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A hybrid boundary integral/slender body algorithm for modelling flagellar cell moti-
lity is presented. The algorithm uses the boundary element method to represent the
‘wedge-shaped’ head of the human sperm cell and a slender body theory representation
of the flagellum. The head morphology is specified carefully due to its significant
effect on the force and torque balance and hence movement of the free-swimming
cell. The technique is used to investigate the mechanisms for the accumulation of
human spermatozoa near surfaces. Sperm swimming in an infinite fluid, and near a
plane boundary, with prescribed planar and three-dimensional flagellar waveforms
are simulated. Both planar and ‘elliptical helicoid’ beating cells are predicted to
accumulate at distances of approximately 8.5−22 μm from surfaces, for flagellar
beating with angular wavenumber of 3π to 4π. Planar beating cells with wavenumber
of approximately 2.4π or greater are predicted to accumulate at a finite distance,
while cells with wavenumber of approximately 2π or less are predicted to escape
from the surface, likely due to the breakdown of the stable swimming configuration.
In the stable swimming trajectory the cell has a small angle of inclination away
from the surface, no greater than approximately 0.5◦. The trapping effect need not
depend on specialized non-planar components of the flagellar beat but rather is a
consequence of force and torque balance and the physical effect of the image systems
in a no-slip plane boundary. The effect is relatively weak, so that a cell initially one
body length from the surface and inclined at an angle of 4◦–6◦ towards the surface
will not be trapped but will rather be deflected from the surface. Cells performing
rolling motility, where the flagellum sweeps out a ‘conical envelope’, are predicted
to align with the surface provided that they approach with sufficiently steep angle.
However simulation of cells swimming against a surface in such a configuration is not
possible in the present framework. Simulated human sperm cells performing a planar
beat with inclination between the beat plane and the plane-of-flattening of the head
were not predicted to glide along surfaces, as has been observed in mouse sperm.
Instead, cells initially with the head approximately 1.5–3 μm from the surface were
predicted to turn away and escape. The simulation model was also used to examine
rolling motility due to elliptical helicoid flagellar beating. The head was found to
rotate by approximately 240◦ over one beat cycle and due to the time-varying torques
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associated with the flagellar beat was found to exhibit ‘looping’ as has been observed
in cells swimming against coverslips.

1. Introduction: the accumulation of motile cells near surfaces
Sperm and other cells that swim with a single flagellum (or ‘tail’) are known to

accumulate ‘near’ or ‘at’ surfaces; for example Rothschild (1963) famously observed
the ‘non uniform distribution of sperm in a drop of bull semen’. Motile sperm are
typically observed at high concentrations near the upper and lower inner surfaces of
flattened glass capillary tubes and close to the microscope slide or coverslip in wet
preparations. In human sperm the effect of gravity has not been observed to have
a significant effect, so that the number of cells accumulating on upper and lower
surfaces is typically similar (Winet, Bernstein & Head 1984). The phenomenon has
long interested researchers, particularly at the interface of mathematical modelling
and experimental biology (Winet et al. 1984; Lauga et al. 2006). However despite
a number of studies involving both hydrodynamic modelling and microscopy, the
phenomenon has not been fully explained.

Fauci & McDonald (1995) used the immersed boundary technique to simulate sperm
accumulation in a two-dimensional flow regime, equivalent to a swimming sheet
in three-dimensional flow. Their simulation allowed for fluid/structure interaction
between the beating tail and fluid, to show gradual movement of a sperm-like swimmer
with a circular head towards an elastic solid interface, as well as phase locking between
nearby cells. The underlying physical mechanisms for the accumulation effect however
have not yet been explored in detail using this methodology. Lauga et al. (2006)
modelled Escherichia coli as spherical cells with a single helical tail representing the
flagellar bundle and were able to give fundamental explanations for both the forces
attracting cells to the boundary and the circular swimming paths that cells follow, by
analysing the mobility tensors associated with the cell body and tail respectively. The
hydrodynamic trapping effect is due to the fact that a cell body moving along and
very near an interface will be subject to a torque rotating it towards the surface as it
moves forwards. Due to its relatively large size, the effect of the E. coli cell body is
more significant than any slender body effects on the flagellum. Trapping mechanisms
for bacteria are different from mammalian sperm due to fact that the cell body is
not nearly as small relative to the flagellum and that bacteria are in the sub-micron
scale regime, where electrical effects due to the ionic properties of the surface may be
important over distances of the order of 10–100 nm. Further discussion of trapping
mechanisms for bacteria is given by Vigeant et al. (2002).

Woolley (2003) investigated rodent and ram sperm and described two different
surface-trapping effects: (a) Cells which roll as they swim exhibit a conical beat
envelope, so that when approaching a boundary they enter a configuration in which
one edge of the cone is aligned with the surface such that the central axis, and hence
thrust vector, points into the surface, as shown in figure 1(a). (b) Cells which exhibit
planar beating near surfaces and are such that the plane of flattening of the sperm
head is tilted relative to the beat plane, are subject to a ‘hydrofoil’ effect as shown in
figure 1(b). An alternative description of this model is that a lubrication layer exists
in the space between the cell body and glass surface and that again the propulsive
force of the tail is directed at an angle into the surface. Woolley (2003) has presented
experimental evidence for this inclination angle in mouse sperm, and noted that
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(a) (b)

Figure 1. The models proposed by Woolley (2003) for boundary accumulation of (a) cells
that roll as they swim, sweeping out a ‘conical envelope’, and (b) planar beating cells such that
the beat plane is inclined to the plane of flattening of the head. Further description is given in
the text.

such cells only swim with one particular face against the surface. Surface-trapping
effects also occur in the sperm of externally fertilizing species such as sea urchin when
examined in vitro. Cosson, Huitorel & Gagnon (2003) imaged motile sea urchin sperm
cells from Paracentrotus lividus and Arbacia lixula to show also that an out-of-plane
component of the beat appears to result in a directional thrust towards the surface.
Their three-dimensional model of the sea urchin beat pattern is essentially a pair of
successive helicoids of opposite polarity.

In this study we explore the phenomenon of surface accumulation of cells with
the proportions and characteristic beat patterns of human sperm. We investigate
the behaviour of both planar and rolling motilities in the vicinity of a surface and
simulate the fluid dynamics of the surface accumulation mechanisms proposed by
Woolley (2003), applied to human sperm.

2. Fluid dynamical modelling of flagellar cell motility

2.1. Slender body theory and resistive force theory

The landmark paper ‘Analysis of the swimming of organisms’ (Taylor 1951) gave
the first mathematical treatment of the propulsion of a flagellum-like object due to
travelling bending waves. Taylor advanced one of the two main principles underlying
self-propulsion in a purely viscous regime: ‘resultant force which the fluid exerts on
the body must be zero’. Along with the principle of zero resultant torque later used
by Chwang & Wu (1971), these principles are fundamental to all theoretical studies
of flagellar motility.

The analysis had certain features which are different from sperm swimming: the
organism was represented as a swimming sheet, propagating small-amplitude bending
waves along its length. The small-amplitude assumption is not precisely valid for the
sperm of most mammalian species but is appropriate for the sperm of the starling
(Vernon & Woolley 1999) and has been exploited in studies of the effect of viscoelastic
properties (see for example Fulford, Katz & Powell 1998; Lauga 2007, the latter being
a substantial direct extension of Taylor’s work). Taylor extended his analysis to the
three-dimensional flow around a cylindrical body performing planar small amplitude
beating, and produced an experimental model sperm which swam by propagating
spiral waves (Taylor 1952).

Hancock (1953) coined the term ‘Stokeslet’ for the singularity solution due to a
point force in Stokes flow and used line distributions of Stokeslets and potential
dipoles with varying strengths to represent the flow due to the finite-amplitude
beating of a flagellum – the basis of slender body theory (SBT) for Stokes flow.
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SBT is applicable in any situation where a slender body propels fluid or itself in a
very-low-Reynolds-number Newtonian regime and allows cell movement and fluid
flow in a three-dimensional domain to be calculated much more efficiently than by
solving the Stokes flow equations directly. Hancock was able to show mathematically
how a slender body translating tangential to its axis is subject to approximately half
of the drag compared with if it translates normal to its axis, a fact which is crucial to
zero-Reynolds-number fluid dynamics and the functioning of flagella and cilia. This
is referred to as the ‘anisotropy ratio’ of a slender body. The local approximation to
SBT, ‘resistive force theory’ (RFT) was first developed by Gray & Hancock (1955)
and used to analyse sinusoidal planar flagellar beating of sea urchin sperm. They
approximated the force on an element of the flagellum as being proportional to the
relative velocity of the segment and the fluid, with different ‘resistance coefficients’
applying to motions normal and tangential to the segment axis. Consideration of this
anisotropy ratio allowed elementary mathematical and intuitive arguments for how
flagellar wave propagation causes motility. The vast majority of quantitative studies
of flagellar fluid dynamics have made use of either SBT or RFT, including the present
study.

At the same time as the theoretical analysis, Gray (1955) conducted the first
observations of flagellar movement, on sperm of the sea-urchin Psammechinus miliaris
swimming in sea water. Data had not previously been available due to the fact that
the flagellum is too small to visualize using conventional bright-field microscopy, and
its movement is too rapid to be discerned clearly by eye. Gray (1955) solved these
technical problems by employing dark-field microscopy together with stroboscopic
illumination. At frequencies of 30–40 Hz, the flagellum was ‘frozen’ so that the
waveform could be observed. Continous lighting revealed ‘flagellar envelope’. This
alternated between resembling an ellipse and a straight line, which led Gray to infer
that the cell was rolling with a frequency of around 3 Hz and that the flagellar beat
envelope was approximately planar.

Despite the internal 9 + 2 structure of the flagellum being discovered around the
same time, it was not agreed whether the flagellum possessed a mechanism for the
active production of bending. By analysing the motion of an elastic beam, combined
with a simple RFT model of viscous forces, Machin (1958) showed that the emerging
waveforms did not resemble those found by Gray (1955) and others. By introducing
a simple model of active bending proportional to curvature he was able to produce
waveforms that gave a much better qualitative agreement with observations. Later
Machin (1963) used a similar analysis to show that nearby flagella will tend to
synchronize. Many studies followed, applying RFT to the analysis of forces and
bending moments due to observed beating patterns, for example Brokaw (1965, 1970)
and Rikmenspoel (1965). RFT has also proved very successful in the modelling of
beat pattern production by the interaction of internal mechanics and viscous forces
(examples with further references are Hines & Blum 1978; Brokaw 1985).

Gray (1953) noted that in the case of the cell body being small, helical propulsion
would likely be ineffective. This was analysed in more detail by Chwang & Wu
(1971), who took into account formally the condition of zero net torque and hence
were able to model motility due to a rotating helical tail. Genuinely helical waveforms
of sperm flagella are likely to be relatively rare, with for example the remarkable
images of Woolley & Vernon (2001) being observed for sea urchin sperm in medium
with viscosity of approximately 4 Pa s. Nevertheless, sperm of many species roll as
they swim which can only occur due to the existence of non-planar components of
the flagellar beat.
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Pironneau & Katz (1974) used RFT to present insights into optimally energy-
efficient beating by examining the small-amplitude case. Extensive work (see for
example Brokaw 1972; Hines & Blum 1983; Brokaw 1985) was conducted using RFT
to couple internal mechanics and fluid mechanics to understand the emergence of
oscillatory propulsive waves. Researchers have continued to use RFT to investigate
a number of scientific questions. Examples are (i) Brokaw (2002) in investigating
beat pattern emergence in combination with detailed modelling of flagellar internal
mechanics, (ii) Kinukawa et al. (2005) in finding new interpretations of flagellar beat
data and (iii) as reviewed above Lauga et al. (2006) on the trapping of bacteria near
surfaces.

In the mid-1970s, researchers turned their attention to incorporating boundary
effects which are important for mammalian sperm both in vitro and in vivo. Katz,
Blake & Pavieri-Fontana (1975) adapted RFT to modelling slender body motion
near and parallel to a surface. They noted that RFT was only strictly valid applied
to small-amplitude motions and concluded, ‘. . . our understanding of flagellar and
ciliary movement and function has reached a level where finite-amplitude theories are
needed. We hope that they will be forthcoming’. While Hancock was only able to
make limited progress by analytical methods, by the 1970s it was possible to calculate
numerical solutions of the SBT integral equation for the force distribution on the
flagellum. There are two basic approaches that have been pursued in such numerical
calculations: (a) applying surface-velocity collocation directly to Hancock’s SBT as in
Higdon (1979a, b) or a variant of it as in Smith, Gaffney & Blake (2007) and Clarke
et al. (2006); (b) working with an approximation of Hancock’s representation based on
‘integrating out’ the local Stokeslet/dipole contributions, as first pursued by Lighthill
(1976) and later by for example Johnson (1977, 1980), Dresdner, Katz & Berger
(1980), Gueron & Liron (1992), Fulford et al. (1998) and Gueron & Levit-Gurevich
(2001).

Significant work had been carried out on perturbation-theory analysis of slender
body motion up to the mid-1970s (reviewed in Smith et al. 2007). Shen et al. (1975)
presented the first study of finite-amplitude swimming of a headless filament, based
on the theory of Cox (1970), which expanded the propulsive velocity in terms of
the logarithm of the slenderness ratio. This approach allowed significant progress
to be made without the requirement for a numerical solution of the SBT integral
equation. The work on finite-amplitude swimming that followed appears to have
been stimulated by Lighthill’s simple and elegant theorem (Lighthill 1976). This result
showed that fluid velocity of a point on the flagellar surface near a centreline point
ξ (s0) can be represented as (i) a ‘local/Gray–Hancock’ contribution CNfN , due to
normal motion of the body and (ii) a ‘non-local’ contribution given by a line integral
of Stokeslets greater than δ: = a0

√
e/2 from s0, where a0 is the flagellum radius. It was

assumed that variations in f (s) are small enough so that f (s) may be taken constant
over the interval s0 − δ < s < s0 + δ.

Following this, Dresdner et al. (1980) considered a theory which extracted the local
Stokeslet/dipole contributions due to both normal and tangential motions, allowing
an iterative approach to solving for the unknown force distribution f (s) from an initial
estimate obtained from RFT. The cell body was modelled as a sphere, using the well-
known representation of a Stokeslet–dipole–rotlet combination. The hydrodynamic
interactions of the head and tail, which occur due to the no-slip condition on the
head surface, were not taken into account, since in mammalian sperm the head
is sufficiently small so that this approximation is relatively accurate, provided that
interactions with plane surfaces do not also occur. This approach was used extensively
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by Katz and co-workers in the 1980s to investigate the forces, torques and power
consumption associated with sperm in a variety of physiological situations (see for
example Dresdner & Katz 1981; Baltz, Katz & Cone 1988; Drobnis et al. 1988).
More recently Fulford et al. (1998) used the technique to investigate small-amplitude
flagellar propulsion in a linear viscoelastic fluid. A similar approach adapted to
Stokes flow in the vicinity of a surface has been very successful for the modelling of
waveform emergence in cilia (Gueron & Liron 1992, 1993; Liron 2001) in the form
of the Lighthill–Gueron–Liron (LGL) theorem. The efficiency of the technique has
proved to be very useful for the modelling of the time-dependent problem of large
arrays of interacting cilia, beating due to the interaction of viscous forces and internal
mechanics.

A similar approach to SBT was developed by Johnson (1977), later developed to
include higher order singularities (Johnson 1980). This was applied in Johnson &
Brokaw (1979) to compare the forces calculated by SBT and RFT. This study proved
that RFT provides a good estimate for the force distribution for a headless flagellum
in the absence of nearby surfaces, even for finite-amplitude motions, provided that
ad hoc increases are made to both resistance coefficients. The presence of a cell body
however meant that a constant correction factor could not be used along the length
of the flagellum.

The first application of the direct surface-velocity collocation numerical solution
technique directly to SBT appears to be that of Liron & Mochon (1976), as reviewed
in detail in Smith et al. (2007). The slender body was divided into segments, their size
not depending upon the radius or geometry of the body, with the force taken constant
on each segment. This discretization led to a matrix equation, with entries comprising
Stokeslet integrals, which may be solved directly for the forces. In this early paper
the near-field Stokeslet integrals were not computed precisely, instead being estimated
from the ‘midpoint’ value of the Stokeslet on each discretization interval. Higdon
(1979a ,b) used accurate, analytically determined Stokeslet and dipole integrals on
each segment of the flagellum. An iterative solution approach was employed, but
direct solution may be employed equally well. There is a clear analogy between this
technique and the boundary integral method for Stokes flow, and indeed Lighthill
(1996b) explored in detail how the centreline Stokeslet distribution representation
can be derived from a surface Stokeslet distribution. Higdon (1979a, b) modelled
finite-amplitude flagellar motions in a way which is both accurate and, as we shall
exploit in this study, testable post hoc.

All of the above works modelled the cell body or sperm head as a sphere, with
combinations of Stokeslets, potential dipoles, rotlets and, in certain cases, the image
singularities of Blake (1971) and Oseen (1927; see also Higdon 1979a) being used
to represent the hydrodynamic effect of the head. The boundary integral method for
Stokes flow is a highly versatile technique, allowing the simulation of flows near,
or driven by, arbitrary-shaped boundaries such as a non-spherical cell body and
a non-planar and non-spherical nearby surface. The technique was first applied by
Phan-Thien, Tran-Cong & Ramia (1987) who used a double-layer formulation to
model a spheroid cell body propelled by a helical tail. They benchmarked their code
against the results of Higdon (1979b) and found excellent agreement.

Ramia, Tullock & Phan-Thien (1993) developed the technique further to simulate a
three-dimensional helical swimming micro-organism near a circular plate, developing
efficient computational methods for solving the time-dependent tracking problem that
occurs once the rotational symmetry of the problem is broken by the presence of
a boundary. They were able to show that helical swimming cells near a boundary
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have a small propulsive advantage but dissipate more power. Their simulation results
also replicated the ‘circling’ of a rolling cell which occurs when swimming near a
boundary through the use of their approximate tracking scheme. However they did
not address the question of boundary accumulation, and again their beat pattern and
cell body proportions were closer to those observed in sea urchin sperm and bacteria
than mammalian sperm.

As discussed above, a number of studies have focused on helical swimming micro-
organisms. This type of flagellar motility has rarely been reported for spermatozoa,
a notable exception being the images of Woolley & Vernon (2001), induced in sea
urchin sperm at high viscosity.

Ishijima, Oshio & Mohri (1986) suggested that human sperm cells exhibit ‘helicoid’
beating, which takes the form of a helix modified by a conical envelope, the cross-
section of the cone being flattened from a circle to an ellipse with minor:major axis
ratio of 0.2. Either of these forms would provide a rotational component which
would explain the rolling observed in motile sperm. It should also be noted that
Woolley (1977), investigating the three-dimensional nature of rodent sperm flagella,
argued against the possibility of helical or helix-like beating, arguing instead for a
‘twisted-planar-type’ of beating in these species.

One can show using the torque-balance analysis proposed by Chwang & Wu (1971)
that sperm of most mammalian species cannot perform ‘true’ helical beating, with
circular cross-section, at a frequency sufficient to give observed swimming velocities,
and indeed this was discussed by Gray: ‘The propulsive powers of three-dimensional
waves are limited to the extent to which the organism is restrained by external forces
from spinning about its own longitudinal axis’ (Gray 1953). A difficulty with the
pioneering boundary integral study by Phan-Thien et al. (1987) was that the cell sizes
used to model helically swimming bull sperm had larger volume than those of real
cells. The internal control mechanism for the production of planar, helicoid and other
forms of beating is an ongoing subject of enquiry (see for example Woolley & Vernon
2001; Brokaw 2002).

2.2. Computational fluid dynamics and fluid–structure interaction

In addition to the above studies which used the Newtonian Stokes flow approximation,
and which generally prescribe the form of the flagellar beat pattern, there has
been growing interest in techniques that allow the modelling of more complex fluid
properties such as viscoelasticity; interaction between the fluid, the elastic structure
of the flagellum, other nearby structures like boundaries or other cells; and the active
mechanism of bending. The waveform hence becomes an emergent property of the
coupled ‘fluid dynamics–rheology–structure–internal mechanics’ model. As reviewed
above, Fauci & McDonald (1995) pioneered this approach by applying the immersed
boundary method to a two-dimensional model of sperm motility near a boundary and
to two nearby sperm. More recent work has involved introducing a discrete viscoelastic
structure to the two-dimensional domain (Dillon et al. 2007) and combining the
immersed-boundary method with the regularized Stokeslet technique (Cortez 2001;
Cortez, Fauci & Medovikov 2005) for the modelling of three-dimensional beating.

2.3. Sperm cell morphology and inter-/intra-species heterogeneity

Human sperm cells exhibit heterogeneity of length, cell body (‘head’) size and
morphology and motility characteristics. Typical ranges for sperm cell morphology
and dimensions are given in Katz et al. (1986). In this study we shall take a ‘standard’
human sperm to have flagellar length 56 μm, including an 11 μm midpiece, flagellar
width 0.25 μm and head dimensions 4.5 × 2.8 × 1.1 μm. For the boundary element
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representation of the sperm head used in this study, the non-dimensional volume is
0.000037L3, where the length scale L = 56 μm.

For human sperm, the head volume relative to the flagellar length is approximately
50 times less than that of sperm of the sea urchin. Since the torque on a rotating body
scales with the volume – as can be estimated from, for example, the rotlet strength
due to a rotating sphere (Higdon 1979b) – the torque on a rolling human sperm
head will be approximately 50 times smaller than that on a rolling sea urchin sperm
head. As discussed above, correctly determining the size of the head and hence the
torque for the species under consideration is vital in modelling sperm of a specific
species.

3. A hybrid boundary integral/slender body model for sperm motility
3.1. Fluid mechanics

The simplest framework for modelling micro-organism motility which takes into
account hydrodynamic interaction of the head and flagellum was that used by
Higdon (1979a, b). The flagellum was represented by a line distribution of Stokeslets
and potential dipoles, discretized into segments with constant strengths f q for
q = 1, . . . , Nt . The cell body or head was modelled as a sphere, represented by a
Stokeslet, a dipole and a rotlet, moving with velocity U and angular velocity Ω . The
no-slip condition on the cell body was satisfied by using Oseen’s image system for a
point force (repeated in Higdon 1979a) near a spherical surface. The cell velocity and
angular velocity, in addition to the flagellum force distribution, form a set of Nt + 2
vector unknowns. Using the no-slip condition, the prescribed motion of the flagellum
with respect to the head at Nt collocation points was equated with the body frame
fluid velocity field resulting from the unknown force distribution. The conditions of
zero total force and torque were also applied, resulting in Nt + 2 vector equations.
The linear system was then solved iteratively to give the flagellar force distribution
and cell translational and angular velocities.

We shall extend this framework to model human sperm which have non-spherical
heads and generally accumulate near surfaces. A simple model which (a) includes
the drag and torque on a non-spherical head near a plane surface, (b) includes the
hydrodynamic effect of a non-spherical head on the tail and (c) satisfies the no-slip
condition on the cell body and the plane surface is a boundary-integral representation
of the head combined with a slender body representation of the tail. The latter is
capable of excellent accuracy and very high efficiency, the tail being represented
accurately with just 30–60 vector degrees of freedom for the force per unit length, f q

for q =1, . . . , Nt . In contrast to the study of Ramia et al. (1993) the no-slip boundary
is represented using the Stokeslet and image system for Stokes flow in a half-space
given in Blake (1971) which we denote as SHS(x, y). This will be used in both the
boundary integral representation of the head and the slender body representation of
the tail.

We shall use a single-layer boundary-integral representation for the head surface
∂H , with traction φ(Xh, t) for Xh ∈ ∂H . We use a slender body representation for
the tail, with force per unit length f (s, t), where s ∈ [0, 1] is scaled arclength. The
velocity field for points in the fluid x outside of, or on, the surface of the sperm is
given by

u(x, t) =

∫ ∫
∂H

S(x, Xh) · φ(Xh, t) dXh +

∫ 1

0

G(x, ξ (s∗, t)) · f (s∗, t) ds∗. (3.1)
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The tensor S denotes the appropriate point-force singularity for the domain under
consideration, either an infinite fluid or a fluid in the half-space above a plane no-
slip boundary x3 > 0. The tensor G denotes a force singularity and potential dipole
combination to improve the accuracy of the slender body representation. We discuss
the latter in more detail in § 3.4. To implement the single-layer boundary integral we
use the Fortran 77 programs given in the section prtcl 3d of BEMLIB, the software
which accompanies Pozrikidis (2002). The geometry of the body is represented by
quadratic triangles; the traction is discretized so that it takes a constant value φe

on each element ∂He. A 32-element mesh of a sphere is shown in figure 3(a), as
used in benchmarking results in § 3.5. A deformed spherical mesh, representing a
human sperm head with length 4.5 μm, width 2.8 μm and ‘thickness’ 1.1 μm is
shown in figure 3(b, c). This mesh was produced by modifying an ellipsoid to give
the characteristic shape of a human sperm head – with a wide but ‘sharp’ front
edge corresponding to the acrosome. Comparison with a refined 128-element mesh
is given in § 3.4, and excellent agreement is found, so the 32-element mesh is used
for all simulation results. The slender body representation we use was described in
Smith et al. (2007), which we briefly review in § 3.2. It involves discretizing the force
distribution as being piecewise constant, taking the value f q for (q −1)/N < s <q/N ,
where q = 1, . . . , Nt .

The point-force Stokeslet singularity for the i-component of the fluid velocity at x
resulting from a unit point force acting in the j -direction, located at y is

S∞
ij (x, y) =

1

8πμ

(
δij

r
+

rirj

r3

)
, (3.2)

where ri = xi − yi and r2 = r2
1 + r2

2 + r2
3 ; the symbol δij denotes the Kronecker tensor.

Note that this differs from the definition in Higdon (1979a) and Pozrikidis (2002) in
the leading factor 1/(8πμ). The Stokeslet and image system of Blake (1971) near a
no-slip surface x3 = 0 are

SHS
ij (x, y) =

1

8πμ

([
δij

r
+

rirj

r3

]
−

[
δij

R
+

RiRj

R3

]

+ 2y3(δjαδαk − δj3δ3k)
∂

∂Rk

[
y3Ri

R3
−

[
δi3

R
+

RiR3

R3

]])
. (3.3)

The image system is located at (y1, y2, −y3), so that R1 = r1, R2 = r2, R3 = x3 + y3 and
R2 = R2

1 +R2
2 +R2

3 . The summation convention is assumed, Latin indices taking values
1, 2, 3 and the index α taking values 1, 2 only. Finally, the infinite-domain potential
dipole, also a solution of the Stokes flow equations, is

Kij (x, y) = − 1

4π

∂

∂rj

[ ri

r3

]
=

1

4π

(
−δij

r3
+ 3

rirj

r5

)
. (3.4)

We use the infinite-domain potential dipole in all cases, since it is a higher order
singularity than the Stokeslet, decaying as O(1/r3) rather than O(1/r). The error
associated with using this in the domain x3 > 0 is therefore negligible, provided that
r3 � y3.

As in the work of, for example, Higdon (1979b), Dresdner & Katz (1981) and
Ramia et al. (1993) we shall prescribe the flagellar waveform. Suppressing the s and
t dependence, we define ξ ′ to be the flagellum centreline position in the ‘body frame’,
that is with respect to an origin and axes which translate and rotate with the head. In
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ξ′′ (s, t) ––
Flagellar
centreline
in the
body frame

(a)

s = 1

s = 0

ξ′′ (s, t)  –– Flagellar waveform

ξ(s, t)  –– Flagellar centreline
in the laboratory frameLaboratory frame

B1
X0

B2

(b)

Xt
θ
(s, t) ––

collocation point

a (s)
ξ (s, t)

Flagellar centreline

n̂ (s, t)

b̂ (s,t)

θ

Figure 2. (a) Schematic showing how specification of the flagellar waveform ξ ′′(s, t) relates
to the body frame flagellar centreline ξ ′(s, t) and how this relates to the laboratory frame
curve ξ (s, t). (b) Schematic showing the ‘curved ellipsoid’ representation for the flagellum and
how collocation points X t

θ (s, t) are specified on the circular cross-section about ξ (s, t) by the
azimuthal angle θ .

the laboratory frame, the body frame origin, equivalent to the head/tail junction, has
coordinate X0(t), and the body frame axes are given by the matrix B = [B1|B2|B3].
This is summarized in figure 2(a). As discussed in § A.1, for the Dresdner & Katz
(1981) beat pattern we first specify a waveform ξ ′′(s, t) and then perform translation
and rotation to give the body frame centreline ξ ′(s, t) satisfying (i) that ξ ′(0, t) is at
the body frame origin and (ii) that at s = 0 the flagellum is tangential to the body
frame x-axis.

The position of the flagellar centreline in the laboratory frame is given by

ξ = X0 + B · ξ ′
. (3.5)
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Figure 3. (a) The 32-element quadratic mesh for the spherical sperm head. This is generated
by the BEMLIB routine trgl octa with mesh parameter ndiv = 1. The right-hand apex of the
head is the location of the head–tail junction X0. (b) Top and (c) side views of the 32-element
quadratic mesh representing a human sperm head. This is generated by deforming a spherical
mesh produced by the BEMLIB routine trgl octa with mesh parameter ndiv = 1.

The body frame will translate and rotate with a priori unknown velocity U and
angular velocity Ω . Hence by rigid body mechanics, with respect to the laboratory,
the kinematic velocities of points on the head vkin(Xh) and tail vkin(ξ ) are respectively

vkin(Xh) = U + Ω ∧ (Xh − X0),

vkin(ξ ) = U + Ω ∧ (ξ − X0) + B · ξ̇
′
, (3.6)

the final term being the velocity of the flagellum centreline with respect to the body

frame, rotated into laboratory coordinates, and the dot in ξ̇
′
denoting time derivative.

The algorithm calculates the cell velocity U , angular velocity Ω , tractions φe and
forces per unit length f q , from the specification of the cell position X0, orientation

B, flagellum position ξ and flagellum velocity ξ̇ . In the equations that follow we shall
equate surface and fluid velocities with respect to the laboratory frame. We impose
these conditions at Nh and Nt collocation points on the head and tail respectively
and additionally apply force and torque balance over the head and tail.

Applying vkin(Xh) = u(Xh) and vkin(X t ) = u(X t ) to (3.1) we have

0 =

∫ ∫
∂H

S(Xh, Xh∗) · φ(Xh∗, t) dXh∗ +

∫ 1

0

G(Xh, ξ (s∗, t)) · f (s∗, t) ds∗

− U − Ω ∧ (Xh − X0) for Xh ∈ ∂H , (3.7)

B · ξ̇
′
(s, t) =

∫ ∫
∂H

S(X t
θ (s, t), Xh∗) · φ(Xh∗, t) dXh∗

+

∫ 1

0

G(X t
θ (s

∗, t), ξ (s∗, t)) · f (s∗, t) ds∗

− U − Ω ∧ (ξ (s, t) − X0) for 0 < s < 1. (3.8)

The symbol X t
θ (s, t) denotes a point chosen on the surface of the flagellum, which

will be displaced by the flagellum radius from the centreline point ξ (s, t), as shown
in figure 2(b). The choice of the azimuthal angle θ which specifies these points is
explained in § 3.2. To close the system, the force balance equation is

0 =

∫ ∫
∂H

φ(Xh∗, t) dXh∗ +

∫ 1

0

f (s∗, t) ds∗, (3.9)
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and the torque balance, taken with respect to the head–neck junction at X0, is

0 =

∫ ∫
∂H

(Xh∗ − X0) ∧ φ(Xh∗, t) dXh∗ +

∫ 1

0

(ξ (s∗, t) − X0) ∧ f (s∗, t) ds∗. (3.10)

Equations (3.7)–(3.10) are discretized as described above; the boundary integrals
are taken as described in Pozrikidis (2002) the slender body integrals are taken using
12 point Gauss–Legendre quadrature for each sub-interval. We then assemble a matrix
equation for 3Nh + 3Nt + 6 scalar variables. The boundary integral over an element
∂He evaluated at a collocation point Xh ∈ ∂He will be large but finite. Likewise
the integral over a flagellum centreline segment Iq evaluated at a collocation point
X t

θq
(sq, t) with sq ∈ Iq will also be large but finite, although in this case the point

of evaluation is displaced by a finite amount from the singularity location to the
flagellum surface.

In zero-Reynolds-number flow, swimming behaviour is directly affected by flagellar
kinematics and cell morphology only. Fluid viscosity μ enters the problem only
as a multiple of the forces and tractions and without loss of generality is taken
to be unity throughout this study – see § 5 for elaboration of the implications of
this.

3.2. Flagellar cross-sectional shape and the slender body collocation method

In order to form (3.8) we need to choose the surface collocation points X t
θi
(sq, t).

We define the vectors n̂(s, t) and b̂(s, t) to be the unit normal and binormal to the
flagellum centreline at s. The t dependence is suppressed in this section. For a curved
slender body with circular cross-section, the surface of the flagellum is given by

X t
θ (s) = ξ (s) + a(s)n̂(s) cos(θ) + a(s)b̂(s) sin(θ) for 0 <s < 1 and 0 <θ < 2π, where a(s)

is the radius at s.
If the function a(s) takes the constant value a0, the flagellar surface is a ‘curved

cylinder’, whereas if a(s) = a0s(1 − s), then the flagellar surface is a ‘curved ellipsoid’,
as discussed in Smith et al. (2007). Slender body theories since the work of Hancock
(1953), including those of Higdon (1979a) and Dresdner et al. (1980), have typically
used the ‘curved cylinder’ representation for the flagellum, which entails the use of the
potential-dipole distribution −(a2

0/4μ)Kjkf
n
k (s), where the normal component of the

force density is given by f n(s) = [ f (s)·n̂(s)]n̂(s). This correction reduces the magnitude

of the ‘azimuthal variation’ in the velocity field on ξ (s0)+a0n̂(s0) cos(θ)+a0 b̂(s0) sin(θ)
for fixed s0 as the azimuthal angle θ varies from 0 to 2π. A limitation of this
representation, as shown in Smith et al. (2007), is that the ‘end errors’ associated with
the slender body representation extend along a significant length of the flagellum.
The velocity field calculated on the surface of the curved cylinder exhibits spurious
variations between collocation points towards the ends of the body. Increasing the
number of collocation points does not solve this problem but rather introduces
spurious oscillations in the force distribution. Hence with this model, the choice of
the azimuthal position of the collocation points has a significant effect on both the
calculated force distribution f (s) and, when simulating cell migration, the trajectory
of the cell.

We instead employ the ‘curved ellipsoid’ representation given in Smith et al. (2007),
which was based on the work of Chwang & Wu (1975) and Johnson (1980) although
implemented differently. This representation reduces the spurious oscillations in the
calculated force distribution and the post hoc calculated fluid velocity between
collocation points. If the slender ellipsoid representing the flagellum has foci at
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s = 0 and s = 1, with singularities distributed between the foci, then the minor axis

is a0; the major axis is
√

a2
0 + 1/4; and the eccentricity e = 1/

√
4a2

0 + 1. Noting the
slightly different definitions of the Stokeslet and potentialdipole, equation (27a) of
Chwang & Wu (1975) suggests the following form for the slender body singularity
distribution:

Gjk(x, ξ (s)) := Sjk(x, ξ (s)) − a2
0

μ
s(1 − s)Kjk(x, ξ (s)). (3.11)

This differs from the formula used in Smith et al. (2007), due to a change in the
definition of Kjk , and also because the formula used in the previous study was
incorrect for the focal length as given – however the difference contributed an error
O(a4

0), which is negligible for the slenderness ratios considered.
The collocation points are then specified by the values θq for each X t

θq
(sq) = ξ (sq) +

a(sq)n̂(sq) cos(θq) + a(sq)b̂(sq) sin(θq), where q =1, . . . , Nt , as shown in figure 2(b).
When performing cell tracking, choosing θq =0 for all q , or choosing θq = π for all
q , introduces a small bias in the left and right directions respectively. Specifying
‘alternating’ collocation points so that θ2m = 0 and θ2m+1 = π for m =1, . . . , (Nt − 1)/2
greatly reduces bias, producing a value for the cell movement that is intermediate
between the results obtained by one-sided collocation.

3.3. Computational code

The algorithms were programmed in Fortran 90, and additionally Fortran 77 programs
from Pozrikidis (2002) were used. Computations were performed on the University of
Birmingham Blue BEAR Opteron cluster, using a single core per simulation. It took
approximately 5 hours of wall time to calculate 200 000 time steps, which generally
corresponded to 2000 flagellar beat cycles.

To verify the accuracy of the computer code, a number of tests were performed. The
force and torque balance algorithm for the slender body was verified by simulating
the falling rods problem of Russel et al. (1977). While a precise quantitative match
to their trajectories was not expected due to the differing implementations of SBT,
a qualitative match to the behaviours of ‘glancing’, ‘reversing’ and ‘colliding’ was
obtained for the same angles used in their study. The boundary integral code was
verified by examining convergence of the far-field velocity due to a translating sphere
near a boundary with the stresslet far field given by Blake & Chwang (1974). The
force on a unit sphere translating near a surface was compared with the asymptotic
theory of O’Neill & Stewartson (1967), giving agreement within 0.18 % for separation
0.1A and within 5.4 % for separation of 0.05A, where A is the sphere radius. In
this study we only consider separation distances that are at least 30 % of the head
thickness, so the latter error would not occur. Additionally, calculations of the head
and tail residuals were made, as described in § 3.6.

3.4. Cell translation and rotation

Tracking cell movement entails calculating the position vector X0(tn+1) and orientation
matrix B(tn+1), from X0(tn) and B(tn) at the previous time step. The boundary
integral/slender body algorithm uses X0(tn) and B(tn) together with the flagellar
kinematic data at time tn to calculate the cell velocity Un := U(tn) and angular
velocity Ωn := Ω(tn).

We calculate the new values of position and orientation, using a technique based on
the Heun second-order algorithm for the numerical solution of ordinary differential
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Figure 4. The beat cycle data of Dresdner & Katz (1981) with wavenumber k = 2π, divided
into 10 intervals, shown in the body frame. The frames are separated in the x direction for
clarity; this does not represent the motion of the sperm.

equations:

time step n, position X0(tn), axes B(tn);
calculate velocity Un and angular velocity Ωn from data at t = tn;
set X∗

0 = X0(tn) + (δt)Un;
set B∗ = R[(δt)Ωn] · B(tn);
calculate Un+1, Ωn+1 from X∗

0, B∗ and beat data at t = tn+1;
set X0(tn+1) = X0 + (δt/2)(Un + Un+1);
set B(tn+1) = R[(δt/2)(Ωn + Ωn+1)] · B(tn);

go to time step n + 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

To test this algorithm, we simulated swimming over a single beat cycle with 100 and
400 time steps per beat. We found that the cell translation distance agreed to within
0.08 %, confirming that the temporal discretization is not a significant source of
error.

We used the same test for the spatial discretization of the ‘human’ sperm head.
Comparing discretizations of 32 and 128 elements, achieved with the parameters
ndiv = 1 and ndiv = 2, we found that in the infinite domain the cell translation
result agreed within 0.04 % and initially 0.2L above a no-slip surface within
0.0025 %, confirming that the spatial discretization used is not a significant source of
error.

3.5. Swimming in an infinite domain: comparison with the results
of Dresdner & Katz (1981)

We first present results for comparison with those of Dresdner & Katz (1981), for
their ‘activated human sperm’ beating model, as depicted in figure 4 and described in
§ A.2. Their results were calculated using the model given in Dresdner et al. (1980),
which used the Hancock (1953) SBT, modified to be more efficient using the theorem
of Lighthill (1975). The essence of Lighthill’s theorem is that near-field singularity
contributions are integrated to give an RFT-type term, while far-field potential-dipole
terms are neglected, leaving only far-field Stokeslet integrals. The collocation issues
discussed above are circumvented by evaluating the fluid velocity on the centreline
rather than the flagellum surface.

In this study we shall not make these simplifications but rather solve the problem
using surface-velocity collocation directly. For comparison with the results of Dresdner
& Katz (1981), in this section we use the tail length scale of 45 μm, the beat frequency
14 Hz and a spherical head of radius 1.25 μm with the fluid assumed to be infinite.
The flagellum was represented by Nt = 60 degrees of freedom.

We find that using the ‘curved ellipsoid’ representation for the tail, with maximum
radius (0.25/45)L, over one beat period, the point X0 translates from (0, 0, 0) to
(−0.0564L, 0.0297L, 0.0000L). The cell positions at the beginning, middle and end of
a beat cycle are shown in figure 5. The calculated cell velocity is therefore 40.2 μm s−1.
This compares with the larger value of 43 μm s−1 given by Dresdner & Katz (1981).
The calculated velocity for our model is not heavily dependent on the choice of
collocation points.
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Figure 5. Sperm locations and flagellum shapes at the beginning, middle and end of one beat
cycle. The cell ‘yaws’ to one side and then returns having progressed forward slightly. The
simulation was performed with the ‘activated’ beating model of Dresdner & Katz (1981) and
the ‘human’ sperm head mesh.

For the cylindrical representation, varying the position of the collocation points
from θq = 0 to θq = π for all q results in a change in the prediction of swimming
speed of 19 %. With a Stokeslet-only representation, the variation being 67 % is even
more unacceptably large. For the ellipsoidal representation, the change in prediction
of swimming speed with change in choice of collocation points is 1.4 %, showing
that the ellipsoidal representation with associated dipole singularities is preferable
for robust cell tracking with the surface-velocity collocation approach. The main
differences between our present approach and the work of Dresdner & Katz (1981)
are (a) that the no-slip condition is now satisfied accurately on the sperm head and
(b) that the tail forces are calculated directly by surface-velocity collocation, rather
than by the iterative scheme described in Dresdner et al. (1980), allowing for greater
refinement in the discretization of the force distribution. In the remainder of the
paper we make the additional refinement of considering a physiologically shaped
sperm head.

3.6. Numerical residuals

To verify a posteriori the accuracy of each time step, we calculate the fluid velocity at
points on the surface of the head and flagellum and compare them to, respectively,
U + Ω ∧ (Xh − X0) and U + Ω ∧ (X t − X0) + ξ̇ , as discussed in Smith et al. (2007).
To quantify the accuracy on the head, we employ a scaled residual measure on each
element e, denoted re. The residual is given by the difference between the ‘kinematic
boundary velocity’ vkin(Xh) = U +Ω ∧ (Xh − X0) of the point Xh and the fluid velocity
calculated from (3.1) with x = Xh. The element residual function is then scaled with
respect to the maximum surface velocity on the element:

re(Xh) =
|vkin(Xh) − u(Xh)|
maxx∈∂He

|vkin(x)| . (3.13)

The element is parametrized as in Pozrikidis (2002) as 0 <ξ < 1 and 0 < η < ξ . In
what follows we use (x, y, z) coordinates instead of index notation (x1, x2, x3), and the
plane surface will be at z = 0. Figure 6 shows the residual on various representative
elements of the head mesh, for example, near the head/flagellum junction X0 and
at the front of the cell where the highest curvatures occur. Additionally, figure 6(f)
shows the residual on element 21, which is one of the 4 elements adjacent to the
no-slip boundary. The scaled residual on element 21 is less than 3 % for Z0 � 0.020L,
but for Z0 = 0.015L the error reaches 6 %.
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Figure 6. (a) Top view and (b) bottom view of the 32-element ‘human’ sperm head mesh,
showing the elements 1, 2, 5 and 21 used for residual testing. (c)–(f) The fluid velocity residual
on various elements, scaled with respect to the maximum velocity on the element, as defined
in (3.13). (c) The residual in the infinite domain on element 1. (d) The residual in the infinite
domain on element 2, one of the four elements adjacent to the head/neck junction. (e) The
residual in the infinite domain on element 5, one of the elements with the highest curvature.
(f) The residual when the mesh is close to a no-slip boundary, on element 21, which is one of
the elements adjacent to the boundary, where height Z0 = 0.025.

Figure 7 shows the calculated u1, u2 and u3 fluid velocity components on points
along the surface of the flagellum, alongside the ‘kinematic boundary condition’
components of vkin calculated from the flagellar movement and cell velocity and
translation. The fluid velocity varies smoothly between collocation points, except
for at the tip of the flagellum, beyond the final collocation point, over 1/120th
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Figure 7. Accuracy testing for the flagellum: comparison of the computed flagellar surface
fluid velocity components u(X t

θ =0(s)) and the ‘kinematic boundary condition’ surface velocity
components of vkin for the Dresdner & Katz (1981) flagellar beat and the 32-element ‘human’
head mesh. The tail was discretized with 60 constant-force intervals, and infinite domain
singularities were used.
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Figure 8. Accuracy testing for the flagellum: the azimuthal variation with θ in the magnitude
of the computed flagellar surface fluid velocity |u(X t

θ (s))|, scaled with respect to the maximum
velocity of any point on the flagellum; infinite domain singularities were used.

of the length of the flagellum. This very localized end error does not result in
high sensitivity of the calculated force distribution to variations in the choice of
collocation points except at the tip of the flagellum. This compares favourably with the
‘cylinder’ representation, as shown in Smith et al. (2007). Figure 8 shows |u(X t

θ (s)) −
u(X t

θ =0(s))|, scaled with respect to the maximum value of the speed along the
flagellum – the magnitude of the azimuthal variation of the flagellum surface velocity
field.
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4. Simulation study results
In the following sections, we use the hybrid boundary integral/slender body model

to investigate aspects of cell migration: the effect of head geometry and a nearby no-
slip boundary on cell progression, the surface accumulation phenomenon for planar
beating cells and finally the surface accumulation phenomenon for three-dimensional
beating cells.

4.1. The effect of head geometry and surface proximity on cell progression

It may be speculated that the flattened shape of the human sperm head allows for
more rapid progression through liquid. We simulated progression of cells over one
beat cycle, which have the same volume but are either spherical or ‘physiological’
shape. The physiological head allows more rapid movement for a given beat pattern,
by a factor of 2.8 %. The spatial convergence test for the head mesh discussed in § 3.4
demonstrates that this difference is not a numerical artefact. Analysing the resistance
matrix using the BEMLIB routine prtcl3d shows that the resistance to forward
motion of the physiological head is actually 2 % more than the spherical head, due
to the fact that its surface area is 30 % greater. The resistance to rotation of the
physiological head about the body frame z-axis is more than doubled compared with
the spherical head, which has the effect of decreasing yawing of the head, resulting in
increased overall forward progression.

The proximity of the no-slip surface has a negligible effect of less than 0.003 %
on progression at a distance of 2.0L, but at a distance of 0.2L, equivalent to
approximately 12 μm, the boundary results in approximately a 3.6 % increase in
swimming velocity compared with swimming in an infinite fluid for the ‘human’
mesh. Very similar results are observed with the ellipsoid representation for differing
choices of collocation points.

4.2. ‘Finite distance’ surface accumulation of a planar beating cell

The simulation model was used to simulate swimming of a cell initially parallel to,
and at height Z0 = 1.0L above, the plane boundary z = 0. The beat pattern used
was again that given by Dresdner & Katz (1981), with a range of values for the
wavenumber k. Figure 9 shows the trajectories of cells with k =2π, 3π and 4π. For
k = 2π, the parameter used by Dresdner & Katz (1981) to simulate ‘activated human
sperm’ swimming in semen, the cell turns away from the surface and escapes. For
k = 3π and k = 4π, the cell behaves differently: it turns towards the surface and then
away, performing a series of oscillations which converge to a stable swimming height
above the surface. Convergence happens more quickly for k = 4π, with the stable
swimming height being reached in approximately 80 body lengths.

Figure 10(a) shows the effect of wavenumbers from k = π to k = 4π on surface
accumulation behaviour. For k � 2π, the cell is predicted to escape. For k =2.1π,
2.2π, simulation results are inconclusive: over a period of 400 000 time steps the cell
exhibits oscillations which grow in size. It appears likely that the cell would escape, but
it is not possible to demonstrate this conclusively. For k = 2.3π, 2.4π the cell exhibits
converging oscillations, but a converged trajectory and hence stable value of Z0 was
not obtained in the simulation period of 400 000 time steps. For k � 2.5π the cell is
predicted to converge to a constant height Z0 that falls as k is increased. For a cell with
k = 3π the accumulation height would be Z0 = 0.31L, corresponding to approximately
17 μm for a human sperm cell. In the stable trajectory, the cell is found to be slightly
tilted away from the surface. Figure 10(b) shows the effect of wavenumber on this
angle. Cells with the smallest values of wavenumber for which accumulation occurs
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Figure 9. Simulation results for planar beating cells with wavenumbers k = 2π, 3π, 4π, initially
swimming parallel to a plane boundary, starting from z = 1.0L. (a),(c),(e) The trajectory of

X0, using the coordinates R = −
√

x2 + y2 and z, with z = 0 corresponding to the no-slip
boundary. Results for simulations consisting of 200 000 time steps of duration 1/100th of a
beat period. With a typical frequency value of 14 Hz this corresponds to total time duration
of approximately 140 s, the time step being 0.00071 s. (b),(d ),(f ) A top view of the flagellar
waveform, showing the variation due to wavenumber. (a) For k = 2π, after initially moving
slightly towards the boundary, the cell ecapes. (c) For k =3π, the cell performs a series of
oscillations towards and away from the boundary, with decreasing amplitude, giving eventual
convergence to a flat trajectory. (e) For k = 4π, a similar effect occurs, only the convergence is
more rapid, and the eventual separation is smaller.

exhibit the smallest inclination angles. Extrapolating from the values given in the
figure suggests that a wavenumber between 2.3π and 2.4π corresponds to an angle
of 0◦ – suggesting that these are indeed the minimal wavenumbers for which this
phenomenon may occur with the prescribed beat pattern.

4.3. ‘Elliptical helicoid’ flagellar beating and surface accumulation

As discussed in § A.3, it has been inferred from experimental observations that both
human and bull sperm typically execute an ‘elliptical helicoid’ flagellar beat. A simple
parameterized model of this type of beating is given in (A5) – a left-handed helix,
modified so that it has (i) linearly increasing amplitude starting from the head–tail
junction and (ii) elliptical cross-section with minor:major axis ratio of α3 : α2, which
we choose to be 1 : 5 based on the observations of Ishijima et al. (1992). Top, side
and front projections of this beat pattern are shown in figure 11(a–c); a montage of
swimming cell positions is given in figure 11(d) for initial height Z0 = 1.0L with the
sperm initially parallel to the surface.

The non-planar component of the flagellar beat results in rolling of the cell as it
swims due to torque balance. With the wavenumber k =3π we again predict gradual
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Figure 10. Surface accumulation for planar beating cells with varying wavenumber.
(a) Summary of the effect of wavenumber, expressed as a multiple of π, on accumulation
behaviour and eventual stable accumulation height, for a cell initially at z = 1.0L and parallel
to the surface. For k � 2π the cell escapes from the surface. (*) For k = 2.1π, 2.2π, cells
simulated for 400 000 time steps exhibit turns towards and away from the surface; however the
oscillations are of growing amplitude. (**) For k = 2.3π, 2.4π, cells simulated for 400 000 time
steps exhibit oscillations of decreasing amplitude, suggesting that an eventual stable height will
be reached. For k � 2.5π, cells are found to converge to a stable height above the surface. (b)
The effect of wavenumber, expressed as a multiple of π, on the stable inclination angle away
from the surface.

convergence of the swimming path over 2000 beat cycles, although the convergence
is not as rapid as the beat pattern used to produce figure 9. We also tested cells
with k = 2π and k = 4π and obtained similar results to the planar case – respectively
escape and accumulation (results not shown). Setting α3 = 0 so that the beat pattern
is planar, the surface accumulation behaviour still occurs. Swimming is not as rapid
in the rolling case, since rolling of the cell reduces the apparent wave speed in the
laboratory frame – as discussed by Gray (1953) and Chwang & Wu (1971).

4.4. ‘Elliptical helicoid’ beating and head movement

The present modelling framework allows the prediction of cell rolling behaviour
resulting from specifications of the flagellar beat, taking into account the important
effect of the head geometry, which influences the force and torque balance on the
cell. Figure 12 shows (a) a montage of cell positions at every half beat cycle and
(b) the head positions at the beginning, middle and end of a beat cycle. Viewed
from the front, the head rolls clockwise to counterbalance the torque exerted by
the anticlockwise-rotating flagellum. The head rolls in synchrony with the plane of
flattening of the flagellar beat due to the way the flagellar beat is specified, consistent
with the observations of Ishijima et al. (1992) and the fact that the flagellum does
not rotate with respect to the head in eukaryotic cells, in contrast to bacteria. The
trajectory of the point X0 is shown in figure 12(c). This shows that the rate of
rolling of the cell is not constant, as was the case for a cell with a pure helical beat
as considered by Higdon (1979b). The non-constant rolling rate occurs because the
non-planar component of the beat that generates the roll grows in amplitude as it
propagates along the tail. The result is two ‘loops’ per beat cycle, and this simple model
of three-dimensional movement produces qualitative similarities with the observations
of Woolley (2003) of the ‘flagelloid curve’ trajectory of a cell swimming against a
coverslip, as shown in figure 12(d, e).
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Figure 11. ‘Elliptical helicoid’ flagellar beat pattern, with amplitude parameter α2 = 0.2,
minor:major axis ratio α3/α2 = 0.2 and wavenumber k = 3π. The resulting surface accumulation
behaviour is also presented. (a–c) Top, side and front views of the flagellar waveform. (d)
Rolling motility due to the three-dimensional flagellar beat, viewed from the side with the
no-slip surface coinciding with the x-axis. (e) Long time scale trajectory of X0 for elliptical

helicoid swimming, plotted using the coordinates R = −
√

x2 + y2 and z. (f) Long time scale
trajectory for the corresponding planar beat pattern, equivalent to setting the aspect ratio to
be zero. Simulations were run for 2000 beat cycles, with time step 1/100th of a beat period,
starting parallel to the surface and at height z = 1.0L.

4.5. The effect of initial angle of inclination

Cells approach surfaces with an angle of inclination, and so we investigated the effect
of this on whether the cell will be trapped. For this we used the rolling motility
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Figure 12. Cell rolling due to the elliptical helicoid beat pattern with aspect ratio α3/α2 = 0.2,
amplitude α2 = 0.2 and wavenumber k = 3π. (a) Montage showing the cell position at every
half-beat cycle or every 50th time step. (b) Montage showing head rolling at time steps 1, 51
and 101, corresponding to one complete beat cycle. The helical tail beats in an anticlockwise
direction viewed from the front. By torque balance, the whole cell must rotate clockwise to
balance this. The head rolls clockwise approximately 240◦ in one beat cycle with the chosen
parameters. (c) This rolling is evident in the X0 trajectory plot, which shows a continuous
clockwise rotation of the cell, with a ‘looping’ behaviour caused by a higher rotation rate at
the middle and end of the beat cycle. (d) The looping behaviour over three beat cycles, which
shows remarkable qualitative similarity with (e) the looping behaviour of sperm observed by
Woolley (2003) swimming into a coverslip. D. M. Woolley (Reproduction 126, 264) copyright
the Society for Reproduction and Fertility 2003, Reproduced by Permission.

pattern described in the previous sections. Results are shown in figure 13. For angles
of 0◦–2◦ (figure 13a), the cell performs the oscillatory converging trajectory. For
angles of 4◦–6◦, the cell ‘rebounds’ from the surface and escapes (figure 13b, d ). For
angles of 8◦ or greater, the cell is predicted to collide with the surface, before which
point the current modelling framework is no longer valid (figure 13c, e).
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Figure 13. Simulation results for the elliptical helicoid beat pattern with different initial angles
of inclination towards the surface, for a cell with parameters α2 = 0.2, α3/α2 = 0.2 and k = 3π.
For initial angles of 0◦to 2◦, the cell converges to a constant height. For angles of 4◦ to 6◦,
the cell ‘rebounds’ from the surface and escapes. For angles of 8◦to 20◦, the simulation halts
because either the flagellum or the head collides with the surface. Example results are given for
(a) 2◦, (b) 6◦ (note the differing z scale) and (c) 10◦. (d) Montage of cell positions with initial
angle of attack 6◦. The cell approaches the surface closely and then escapes. (e) Montage of
cell positions with initial angle of attack 18◦. The cell aligns with the surface in the manner
suggested by Woolley (2003); however further simulation of this phenomenon is not possible
within the current framework.

We also carried out simulations for a planar beating cell with k =3π and an initial
angle of inclination to the surface (results not shown). The simulations also predicted
accumulation for initial angle of 2◦ and escape for initial angle of 4◦.

4.6. Simulations of cells swimming ‘against’ a surface

Figure 1 shows two possible models by which cells can swim ‘against’ surfaces. The
first holds that cells sweeping out a conical envelope, such as those swimming with
the elliptical helicoid beat pattern, may align so that one side of the cone is against
the surface, resulting in the propulsive force of the flagellum being directed into the
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Figure 14. Simulating the ‘hydrofoil’ model of Woolley (2003) for a planar beating cell with
the proportions of a human sperm and wavenumber k = 3π: example results with angle of
inclination between the head and the beat plane of 10◦ and initial height z = 0.05L. Simulations
were performed with 400 time steps per beat cycle; the cell is viewed from the side so that the
beat plane is not visible. The cell ‘lifts’ off the surface. (a) Montage of cell positions at time
steps 1, 1001 and 2001. (b) Trajectory of X0 over the first 9120 time steps.

surface. While the current modelling framework does not allow the simulation of
either the head or flagellum being in very close proximity to z = 0, it is possible to
test whether the initial stage of such a trajectory may occur. Figure 13(e) shows the
alignment of such a cell against a surface for initial angle of inclination of 18◦.

The second model, based on observations of mouse sperm, holds that if there is a
small angle of inclination between the beat plane and the plane of flattening of the
head, a cell may ‘glide’ along a surface, with the propulsive force of the flagellum
pushing the head towards the surface. This could result in the cell moving forward
while remaining a very small distance from z = 0. We tested whether this model could
apply to human sperm, by combining the human sperm head mesh with the Dresdner
& Katz (1981) planar beat, with k = 3π. Example results are shown in figure 14 for
an inclination angle of 10◦ and initial height Z0 = 0.05L. The cell quickly lifts off
the surface and escapes. We tested angles of up to 12◦ and found that the same
phenomenon occurs. Even for initial angle of inclination of 0◦, a cell starting at this
height is still deflected away sufficiently to escape. We repeated the simulations for
Z0 initially 0.03L and obtained similar results. Simulating a cell initially closer to the
surface is not possible within the current framework.

5. Discussion
We studied the fluid mechanics of human sperm swimming in a Newtonian viscous

fluid near a no-slip planar boundary, in order to explain and interpret the observations
of Rothschild (1963), Winet et al. (1984) and Woolley (2003). We formulated a hybrid
boundary integral/slender body model of a human sperm, with physiological head
size and proportions. We investigated four possible beat patterns: the planar ‘activated
human’ model proposed by Dresdner & Katz (1981), a simple model of an ‘elliptical
helicoid’ flagellar beat, the corresponding planar degenerate case and finally the
‘activated human’ beat pattern combined with a tilt angle between head and beat
plane.

Our simulation results predict that a planar beating model of human sperm
cell initially one body length away from and oriented parallel to a surface, with
sufficiently large wavenumber, is ‘steered’ by the surface to an equilibrium trajectory,
resulting in surface accumulation. The simulations suggest that the critical value of
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the wavenumber is approximately 2.2π, although simulation results were inconclusive
in the range 2.0π–2.4π. The cell initially performs an oscillatory motion with decaying
amplitude, which continues with the cell converging on an equilibrium height at which
it swims in a stable manner a small angle of inclination away from the surface. The
oscillations occur over relatively long distances, typically tens of body lengths, and
as such would occur over observation periods of tens of seconds. For a cell with
wavenumber k = 3π we predict that the equilibrium height is approximately 17 μm.
The equilibrium height is reduced as the wavenumber is increased, so that a cell
swimming with a wavenumber of k = 4π is predicted to swim at approximately 8.5 μm
from the surface, although the scaling is not linear. These results are consistent with
the observations of Winet et al. (1984) who reported the highest cell concentrations at
10–20 μm from the surface. Stable swimming occurs with a small angle of inclination
away from the surface of less than 0.5◦. The equilibrium inclination angle varies
with wavenumber and decays rapidly approaching the minimal values of k for which
accumulation occurs.

Cells swimming with lower wavenumbers are predicted to escape from the surface.
The mechanism by which this occurs is unclear, but we note that the extrapolated
inclination angle for cells at the minimal values of k for which accumulation occurs
is approximately zero, suggesting that the stable swimming configuration degenerates
below such values of k.

‘Finite distance’ surface trapping does not require specialized beating with
non-planar components to push the cell towards the surface. Additionally, cells
exhibiting rolling motility due to elliptical helicoid beating, as has been inferred
from observations of human sperm, exhibited similar accumulation behaviour. The
accumulation phenomenon was found to depend on initial angle of inclination. If
a cell approaches a surface from a distance of one body length and with a 4◦–6◦

angle of inclination, the cell will be deflected. Similar results were predicted for a
planar beating cell. We also found that rolling cells exhibited similar dependence on
wavenumber, with k =2π and k = 4π producing escape and accumulation respectively.

Such surface trapping is a relatively weak effect, which may be consistent with
the observations of Winet et al. (1984) and Rothschild (1963) that cells are found
in a ‘distribution’ of swimming heights rather than concentrated exclusively near
the surface. Variations in wavenumber between cells will lead to variations in
stable accumulation height, which may also be an important factor in producing
a distribution of heights. For larger angles of inclination, collision with the surface
is predicted to occur, and further simulation within the present framework is not
possible. The principle difficulties are that the residuals on the head are unacceptably
large as it approaches the surface, and the slender body theory model additionally will
break down as the condition r3 � y3 is violated. Nevertheless, our simulations suggest
that cells approaching with sufficiently steep angle may align with the ‘swept conical
envelope’ aligned against the surface, as suggested by Woolley (2003) for chinchilla
sperm.

We also investigated the possibility of cells with a small angle of inclination between
the head plane of flattening and the beat plane, ‘gliding’ along a surface at a small
distance, as reported in mouse sperm, within the context of the human sperm model.
Simulations with initial height of 0.03L–0.05L, equivalent to approximately 1.5–3 μm,
predicted that such cells were not able to glide in this manner, and indeed cells initially
close to a surface will turn away and escape, with or without there being inclination
between the head and beat plane. Further clarification of the fluid dynamics of such
gliding motion is necessary, and it is possible that features of the head geometry or
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subtle aspects of the flagellar beat in species such as the mouse may explain how
stable swimming can occur with the head in close proximity to the surface. As noted
by Woolley (2003), it is also likely that near the surface the flagellar beat would
be modified, which may prevent collision. It may also be that case that trapping
occurs after cells collide with the surface, which we cannot simulate with the present
framework.

Swimming at finite height so that the cell is not in contact with the surface,
but rather is guided to follow it, may have implications for cell function in certain
physiological situations. The variation in wavenumber that occurs with changes in
viscosity may hence also have an important effect on the swimming height of cells,
which may be relevant considering the effect of in vivo variations in viscosity along
the female reproductive tract and during the menstrual cycle.

The simulation model was also used to test the cell rolling and head trajectory
that would occur due to elliptical helicoid beating. The head is predicted to roll by
approximately 240◦ during one beat cycle and traces out a path which appears as
consisting of three ‘loops’ viewed from the front, much like that observed in the
slightly different situation of cells swimming against a coverslip by Woolley (2003).
Elliptical helicoid beating with a conical envelope results in a non-constant torque
exerted by the flagellum on the fluid during the flagellar beat. The flagellar torque,
which must be balanced by rolling of the entire cell, has two maxima during each
flagellar beat cycle, which causes two periods of high rolling rate, resulting in the
‘loops’ observed.

In a Newtonian model of flagellar propulsion with prescribed beat pattern and
frequency, viscosity does not have any effect on the swimming behaviour predicted.
It is known from experiments (see for example Ishijima et al. 1986) that viscosity
has important effects on beat pattern and frequency; therefore theoretical predictions
regarding swimming velocity and trajectory in different viscosity liquids must either
make use of beat pattern and frequency parameters that are appropriate to the liquid
in question or alternatively model the internal mechanics of the flagellum and the
fluid-structure interaction that modifies the flagellum movement (see for example
Dillon et al. 2007).

Our model does not include the effect of Brownian motion. For sperm cells, which
have length of approximately 50 μm, neither translational nor rotational Brownian
motion appears to be important in experiments (unpublished observations). However
for Rhodobacter sphaeroides, a bacterium with a micron-sized body and a flagellum
of less than 10 μm, Brownian fluctuations appear to govern cell reorientation during
the intermittent stops of its flagellum (Armitage & Macnab 1987). This suggests
that rotational Brownian motion may significantly perturb such small cells, which in
turn may destabilize the swimming trajectory if the sensitivity to angle of inclination
observed here is inherited by the helical flagellar motility of bacteria.

Surface accumulation of sperm is, as indicated by Woolley (2003), a complex
phenomenon which depends on flagellar beat pattern and possibly aspects of head
geometry. Our findings are summarized below.

(i) We predict that planar beating human sperm cells with planar waveform and
wavenumber k =3π perform ‘finite distance’ surface accumulation; that is they swim
stably at a distance of approximately 17 μm from a surface, with approximately 0.4◦

inclination towards the surface.
(ii) Specialized non-planar components of the beat pattern are not necessary for

this accumulation to occur, although cells performing non-planar ‘elliptical helicoid’
flagellar beating behave similarly.
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(iii) The attraction effect is relatively weak, so that cells initially one body length
away from the surface and with angle of inclination of up to 2◦ towards the surface
will be trapped; however cells swimming with steeper angles of inclination will be
deflected or will approach so closely that simulation will no longer be possible.

(iv) The flagellar wavenumber has a significant effect on the rate of convergence
of the trajectory and the eventual stable swimming height, with an increase from
k = 3π to k = 4π resulting in an approximate halving of the stable swimming height,
although the relationship is not linear.

(v) Sperm performing rolling motility with conical flagellar envelope and sufficient
angle of attack towards the surface may align in the manner reported in chinchilla
sperm.

(vi) We predict that human sperm would not be able to perform the ‘hydrofoil’
surface accumulation reported in mouse sperm for separation distances of 0.03–0.05
body lengths. Consideration of subtle features of the head and flagellum may be
required to explain the effect in murine cells.

6. Future work
The hybrid boundary integral/slender body model we have presented has provided

insight into the fluid mechanics of cell accumulation at and near surfaces. The model
has great potential for the exploration of other aspects of sperm motility, for example
the accurate calculation of forces and hence bending moments on the flagellum and
their variation due to beat pattern. The model may be adapted to investigate other
cell types including the sperm of other species, bacteria and a great many types
of cells which use flagella for motility or feeding (see for example Orme, Blake &
Otto 2001). The hybrid boundary integral/slender body framework further may be
invaluable in the modelling of systems in which flagella and cilia beat near non-planar
boundaries, for example the nodal cavity of the embryo (Smith et al. 2007; Smith,
Blake & Gaffney 2008).

At present we have only simulated one isolated cell near a surface. As discussed in
Lighthill (1996a), the velocity field around a free-swimming cell decays as a stresslet,
with O(1/r2). In the presence of a surface, which will induce a leading-order image
stresslet, this will become O(1/r3), implying that the hydrodynamic effect of a motile
cell close to a surface is relatively short-range. Nevertheless, in both the early stages
of in vivo migration and in laboratory tests, cells will occur in high concentrations –
for example in a wet preparation of undiluted semen, cells will be at such high
concentrations that apparent collisions and crossing of paths will occur frequently,
and in such situations hydrodynamic interactions will be important. Simulation of
multiple cells using the algorithm described in this paper would involve the solution
at each time step of linear problems with N =3(Nh +Nt +2)Ncells degrees of freedom.
For a single cell, the matrix set-up and solution are approximately equally expensive.
However, the cost of matrix set-up is proportional to N2, whereas solving linear
problems directly is proportional to N3, and so the use of efficient parallelized
iterative solvers may become necessary. However, the O(1/r3) screening effect would
mean that relatively few cells would have to be simulated in order to give insight
into the likely behaviour of a single cell in a highly concentrated suspension. It is
also likely that simplified models which preserve the essential propulsive/drag effect
of each cell, the slender body nature of the flagellum and the image systems in the
boundary may give useful insight into the fundamental mechanics of the accumulation
effect on individual and multiple cells.
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At present, we are working to quantify the three-dimensional beat pattern of
human sperm in the presence of a nearby surface. As indicated by Woolley (2003), it
is likely that the presence of the surface may suppress the three-dimensional nature
of the beat to some extent. As such data become available for human sperm, this
model will be used to understand the fluid mechanics of the resulting cell motion.
The swimming of sperm in viscoelastic liquids was considered in the initial study of
Fulford et al. (1998) on the effect of elasticity, subject to the assumption of small-
amplitude beating. Cervical mucus has been shown to be viscoelastic (Wolf et al.
1977), and extension of the slender body modelling technique to investigate linear
viscoelastic effects with finite amplitude beating will also be a subject for future
work.
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Appendix. The flagellar beat pattern
A.1. Mathematical framework

We discuss below the mathematical details of the specification of the flagellar beat
cycle. In Dresdner & Katz (1981), the flagellum is defined by a curve

ξ ′′
2 = y(ξ ′′

1 , t)
(
0 < ξ ′′

1 < ξmax
1

)
, (A1)

where ξmax
1 is determined by specifying a constant total flagellar arclength. The curve

ξ ′′(ξ ′′
1 ) = (ξ ′′

1 , ξ ′′
2 , 0) defines a planar wave. This must then be translated and rotated

to give the body frame position vector ξ ′(ξ ′
1) = (ξ ′

1, ξ
′
2, 0), which satisfies (a) ξ ′(0) = 0

and (b) that the tangent to ξ ′ at ξ ′
1 = 0 is (1, 0, 0). This corresponds to the flagellum

joining the head at the body frame origin, the flagellum being tangential to the head
centreline, as shown in figure 2(a). As described in the text, the laboratory frame
position vector of the flagellum is given by ξ = X0 + B · ξ ′.

In order to discretize the flagellum into collocation points at arclengths sq = (q −
0.5)/Nt (q = 1, . . . , Nt ) we follow Dresdner & Katz (1981) and consider the arclength
function

s(ξ ′′
1 , t) =

∫ ξ ′′
1

0

(
1 +

[
∂y

∂x
(x, t)

]2
)1/2

dx. (A2)

We invert this function by Newton’s method to calculate the position vectors of the
collocation points ξ ′′(sq, t), corresponding to fixed arclength values. Additionally we
distribute quadrature nodes equally along each sub-interval of the flagellum. Since
the flagellar patterns considered are periodic, the calculation is carried out for one
beat cycle, with t = 0, δt, . . . , T .
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A.2. Flagellar waveform of Dresdner & Katz (1981) with variable wavenumber

For planar beating sperm of various species and in various activation states, Dresdner
& Katz (1981) used the general parametrization

ξ ′′
2 = b(ξ ′′

1 ) sin

(
2π

[
ξ ′′
1

λ(ξ ′′
1 )

− f t

])
. (A3)

For human sperm in semen, the amplitude and wavelength were chosen as
b(ξ ′′

1 ) = 0.1087ξ ′′
1 + 0.0543 and λ(ξ ′′

1 ) = 1. In this paper we used the following form:

ξ ′′
2 = b(ξ ′′

1 ) sin(kξ ′′
1 − t), (A4)

where ξ ′′
1 , ξ ′′

2 are non-dimensional coordinates, scaled with respect to flagellar length;
k is angular wavenumber scaled with respect to the inverse of flagellar length; and
t is non-dimensional time, scaled so that t =2π represents one beat cycle. For the
original parameterization of Dresdner & Katz (1981), k = 2π, although in this study
we examined values of k from π to 4π. We calculate the velocity components of the
flagellum collocation points slightly differently from Dresdner & Katz (1981): we use
numerical centred differences to take the time derivatives of the points ξ ′(sq, t).

A.3. Elementary models of elliptical helicoid and planar sinusoid beating

Rikmenspoel (1965) and Ishijima et al. (1986, 1992) argued respectively that bull and
human sperm exhibit an ‘elliptical helicoid’ beat pattern, that is a beat pattern which
is a left-handed helix with elliptical cross-section. For human sperm, the major:minor
axis ratio was given by Ishijima et al. (1986) as 5 : 1. We formulate an elementary
model of this as follows:

ξ ′
2 = α2ξ

′
1 cos(kξ ′

1 − t), ξ ′
3 = −α3ξ

′
1 sin(kξ ′

1 − t), (A5)

where the amplitude parameters are chosen so that α3/α2 = 0.2, and we have non-
dimensionalized ξ ′

i and t as above. This beat pattern will cause cell rolling, as generally
observed in motile human sperm in low viscosity medium, which occurs because of
the torques associated with the rotating helicoid. We also formulate a corresponding
planar beat pattern by simply setting α3 = 0.
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