{P}_{i}\right) \cap E\left(\mathcal{P}_{j}\right)=\emptyset$ and $V\left(\mathcal{P}_{i}\right) \cap V\left(\mathcal{P}_{j}\right)$ consists of exactly the vertices that lie in a pair in both X_{i} and X_{j}. Let P_{i} be the path obtained from the union of all paths in \mathcal{P}_{i} and all paths in \mathcal{Q}_{i}. Then P_{1}, \ldots, P_{k} are edge-disjoint paths satisfying (i)-(iv).

The next lemma shows that, given a vertex v in a tournament T, we can find a small transitive subtournament whose head is v and which out-dominates almost all vertices of T.

Lemma 8.3. Let T be a tournament on n vertices, let $v \in V(T)$ and suppose that $c \in$ \mathbb{N} satisfies $2 \leqslant c \leqslant \log d^{-}(v)-1$. Then there exist disjoint sets $A, E \subseteq V(T)$ such that the following properties hold:
(i) $2 \leqslant|A| \leqslant c$ and $T[A]$ is a transitive tournament with head v;
(ii) A out-dominates $V(T) \backslash(A \cup E)$;
(iii) $|E| \leqslant(1 / 2)^{c-1} d^{-}(v)$.

The fact that the bound in (iii) depends on $d^{-}(v)$ is crucial: for instance, we can apply Lemma 8.3 with v being the vertex of lowest in-degree. Then (iii) implies that the 'exceptional set' $|E|$ is much smaller than $d^{-}(v) \leqslant d^{-}(w)$ for any $w \in E$. So, while w is not dominated by A directly, it is dominated by many vertices outside E. This will make it possible to cover E by paths whose endpoints lie outside E. (More formally, the lemma is used to ensure (G3), which in turn is used for (Q2) in the proof of Lemma 6.7.)

Proof. Let $v_{1}:=v$. We will find A by repeatedly choosing vertices v_{1}, \ldots, v_{i} such that the size of their common in-neighbourhood (that is, the intersection of their individual inneighbourhoods) is minimized at each step. More precisely, let $A_{1}:=\left\{v_{1}\right\}$. Suppose that, for some $i<c$, we have already found a set $A_{i}=\left\{v_{1}, \ldots, v_{i}\right\}$ such that $T\left[A_{i}\right]$ is a transitive tournament with head v_{1}, and such that the common in-neighbourhood E_{i} of v_{1}, \ldots, v_{i} satisfies

$$
\left|E_{i}\right| \leqslant \frac{1}{2^{i-1}} d^{-}(v) .
$$

Note that these conditions are satisfied for $i=1$. Moreover, note that E_{i} is the set of all those vertices in $T-A_{i}$ that are not out-dominated by A_{i}. If $\left|E_{i}\right|<4$, then we have

$$
\begin{equation*}
\left|E_{i}\right|<4=\frac{1}{2^{\log d^{-}(v)-2}} d^{-}(v) \leqslant \frac{1}{2^{c-1}} d^{-}(v), \tag{12}
\end{equation*}
$$

and so A_{i} satisfies (i)-(iii). (Note that $\left|A_{i}\right| \geqslant 2$ since the assumptions imply that $d^{-}(v) \geqslant 8$.) Thus, in this case we can take $A:=A_{i}$ and $E:=E_{i}$.

So suppose next that $\left|E_{i}\right| \geqslant 4$. In this case, we will extend A_{i} to A_{i+1} by adding a suitable vertex v_{i+1}. By Proposition 6.1, E_{i} contains a vertex v_{i+1} of in-degree at most $\left|E_{i}\right| / 2$ in $T\left[E_{i}\right]$. Let $A_{i+1}:=\left\{v_{1}, \ldots, v_{i+1}\right\}$ and let E_{i+1} be the common in-neighbourhood of v_{1}, \ldots, v_{i+1}. Then $T\left[A_{i+1}\right]$ is a transitive tournament with head v_{1} and

$$
\left|E_{i+1}\right| \leqslant \frac{1}{2}\left|E_{i}\right| \leqslant \frac{1}{2^{i}} d^{-}(v) .
$$

By repeating this construction, either we will find $\left|E_{i}\right|<4$ for some $i<c$ (and therefore take $A:=A_{i}$ and $E:=E_{i}$) or we will obtain sets A_{c} and E_{c} satisfying (i)-(iii).

We will also need the following analogue of Lemma 8.3 for in-dominating sets. This immediately follows from Lemma 8.3 by reversing the orientations of all edges.

Lemma 8.4. Let T be a tournament on n vertices, let $v \in V(T)$ and suppose that $c \in$ \mathbb{N} satisfies $2 \leqslant c \leqslant \log d^{+}(v)-1$. Then there exist disjoint sets $B, E \subseteq V(T)$ such that the following properties hold:
(i) $2 \leqslant|B| \leqslant c$ and $T[B]$ is a transitive tournament with tail v;
(ii) B in-dominates $V(T) \backslash(B \cup E)$;
(iii) $|E| \leqslant(1 / 2)^{c-1} d^{+}(v)$.

We will now apply Lemma 8.3 repeatedly to obtain many pairwise disjoint small almost-outdominating sets. We will also prove an analogue for in-dominating sets. These lemmas will be used in order to obtain sets $A_{1}^{1}, \ldots, A_{k}^{t}, B_{1}^{1}, \ldots, B_{k}^{t}, E_{A, 1}, \ldots, E_{A, k}$ and $E_{B, 1}, \ldots, E_{B, k}$ as in Definition 7.1.

Lemma 8.5. Let T be a tournament on n vertices, $U \subseteq V(T)$ and $c \in \mathbb{N}$ with $c \geqslant 2$. Suppose that $\delta^{-}(T) \geqslant 2^{c+1}+c|U|$. Then there exist families $\left\{A_{v}: v \in U\right\}$ and $\left\{E_{v}: v \in U\right\}$ of subsets of $V(T)$ such that the following properties hold:
(i) A_{v} out-dominates $V(T) \backslash\left(E_{v} \cup \bigcup_{u \in U} A_{u}\right)$ for all $v \in U$;
(ii) $T\left[A_{v}\right]$ is a transitive tournament with head v for all $v \in U$;
(iii) $\left|E_{v}\right| \leqslant(1 / 2)^{c-1} d^{-}(v)$ for all $v \in U$;
(iv) $2 \leqslant\left|A_{v}\right| \leqslant c$ for all $v \in U$;
(v) $A_{u} \cap E_{v}=\emptyset$ for all $u, v \in U$;
(vi) $A_{u} \cap A_{v}=\emptyset$ for all $u \neq v$.

Proof. We repeatedly apply Lemma 8.3. Suppose that, for some $U^{\prime} \subseteq U$ with $U^{\prime} \neq U$, we have already found $\left\{A_{u}: u \in U^{\prime}\right\}$ and $\left\{E_{u}^{\prime}: u \in U^{\prime}\right\}$ satisfying (ii)-(vi) (with U^{\prime} playing the role of U and E_{u}^{\prime} playing the role of E_{u}) such that
(a) A_{v} out-dominates $V(T) \backslash\left(\bigcup_{u \in U^{\prime}} A_{u} \cup E_{v}^{\prime} \cup U\right)$ for all $v \in U^{\prime}$;
(b) $\left(\bigcup_{u \in U^{\prime}} A_{u}\right) \cap U=U^{\prime}$.

Pick $v \in U \backslash U^{\prime}$. Our aim is to apply Lemma 8.3 to v and

$$
T^{\prime}:=T-\left(\bigcup_{u \in U^{\prime}} A_{u} \cup(U \backslash\{v\})\right) .
$$

Note that $v \in V\left(T^{\prime}\right)$ by (b). Moreover,

$$
d_{T^{\prime}}^{-}(v) \geqslant \delta^{-}\left(T^{\prime}\right) \stackrel{(\mathrm{iv})}{\geqslant} \delta^{-}(T)-c\left|U^{\prime}\right|-\left|U \backslash U^{\prime}\right| \geqslant \delta^{-}(T)-c|U| \geqslant 2^{c+1},
$$

where the final inequality holds by hypothesis, and so $c \leqslant \log d_{T^{\prime}}^{-}(v)-1$. Hence, we can apply Lemma 8.3 to obtain disjoint sets $A_{v}, E_{v} \subseteq V\left(T^{\prime}\right)$ as described there. For all $u \in U^{\prime}$, let $E_{u}:=$ $E_{u}^{\prime} \backslash A_{v}$. Then the collections $\left\{A_{u}: u \in U^{\prime} \cup\{v\}\right\}$ and $\left\{E_{u}: u \in U^{\prime} \cup\{v\}\right\}$ satisfy (v) and (vi) (with $U^{\prime} \cup\{v\}$ playing the role of U). Moreover, (b) holds too (with $U^{\prime} \cup\{v\}$ playing the role of U^{\prime}). Conditions (i)-(iii) of Lemma 8.3 imply that (a) holds (with $U^{\prime} \cup\{v\}, E_{u}$ playing the roles of $U^{\prime}, E_{u}^{\prime}$) and that (ii)-(iv) hold (with $U^{\prime} \cup\{v\}$ playing the role of U).

We continue in this way to obtain sets $\left\{A_{u}: u \in U\right\}$ and $\left\{E_{u}: u \in U\right\}$ which satisfy (ii)-(vi) as well as (a) (with U, E_{u} playing the roles of $U^{\prime}, E_{u}^{\prime}$). But (a) implies (i) since $\bigcup_{u \in U} A_{u} \cup U=$ $\bigcup_{u \in U} A_{u}$ (as $u \in A_{u}$ by (ii)).

The next lemma is an analogue of Lemma 8.5 for in-dominating sets. The proof is similar to that of Lemma 8.5.

Lemma 8.6. Let T be a tournament on n vertices, $U \subseteq V(T)$ and $c \in \mathbb{N}$ with $c \geqslant 2$. Suppose that $\delta^{+}(T) \geqslant 2^{c+1}+c|U|$. Then there exist families $\left\{B_{v}: v \in U\right\}$ and $\left\{E_{v}: v \in U\right\}$ of subsets of $V(T)$ such that the following properties hold:
(i) B_{v} in-dominates $V(T) \backslash\left(E_{v} \cup \bigcup_{u \in U} B_{u}\right)$ for all $v \in U$;
(ii) $T\left[B_{v}\right]$ is a transitive tournament with tail v for all $v \in U$;
(iii) $\left|E_{v}\right| \leqslant(1 / 2)^{c-1} d^{+}(v)$ for all $v \in U$;
(iv) $2 \leqslant\left|B_{v}\right| \leqslant c$ for all $v \in U$;
(v) $B_{u} \cap E_{v}=\emptyset$ for all $u, v \in U$;
(vi) $B_{u} \cap B_{v}=\emptyset$ for all $u \neq v$.

We will now combine the previous results in order to prove that any sufficiently highly linked tournament is (C, k, t, c)-good. Note that Lemmas 7.2 and 8.7 together imply Theorem 1.2.

Lemma 8.7. Let $C:=10^{7}, k \geqslant 20, t:=164 k$ and $c:=\lceil\log 50 t+1\rceil$. Then any $C k^{2} \log k$ linked tournament is (C, k, t, c)-good.

Proof. Let T be a $C k^{2} \log k$-linked tournament and let $n:=|T|$. Note in particular that $\delta^{0}(T) \geqslant C k^{2} \log k$ by Proposition 4.6, so (G8) is satisfied. We have to choose $A_{1}^{1}, \ldots, A_{k}^{t}$, $B_{1}^{1}, \ldots, B_{k}^{t}, E_{A, 1}, \ldots, E_{A, k}, E_{B, 1}, \ldots, E_{B, k}, F_{1}, \ldots, F_{k}$ and $P_{1}^{1}, \ldots, P_{k}^{t}$ satisfying (G1)-(G7) of Definition 7.1.

Construct a set $A \subseteq V(T)$ by greedily choosing $k t$ vertices of least possible in-degree in T, and likewise construct a set $B^{\prime} \subseteq V(T)$ by greedily choosing $k t$ vertices of least possible outdegree in T. Note that by choosing the vertices in A and B^{\prime} suitably, we may assume that $A \cap B^{\prime}=\emptyset$. (Since $n \geqslant \delta^{0}(T) \geqslant 2 k t$, this is indeed possible.) Define

$$
\begin{aligned}
d_{-} & :=\min \left\{d^{-}(v): v \in V(T) \backslash\left(A \cup B^{\prime}\right)\right\} \\
d_{+} & :=\min \left\{d^{+}(v): v \in V(T) \backslash\left(A \cup B^{\prime}\right)\right\}
\end{aligned}
$$

Note that $d^{-}(a) \leqslant d_{-}$for all $a \in A$ and $d^{+}(b) \leqslant d_{+}$for all $b \in B^{\prime}$.
Our first aim is to choose the sets $A_{1}^{1}, \ldots, A_{k}^{t}$ using Lemma 8.5. Partition A arbitrarily into sets A_{1}, \ldots, A_{k} of size t, and write $A_{i}=:\left\{a_{i}^{1}, \ldots, a_{i}^{t}\right\}$. Since $\left|B^{\prime}\right|=k t \leqslant \delta^{0}(T) / 2$, we have

$$
2^{c+1}+c|A| \leqslant 400 t+c k t \leqslant \frac{C}{2} k^{2} \log k \leqslant \delta^{-}(T)-\left|B^{\prime}\right| \leqslant \delta^{-}\left(T-B^{\prime}\right)
$$

Thus, we can apply Lemma 8.5 to $T-B^{\prime}, A$ and c in order to obtain almost out-dominating sets $A_{i}^{\ell} \ni a_{i}^{\ell}$ and corresponding exceptional sets $E_{A, i}^{\ell}$ as in the statement of Lemma 8.5 (for all $i \in[k]$ and all $\ell \in[t])$. Write $A_{i}^{*}:=A_{i}^{1} \cup \cdots \cup A_{i}^{t}$ and $A^{*}:=A_{1}^{*} \cup \cdots \cup A_{k}^{*}$.

Let us now verify (G1). By Lemma 8.5(ii), (iv) and (vi), each $T\left[A_{i}^{\ell}\right]$ is a transitive tournament with head $a_{i}^{\ell}, 2 \leqslant\left|A_{i}^{\ell}\right| \leqslant c$, and the sets $A_{1}^{1}, \ldots, A_{k}^{t}$ are all disjoint. In particular, $A=\left\{h\left(A_{i}^{\ell}\right)\right.$: $i \in[k], \ell \in[t]\}$. We claim in addition that $d^{+}\left(a_{i}^{\ell}\right) \geqslant 2 n / 5$. Indeed, Proposition 6.2 implies that T has at most $4 n / 5+1$ vertices of out-degree at most $2 n / 5$, and hence at least $n / 5-1$ vertices of out-degree at least $2 n / 5$. Moreover,

$$
|A|=k t \leqslant \frac{C k^{2} \log k}{5}-1 \leqslant \frac{n}{5}-1
$$

So since the vertices of A were chosen to have minimal in-degree in T, it follows that $d^{+}\left(a_{i}^{\ell}\right) \geqslant$ $2 n / 5$ for all $i \in[k]$ and all $\ell \in[t]$. Thus, (G1) holds.

We will next apply Lemma 8.6 in order to obtain the sets $B_{1}^{1}, \ldots, B_{k}^{t}$. To do this, we first partition B^{\prime} arbitrarily into sets $B_{1}^{\prime}, \ldots, B_{k}^{\prime}$ of size t, and write $B_{i}^{\prime}=:\left\{b_{i}^{\prime \prime}, \ldots, b_{i}^{\prime t}\right\}$. Since $\left|A^{*}\right| \leqslant$ $k t c \leqslant \delta^{0}(T) / 2$, we have

$$
2^{c+1}+c|B| \leqslant 400 t+c k t \leqslant \frac{C}{2} k^{2} \log k \leqslant \delta^{+}(T)-\left|A^{*}\right| \leqslant \delta^{+}\left(T-A^{*}\right)
$$

Thus, we can apply Lemma 8.6 to $T-A^{*}, B^{\prime}$ and c in order to obtain almost in-dominating sets $B_{i}^{\ell} \ni b_{i}^{\prime \ell}$ and corresponding exceptional sets $E_{B, i}^{\ell}$ as in the statement of Lemma 8.6 (for all $i \in[k]$ and all $\ell \in[t])$. Write $B_{i}^{*}:=B_{i}^{1} \cup \cdots \cup B_{i}^{t}$ and $B^{*}:=B_{1}^{*} \cup \cdots \cup B_{k}^{*}$. Similarly as before, one can show that (G2) holds. We now define the exceptional sets $E_{A, i}$ and $E_{B, i}$. For all $i \in[k]$,
let

$$
E_{A, i}:=\left(E_{A, i}^{1} \cup \cdots \cup E_{A, i}^{t}\right) \backslash B^{*} \quad \text { and } \quad E_{B, i}:=\left(E_{B, i}^{1} \cup \cdots \cup E_{B, i}^{t}\right) .
$$

Recall from Lemmas $8.5(\mathrm{v})$ and $8.6(\mathrm{v})$ that $E_{A, i}^{\ell} \cap A^{*}=\emptyset$ and $E_{B, i}^{\ell} \cap\left(A^{*} \cup B^{*}\right)=\emptyset$ for all $i \in[k]$ and all $\ell \in[t]$. Thus, $E_{A, i} \cap\left(A_{i}^{*} \cup B_{i}^{*}\right)=\emptyset$ and $E_{B, i} \cap\left(A_{i}^{*} \cup B_{i}^{*}\right)=\emptyset$ for all $i \in[k]$. By Lemma 8.5(i), each A_{i}^{ℓ} out-dominates $V(T) \backslash\left(A^{*} \cup B^{*} \cup E_{A, i}\right)$. Lemma 8.5(iii) and the fact that $a_{i}^{\ell} \in A$ together imply that

$$
\begin{equation*}
\left|E_{A, i}\right| \leqslant \sum_{\ell=1}^{t}\left|E_{A, i}^{\ell}\right| \leqslant \sum_{\ell=1}^{t} \frac{1}{2^{c-1}} d^{-}\left(a_{i}^{\ell}\right) \leqslant \frac{t}{2^{c-1}} d_{-} \leqslant \frac{d_{-}}{50} \tag{13}
\end{equation*}
$$

so (G3) holds. Similarly, by Lemma 8.6(i), each B_{i}^{ℓ} in-dominates $V(T) \backslash\left(A^{*} \cup B^{*} \cup E_{B, i}\right)$, and as in (13) one can show that $\left|E_{B, i}\right| \leqslant d_{+} / 50$. Thus, (G4) holds.

We now use Lemma 8.1 in order to define the sets F_{1}, \ldots, F_{k} of covering edges. Recall from (G7) that we require $F_{1} \cup \cdots \cup F_{k}$ to be a matching in $T-\left(A^{*} \cup B^{*}\right)$. Suppose that, for some (possibly empty) subset $V^{\prime} \subsetneq A^{*} \cup B^{*}$; we have defined a set $\left\{e_{v}: v \in V^{\prime}\right\}$ of independent edges in $T-\left(A^{*} \cup B^{*}\right)$ such that e_{v} is a covering edge for v and $e_{v} \neq e_{v^{\prime}}$ whenever $v \neq v^{\prime}$. Pick any vertex $v \in\left(A^{*} \cup B^{*}\right) \backslash V^{\prime}$. We will next define e_{v}. Let T^{\prime} be the tournament obtained from T by deleting $\left(A^{*} \cup B^{*}\right) \backslash\{v\}$ as well as the endvertices of the covering edges $e_{v^{\prime}}$ for all $v^{\prime} \in V^{\prime}$. Then

$$
\left|V(T) \backslash V\left(T^{\prime}\right)\right| \leqslant\left|A^{*} \cup B^{*}\right|+2\left|A^{*} \cup B^{*}\right| \leqslant 3 k t c \leqslant \frac{C}{2} k^{2} \log k,
$$

and, so by Proposition 4.7, T^{\prime} is still $\left(C k^{2} \log k / 2\right)$-linked and hence strongly 2 -connected. We may therefore apply Lemma 8.1 to find a covering edge e_{v} for v in T^{\prime}. Continue in this way until, we have chosen e_{v} for each $v \in A^{*} \cup B^{*}$ and let $F_{i}:=\left\{e_{v}: v \in A_{i}^{*} \cup B_{i}^{*}\right\}$. Then the first part of (G7) holds.

It remains to choose the paths $P_{1}^{1}, \ldots, P_{k}^{t}$. Recall from (G6) that we need to ensure that $\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right) \subseteq V\left(P_{i}^{t}\right)$ for all $i \in[k]$. We could achieve this by incorporating each of these vertices using the high linkedness of T. However, since $\left|A \cup B^{\prime}\right|=2 k t$, a direct application of linkedness would require T to be $\Theta\left(k^{3}\right)$-linked. For each $i \in[k]$, we will therefore first choose a path cover \mathcal{Q}_{i} of $T\left[\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right)\right]$ consisting of few paths and then use Lemma 8.2 (and thereby the high linkedness of T) to incorporate these paths into P_{i}^{t}. This has the advantage that we will only need T to be $\Theta\left(k^{2} \log k\right)$-linked.

Let us first choose the path covers \mathcal{Q}_{i} of $T\left[\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right)\right]$. Suppose that, for some $j \in[k]$, we have already found path systems $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{j-1}$ such that, for each $i<j, \mathcal{Q}_{i}$ is a path cover of $T\left[\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right)\right]$ with $\left|\mathcal{Q}_{i}\right| \leqslant 2 k$, and such that for all $i<i^{\prime}<j$ the paths in \mathcal{Q}_{i} are edge-disjoint from paths in $\mathcal{Q}_{i^{\prime}}$. To choose \mathcal{Q}_{j}, apply Corollary 6.4 to the oriented graph $T^{\prime \prime}$ obtained from $T\left[\left(A \cup B^{\prime}\right) \backslash\left(A_{j}^{*} \cup B_{j}^{*}\right)\right]$ by deleting the edges of all the paths in $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{j-1}$. Since $\delta\left(T^{\prime \prime}\right) \geqslant\left|T^{\prime \prime}\right|-1-2(j-1) \geqslant\left|T^{\prime \prime}\right|-2 k$, Corollary 6.4 ensures that $\left|\mathcal{Q}_{j}\right| \leqslant 2 k$.

We will now choose $P_{1}^{1}, \ldots, P_{k}^{t}$. For each $i \in[k]$ and each $\ell \in[t]$, let $a_{i}^{\prime \ell}$ denote the tail of $T\left[A_{i}^{\ell}\right]$ and b_{i}^{ℓ} the head of $T\left[B_{i}^{\ell}\right]$. Let

$$
A^{\prime}:=\left\{a_{i}^{\prime \ell}: i \in[k], \ell \in[t]\right\} \quad \text { and } \quad B:=\left\{b_{i}^{\ell}: i \in[k], \ell \in[t]\right\} .
$$

For all $i \in[k]$ and all $\ell \in[t-1]$, let $\mathcal{Q}_{i}^{\ell}:=\emptyset$. For all $i \in[k]$, let \mathcal{Q}_{i}^{t} be the path system consisting of all the edges in F_{i} (each viewed as a path of length 1) and all the paths in \mathcal{Q}_{i}. Let $T^{\prime \prime \prime}:=$ $T-\left(\left(A^{*} \cup B^{*}\right) \backslash\left(A \cup A^{\prime} \cup B \cup B^{\prime}\right)\right)$. Our aim is to apply Lemma 8.2 with $s:=30$ to $T^{\prime \prime \prime}$, the vertices $b_{1}^{1}, \ldots, b_{k}^{t}, a_{1}^{\prime 1}, \ldots, a_{k}^{\prime t}$, and the path systems $\mathcal{Q}_{1}^{1}, \ldots, \mathcal{Q}_{k}^{t}$. To verify that $T^{\prime \prime \prime}$ is
sufficiently highly linked, let m be as defined in (11) and note that

$$
\begin{aligned}
m & =k t+3 \sum_{i=1}^{k}\left|F_{i}\right|+\sum_{i=1}^{k}\left|\mathcal{Q}_{i}\right|+\left|\bigcup_{i=1}^{k} V\left(\mathcal{Q}_{i}\right)\right| \leqslant k t+6 c k t+2 k^{2}+\left|A \cup B^{\prime}\right| \\
& \leqslant 5 k t+6 c k t \leqslant \frac{C}{70} k^{2} \log k
\end{aligned}
$$

Together with the fact that $|T|-\left|T^{\prime \prime \prime}\right| \leqslant 2 c k t$ and Proposition 4.7 this implies that $T^{\prime \prime \prime}$ is $2 \cdot 30 \mathrm{~m}$-linked. So we can indeed apply Lemma 8.2 to find edge-disjoint paths P_{i}^{ℓ} in $T^{\prime \prime \prime}$ (for all $i \in[k]$ and all $\ell \in[t])$ satisfying the following properties:
(i) P_{i}^{ℓ} is a path from b_{i}^{ℓ} to $a_{i}^{\prime \ell}$;
(ii) $Q \subseteq P_{i}^{\ell}$ for all $Q \in \mathcal{Q}_{i}^{\ell}$;
(iii) $V\left(P_{i}^{\ell}\right) \cap V\left(P_{j}^{m}\right) \subseteq V\left(\mathcal{Q}_{i}^{\ell}\right) \cap V\left(\mathcal{Q}_{j}^{m}\right)$ for all $(i, \ell) \neq(j, m)$;
(iv) we have that

$$
\begin{aligned}
\left|P_{1}^{1} \cup \cdots \cup P_{k}^{t}\right| & \leqslant \frac{n}{30}+2 \sum_{i=1}^{k}\left|F_{i}\right|+\left|\bigcup_{i=1}^{k} V\left(\mathcal{Q}_{i}\right)\right|=\frac{n}{30}+2\left|A^{*} \cup B^{*}\right|+\left|A \cup B^{\prime}\right| \\
& \leqslant \frac{n}{30}+4 c k t+2 k t \leqslant \frac{n}{20}
\end{aligned}
$$

Condition (ii) implies that $F_{i} \subseteq P_{i}^{t}$ and $\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right)=V\left(\mathcal{Q}_{i}\right) \subseteq V\left(\mathcal{Q}_{i}^{t}\right) \subseteq V\left(P_{i}^{t}\right)$ for all $i \in[k]$. Thus, (G6) holds.

We now prove that (G5) holds. From (iii) and the fact that $V\left(\mathcal{Q}_{i}^{\ell}\right) \cap V\left(\mathcal{Q}_{i}^{m}\right)=\emptyset$ for all $i \in[k], \ell \neq m$, it follows that $P_{i}^{1}, \ldots, P_{i}^{t}$ are vertex-disjoint for all $i \in[k]$. Together with (i) and (iv), this implies that in order to check (G5), it remains to show that

$$
\begin{equation*}
V\left(\operatorname{Int}\left(P_{i}^{\ell}\right)\right) \cap\left(A^{*} \cup B^{*}\right) \subseteq\left(A \cup B^{\prime}\right) \backslash\left(A_{i}^{*} \cup B_{i}^{*}\right) \quad \text { for all } i \in[k], \ell \in[t] \tag{14}
\end{equation*}
$$

Clearly,

$$
\begin{align*}
V\left(P_{i}^{\ell}\right) \cap\left(A^{*} \cup B^{*}\right) & \subseteq V\left(T^{\prime \prime \prime}\right) \cap\left(A^{*} \cup B^{*}\right) \\
& =A \cup A^{\prime} \cup B \cup B^{\prime} \quad \text { for all } i \in[k], \ell \in[t] \tag{15}
\end{align*}
$$

By definition, we have $\left(A^{\prime} \cup B\right) \cap V\left(\mathcal{Q}_{j}^{m}\right)=\emptyset$ for all $j \in[k], m \in[t]$. It therefore follows from (iii) that each vertex in $A^{\prime} \cup B$ may appear in at most one path P_{j}^{m}. However, by (i) each vertex in $A^{\prime} \cup B$ is an endpoint of P_{j}^{m} for some $j \in[k], m \in[t]$. Hence,

$$
\begin{equation*}
V\left(\operatorname{Int}\left(P_{i}^{\ell}\right)\right) \cap\left(A^{\prime} \cup B\right)=\emptyset \quad \text { for all } i \in[k], \ell \in[t] \tag{16}
\end{equation*}
$$

Fix $i \in[k], \ell \in[t]$ and take $j \in[k] \backslash\{i\}$. We have $\left(A \cup B^{\prime}\right) \cap\left(A_{i}^{*} \cup B_{i}^{*}\right) \cap V\left(\mathcal{Q}_{i}^{\ell}\right)=\emptyset$, and by (G6) we have $\left(A \cup B^{\prime}\right) \cap\left(A_{i}^{*} \cup B_{i}^{*}\right) \subseteq\left(A \cup B^{\prime}\right) \backslash\left(A_{j}^{*} \cup B_{j}^{*}\right) \subseteq V\left(P_{j}^{t}\right)$. Applying (iii) to P_{i}^{ℓ} and P_{j}^{t}, it therefore follows that

$$
\begin{equation*}
V\left(P_{i}^{\ell}\right) \cap\left(A \cup B^{\prime}\right) \cap\left(A_{i}^{*} \cup B_{i}^{*}\right)=\emptyset \quad \text { for all } i \in[k], \ell \in[t] \tag{17}
\end{equation*}
$$

Equations (15)-(17) now imply (14). Thus, (G5) holds.
So it remains to check that the last part of (G7) holds too, that is, that $F_{i}^{\text {act }} \cap E\left(P_{j}^{\ell}\right)=\emptyset$ for all $i, j \in[k]$ and all $\ell \in[t]$. Consider any covering edge $e_{v}=x_{v} y_{v} \in F_{i}$. Then (G6) implies that x_{v} and y_{v} are contained in P_{i}^{t}. Moreover, (iii) implies that $V\left(P_{i}^{t}\right) \cap V\left(P_{j}^{\ell}\right) \subseteq V\left(\mathcal{Q}_{i}^{t}\right) \cap$ $V\left(\mathcal{Q}_{j}^{\ell}\right) \subseteq A \cup B^{\prime}$ whenever $(i, t) \neq(j, \ell)$. Since $x_{v}, y_{v} \notin A \cup B^{\prime}$, this shows that $x_{v} v, v y_{v} \notin$ $E\left(P_{j}^{\ell}\right)$ whenever $(i, t) \neq(j, \ell)$. But since $e_{v} \in E\left(P_{i}^{t}\right)$, we also have $x_{v} v, v y_{v} \notin E\left(P_{i}^{t}\right)$. This completes the proof that T is (C, k, t, c)-good.

9. Concluding remarks

9.1. Eliminating the logarithmic factor

A natural approach to improve the bound in Theorem 1.2 would be to reduce the parameter c, that is, to consider smaller 'almost dominating' sets. In particular, if we could choose c independent of k, then we would obtain the (conjectured) optimal bound of $\Theta\left(k^{2}\right)$ for the linkedness. The obstacle to this in our argument is given by (13), which requires that c has a logarithmic dependence on k.

9.2. Algorithmic aspects

As remarked in Section 1, the proof of Theorem 1.2 is algorithmic. Indeed, when we apply the assumption of high linkedness to find appropriate paths in the proof of Lemma 8.7 (via Lemma 8.2), we can make use of the main result of [11] that these can be found in polynomial time. Moreover, the proof of the Gallai-Milgram theorem (Theorem 6.3) is also algorithmic (see [9]). These are the only tools we need in the proof, and the proof itself immediately translates into a polynomial time algorithm.

References

1. M. Ajtai, J. Komlós and E. Szemerédi, 'Sorting in $C \log N$ parallel steps', Combinatorica 3 (1983) 1-19.
2. M. Ajtai, J. Komlós and E. Szemerédi, 'An $O(n \log n)$ sorting network', Proc. 15th Ann. ACM Symp. on Theory of Computing (ACM, New York, USA, 1983) 1-9.
3. J. Bang-Jensen, 'On the 2-linkage problem for semicomplete digraphs', Ann. Discrete Math. 41 (1989) 23-38.
4. J. Bang-Jensen, 'Problems and conjectures concerning connectivity, paths, trees and cycles in tournamentlike digraphs', Discrete Math. 309 (2009) 5655-5667.
5. J. Bang-Jensen and G. Gutin, Digraphs: theory, algorithms and applications, 2nd edn (Springer, Berlin, 2008).
6. J. Bang-Jensen and C. Thomassen, 'A polynomial algorithm for the 2 -path problem for semicomplete digraphs', SIAM J. Discrete Math. 5 (1992) 366-376.
7. K. E. Batcher, 'Sorting networks and their applications', Proceedings of the AFIPS Spring Joint Computer Conference 32 (ACM, New York, USA, 1968) 307-314.
8. B. Bollobás and A. Thomason, 'Highly linked graphs', Combinatorica 16 (1996) 313-320.
9. J. A. Bondy and U. S. R. Murty, Graph theory, Graduate texts in Mathematics 244 (Springer, New York, 2008).
10. P. Camion, 'Chemins et circuits hamiltoniens des graphes complets', C. R. Acad. Sci. Paris 249 (1959) 2151-2152.
11. M. Chudnovsky, A. Scott and P. Seymour, 'Disjoint paths in tournaments', Preprint, 2010, http://people.maths.ox.ac.uk/scott/Papers/disjointpaths.pdf.
12. A. Ferber, M. Krivelevich and B. Sudakov, 'Counting and packing Hamilton cycles in dense graphs and oriented graphs', Preprint, 2012, http://arxiv.org/pdf/1212.4667.pdf.
13. S. Fortune, J. E. Hopcroft and J. Wyllie, 'The directed subgraph homeomorphism problem', J. Theoret. Comput. Sci. 10 (1980) 111-121.
14. D. E. Knuth, The art of computer programming, vol. 3 (Addison Wesley Longman Publishing Co., Inc. Redwood City, USA, 1997).
15. M. Krivelevich, 'Triangle factors in random graphs', Combin. Probab. Comput. 6 (1997) 337-347.
16. D. KÜhn, J. Lapinskas and D. Osthus, 'Optimal packings of Hamilton cycles in graphs of high minimum degree', Combin. Probab. Comput. 22 (2013) 394-416.
17. D. Kühn and D. Osthus, 'A survey on Hamilton cycles in directed graphs', European J. Combin. 33 (2012) 750-766.
18. D. KüHn and D. Osthus, 'Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments', Adv. Math. 237 (2013) 62-146.
19. D. KÜHn and D. Osthus, 'Hamilton decompositions of regular expanders: applications', J. Combin. Theory B 104 (2014) 1-27.
20. D. Kühn, D. Osthus and T. Townsend, 'Proof of a tournament partition conjecture and an application to 1-factors with prescribed cycle lengths', Preprint, 2013, http://arxiv.org/pdf/1309.7677.pdf.
21. J. W. Moon, 'On subtournaments of a tournament', Canad. Math. Bull. 9 (1966) 297-301.
22. M. S. Paterson, 'Improved sorting networks with $O(\log N)$ depth', Algorithmica 5 (1990) 75-92.
23. K. B. Reid, 'Three problems on tournaments', Graph Theory Appl. East West, Ann. New York Acad. Sci. 576 (1989) 466-473.
24. V. Rödl, A. Ruciński and E. Szemerédi, 'A Dirac-type theorem for 3-uniform hypergraphs', Combin. Probab. Comput. 15 (2006) 229-251.
25. R. Thomas and P. Wollan, 'An improved extremal function for graph linkages', European J. Combin. 26 (2005) 309-324.
26. C. Thomassen, 'Edge-disjoint Hamiltonian paths and cycles in tournaments', Proc. London Math. Soc. 45 (1982) 151-168.
27. C. Thomassen, 'Connectivity in tournaments', Graph theory and combinatorics, A volume in honour of Paul Erdős (ed. B. Bollobás; Academic Press, London, 1984) 305-313.
28. C. Thomassen, 'Note on highly connected non-2-linked digraphs', Combinatorica 11 (1991) 393-395.

Daniela Kühn and Deryk Osthus
School of Mathematics
University of Birmingham
Edgbaston
Birmingham
B15 2TT
United Kingdom
d.kuhn@bham.ac.uk
d.osthus@bham.ac.uk

John Lapinskas
Department of Computer Science
University of Oxford
Wolfson Building
Parks Road
Oxford
OX1 3QD
United Kingdom
lapinskas@cs.ox.ac.uk

Viresh Patel
School of Mathematical Sciences
Queen Mary, University of London
Mile End Road
London
E1 4NS
United Kingdom
viresh.s.patel@gmail.com

[^0]: Received 18 March 2013.
 2010 Mathematics Subject Classification 05C20 (primary), 05C35, 05C40, 05C45 (secondary).
 D. Kühn, D. Osthus and V. Patel were supported by the EPSRC, grant no. EP/J008087/1. D. Kühn was also supported by the ERC, grant no. 258345. D. Osthus was also supported by the ERC, grant no. 306349.
 © 2014 London Mathematical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

