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Large-amplitude oscillations of incompressible viscous drops are studied at small
capillary number. On the long viscous time scale, a formal perturbation scheme is
developed to determine original modulation equations. These two ordinary differential
equations comprise the averaged condition for conservation of energy and the
averaged projection of the Navier–Stokes equations onto the vorticity vector. The
modulation equations are applied to the free decay of axisymmetric oblate–prolate
spheroid oscillations. On the long time scale, only the modulation equation for energy
is required. In this example, the results compare well with linear viscous theory, weakly
nonlinear inviscid theory and experimental observations. The new results show that
previous experimental observations and numerical simulations are all manifestations
of a single-valued relationship between dimensionless decay rate and amplitude.
Moreover, if the amplitude of the oscillations does not exceed 30 % of the drop
radius, this decay rate may be approximated by a quadratic. The new results also
show that, when the amplitude of the oscillations exceeds 20 % of the drop radius,
fluid in the inviscid bulk of the drop is undergoing abrupt changes in its acceleration
in comparison to the acceleration during small-amplitude deformations.

1. Introduction
The dynamics of an oscillating viscous drop is of fundamental interest, not only

because it represents a canonical example of the interplay between convective and
free-surface nonlinearities but also because of the practical need to understand the
physical mechanisms in important large-scale industrial processes such as multi-phase
dispersions. Moreover, the decay of droplet oscillations is one of the experimental
techniques by which the viscosity of a fluid may be evaluated.

The large-amplitude oscillations that arise during the recoil of extended filaments
are particularly relevant to this study (see Schulkes 1996; Notz & Basaran 2004). When
the filaments are quite viscous and/or their initial deformations are not inordinately
large, such filaments correspond to highly deformed drops whose responses are either
damped oscillations or aperiodic decay. This wide range of motivations has prompted
many excellent theoretical and experimental studies of this challenging time-dependent
three-dimensional problem.

Rayleigh (1879) described the oscillations of drops in the inviscid linear limit where
the flow was irrotational. If the centre of a drop of radius R∞ is taken as the centre
of a spherical coordinate system, then the perturbation in the free surface is given
by Sm(θ, φ) cos(ωmt∗), where Sm(θ, φ) is the spherical harmonic of degree m, ωm is
the corresponding angular frequency, t∗ is time, θ is the polar angle and φ is the
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azimuthal angle. It was reported that

ω2
m =

σ

ρR3
∞

m(m − 1)(m + 2), (1.1)

where ρ is the density, σ is the surface tension and m � 2. In the viscous linear
limit, Lamb (1932) showed that if the capillary number is small, then the oscillation
amplitude is damped like exp(−λ∗

mt∗), where

λ∗
m =

ν

R2
∞

(m − 1)(2m + 1), (1.2)

where µ is the dynamic viscosity and ν = µ/ρ is the kinematic viscosity.
Chandrasekhar (1961) also studied the free decay of a viscous drop in the linear limit.
He showed that if ωmR2

∞/ν is larger than a constant κ , then a damped oscillation
results. An aperiodic decay is found if it is smaller than κ . The constant κ is essentially
a Reynolds number with a velocity scale based on the frequency of oscillations. The
dimensionless parameter ωmR2

∞/ν is assumed to be large, so modulated oscillations
are predicted.

Prosperetti (1977, 1980) studied the initial-value problem of a viscous drop in the
linear limit. The initial condition corresponded to zero vorticity distribution and a
static deformation. Three phases were identified: an initial phase in which the flow is
irrotational, an intermediate phase where vorticity is generated at the free surface that
diffuses into the drop and a final phase described by the least-damped normal mode.
In the small capillary number limit ε =µ/

√
ρR∞σ � 1, the vorticity penetrates to a

depth of the order of
√

εR∞ from the drop surface, which is a boundary layer (see
Lamb 1932; Lundgren & Mansour 1988). The flow in the bulk of the drop remains
irrotational at leading order.

The experimental literature describes either two immiscible liquids or a liquid drop
surrounded by a gas. Trinh & Wang (1982) observed the large-amplitude oscillations of
drops of silicone oil and carbon tetrachloride immersed in distilled water. A drop with
R∞ ≈ 6.2 × 10−3 m, ρ ≈ 103 kg m−3, µ ≈ 3.2 × 10−3 kg m−1 s−1 and σ ≈ 4 × 10−2 kg s−2

had a capillary number of 6.4 × 10−3. A decrease in frequency with increasing
oscillation amplitude, a longer prolate phase in each oscillation and an exponential
decay in oscillation amplitude were all reported. Becker, Hiller & Kowalewski (1991)
investigated falling drops of ethanol in a gas. A typical drop with R∞ ≈ 1.72 × 10−4 m,
ρ ≈ 803 kg m−3, µ ≈ 1.2 × 10−3 kg m−1 s−1 and σ ≈ 2.29 × 10−2 kg s−2 had a capillary
number of 2.1 × 10−2. A least-squares fit was performed to obtain the coefficients in
the Fourier–Legendre expansion of the free surface: the viscous decay, coupling and
amplitude-dependent frequency of individual modes were observed. Wang, Anilkumar
& Lee (1996) studied the large-amplitude oscillations of drops of glycerine/water
drop (65/35) from a Space Shuttle-based experiment carried out in microgravity.
A drop with R∞ ≈ 1.01 × 10−2 m, ρ ≈ 1.168 × 103 kg m−3, ν ≈ 9.2 × 10−6 m2 s−1 and
σ ≈ 6.4 × 10−2 kg s−2 had a capillary number of 1.2 × 10−2. These studies, which fit into
the small-capillary-number parameter regime, will be the experimental comparisons
in this paper.

Over one hundred years after Rayleigh (1879), Tsamopoulos & Brown (1983)
extended the linear limit on inviscid drops to moderate-amplitude oscillations by
a sophisticated weakly nonlinear analysis. A quadratic decrease in frequency with
increasing amplitude and a longer prolate phase were predicted, these being compared
against the experiments of Trinh & Wang (1982). We note that all the existing
analytical approaches to nonlinear droplet dynamics neglect viscosity (see also
Natarajan & Brown 1986).
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The theoretical approaches to nonlinear viscous droplet dynamics are restricted
to numerical methods. Three techniques are pursued in the literature, namely the
boundary integral method applied by Lundgren & Mansour (1988), the finite element
method by Basaran (1992) and the mode expansion method by Becker, Hiller &
Kowalewski (1994). Patzek et al. (1991) have shown that boundary integral methods
cannot model droplet oscillations with the viscosity in the range of interest. The finite
element and mode expansion methods require long computation times that limit their
applicability in solving practical problems. Despite the technical difficulties, all three
numerical approaches have found that viscosity has a large effect on mode coupling.

More recent and current studies involving drop oscillations have included the cap-
illary dynamics of coupled spherical-cap droplets (see Theisen et al. 2007), the capillary
dynamics of a constrained liquid drop (see Bostwick & Steen 2009) and the damped
oscillations of pendant drops from a tube (see Suryo & Basaran 2006). This field of
research is still of great importance and interest to the scientific community.

The first purpose of this article is to gain new physical insights into the free decay
of the large-amplitude oscillations of a viscous drop. The capillary number is small in
many cases of interest (see Trinh & Wang 1982; Becker et al. 1991; Wang et al. 1996),
where modulation equations provide a description of the physics on the long viscous
time scale and extend the applicability of some numerical approaches from an inviscid
to a viscous problem. The second purpose relates to a general open problem: oscilla-
tions and oscillatory waves in fluid mechanics are strongly nonlinear. Weakly nonlinear
analysis has been widely applied to these problems over four decades. As the leading-
order problem is usually nonlinear, it is necessary to construct very sophisticated
expansions over several orders to obtain agreement with experimental observations
(see e.g. Tsamopoulos & Brown 1983). However, these attempts to capture the leading-
order nonlinearity have a limited range of agreement with experiment at best (see
Wang et al. 1996). Fluid mechanics requires the techniques of strongly nonlinear
analysis, but the formal perturbation theory has only recently been developed (see
Smith 2007). This new topic faces two immediate challenges: the modulation equations
may form an underdetermined system and require experimental validation.

In § 2, formal perturbation theory is applied to the general case of a drop in
rotational flow. The leading-order problem is stated, but cannot be solved analytically.
This does not prevent us from evaluating the linear differential operator for the
first correction and its adjoint. Modulation equations are derived using linearly
independent vectors in the null space of the adjoint. In § 3, the free decay of
axisymmetric oblate–prolate spheroid oscillations is studied. On the short time scale,
a truncated expansion of spherical harmonics is adopted to convert the leading-order
problem into a system of nonlinear ordinary differential equations. On the long viscous
time scale, a single modulation equation for the energy is necessary and sufficient.
The predictions are compared with previous asymptotic results and experimental
observations. Finally, § 4 gives a brief discussion of the results.

2. Strongly nonlinear analysis
2.1. Introduction

We define R∞ to be the radius of the spherical drop at steady state, ρ the density and
σ the surface tension. We transform to dimensionless variables via

r∗ = R∞r, t∗ = R∞

√
ρR∞

σ
t, [u∗, v∗, w∗] =

√
σ

ρR∞
[u, v, w],

p∗ =
σ

R∞
p, R∗ = R∞R,
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where r∗ is the radial coordinate, t∗ is time, q∗ = (u∗, v∗, w∗)T is the velocity vector,
p∗ is pressure and r∗ = R∗ is the free surface. The three-dimensional continuity and
Navier–Stokes equations in spherical polar coordinates become

1

r2

∂

∂r
(r2u) +

1

r sin(θ)

∂

∂θ
(v sin(θ)) +

1

r sin(θ)

∂w

∂φ
= 0, (2.1)

∂u

∂t
+ (q · ∇)u − (v2 + w2)

r
+

∂p

∂r
= ε

[
∇2u − 2u

r2
− 2

r2 sin(θ)

∂

∂θ
(v sin(θ)) − 2

r2 sin(θ)

∂w

∂φ

]
,

(2.2a)

∂v

∂t
+ (q · ∇)v +

uv

r
− w2 cot(θ)

r
+

1

r

∂p

∂θ
= ε

[
∇2v +

2

r2

∂u

∂θ
− v

r2 sin2(θ)
− 2 cos(θ)

r2 sin2(θ)

∂w

∂φ

]
,

(2.2b)

∂w

∂t
+ (q · ∇)w +

uw

r
+

vw cot(θ)

r
+

1

r sin(θ)

∂p

∂φ
= ε

[
∇2w +

2

r2 sin(θ)

∂u

∂φ

+
2 cos(θ)

r2 sin2(θ)

∂v

∂φ
− w

r2 sin2(θ)

]
, (2.2c)

in which ε is the capillary number (or the Ohnesorge number) given by

0 < ε =
µ

σ

√
σ

ρR∞
� 1,

∇ and ∇2 are the differential operators given by

∇ =

(
∂

∂r
,
1

r

∂

∂θ
,

1

r sin(θ)

∂

∂φ

)T

,

∇2u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂u

∂θ

)
+

1

r2 sin2(θ)

∂2u

∂φ2
.

The boundary conditions on the free surface r = R are

u =
∂R

∂t
+

v

R

∂R

∂θ
+

w

R sin(θ)

∂R

∂φ
, (2.3)

−
p − p + εD =
1

R2M3

{
−2R − 3

R

(
∂R

∂θ

)2

− 3

R sin2(θ)

(
∂R

∂φ

)2

+ cot(θ)
∂R

∂θ

[
1 +

1

R2

(
∂R

∂θ

)2

+
2

R2 sin2(θ)

(
∂R

∂φ

)2
]

− 2

R2 sin2(θ)

∂R

∂θ

∂R

∂φ

∂2R

∂θ∂φ

+
1

sin2(θ)

∂2R

∂φ2

[
1 +

1

R2

(
∂R

∂θ

)2
]

+
∂2R

∂θ2

[
1 +

1

R2 sin2(θ)

(
∂R

∂φ

)2
]}

, (2.4)

(
1

R sin(θ)

∂R

∂φ

{
2
∂u

∂r
− 1

R

∂R

∂θ
drθ − 1

R sin(θ)

∂R

∂φ
drφ

}
− 1

R sin(θ)

∂R

∂φ
dφφ

+ drφ − 1

R

∂R

∂θ
dθφ

)
ε = 0, (2.5)
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1

R

∂R

∂θ

{
2
∂u

∂r
− 1

R

∂R

∂θ
drθ − 1

R sin(θ)

∂R

∂φ
drφ

}
− 1

R

∂R

∂θ
dθθ + drθ

− 1

R sin(θ)

∂R

∂φ
dθφ

)
ε = 0, (2.6)

where 
p = 2 is the static pressure difference across the interface,

M =

√√√√1 +
1

R2

{(
∂R

∂θ

)2

+
1

sin2(θ)

(
∂R

∂φ

)2
}

, dθθ = 2

[
1

R

∂v

∂θ
+

u

R

]
,

dφφ = 2

[
1

R sin(θ)

∂w

∂φ
+

u

R
+

v cot(θ)

R

]
, drθ =

1

R

∂u

∂θ
+

∂v

∂r
− v

R
,

drφ =
1

R sin(θ)

∂u

∂φ
+

∂w

∂r
− w

R
, dθφ =

1

R sin(θ)

∂v

∂φ
+

1

R

∂w

∂θ
− w cot(θ)

R
,

D =
1

M2

{
2
∂u

∂r
+

1

R2

(
∂R

∂θ

)2

dθθ +
1

R2 sin2(θ)

(
∂R

∂φ

)2

dφφ

− 2

R

∂R

∂θ
drθ − 2

R sin(θ)

∂R

∂φ
drφ +

2

R2 sin(θ)

∂R

∂θ

∂R

∂φ
dθφ

}
.

Equation (2.3) represents the kinematic condition, (2.4) the normal stress condition
and (2.5)–(2.6) the tangential stress conditions. We assume that the boundary value
problem (2.1)–(2.6) with ε = 0 has time periodic solutions. Moreover, we assume that
the initial conditions with ε = 0 are consistent with an oscillatory solution.

The kinetic energy and vorticity vector are defined to be E = q · q/2 and
ω =(ω(r), ω(θ), ω(φ))T, respectively. The components of the vorticity vector are given by

ω(r) =
1

r sin(θ)

{
∂

∂θ
(w sin(θ)) − ∂v

∂φ

}
, ω(θ) =

1

r sin(θ)

∂u

∂φ
− 1

r

∂

∂r
(rw),

ω(φ) =
1

r

{
∂

∂r
(rv) − ∂u

∂θ

}
.

2.2. The leading-order outer problem

We adopt the usual procedure of introducing a fast time scale t+ and a slow time
scale t̃ with

dt+

dt
= ω(̃t), t̃ = εt,

where the frequency of oscillation ω(̃t) needs to be chosen so that, in terms of t+,
the period of oscillation of the leading-order solution is independent of t̃ (see e.g.
Kuzmak 1959; Smith 2005). The period on this t+ scale is then an arbitrary constant
that we specify to be 2π without loss of generality. We introduce expansions of the
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form

q ∼ q0(t
+, r, θ, φ, t̃) + εq1(t

+, r, θ, φ, t̃),

p ∼ p0(t
+, r, θ, φ, t̃) + εp1(t

+, r, θ, φ, t̃),

E ∼ E0(t
+, r, θ, φ, t̃) + εE1(t

+, r, θ, φ, t̃),

ω ∼ ω0(t
+, r, θ, φ, t̃) + εω1(t

+, r, θ, φ, t̃),

R ∼ R0(t
+, θ, φ, t̃) + εR1(t

+, θ, φ, t̃),

M ∼ M0(t
+, θ, φ, t̃) + εM1(t

+, θ, φ, t̃),[
dθθ , dφφ, drθ , drφ, dθφ

]
∼ [dθθ0, dφφ0, drθ0, drφ0, dθφ0](t

+, θ, φ, t̃),

as ε → 0, where q0 = (u0, v0, w0)
T, q1 = (u1, v1, w1)

T, ω0 = (ω(r)
0 , ω

(θ)
0 , ω

(φ)
0 )T and

ω1 = (ω(r)
1 , ω

(θ)
1 , ω

(φ)
1 )T. At leading order, we obtain

L̄u0 −
(
v2

0 + w2
0

)
r

+
∂p0

∂r
= 0, (2.7a)

L̄v0 +
u0v0

r
− w2

0 cot(θ)

r
+

1

r

∂p0

∂θ
= 0, (2.7b)

L̄w0 +
u0w0

r
+

v0w0 cot(θ)

r
+

1

r sin(θ)

∂p0

∂φ
= 0, (2.7c)

1

r2

∂

∂r
(r2u0) +

1

r sin(θ)

∂

∂θ
(v0 sin(θ)) +

1

r sin(θ)

∂w0

∂φ
= 0, (2.7d )

with the differential operator

L̄ = ω
∂

∂t+
+ u0

∂

∂r
+

v0

r

∂

∂θ
+

w0

r sin(θ)

∂

∂φ

and the boundary conditions

u0(t
++Ψ, R0, θ, φ, t̃)=ω

∂R0

∂t+
+

v0(t
+ + Ψ, R0, θ, φ, t̃)

R0

∂R0

∂θ
+

w0(t
+ + Ψ, R0, θ, φ, t̃)

R0 sin(θ)

∂R0

∂φ
,

(2.8a)

−
p − p0(t
+ + Ψ, R0, θ, φ, t̃) =

1

R2
0M

3
0

{
−2R0 − 3

R0

(
∂R0

∂θ

)2

− 3

R0 sin2(θ)

(
∂R0

∂φ

)2

+ cot(θ)
∂R0

∂θ

[
1 +

1

R2
0

(
∂R0

∂θ

)2

+
2

R2
0 sin2(θ)

(
∂R0

∂φ

)2
]

− 2

R2
0 sin2(θ)

∂R0

∂θ

∂R0

∂φ

∂2R0

∂θ∂φ

+
1

sin2(θ)

∂2R0

∂φ2

[
1 +

1

R2
0

(
∂R0

∂θ

)2
]

+
∂2R0

∂θ2

[
1 +

1

R2
0 sin2(θ)

(
∂R0

∂φ

)2
]}

, (2.8b)

[u0, v0, w0, p0](t
+ + Ψ, r, θ, φ, t̃) = [u0, v0, w0, p0](t

+ + Ψ − 2nπ, r, θ, φ, t̃), (2.8c)

R0(t
+ + Ψ, θ, φ, t̃) = R0(t

+ + Ψ − 2nπ, θ, φ, t̃), (2.8d )

where n is an integer and Ψ (̃t) is the phase shift. We note that (2.7) and (2.8) are
time reversible, that is invariant under t+ + Ψ → − (t+ + Ψ ), u0 → − u0, v0 → − v0

and w0 → − w0. We anticipate solutions such that u0, v0 and w0 (p0 and R0) are odd
(even) about zeros of u0. Such solutions have not been found in terms of well-known
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functions, except for very special initial conditions. However, this does not prevent us
from determining modulation equations for them.

2.3. The boundary-layer problem

In general, the solution of the leading-order outer problem will be inconsistent with
the tangential stress conditions (2.5) and (2.6). A boundary layer is required to
describe the significance of viscous effects near the free surface. For brevity, we will
not discuss it any further, but return to the derivation of the modulation equations.

2.4. Modulation equations

In this section, the linear differential operator for the first correction is stated and the
adjoint operator is determined (see Smith 2007). Nine linearly independent solutions
to the adjoint problem are then deduced. However, only two of these result in
physically meaningful modulation equations.

At next order, we have

Lx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−∂u0

∂t̃
+ Υ1

−∂v0

∂t̃
+ Υ2

−∂w0

∂t̃
+ Υ3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.9)

where

x = (u1, v1, w1, p1)
T,

Υ1 = ∇2u0 − 2u0

r2
− 2

r2 sin(θ)

∂

∂θ
(v0 sin(θ)) − 2

r2 sin(θ)

∂w0

∂φ
,

Υ2 = ∇2v0 +
2

r2

∂u0

∂θ
− v0

r2 sin2(θ)
− 2 cos(θ)

r2 sin2(θ)

∂w0

∂φ
,

Υ3 = ∇2w0 +
2

r2 sin(θ)

∂u0

∂φ
+

2 cos(θ)

r2 sin2(θ)

∂v0

∂φ
− w0

r2 sin2(θ)
,

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̄ +
∂u0

∂r

1

r

∂u0

∂θ
− 2v0

r

1

r sin(θ)

∂u0

∂φ
− 2w0

r

∂

∂r

∂v0

∂r
+

v0

r
L̄ +

1

r

∂v0

∂θ
+

u0

r

1

r sin(θ)

∂v0

∂φ
− 2w0

r
cot(θ)

1

r

∂

∂θ

∂w0

∂r
+

w0

r

1

r

∂w0

∂θ
+

w0

r
cot(θ) L33

1

r sin(θ)

∂

∂φ

2

r
+

∂

∂r

cot(θ)

r
+

1

r

∂

∂θ

1

r sin(θ)

∂

∂φ
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L33 = L̄ +
1

r sin(θ)

∂w0

∂φ
+

u0

r
+

v0

r
cot(θ),

with the periodicity conditions

[u1, v1, w1, p1](t
+ + Ψ, r, θ, φ, t̃) = [u1, v1, w1, p1](t

+ + Ψ − 2nπ, r, θ, φ, t̃). (2.10)
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Taking great care with the evaluation of the adjoint operator, we obtain

rTLx − xTL∗r = ω
∂

∂t+
{au1 + bv1 + cw1}

+
1

r2

∂

∂r

(
r2
[
u0{au1 + bv1 + cw1} + ap1 + du1

])
+

1

r sin(θ)

∂

∂θ

(
sin(θ)

[
v0{au1 + bv1 + cw1} + bp1 + dv1

])
+

1

r sin(θ)

∂

∂φ

(
w0{au1 + bv1 + cw1} + cp1 + dw1

)
, (2.11)

where

L∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−L̄ +
∂u0

∂r

1

r

∂

∂r
(rv0)

1

r

∂

∂r
(rw0) − ∂

∂r

1

r

∂u0

∂θ
− 2v0

r
−L̄ +

1

r

∂v0

∂θ
+

u0

r
L∗

23 −1

r

∂

∂θ

1

r sin(θ)

∂u0

∂φ
− 2w0

r
L∗

32 L∗
33 − 1

r sin(θ)

∂

∂φ

−2

r
− ∂

∂r
−cot(θ)

r
− 1

r

∂

∂θ
− 1

r sin(θ)

∂

∂φ
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L∗
23 =

1

r

∂w0

∂θ
+

w0

r
cot(θ), L∗

32 =
1

r sin(θ)

∂v0

∂φ
− 2w0

r
cot(θ),

L∗
33 = −L̄ +

1

r sin(θ)

∂w0

∂φ
+

1

r
(u0 + v0 cot(θ)), r = (a, b, c, d)T.

Equation (2.11) may be integrated to yield

〈rTLx − xTL∗r〉 = I1 +

∫ 2π−Ψ

t+=−Ψ

I2 dt+,

where

〈 . 〉 =

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

∫ R0(t
+,θ,φ,̃t)

r=0

. r2 sin(θ) dr dθ dφ dt+,

I1 =

〈
ω

∂

∂t+
{au1 + bv1 + cw1} +

1

r2

∂

∂r

(
r2u0{au1 + bv1 + cw1}

)
+

1

r sin(θ)

∂

∂θ

(
sin(θ)v0{au1 + bv1 + cw1}

)
+

1

r sin(θ)

∂

∂φ

(
w0{au1 + bv1 + cw1}

)〉
,

I2 =

∫ 2π

φ=0

∫ π

θ=0

∫ R0

r=0

{
1

r2

∂

∂r

(
r2 [ap1 + du1]

)
+

1

r sin(θ)

∂

∂θ
(sin(θ) [bp1 + dv1])

+
1

r sin(θ)

∂

∂φ
(cp1 + dw1)

}
r2 sin(θ) dr dθ dφ.

Application of the divergence theorem, (2.8a), (2.8d) and (2.10), shows that I1 = 0,
provided

[a, b, c](t+ + Ψ, r, θ, φ, t̃) = [a, b, c](t+ + Ψ − 2nπ, r, θ, φ, t̃). (2.12)
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Similarly, the divergence theorem yields

I2 =

∫ 2π

φ=0

∫ π

θ=0

(
p1(t

+ + Ψ, R0, θ, φ, t̃)

[
a(t+ + Ψ, R0, θ, φ, t̃)

− b(t+ + Ψ, R0, θ, φ, t̃)

R0

∂R0

∂θ
− c(t+ + Ψ, R0, θ, φ, t̃)

R0 sin θ

∂R0

∂φ

]

+ d(t+ + Ψ, R0, θ, φ, t̃)
[
q1(t

+ + Ψ, R0, θ, φ, t̃) · n0

])
R2

0 sin(θ) dθ dφ,

where

n0 =

(
1, − 1

R0

∂R0

∂θ
, − 1

R0 sin θ

∂R0

∂φ

)T

.

From this, it follows that if

L∗r = 0, (2.13)

subject to the boundary conditions (2.12), then our linear problem for the first
correction can only have a solution if

〈
a

[
−∂u0

∂t̃
+ Υ1

]
+ b

[
−∂v0

∂t̃
+ Υ2

]
+ c

[
−∂w0

∂t̃
+ Υ3

]〉

=

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

(
p1(t

+ + Ψ, R0, θ, φ, t̃)

[
a(t+ + Ψ, R0, θ, φ, t̃)

−b(t+ + Ψ, R0, θ, φ, t̃)

R0

∂R0

∂θ
− c(t+ + Ψ, R0, θ, φ, t̃)

R0 sin θ

∂R0

∂φ

]

+ d(t+ + Ψ, R0, θ, φ, t̃)

[
q1(t

+ + Ψ, R0, θ, φ, t̃) · n0

])
R2

0 sin(θ) dθ dφ dt+, (2.14)

for any r .
Nine linearly independent solutions of the adjoint problem (2.13) and (2.12) have

been determined:

r1 = (u0, v0, w0, p0 + E0)
T, r2 = (ω(r)

0 , ω
(θ)
0 , ω

(φ)
0 , 0)T, r3 = (0, 0, 0, 1)T,

r4 = (sin(θ) cos(φ), cos(θ) cos(φ), − sin(φ),

u0 sin(θ) cos(φ) + v0 cos(θ) cos(φ) − w0 sin(φ))T,

r5 = (sin(θ) sin(φ), cos(θ) sin(φ), cos(φ), u0 sin(θ) sin(φ) + v0 cos(θ) sin(φ) + w0 cos(φ))T,

r6 = (cos(θ), − sin(θ), 0, u0 cos(θ) − v0 sin(θ))T,

r7 = (0, −r sin(φ), −r cos(θ) cos(φ), −rv0 sin(φ) − rw0 cos(θ) cos(φ))T,

r8 = (0, r cos(φ), −r cos(θ) sin(φ), rv0 cos(φ) − rw0 cos(θ) sin(φ))T,

r9 = (0, 0, r sin(θ), rw0 sin(θ))T.
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The leading-order vorticity equations, that is

L̄ω
(r)
0 = ω

(r)
0

∂u0

∂r
+

ω
(θ)
0

r

∂u0

∂θ
+

ω
(φ)
0

r sin(θ)

∂u0

∂φ
,

L̄ω
(θ)
0 = ω

(r)
0

∂v0

∂r
+

ω
(θ)
0

r

∂v0

∂θ
+

ω
(φ)
0

r sin(θ)

∂v0

∂φ
+

1

r
[u0ω

(θ)
0 − v0ω

(r)
0 ],

L̄ω
(φ)
0 = ω

(r)
0

∂w0

∂r
+

ω
(θ)
0

r

∂w0

∂θ
+

ω
(φ)
0

r sin(θ)

∂w0

∂φ
+

1

r
[u0ω

(φ)
0 − w0ω

(r)
0 ]

+
cot(θ)

r
[v0ω

(φ)
0 − w0ω

(θ)
0 ],

are useful in the evaluation of r2. The first solution corresponds to conservation of
energy, the second to projection of the Navier–Stokes equations onto the vorticity
vector and the third to conservation of mass. The fourth, fifth and sixth solutions
express conservation of momentum along the x-, y- and z-axes, respectively. The
seventh, eighth and ninth solutions correspond to the x-, y- and z-components of
angular momentum, respectively. The fourth component of the last six solutions is
all invariants on the long time scale.

2.4.1. Energy modulation equation

If we substitute the first vector r1 into (2.14), then we obtain our first secularity
condition∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

E0(t
+ + Ψ, R0, θ, φ, t̃)

[
q1(t

+ + Ψ, R0, θ, φ, t̃) · n0

]
× R2

0 sin(θ) dθ dφ dt+ +

〈
∂E0

∂t̃

〉
= 〈u0Υ1 + v0Υ2 + w0Υ3〉

−
∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

(
p1(t

+ + Ψ, R0, θ, φ, t̃)
[
q0(t

+ + Ψ, R0, θ, φ, t̃) · n0

]
+ p0(t

+ + Ψ, R0, θ, φ, t̃)
[
q1(t

+ + Ψ, R0, θ, φ, t̃) · n0

])
R2

0 sin(θ) dθ dφ dt+. (2.15)

Firstly, we simplify the left-hand side of this secularity condition (2.15). We apply the
transport theorem as follows:

d

dt

{∫ 2π

φ=0

∫ π

θ=0

∫ R0

r=0

E0r
2 sin(θ) dr dθ dφ

}

=

∫ 2π

φ=0

∫ π

θ=0

∫ R0

r=0

[
∂E0

∂t
+ ∇ · (qE0)

]
r2 sin(θ) dr dθ dφ.

We expand this equation and integrate over a period to obtain the rate of change of
kinetic energy

d

dt̃
〈E0〉 =

〈
∂E0

∂t̃
+

1

r2

∂

∂r
(r2u1E0) +

1

r sin(θ)

∂

∂θ
(v1E0 sin(θ)) +

1

r sin(θ)

∂

∂φ
(w1E0)

〉
.

(2.16)
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Application of the divergence theorem and (2.16) to the left-hand side of (2.15) and
(2.8a) to the right-hand side of (2.15) yields

d

dt̃
〈E0〉 = 〈u0Υ1 + v0Υ2 + w0Υ3〉 −

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

(
p1(t

+ + Ψ, R0, θ, φ, t̃)ω
∂R0

∂t+

+ p0(t
+ + Ψ, R0, θ, φ, t̃)

[
q1(t

+ + Ψ, R0, θ, φ, t̃) · n0

])
R2

0 sin(θ) dθ dφ dt+.

We incorporate the standard terms for the rate of dissipation of energy (see e.g. Lamb
1932). Moreover, we employ (2.3) to obtain

d

dt̃
〈E0〉 +

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

p0

∂R0

∂t̃
R2

0 sin(θ) dθ dφ dt+

= −
〈
| ω0 |2

〉
− 2

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

n0 · {∇E0 − q0 ∧ ω0} R2
0 sin(θ) dθ dφ dt+

+

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

{
n0 ·
[
u0

(
2
∂u0

∂r
, drθ0, drφ0

)
+ v0(drθ0, dθθ0, dθφ0)

+ w0(drφ0, dθφ0, dφφ0)

]
− p1ω

∂R0

∂t+
− p0

[
ω

∂R1

∂t+
− R1

∂u0

∂r
− v0R1

R2
0

∂R0

∂θ

+
v0

R0

∂R1

∂θ
+

R1

R0

∂v0

∂r

∂R0

∂θ
+

1

R0 sin(θ)

(
w0

∂R1

∂φ
− w0R1

R0

∂R0

∂φ

+ R1

∂w0

∂r

∂R0

∂φ

)]}
R2

0 sin(θ) dθ dφ dt+. (2.17)

The first volume integral and the first surface integral on the right-hand side of (2.17)
correspond to the rate of dissipation of energy. The second surface integral on the
right-hand side of (2.17) is the rate at which work is being done at the surface by
the surrounding matter over the short time scale, which is zero. The surface integral
on the left-hand side of (2.17) is the rate of change of potential energy over the long
time scale, which may be rewritten as follows:∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

p0

∂R0

∂t̃
R2

0 sin(θ) dθ dφ dt+ =
d

dt̃
V0,

where

V0 =

∫ 2π−Ψ

t+=−Ψ

{∫ 2π

φ=0

∫ π

θ=0

M0R
2
0 sin(θ) dθ dφ − 4πR2

∞

}
dt+.

Thus, we have the modulation equation

d

dt̃
(〈E0〉 + V0) = −

〈
| ω0 |2

〉
− 2

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

n0 · {∇E0 − q0 ∧ ω0}

(t+ + Ψ, R0, θ, φ, t̃)R2
0 sin(θ) dθ dφ dt+. (2.18)

Equation (2.18) is a generalization of the linear theory of Lamb (1932) to the nonlinear
problem. Lamb (1932) did not integrate over the period of oscillation. This integration
is unnecessary on the left-hand side of (2.18) as the sum of kinetic energy integrated
over the volume and potential energy integrated over the surface is independent of
the short time scale. However, in the linear theory, Lamb (1932) obtained the mean
value of the total dissipation using a solution for irrotational flow. In the absence
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of an explicit solution, it is necessary to integrate over the period of oscillation to
determine the appropriate dissipation on the right-hand side of (2.18).

2.4.2. Vorticity modulation equation

If we substitute the second vector r2 into (2.14), then we obtain our second secularity
condition〈

ω0 · ∂q0

∂t̃

〉
= 〈ω(r)

0 Υ1 + ω
(θ)
0 Υ2 + ω

(φ)
0 Υ3〉

−
∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

{p1[ω0 · n0]}(t+ + Ψ, R0, θ, φ, t̃)R2
0 sin(θ) dθ dφ dt+. (2.19)

The right-hand side of (2.19) may be split into two by integration by parts. The
first term is the component of surface force exerted by the surrounding matter in
the direction of the vorticity vector and across a surface normal to n0, this being
zero. The second term represents viscous dissipation. After a further application of
integration by parts, we have the modulation equation〈

ω0 · ∂q0

∂t̃

〉
=
〈
q0 · ∇2ω0

〉
−
∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

{n0 · [(q0 · ∇)ω0]

+ q0 · [(n0 · ∇)ω0]}(t+ + Ψ, R0, θ, φ, t̃)R2
0 sin(θ) dθ dφ dt+. (2.20)

The left-hand side of (2.20) is the rate of change of momentum projected onto the
vorticity vector and the right-hand side is its rate of dissipation. Lamb (1932) did not
derive an equation involving the vorticity. His analysis only considered the situation
in which the inviscid bulk of the drop was in irrotational flow. A modulation equation
involving the vorticity in a rotational bulk flow has not been previously reported in
the literature.

3. Axisymmetric oblate–prolate oscillation
3.1. Introduction

In this section, we restrict our attention to one of the lowest modes of vibration,
namely the axisymmetric oblate–prolate spheroid oscillation. The initial conditions
are

u(r, θ, φ, t = 0) = O(ε),

v(r, θ, φ, t = 0) = O(ε),

w(r, θ, φ, t = 0) = O(ε),

R(θ, φ, t = 0) = b̄0 + b̄2P2(ξ ) + O(ε),

as ε → 0, where ξ = cos(θ) and Pl(ξ ) are the Legendre polynomials. Conservation of
mass, ∫ 1

ξ=−1

[
b̄0 + b̄2P2(ξ )

]3
dξ = 2, (3.1)

permits the calculation of b̄0 for a given initial amplitude b̄2. These particular initial
conditions are adopted because an approximate analytical solution may be readily
calculated to the leading-order outer problem.
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3.2. The leading-order outer solution

We consider an approximate solution of the leading-order outer problem in the form
of a truncated expansion of spherical harmonics. Equations (2.7), (2.8c) and (2.8d)
will be exactly satisfied, but (2.8a) and (2.8b) will not. The truncated expansion of
spherical harmonics is

u0 =

4∑
k=1

a2k(t
+ + Ψ, t̃)2kr2k−1P2k(ξ ), (3.2)

v0 = −sin(θ)

r

4∑
k=1

a2k(t
+ + Ψ, t̃)r2kP ′

2k(ξ ), (3.3)

w0 = 0, (3.4)

p0 = G(t+ + Ψ, t̃) − ω(̃t)

4∑
k=1

∂a2k

∂t+
(t+ + Ψ, t̃)r2kP2k(ξ )

− 1

2

(
4∑

k=1

a2k(t
+ + Ψ, t̃)2kr2k−1P2k(ξ )

)2

− (1 − ξ 2)

2r2

(
4∑

k=1

a2k(t
+ + Ψ, t̃)r2kP ′

2k(ξ )

)2

, (3.5)

R0 =

4∑
k=0

b2k(t
+ + Ψ, t̃)P2k(ξ ), (3.6)

where the coefficients al(t
+ + Ψ, t̃) and bl(t

+ + Ψ, t̃) must be chosen such that the
boundary conditions (2.8a) and (2.8b) are approximately satisfied. We specify the
phase shift Ψ by taking u0, v0 and w0 to be odd (and p0 and R0 to be even) about
t+ + Ψ = nπ. It is common practice to assume that b0 is constant; however, this
assumption would result in more equations than unknowns in the strongly nonlinear
problem. Only even harmonics are adopted, which is consistent with our choice of
initial conditions (see Basaran 1992).

Using the orthogonality properties of Legendre polynomials, we obtain the following
autonomous system of ordinary differential equations from (2.8a) and (2.8b):

ω

4∑
k=1

∂a2k

∂t+

∫ 1

ξ=−1

Pn(ξ )R2k
0 P2k(ξ )dξ = −1

2

∫ 1

ξ=−1

Pn(ξ )

(
4∑

k=1

a2k2kR2k−1
0 P2k(ξ )

)2

dξ

− 1

2

∫ 1

ξ=−1

Pn(ξ )(1 − ξ 2)

(
4∑

k=1

a2kR
2k−1
0 P ′

2k(ξ )

)2

dξ

+

∫ 1

ξ=−1

Pn(ξ )

R2
0M

3
0

{
−2R0 − 3

R0

(
∂R0

∂θ

)2

+
∂2R0

∂θ2
+ cot(θ)

∂R0

∂θ
M2

0

}
dξ, (3.7)

in which n= 2, 4, 6, 8 and

2ω

2n + 1

∂bn

∂t+
=

∫ 1

ξ=−1

Pn(ξ )

4∑
k=1

a2k2kR2k−1
0 P2k(ξ ) dξ

−
∫ 1

ξ=−1

Pn(ξ )(1 − ξ 2)

(
4∑

k=1

a2kR
2k−2
0 P ′

2k(ξ )

)(
4∑

k=1

b2kP
′
2k(ξ )

)
dξ, (3.8)
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Figure 1. Numerical solution of the autonomous system of ordinary differential
equations (3.7)–(3.9) over a single period. The solution is periodic in t+ + Ψ with period
2π and b0 and b2 (a2) are even (odd) about the half period t+ + Ψ = nπ.

in which n= 0, 2, 4, 6, 8. In (3.7) and (3.8), R0 is given by (3.6). The initial conditions
are

a2k(0, 0) = 0, b0(0, 0) = b̄0, b2(0, 0) = b̄2, b4(0, 0) = 0, b6(0, 0) = 0,

b8(0, 0) = 0. (3.9)

It is not possible to integrate (3.7)–(3.9) analytically, we must proceed numerically.
The frequency ω(̃t) must be selected such that the period is 2π over each cycle. A
combined shooting and bisection method may be adopted to determine this frequency.
This algorithm is verified against the linear theory (1.1) of Rayleigh (1879).

A typical solution of (3.7)–(3.9) is shown in figure 1 for b̄0 = 0.28, the nonlinear
frequency being ω ≈ 2.705. In order to validate the truncated expansion of spherical
harmonics, the same calculation was performed taking the upper limit of the sum to
be eight in the leading-order solution (3.2)–(3.6). Similarly, the calculation was also
performed with half of the time step to ensure convergence. A value of ω ≈ 2.705 was
produced in the former case and ω ≈ 2.706 in the latter case. We therefore conclude
that the truncated expansion of spherical harmonics and the time step provide suitable
resolution at this amplitude of oscillation.

In figure 1, b2 < 0 corresponds to oblate spheroid and b2 > 0 corresponds to prolate
spheroid. The modulus of the maximum value of b2 in the prolate shape is larger than
the modulus of the minimum value of b2 in the oblate shape, that is the variation of
b2 exhibits asymmetry. We note that 43.4 % of the period is spent in the oblate form
rather than in the prolate, as noted by previous authors, for example Wang et al.
(1996). It is clear from figure 1 that the time dependence of a2, b0 and b2 could not
be accurately described by a normal-mode analysis with variable frequency.

In figure 2(a), the frequency shift is plotted versus amplitude b2(0, t̃) along with
the prediction of the weakly nonlinear analysis of Tsamopoulos & Brown (1983)
and the experimental results of Wang et al. (1996). The numerical solution of the
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Figure 2. Frequency shift versus (a) amplitude b2(0, t̃) and (b) aspect ratio L/W :
(A) numerical solution of the leading-order problem (3.7)–(3.9), (B) weakly nonlinear analysis
of Tsamopoulos & Brown (1983), (C) experimental results of Wang et al. (1996) and
(D) experimental results of Trinh & Wang (1982).

leading-order outer problem agrees well with Tsamopoulos & Brown (1983); however,
the frequency shift is slightly greater at smaller amplitudes and slightly less at larger
amplitudes. This trend is also observed in figure 2(b), where the frequency shift is
plotted versus the ratio of the polar diameter L to equatorial diameter W along with
the prediction of Tsamopoulos & Brown (1983) and the experimental results of Trinh
& Wang (1982). Our prediction of the amplitude dependence of frequency compares
well with the experimental results in figure 2.

3.3. The modulation equation

The leading-order initial condition has zero vorticity. Therefore, irrotational flow
will persist at leading order in the outer problem, which significantly simplifies the
modulation equations (2.18) and (2.20): (2.20) is automatically satisfied and (2.18)
becomes

d

dt̃
(〈E0〉 + V0) = −2

∫ 2π−Ψ

t+=−Ψ

∫ 2π

φ=0

∫ π

θ=0

{n0 · ∇E0} R2
0 sin(θ) dθ dφ dt+. (3.10)

As the leading-order solution (3.2)–(3.6) is axisymmetric, the modulation
equation (3.10) may be rewritten as

d

dt̃
(〈E0〉 + V0) = −4π

∫ 2π−Ψ

t+=−Ψ

∫ 1

ξ=−1

{
∂E0

∂r
− 1

R2
0

∂R0

∂θ

∂E0

∂θ

}
R2

0 dξ dt+. (3.11)

The modulation equation (3.11) is solved numerically using the initial condition shown
in figure 1, where 〈E0〉(0) + V0(0) = 2.32 and b2(0, 0) = 0.28. In figure 3(a), the energy
and amplitude, 〈E0〉(̃t) + V0(̃t) and b2(0, t̃), are plotted versus the long viscous time
scale, t̃ , showing an approximately exponential decay. If the oscillation energy and
amplitude are damped in time as exp(−λt̃), then figure 3(b) corresponds to the decay
rates (λ) in figure 3(a). The decay rate varies as a function of the amplitude that
has previously been reported by Basaran (1992). Moreover, as the amplitude becomes
small, the decay rate approaches the linear theory (1.2) of Lamb (1932). We note
that a quadratic approximates the computed free decay rate well for this range of
amplitudes.

We seek a comparison with the experimentally observed minima of aspect ratio in
figure 1 of Wang et al. (1996). The aspect ratio W/L may be approximated using the
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Figure 3. (a) Numerical solution of the modulation equation (3.11) and (b) decay rates versus
amplitude b2(0, t̃): (A) energy 〈E0〉(̃t) + V0(̃t), (B) amplitude b2(0, t̃), (C) the linear theory (1.2)
of Lamb (1932) and (D) the quadratic approximation 5 + 13.2b2(0, t̃)2.

first two terms in the expansion of Legendre polynomials

W

L
(0, t̃) =

b0(0, t̃) − b2(0, t̃)

2
b0(0, t̃) + b2(0, t̃)

.

The values of b2(0, t̃) are determined via the quadratic approximation to the free
decay rate and

b2(0, t̃) = b2(0, 0) exp(−λt̃),

where the initial condition b2(0, 0) is chosen to be consistent with figure 1 of Wang
et al. (1996). The value of b0(0, t̃) is obtained by ensuring that mass is conserved (as
in (3.1)). The envelope is compared with the experimental minima in figure 4, the
agreement being excellent.

In figures 3 and 4 of Becker et al. (1991), the Legendre coefficient b2 is plotted.
We seek a comparison with our quadratic approximation to the free decay rate, even
though the initial condition is more complicated than that in our calculations (and
a satellite droplet merges after 0.4 ms in figure 4). We choose the initial condition
b2(0, 0) to be consistent with Becker et al. (1991). The two envelopes are compared
with the experimental maxima in figure 5, the agreement being good.
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(1991): (A) maxima from the experimental results, (B) the envelope from the quadratic decay
rate. We note that, in figure 4 of Becker et al. (1991), a satellite droplet merges after 0.4 ms.
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The increase in decay rate with amplitude may be understood as follows. At small
amplitudes, the drop is approximately spherical and the surface area is a minimum. At
large amplitudes, the drop moves from its extreme prolate shape to its extreme oblate,
which correspond to greater surface areas than the spherical. The normal derivative
of the kinetic energy with respect to n0 integrated over the surface is greater when
the surface area is greater. The result is an increase in decay rate.

4. Summary and conclusions
The free decay of large-amplitude oscillations of an incompressible viscous drop

is a canonical problem in free-surface flow, the two major nonlinearities of fluid
mechanics, convective and free-surface effects, being coupled. In the general case, when
the capillary number is order 1, numerical methods are the only viable theoretical
approach. However, at small capillary number, the techniques of strongly nonlinear
analysis allow two modulation equations to be determined on the long viscous time
scale. The first is a generalization of the linear energy equation of Lamb (1932) to
the nonlinear problem. The second is the projection of the Navier–Stokes equations
onto the vorticity vector, which has not been previously reported in this context. The
two modulation equations may form an overdetermined, closed or underdetermined
system depending on the number of slowly varying unknowns.

A physical example must be considered to validate and establish the sufficiency of
the modulation equations. The axisymmetric oblate–prolate oscillation is considered,
which is the most widely studied in experiment and theory. In this case, the second
modulation equation is degenerate. We have one modulation equation for the slowly
varying oscillation amplitude, this equation proving to be necessary and sufficient.
The results for this physical example are verified by comparison with linear viscous
theory, weakly nonlinear inviscid theory and experiment.

Trinh & Wang (1982) investigated the decay rate but found it difficult to draw
definitive conclusions based on their experiments, although they could perceive a
slight increase with larger deformations. Basaran (1992) explained this difficulty in
terms of the insensitivity of the decay factor to the deformation during small- and
moderate-amplitude oscillations. Basaran (1992) then studied the decay rate at larger
amplitudes and different Reynolds numbers. The new result in this paper is to show
that the experimental observations of Trinh & Wang (1982) and the numerical results
of Basaran (1992) are all manifestations of a single-valued relationship between
dimensionless decay rate and amplitude. If the amplitude of the oscillations does not
exceed 30 % of the drop radius, then this decay rate may be approximated by the
following quadratic:

λ = 5 + 13.2b2(0, t̃)2.

When the amplitude of the oblate–prolate oscillation exceeds approximately 10 % of
the drop radius, typical nonlinear phenomena such as the dependence of the oscillation
frequency on the amplitude and asymmetry of the amplitude of the free surface are
observed. If the amplitude of the oscillations exceeds approximately 20 % of the drop
radius, then nonlinear effects become more pronounced. The time dependence of
the coefficients in the Fourier–Legendre expansion for the fluid flow shows a zigzag
oscillation, this being far from the smooth sinusoidal oscillation that characterizes
the linear limit. The fluid in the inviscid bulk of the drop is undergoing abrupt
changes in its acceleration in comparison to the acceleration during small-amplitude
deformations. The most abrupt change takes place as the free surface passes through
the spherical shape.
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We note that one property that remains unaltered by the large variation of
amplitude is the parity of the oscillations in time. The velocities are odd about
the zeros of the radial velocity, while the deformation of the free surface is even. The
acceleration of the fluid always changes sign when the free surface is spherical.

This project has benefited from the constructive comments of two anonymous
referees.
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