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ABSTRACT: Current multiscale plasmonic systems pose a modeling challenge. Classical
macroscopic theories fail to capture quantum effects in such systems, whereas quantum
electrodynamics is impractical given the total size of the experimentally relevant systems, as
the number of interactions is too large to be addressed one by one. To tackle the challenge,
in this paper we propose to use the Madelung form of the hydrodynamic Drude model, in
which the quantum effect electron spill-out is incorporated by describing the metal−
dielectric interface using a super-Gaussian function. The results for a two-dimensional
nanoplasmonic wedge are correlated to those from nonlocal full-wave numerical
calculations based on a linearized hydrodynamic Drude model commonly employed in
the literature, showing good qualitative agreement. Additionally, a conformal trans-
formation perspective is provided to explain qualitatively the findings. The methodology
described here may be applied to understand, both numerically and theoretically, the
modular inclusions of additional quantum effects, such as electron spill-out and nonlocality,
that cannot be incorporated seamlessly by using other approaches.

■ INTRODUCTION
The recent unprecedented advancements in nanofabrication
have allowed both the scientific and industrial communities to
push the boundary of nanoscale systems1−4 and to utilize one
of the most impressive features of plasmonics: the ability to go
beyond the diffraction limit.5 Hence, plasmonics is now a
buoyant field in physics, engineering, and chemistry, both
fundamental6−8 and applied research9−16 alike. However, with
these advances, a problem appears; the classical models for
plasmonics can, sometimes, become insufficient to describe
multiscale system involving micro and nano scales in which
electron confinement approaches a length scale of the order of
the Fermi wavelength of the valence electrons.17,18 Similarly,
quantum electrodynamics are still prohibitive for such
mesoscopic systems due to the amount of interactions they
need to account for as a full quantum model would need to
describe each electron in the system as well as their
interactions, leading to a complex many-body problem.19

The classical macroscopic theory for plasmonics uses the
Lorentz−Drude model to describe the metal and Maxwell’s
equations to describe the electromagnetic field.20 It still
satisfyingly describes the majority of the plasmonic systems
today. However, the moment that plasmons show some
quantum features (for example, when a relevant scale of the
system is of the order of the nanometer) then the classical
model falls apart.21 To solve this problem, several methods
have been proposed over the years, ranging from the most
widely adopted hydrodynamic Drude model (HDM)22,23 to
those that spring from density functional theory such as the

density functional tight binding.24,25 The HDM is a semi-
classical model that describes the electrons in a metal under
the influence of a electromagnetic field as a fluid; it can
describe some quantum phenomena while still holding some of
the simplicity of the classical models.26,27 By describing the
electrons in a metal with the fluid equations, the HDM can
take into account atomic and subatomic interactions and has
also the ability to be nonlocal�one of the most integral
problems in modern day plasmonics.28−30 A model is nonlocal
when the description of a system does not take into account
the interactions of a very finite local but takes into account the
interactions of the whole system.18 In plasmonics, this means
that instead of taking into account only one electron at a time,
a nonlocal plasmonic model takes into account the interactions
of all the electrons of the full system.28−30

Inspired by the importance of plasmonic devices and the
need of including nonlocal effects in plasmonic systems, in this
paper we go a step further into the HDM and use it in
association with the Madelung formalism, following the path
set up in parallel in refs 31 and 32. Initially, the Madelung
formalism was used to convert the Schrödinger equation into
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the fluid equations. These equations would describe the flow of
probability of the wave function in quantum systems.33

However, our objective is to use the Madelung formalism on
the fluid equations to describe them as a nonlinear Schrödinger
equation. This enables us to apply quantum optics methods in
our system and to have a quantum HDM in a form appropriate
to numerical simulations. Even though this approach trans-
forms the fluid equations into a nonlinear Schrödinger
equation, where both approaches are hard to solve analytically,
our methodology has numerous advantages. First, unlike the
standard approach to HDM,22,23,27,34 we do not have to define
additional boundary conditions to describe the geometry of
our system. In our approach, this is done straightforwardly
with the linear potentials in the Schrödinger equation.35 In this
paper, to capture electron spill-out29,36−38 in the model, the
interface between the metal and dielectric is described by a
super-Gaussian function; a similar approach was followed in
refs 39 and 40, but for an electron density profile following a
linear polynomial and a tanh2 form, respectively. Note that
those approaches coupling the hydrodynamic transport
equations and Maxwell’s field equations that avoid additional
boundary conditions do it at the expense of computational
complexity.39,41−43 Second, using our approach, we have a
Hamiltonian description of our system, which means that we
can solve it modularly. Thus, we can solve first for the linear
coefficients of the Hamiltonian and only after introducing the
nonlinear terms.
In the following sections, we provide a linear analysis of the

Madelung HDM of a nanoplasmonic wedge (translationally
invariant along the out-of-plane direction) that incorporates
spill-out and compare an analogous of the Fermi’s golden rule
with the absorption cross section obtained by nonlocal full-
wave numerical calculations. To give a physical intuition into
the problem, we also provide a description of the system using
conformal transformation.28,44−47 The wedge geometry is
chosen to illustrate the work because of two reasons: (1) it
is widely used experimentally due to its strong field
enhancement at the apex, and (2) it can straightforwardly be
treated within the conformal transformation frame.

■ THEORY AND COMPUTATIONAL DETAILS
Hydrodynamic Drude Model and the Madelung

Formalism. The HDM assumes that the electrons of the
metal under the influence of an electromagnetic field can be
described by using the fluid equations.48

n nu( )t = · (1)

n u n u u ne
m

E u B P
m

nu( ) ( )t
e e

+ · = + ×
(2)

where n, u⃗, me, and e are the electron density, velocity, mass,
and charge, respectively, and E⃗ and B⃗ are the electric and
magnetic fields of the electromagnetic radiation. The terms on
the right-hand side of eq 2 represent the Lorentz force, the
Thomas−Fermi pressure (a pressure that accounts for the
Pauli exclusion principle, with P n(3 )

m
2 2/3

5
5/32

e
= , where ℏ is

the reduced Planck’s constant), and the damping forces (a
phenomenological parameter that accounts for the damping
due to electron−ion collisions), respectively.
By applying the Madelung formalism, one can transform eqs

1 and 2 into a nonlinear Schrödinger equation that takes the
form31
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where α and β are normalizing constants to operate with
arbitrary units (a.u.) and ψ is the wave function that takes the
form of n ei1/2= , where can be traced back to the
velocity |u⃗|;31 the potential V is given by
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where n n
0 2= | | , and it is found after comparing eq 1 with the

real part of eq 3 and eq 2 with the imaginary part of eq 3 under
the assumption that the magnetic component of an electro-

Figure 1. (A) Representation of the potential used to describe the two-dimensional, 2D, nonlocal nanoplasmonic wedge. Representation of the
potential at y = 0 section (B) shown in cyan in panel A and at x = −3.5 section (C) shown in yellow in panel A.
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magnetic wave can be neglected such that u= . For a
treatment without this latter approximation, the reader is
referred to the recent work ref 32.
Equation 4 shows the full potential needed to completely

describe a plasmonic system by using the HDM with a
Schrödinger equation. The first two terms are linear: the first
one describes the interaction of the electric field with our
system (to do this transformation, we assumed that the
magnetic field is negligible), while the second one determines
the geometry used. Using the function eV[ ], we define the
geometry of our system as a potential well.35 Here, we choose
the geometry to be a circular sector, also termed wedge, whose
boundary can be described with super-Gaussian functions
(Figure 1A) to model heuristically the electron spill-out.
The representation of the potential defined with the super-

Gaussian is shown in Figure 1. This super-Gaussian is
mathematically defined for the arc of the wedge as

x y U
x x y y

( , ) exp
( )

2

( )

2

p

0
0

2

2
0

2

2

i

k

jjjjjjj
i
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y

{

zzzzzzz= +
(5)

where σ = 1, and p, the sharpness of the super-Gaussian
function, is arbitrarily set to 10 to have a high roll-off akin to
the literature.36,49,50 U0 is the value of the maximum of the
potential (U0 = 1 in Figure 1, but for the numerical calculations
U0 = 25000 a.u. to ensure convergence of the first seven bound
energy states; see the next subsection for further discussion on
the choice of U0), and x0 = 0 and y0 = 0 define its centers with
a radius of 5 nm. For the radii of the wedge, the same super-
Gaussian profile is defined, but normal to the radii.
The potential at y = 0 (that is, along the horizontal cyan line

on the left-hand side of Figure 1) is shown on the right-hand
side of Figure 1 to show how the super-Gaussian is drawn. As it
is observed, the profile follows a steplike function. However,
note that the edges are not sharp as the super-Gaussian
function makes the boundary between metal and background
(assumed to be air for our COMSOL Multiphysics
simulations; technical details of the simulations can be found
in the last subsection of Theory and Computational Details)
smooth. By doing this, we can mimic a more realistic structure
as at the nanoscale, the boundary of the metal system is not
well-defined and allows for the electrons to “leave” the metallic
system and then be pushed back.
With the potential well-defined, we can now solve the

Schrödinger equation using an in-house finite difference

method approach coded in Python through diagonalization
with 210 points along with sparse matrices to reduce memory
requirements. In doing so, we push the analogy between
plasmonic system and quantum mechanics and can now apply
known methods of quantum optics to our system. To obtain a
proxy for the macroscopic absorption cross-section property
based on Fermi’s golden rule as described below, we linearized
eq 4 as a first-order approximation. It is also common to
organize the Hamiltonian into two parts.51,52 The first part
(H0) is composed of the kinetic terms and the potential
defined by eq 5. The second part (HI) is composed by the
interaction Hamiltonian, which in our case is the dipole
interaction.
To have a proxy for the absorption cross section, we use

Fermi’s golden rule in the rotating wave approximation which
states that

f H i
2

d ( )f I f ia 2
2= | | | |

(6)

where |i⟩ and |f⟩ are solutions to the Schrödinger equation if
the Hamiltonian was only defined by H0. One should note that
the presence of the δ(ωf − ωi) represents the density of states
at the energy Ef. Here, we are assuming that this is 1. Hence,
we are considering that the power transferred from the
incident light source to the plasmonic system is constant and
total. A refinement of this value is beyond the scope of this
paper, and it will be addressed elsewhere.
Our Madelung results are compared to COMSOL Multi-

physics simulations, whose basic implementation is illustrated
by Figure 2A: a circular sector translationally invariant along
the out-of-plane direction, with radius of 5 nm, and with the
central angle ϕ from 0.4 to 1.1 rad; we restrict ourselves to this
central angle range as it is the one in which convergence is
achieved for the Madelung HDM, as discussed later on. The
illumination is a plane-wave propagating along y and polarized
along x. In this numerical study, we use a popular COMSOL
Multiphysics implementation of the HDM introduced by
Toscano et al.53 This implementation divides the geometry in
two section. The blue shell in Figure 2A defines the nonlocal
domain sized to match the transition of the super-Gaussians in
our Madelung-based theory; the orange one is defined by the
bulk properties of the metal.
To provide a complementary view on the problem that will

help with the interpretation of the system’s response, we resort
into conformal transformation. Applying the conformal

Figure 2. Representation of the 2D geometry used in COMSOL Multiphysics and its transformation into the virtual world following the conformal
transformation z′ = ln(z), with z = x + iy and z′ = x′ + iy′. The yellow and red lines are visual aids of the transformation.
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transformation z′ = ln(z) to our wedge system, whereby circles
and radial lines in the z-plane are converted to vertical and
horizontal lines in the z′-plane, respectively,10,46 leads to
Figure 2B. As one can see, the transformation extends the local
and nonlocal domains nonuniformly in the virtual world.
Although this prevents us to solve the problem analytically, the
virtual space, which retains the electromagnetic properties of
the real world by virtue of the Maxwell’s equations invariance
under arbitrary coordinate transformations, reveals that the
solution of this nonlocal system will departure significantly
from the local one as the virtual world is no longer a periodic
insulator/metal/insulator heterostructure (translationally in-
variant along the out-of-plane direction). Further discussion is
given in the Results and Discussion.
Choice of Potential U0. Figure 3 shows the energy values

of the system against the choice of maximum potential. The

seven energy levels reach their asymptotic regime for U0 >
20000. Hence, this paper considers U0 = 25000 for its
calculations. U0 is ultimately related to the Wigner−Seitz
parameter which defines the type of metal. However, finding
such a connection through the Jellium model is beyond the
scope of this work and is left for the future.
COMSOL Multiphysics Simulations. Simulation results

are calculated by using the commercial finite element analysis
software COMSOL Multiphysics. The model of metal follows
an ideal metal whose concentration of free electrons per unit of
volume is 1.07 × 1028 and a dielectric permittivity of

i
1

p
2

2=
+ (7)

where ωp = 5.83563 × 1015 rad/s and γ = 2.861364884 × 1014
rad/s.31

After convergence tests, the simulation box of both local and
nonlocal full-wave simulations is a cylinder of radius r = 150
nm. Scattering boundary conditions and perfectly matched
layers were applied around this box to avoid reflections. A
refined mesh with a minimum length of 0.2 and 0.1 nm is used
to ensure accurate results for the local and nonlocal
simulations, respectively. The excitation is a plane-wave
propagating along y and polarized along x.

■ RESULTS AND DISCUSSION
To have a reference point and facilitate subsequent discussion,
we compute the absorption cross section for the classical
electromagnetic solution and plot the intensity distribution for
the first three localized plasmon modes (see Figure 4). All

these localized plasmon modes blue-shift as a function of ϕ.
This is consistent with the scenario described by the virtual
world (i.e., periodic insulator/metal/insulator heterostructure)
(see Figure 2B) yet consider the slabs to be homogeneously
orange, wherein thicker metal slabs (i.e., wider ϕ) result in a
weaker coupling between the so-called long-range and short-
range plasmons and, thus, higher energy (i.e., blue shift) to the
fundamental short-range plasmon.54

With the local scenario described as a benchmark, we can
now move to the nonlocal scenario. To this end, we first solve
the linearized Schrödinger equation and identify the range of ϕ
where our approach converges. Figure 5 shows the eigenvalues
of eq 3, which are analogous to the energy values of each state,
as a function of the central angle of the circular sector ϕ. The
main differences between these eigenvalues and the energy
levels of a potential well are the crossover of some states. If we
consider that the order of each state is defined as it is when ϕ <
0.4 rad, then the fourth state (represented in red) crosses over
with the third one (represented in green) at ϕ = 0.5 rad. The
fifth (represented in purple), sixth (represented in brown), and
seventh (represented in pink) states also show several crossing
among themselves and with the third state (green) within the
expanded ϕ range displayed in Figure 5. However, in the range
0.4 ≤ ϕ ≤ 1.1 rad, all crossings happen among the seven
energy levels, which is a necessary condition to avoid
nonphysical artifacts in the context of eq 6. Notice that for
ϕ ≈ 0.39 rad there is an incomplete crossing in the seven
energy level (pink), whereas for ϕ ≈ 1.2 rad there is another

Figure 3. Energy values of the system against the choice of maximum
potential for the first seven levels.

Figure 4. (top) Local absorption cross section in log scale. (bottom)
Intensity distribution for the fundamental (left), second (middle), and
third (right) mode for ϕ = 0.8 rad, whose corresponding energies are
1.44, 1.86, and 2.26 eV, respectively.
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incomplete crossing for the fifth energy level (purple). Thus, in
such cases, eq 3 would not be considering the correct first
number of states. Hence, we gray ϕ < 0.4 rad and ϕ > 1.1 rad
and ignore such a range for the following results and
discussion. It is also worth pointing out that the small
inflection of the fifth energy level (purple) at ϕ ≈ 0.7 rad is due
to unavoidable computational error and not an actual crossing
with a different energy level.
After solving the Schrödinger equation, one has everything

needed to solve eq 6. Figure 6 represents the absorption cross

section defined by eq 6. One should note that the energy
values encountered in the x-axis come from the interaction
Hamiltonian HI, making it possible for us to find the
resonances of the system. The two insets show the geometry
with two different angles along with the corresponding virtual
world. The dots represent the maximum of the absorption
cross section which correlates to the first plasmonic mode of

the system. By increasing the angle ϕ, the energy of the
resonance decreases, which could be found counterintuitive
from our preliminary local analysis (Figure 4), previous local
studies of bowties translationally invariant along the out-of-
plane direction (i.e., two-dimensional bowties),44,47 and even
three-dimensional bowties under out-of-plane illumination;55

this will be discussed later in the text. At low values of ϕ this
resonance is closer to the plasmonic frequency which increases
the interactions of different modes. To account for this
interaction, following our approach, one would need to
increase the number of energy levels calculated. However,
because of computational restrictions, we have only used the
first seven levels. This stronger mode interaction is clearly
shown in Figure 6 for values of ϕ lower than 0.5 where it is
difficult to distinguish between the first mode (marked by the
black dots) and the next one (unmarked).
To test these results, we solve the same geometry using the

popular COMSOL Multiphysics implementation of the
HDM53 and assume it as the ground truth. Figure 7 shows

the values of the absorption cross section in log scale. The
dotted values represent again the maximum value of the
absorption cross section that also coincide with the first
plasmonic mode of the system. It is worth mentioning as well
that for the higher values of the angle ϕ some consecutive dots
appear to be aligned in a vertical line. This is because of a
computational error due to our computational resources, as to
improve this one would need to use a finer mesh. For
completeness, the intensity distribution of the first three
fundamental modes for ϕ = 0.8 rad is depicted at the bottom
of Figure 7.

Figure 5. First seven energy levels of the geometry defined as a
function of the circular sector central angle ϕ, where each color
represents a different state. The clear zone represents the truncated
parameter sweep where convergence is ensured.

Figure 6. Proxy for absorption cross section σa in log scale, calculated
by using the first seven energy levels in eq 6. The dots represent the
maximum value of the absorption. The energy values on the x-axis are
the energy of light considered.

Figure 7. (top) Nonlocal absorption cross section in log scale
calculated using the popular hydrodynamic model finite-element
implementation by Toscano et al.53 (bottom) Intensity distribution
for the fundamental (left), second (middle), and third (right) mode
for ϕ = 0.8 rad, whose corresponding energies are 0.79, 1.39, and 1.91
eV, respectively.
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Comparing both Figures 6 and 7, one can see that, aside
from a shift in energy, both models predict that the response of
our plasmonic system takes the same form, especially for the
first plasmonic mode, with a red shift with increasing angle ϕ
unlike the local model (Figure 4). The conformal trans-
formation perspective provides an elegant explanation for this
as insinuated earlier. In local models, increasing the angle ϕ
will blue-shift the energy as can be seen in refs 44, 47, and 55.
That trend can be rooted in the dispersion relation of the
coupled odd and even surface plasmon modes for insulator/
metal/insulator heterostructures:54 the thinner the metal layer
is, the lower the energy of the even mode is. It is precisely such
heterostructure (yet periodic) that appears when applying the
conformal transformation z′ = ln(z). In the nonlocal case,
however, we see a red shift because of the impact of the
nonlocality modeled by the dielectric layer (i.e., the blue shell)
mapping the surface charge smearing. In the leftmost insets of
Figure 6 one can see that there is a nonlinear reduction of the
proportion of the bulk local metal (orange area) compared to
the nonlocal part (blue area) as the angle ϕ decreases. This
nonlinear relationship between angle ϕ and bulk local metal is
even further magnified when one compares the virtual worlds
(see the right-hand side of the insets in the same Figure 6).
Indeed, now one should not treat the virtual world as a
periodic insulator/metal/insulator heterostructure as in full
local models but as a nanoparticle (array) embedded in a
nonhomogeneous dielectric environment. In such a situation,
the fundamental plasmon resonance is governed by the
localized plasmon of the nanoparticle and red-shifts with
nanoparticle size (i.e., with angle ϕ for our triangular
nanowire). Consequently, from all the above discussions, the
intensity distribution of the fundamental modes is dramatically
different between the local (Figure 4) and nonlocal model
(Figure 7).
The comparison of Figures 6 and 7 also highlights the

advantages and disadvantages of both our Madelung HDM and
the hydrodynamic model in finite-element simulation
implementation. On one hand, Figure 6 shows the simplicity
of the model that predicts the outcome at the cost of the
higher order modes. This is due to the limiting of the number
of energy levels calculated. On the other, the model of Figure 7
can calculate higher order modes and their interaction at the
cost of computational power and a more intricate, and by
extension more difficult to solve, system of equations. This is
shown by the previously mentioned computational error that
vertically aligned some of the maxima.
Although the hydrodynamic model excludes consideration

of specific quantum phenomena, including tunneling and
quantum oscillations, it captures much of the microscopic
dynamics in nanoplasmonics and provides predictions in
agreement with experiments. Hence, we assume its COMSOL
Multiphysics implementation to be ground truth and compute
a correction factor η to reconcile the resonance energy
between our theory and the hydrodynamic model in finite-
element simulation. Figure 8 shows that η is more stable when
compare to our previous work,31 as its absolute value fluctuates
over a smaller interval raging from 3.30 to 3.65. This is to be
expected with the application of super-Gaussians to define the
geometry. With these types of potentials the model is nonlocal,
as they introduce a dependency on position to the potential
instead of an on/off type of approach and a spill-out effect as
well. The fact that this ratio is not constant at the value 1
means that the nonlinear terms in the potential that were not

considered still retain some nonlocality present in the original
model from Toscano et al.,53 however small.
To stress test the model presented here, the same analysis is

done for a 7 nm radius circular sector. As one can see in Figure
8, aside from computational errors, both models react to the
change in a very similar way, thus proving that once this
correction factor η is found for one geometry, it can be used
for other sizes.

■ CONCLUSION
In this article, the electron spill-out has been incorporated in a
linearized quantum hydrodynamic model encapsulated on a
single Schrödinger equation by defining a potential following a
super-Gaussian function at the metal−dielectric interfaces. The
quantum hydrodynamic model was obtained by rewriting the
set of continuity and Euler equations using Madelung
transformation. The model was specifically used to look at
the electrodynamics of a triangular nanowire, and the results
were correlated to a popular linearized hydrodynamic Drude
model implemented by a finite-element method. The
discussion was supplemented with a conformal transformation
perspective to provide an elegant qualitative physical under-
standing on the findings and justify the opposite electro-
magnetic response observed between classical local and
nonlocal models against the central angle of the circular
sector. Although the scenario analyzed here is two-dimen-
sional, and thus does not capture spill-out in the out-of-plane
direction that may be relevant in experiments, the core of the
work is a finite difference method that can be made easily
three-dimensional; this extension is left for future work.
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