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This study investigates the nonlinear stability of hypersonic viscous flow over a sharp
slender cone with passive porous walls. The attached shock and effect of curvature are
taken into account. Asymptotic methods are used for large Reynolds number and large
Mach number to examine the viscous modes of instability (first Mack mode), which
may be described by a triple-deck structure. A weakly nonlinear stability analysis is
carried out allowing an equation for the amplitude of disturbances to be derived. The
coefficients of the terms in the amplitude equation are evaluated for axisymmetric and
non-axisymmetric disturbances. The stabilizing or destabilizing effect of nonlinearity
is found to depend on the cone radius. The presence of porous walls significantly
influences the effect of nonlinearity, and results for three types of porous wall (regular,
random and mesh microstructure) are compared.

Key words: compressible flows, compressible boundary layers, instability, nonlinear
instability, transition to turbulence

1. Introduction
The transition process from laminar to turbulent flow in hypersonic boundary layers

is associated with large changes in both heat transfer and skin friction drag. This
can have an impact on the lift and drag, stability and control and heat transfer
properties of the flight vehicle (Whitehead 1989; Malik 1990). For design purposes
of hypersonic vehicles, for instance in thermal protection systems, predicting the
location of transition becomes important (Reed et al. 1997). Controlling or delaying
the transition to maintain laminar flow over much of the flying surface can result
in lower drag, lower surface heat flux and higher fuel efficiency (Kimmel 2003).
Extensive experimental, numerical and theoretical studies have been carried out to
understand the transition process in a hypersonic boundary layer. As a result of these
studies, it is now widely accepted that transition to turbulence in hypersonic flows
over smooth bodies and with low levels of free-stream turbulence is associated with
amplification of the first and/or second Mack modes. The first Mack mode is the
high-speed counterpart of Tollmien–Schlichting waves, so is a viscous instability, with
modes located close to the boundary. The second Mack mode is an inviscid instability
driven by a region of supersonic mean flow relative to the disturbance phase velocity.
The second-mode instability has growth rates that exceed that of the first mode for
Mach numbers > 4 (on insulated surfaces). These first and second Mack modes
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correspond to the unstable perturbations occurring in the low-frequency band and the
high-frequency band, respectively. Fedorov & Tumin (2010) identified a slow (S) mode
and a fast (F) mode in the discrete spectrum of the stability analysis of high-speed
boundary layers. For relatively hot walls the first and second modes are associated
with growth of the slow mode, whereas for relatively cold walls the first mode is
associated with the slow mode but the second mode can be associated with the fast
mode. Experimental findings (Stetson et al. 1983; Fedorov et al. 2003a,b) reveal that
the first-mode instability occurs in a lower frequency band, 50–100 kHz, while the
second mode occurs around 70–150 kHz, and higher in hypersonic boundary layers
over a cone.

Several experimental studies have been conducted on conical models at hypersonic
speeds (Stetson et al. 1983; Kimmel, Demetriades & Donaldson 1996; Lachowicz,
Chokani & Wilkinson 1996; Germain & Hornung 1997; Bountin, Shiplyuk &
Sidorenko 2000; Schneider 2004). These experiments confirm the results of linear
stability theory (Mack 1984), namely existence of multiple unstable regions, and
the dominance of higher frequency second-mode instability. In addition to the
first- and second-mode disturbances identified by linear stability theory, subsequent
stability experiments (reviewed in Stetson 1988) observed disturbance growth at
higher frequencies, which were identified to be higher harmonics of the second-
mode disturbances. These were not observed until significant second-mode growth
had occurred. Stetson (1988) and Kimmel & Kendall (1991) attribute these findings
to nonlinear wave propagation. These early experimental studies are reviewed in
Stetson & Kimmel (1992). Nonlinear interactions involving the second mode were
observed by Kimmel & Kendall (1991), Chokani (1999) and Shiplyuk et al.
(2003). These investigations were conducted using bispectral analysis which involves
statistical analysis of the disturbance spectrum at various downstream locations.
Kimmel & Kendall (1991) and Chokani (1999) observed that harmonic resonance
was the dominant nonlinear interaction, while Shiplyuk et al. (2003) observed
that subharmonic resonance was the primary nonlinear interaction. Kimmel &
Kendall (1991) and Chokani (1999) measured naturally occurring disturbances while
Shiplyuk et al. (2003) made measurements using artificial excitation of controlled
disturbances. Investigations by Chokani (2005) on natural disturbances in a ‘quiet’
wind tunnel identified sum and difference interactions of the second Mack mode.
These interactions led to the generation of the first and second harmonic of the second
Mack mode. Further investigations following Shiplyuk et al. (2003) have been reported
in Bountin, Shiplyuk & Maslov (2008) and Maslov, Poplavskaya & Bountin (2010).
They observed nonlinear interaction of second-mode waves with disturbances whose
frequencies lie in the first-mode frequency range.

Further insight into the transition process beyond frequency interactions can be
obtained from studies performing direct numerical simulations (DNS) of the complete
Navier–Stokes equations. The spatial DNS study of Bestek & Eissler (1996) at Mach
4.8 was able to confirm the existence of multiple Mack modes. The presence of two
further types of secondary instabilities, namely oblique breakdown and fundamental
(K-type) breakdown, was observed in the simulations of Husmeier & Fasel (2007).
These studies matched the experimental conditions of Stetson & Kimmel (1992). The
simulations of Koevary et al. (2010) and Laible & Fasel (2011) provide further
proof of the relevance of these two transition scenarios in hypersonic boundary
layers. Evidence of the oblique transition scenario in hypersonic boundary layers
was also provided by the simulations of Pruett & Chang (1995) corresponding to the
experiments of Stetson et al. (1983). The state of the art in DNS studies on hypersonic
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boundary layer stability and transition is given in Zhong & Wang (2012). Much of the
current knowledge of the physical mechanisms of hypersonic boundary layer stability
and transition, including transition control strategies, is reviewed in Fedorov (2011).

Despite these studies, the physical mechanism of nonlinear breakdown of laminar
hypersonic boundary layers is still not completely understood. There is still no
consensus on the dominant mechanisms for the breakdown in high-speed flows. The
second Mack mode is however thought to be dominant in these nonlinear processes
and much scientific attention has been devoted to damping this instability.

Recent experiments reported in Fedorov et al. (2001, 2003a,b, 2006) have shown
that porous coatings greatly stabilize the second Mack mode of the hypersonic
boundary layer on sharp slender cones. The effect of the porous coating is to
reduce the growth rates of the second mode to a level where they are comparable
with those of the first Mack mode. In addition, the first mode is observed to be
slightly destabilized by the presence of the porous coating. Numerical investigations
of Wang & Zhong (2009, 2010, 2011a,b) for Mach 6 flow over a flat plate also
showed that different types of porous coatings destabilized mode S in Mack’s first-
mode region concurrent with second-mode stabilization. This was also observed in the
two-dimensional DNS of Egorov, Fedorov & Soudakov (2008).

Nonlinear aspects of hypersonic flow over porous coatings on a sharp cone are
reported in Chokani et al. (2005) and Bountin et al. (2010) who investigated the
nonlinear interaction of artificially excited second-mode disturbances using bispectral
analysis. On a solid surface, disturbance amplitude spectra revealed that the second-
mode amplitude increased downstream and was always larger than the amplitude
of the first mode at a given station. On the porous surface, the amplitude of the
second mode was much smaller at all stations and showed only a small change in
its amplitude in the downstream direction. However, in contrast to the solid surface,
at a particular location on the porous surface, the amplitude of the first mode was
larger than that of the second mode. Bispectral measurements show that subharmonic
and harmonic resonance of the second mode are observed on the solid surface
and are significantly modified on the porous surface. Harmonic resonance which is
dominant on the solid surface was completely absent on the porous surface. These
studies also observed subharmonic resonance of the first mode on porous surfaces
that was not present on the solid surface. Nonlinear interaction between vortex (first-
mode) waves and filling of the low-frequency vortex-mode spectrum in the presence
of porous walls have also been found by the theoretical analysis of Gaponov &
Terekhova (2009). They used a nonlinear interaction model in three-wave resonance
systems for compressible flat-plate boundary layers. Gaponov et al. (2010) investigated
experimentally and theoretically the influence of porous coatings on the stability and
transition of a supersonic (Mach 2) boundary layer over a flat plate. They found
that the use of a porous coating destabilizes the disturbances in supersonic boundary
layers (oblique first-mode type) and accelerates boundary-layer transition. Transition of
a Mach 6 boundary layer over a flat plate with porous coating was also investigated by
three-dimensional temporal DNS of De Tullio & Sandham (2010). Their calculations
revealed that an oblique first-mode wave is the most amplified mode in the presence
of the porous surface. This wave is slightly destabilized by the porous coating. With
the oblique first mode excited, the flow becomes turbulent due to nonlinear interactions
without the need for secondary instabilities (as is the case over solid surfaces).

In the light of these results, a detailed theoretical investigation of the stability
of Mack’s first-mode disturbances for flow over a sharp slender cone is undertaken.
Three different types of porous walls are modelled using the formulation developed
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by Fedorov et al. (2003b) and Kozlov, Fedorov & Malmuth (2005). These porous-wall
models are characterized by an admittance which is a function of the disturbance
frequency and depends on the physical properties of the flow and the porous layer.
The focus of this paper is the effect of these types of porous walls on the nonlinear
stability of the first Mack mode. In this theoretical and asymptotic investigation for
large Mach number and large Reynolds number, the scales used are appropriate to
the first Mack mode instability which is governed by a triple-deck structure (Neiland
1969; Stewartson & Williams 1969). The effects of curvature and the attached shock
are taken into account. Curvature effects are important as the local radius at the
point of interest is larger than the boundary-layer thickness. The stability analysis of
Duck & Hall (1989, 1990) for supersonic flow over axisymmetric bodies shows that
neutral curves bear no resemblance to those in the absence of curvature. Significant
differences between the stability of hypersonic planar and conical boundary layers
were also elucidated by the experiments of Stetson et al. (1991). The influence of an
attached shock on the growth rates of Tollmien–Schlichting waves was demonstrated
by Cowley & Hall (1990) and Chang, Malik & Hussaini (1990). A significant result
is that the presence of a shock gives rise to an infinite number of unstable modes.
Numerical studies by Stilla (1994), Stuckert & Reed (1994) and Leung & Emanuel
(1995) also conclude that the effect of the shock must be taken into account. The first
theoretical investigation taking into account effects of both the shock and curvature
was undertaken by Seddougui & Bassom (1997). Their study concluded that when
the attached shock is taken into account, the effect of curvature is significant. Modes
which exist in the absence of a shock were now totally destroyed. Multiple modes are
possible as in the planar case. However, in contrast to the planar case, the influence
of shock is always there. Stephen & Michael (2010a,b) extended the linear stability
study of Seddougui & Bassom (1997) by considering the porous wall. Comprehensive
accounts of these results in flow regimes relevant to experimental conditions are
presented in Michael (2012) and Stephen & Michael (2012), including the effect of the
porous-wall parameters on spatial growth rates.

As a first theoretical investigation into the effects of nonlinearity taking into account
the attached shock, Stephen (2006) extended the study of Seddougui & Bassom (1997)
into the weakly nonlinear regime. The current paper presents the first theoretical
investigation into the effect of passive porous walls on the nonlinear stability of
Mack’s first-mode disturbances that includes the effect of attached shock and curvature.
We extend the analysis of Stephen (2006) to include the effects of various porous-wall
models and present results in flow regimes relevant to typical experimental conditions.
Stephen (2006) used incorrect values to evaluate one of the nonlinear coefficients. This
paper presents corrected results for the solid-wall problem and compares them with
those obtained considering the porous wall. The plan of the paper is as follows. In
§ 2 the problem of hypersonic flow over a sharp cone is formulated. The ranges of
validity of the subsequent analysis appropriate to viscous modes are stated here. The
porous-wall models and triple-deck structure for non-axisymmetric and axisymmetric
disturbances are also given here. A weakly nonlinear analysis of the governing
equations is presented in § 3. The outcome of the analysis is that an equation for the
amplitude of disturbances is obtained. The values of the coefficients in this equation
are significant and are evaluated in § 4 with the results being discussed in § 5.
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FIGURE 1. Geometry of the cone and shock.

2. Formulation
We will examine the stability of hypersonic flow over a cone with porous walls

taking into account the attached shock and curvature. The stability of the basic flow is
investigated in a weak interaction region following the triple-deck formulation in § 2.3.
Here weak interaction is defined by the parameter χ = M∞Re−1/6 � 1 (Stewartson
1964; Brown et al. 1991), where M∞ and Re are the Mach number and Reynolds
number in the free stream respectively. This implies that we are considering a location
far enough from the nose of the cone to ensure that viscous–inviscid interaction
between the boundary layer and inviscid flow is small (Stewartson 1964).

2.1. Basic flow

The flow of a compressible viscous gas over a sharp cone with a porous boundary, of
semi-angle θc, is considered at hypersonic speed U0 aligned with the cone axis. The
attached shock makes an angle θs with the cone surface. The situation is illustrated in
figure 1. The dashed lines in this figure indicate the triple-deck structure of the flow,
details of which are given in § 2.3. Spherical polar coordinates (x, θ, φ) are used to
describe the basic flow. Here φ denotes the azimuthal angle. The radial distance x has
been non-dimensionalized with respect to L∗, the distance from the tip of the cone to
the location under consideration. Away from the surface of the cone, viscous effects
are neglected and the fluid velocities, pressure and density satisfy the conservation-
of-mass, Euler and energy equations. The velocities are non-dimensionalized with
respect to U−, the magnitude of fluid velocity just behind the shock. The time,
pressure and density are non-dimensionalized with respect to L∗/U−, ρ−U2

−, and ρ−,
respectively, with ρ− being the density behind the shock. Finally the temperature is
non-dimensionalized with respect to T−, the temperature just behind the shock.

The inviscid axisymmetric flow between the cone surface and the conical shock
depends only on the polar angle θ . The jump conditions at the shock must
be considered and the velocity components may be obtained from the numerical
solution of the Taylor–Maccoll equations (Taylor & Maccoll 1933). A constant-
density approximation can be made as a lower-order approximation to the exact
Taylor–Maccoll equations in the hypersonic limit (M∞ →∞). For slender cones
(θc → 0), this approximation agrees well with the exact solution (see Rasmussen
1994, chap. 3.4). This hypersonic small-disturbance approximation to the basic flow
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gives an approximate value of the shock angle as

sin σ = sin θc

(
γ + 1

2
+ 1

M2∞sin2θc

)1/2

, (2.1)

where σ = θs+ θc and γ is the specific heat ratio of air. Note that the term M∞ sin θc is
O(1). Thus, the shock angle may be calculated for a fixed cone angle and free-stream
Mach number. A rough indication of the results is that θs ≈ θc. This is consistent with
the ensuing local analysis since we take the thickness of the upper deck (where the
shock is located) to be comparable with the radius of the cone (§ 2.3). Thus, the effect
of the shock should not be neglected.

So taking the ratio of gas densities just ahead of the shock and just behind to be
small we use the steady constant-density solution of Hayes & Probstein (1966) which
has the advantage of analytical expressions for the velocity components and pressure.
A complete description of the basic flow solution and its validity is given in Seddougui
& Bassom (1997) and Michael (2012).

These inviscid solutions are not valid close to the surface of the cone, so
we introduce a boundary layer in this region. For our analysis we define the
Reynolds number as Re = ρ−U−L∗/µ− and take it to be large. We take θc to be
small to correspond to recent experiments. The flow between the shock and cone
satisfies the conservation-of-mass, Navier–Stokes and energy equations in terms of
non-dimensional coordinates (x, r, φ) and Mach number M, just behind the shock;
x and φ are as defined previously and L∗r is the normal direction to the cone
surface where r = a on the cone generatrix. The corresponding non-dimensional
flow velocities, pressure and density are (u, v,w), p and ρ respectively. The non-
dimensional temperature and viscosity on the cone surface are respectively denoted
by Tw and µw. The boundary conditions imposed are no-slip (coupled to the porous
layer) at the cone surface and jump conditions at the shock. Following Seddougui &
Bassom (1997) the only restriction imposed on the temperature boundary condition is
Tw� 1, which is violated only for situations involving strong cooling on the cone wall.
Usually the wall temperature is taken to be Tw = TbTr, where Tr is the adiabatic wall
temperature given by Tr = 1+√PrM2 (γ − 1) /2 where Pr is the Prandtl number. Thus
unless the constant Tb is very small, Tw will be of O((γ − 1)M2) for both adiabatic
walls (Tb = 1) and isothermal walls. The analysis is unaffected by the particular
choice of temperature–viscosity law. The choice only affects the bounds placed on
various parameters of the problem. Sutherland’s viscosity law (µw ∼ (1 + C)T1/2

w , C
being a constant) is used henceforth. The conditions to be satisfied at the shock by
a disturbance to the basic flow are derived in detail by Seddougui (1994). Cowley
& Hall (1990) showed for the inclined shock over a wedge, with the appropriate
scales for the pressure perturbation (as acoustic waves), that the leading-order pressure
perturbations were zero at the shock. The corresponding analysis for the cone by
Seddougui (1994) shows the same result, although the flow between the shock and the
cone is not uniform.

2.2. Porous boundary
We will present results corresponding to three different porous surfaces used in
previous experimental investigations (Fedorov et al. 2003b; Maslov 2003; Lukashevich
et al. 2010). In all cases the porous layer admittance Ay can be expressed in the form

Ay =−(φ0/Z0) tanh(Λh0), (2.2)
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where φ0 is the porosity, h0 is the non-dimensional thickness and Z0 and Λ are the
characteristic impedance and propagation constant of an isolated pore, respectively. For
non-dimensionalization of the porous-layer parameters the reference length is chosen
as the boundary-layer displacement thickness δ∗ and the reference time scale as δ∗/U−
to be consistent with published studies. In the formulation dimensional quantities are
denoted with an asterisk.

Fedorov et al. (2006) give the following expressions for the porous-layer
characteristics:

Z0 =
√
ρD/CD

M
√

Tw
and Λ= iωM√

Tw

√
ρDCD, (2.3)

where ω is the frequency of disturbance propagation in the pore. These are functions
of the complex dynamic density ρD and complex dynamic compressibility CD. The
precise definitions of these quantities depends on the structure of the porous wall and
are given below for the cases investigated here. The wall boundary condition, in all
cases, is then given by

v = Ay (p− p−) , (2.4)

where v and p are the non-dimensional wall-normal velocity component and pressure
respectively and p− = γ −1M−2.

2.2.1. Regular microstructure
Following Fedorov et al. (2001, 2006) we consider the porous layer on the cone

surface to be a sheet of thickness h∗ perforated with cylindrical blind holes of radius
r∗p and equal spacing s∗ = r∗p

√
π/φ0. This model takes into account gas rarefaction

effects. We have

ρD = 1
1− F(Bν, ζ )

, CD = 1+ (γ − 1)F(BE, ζ̃ ),

F(B, ζ )= G(ζ )

1− 0.5Bζ 2G(ζ )
,

 (2.5)

where

Bν = (2α−1
ν − 1)Kn, BE =

[
2
γ (2α−1

E − 1)
(γ + 1)Pr

]
Kn, G(ζ )= 2J1(ζ )

ζ J0(ζ )
, (2.6)

with ζ = rp
√

iωρwR/µw and ζ̃ = ζPr . Here J0,1 are Bessel functions of the first kind,
αν and αE are molecular accommodation coefficients, Kn is the Knudsen number and
R is the Reynolds number based on the boundary-layer displacement thickness of the
gas flow.

2.2.2. Mesh microstructure
Following Lukashevich et al. (2010) we consider the porous coating on the cone

surface to comprise several layers of stainless-steel wire mesh of half-pore width
ã∗ as shown in figure 3 of their paper. A similar model to the one described in
§ 2.2.1 for a regular microstructure is employed. Following Kozlov et al. (2005) we
have different expressions for the complex dynamic density and compressibility. Hence
we can obtain the following expressions for the porous-layer characteristics for a
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square-mesh microstructure:

ρD = 1/(1− F(βm, ζ )), CD = 1+ (γ − 1)F(β̃m, ζ̃ ),

F(βm, ζ )= 1+ ζ 2
∞∑

m=0

[
2

γ 2
mβ

2
m

(
1− tanh(βm)

βm

)]
,

 (2.7)

where

γm = π
(
m+ 1

2

)
, βm =

√
γ 2

m − ζ 2, β̃m =
√
γ 2

m − ζ̃ 2, (2.8)

with ζ = ã
√

iωρwR/µw. Following Lukashevich et al. (2010) gas rarefaction effects are
neglected in this model.

2.2.3. Random microstructure
Following Fedorov et al. (2003b) we consider the porous layer on the cone surface

to have a random microstructure of felt metal fibres of diameter d∗. A similar model to
the one used for the regular microstructure is employed. We have different expressions
for the complex dynamic density and compressibility. Fedorov et al. (2003b) give the
following expressions for the porous-layer characteristics for flow over a felt metal
microstructure:

ρD = a∞

(
1+ g(λ1)

λ1

)
, CD = γ − γ − 1

1+ g(λ2)

λ2

,

g(λi)=
√

1+ 4a∞µ∗wλi

σ ∗φ0r∗2p

, λ1 = ia∞ρ∗wω
∗

φ0σ ∗
, λ2 = 4Prλ1,

 (2.9)

where the characteristic pore size is calculated as

r∗p =
πd∗

(1− φ0)(2− φ0)
. (2.10)

Here µ∗w, ρ∗w, and ω∗ are dimensional wall viscosity, wall density and frequency
respectively and σ ∗ is the flow resistivity whose value is chosen to fit the experimental
data for flow over the felt metal. The tortuosity a∞ is taken to be unity. Following
Fedorov et al. (2003b) gas rarefaction effects are neglected.

2.3. Triple-deck structure
The stability of the basic flow to Tollmien–Schlichting (first-mode) waves for Re� 1
and M � 1 is governed by a triple-deck structure. This formulation was used by
Cowley & Hall (1990) for flow over a wedge and by Duck & Hall (1989, 1990)
for flow over cylindrical bodies. The details of the structure are only summarized
here, as it exactly follows the work by Seddougui & Bassom (1997) and Stephen
(2006) for flow over a cone with a solid wall. It was shown by Smith (1989)
that an asymptotic description of Tollmien–Schlichting waves can be obtained for
wave directions sufficiently oblique to lie outside the local wave-Mach-cone direction
(tan θ >

√
M2∞ − 1), where M∞ is the free-stream Mach number. In the limit of

large Mach number, Smith (1989) derived the frequencies and the x- and φ-direction
wavelengths of the most rapidly growing waves. These fix the time and length scales
of the first-mode disturbances. To adopt the classical triple-deck formulation, we argue
that at large Reynolds numbers, the normal direction variation of our disturbances
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exhibits three main scales: lower deck which is the viscous sublayer, the main deck
which is the main boundary layer and the upper deck containing potential flow. We
exclude non-parallel effects by requiring the wavelength of the disturbance to be much
less than the distance from the cone apex. Cowley & Hall (1990) showed the required
restriction to be γ − 1� 1, called the ‘Newtonian assumption’. Note that here we also
have (γ − 1)M2 � 1. We can study how the growth rates of the oblique first-mode
disturbances are modified by the presence of a shock as the shock lies in the upper
deck. For a fixed free-stream Mach number and cone angle, as shown earlier, θs ≈ θc.
This makes the thickness of the upper deck (where the shock is located) comparable
with the radius of the cone, allowing us to capture the effects of the shock. Pressure
disturbances that develop in the lower deck generate a velocity perturbation normal to
the cone (and shock) in the upper deck. In order that the linearized shock condition
remains applicable we require the undisturbed velocity normal to the shock (from the
inviscid flow solution) to be larger than this generated velocity perturbation. Cowley
& Hall (1990) have shown that to satisfy all these conditions, we need to impose
restrictions on the magnitudes of Mach number M and angle σ = θc + θs arising from
the inviscid flow solution. The actual scaling is dependent on the choice of viscosity
law. For Sutherland’s viscosity law we have

Re1/9�M� Re7/37, Re−1/9� σ � Re−1/37. (2.11)

For a typical wind tunnel experiment conducted on 0.5 m long 7◦ half-angle cone
models at a free-stream Mach number M∞ ≈ 6 and unit Reynolds numbers Re1 ≈ 107,
(2.11) requires that the shock angle σ be bounded as 12.3◦ < σ < 39.4◦ and that the
Mach number behind the shock be bounded as 4.64 < M < 13.7. Recall that θs ≈ θc,
so σ ≈ 2θc. We can thus expect the asymptotic analysis to capture physically realistic
hypersonic flow regimes. Equation (2.11) also ensures that the lower-deck problem is
nonlinear. If the lower deck is forced to remain linear then the upper bound on σ
relaxes to σ � Re−1/107. The lower bound is attained when the non-parallel assumption
is violated.

We now restrict our attention to a location along the cone surface where the non-
dimensional radius a∼ Re−3/8M−1/4µ3/8

w T9/8
w . This restriction ensures that the boundary-

layer thickness, O(Re−1/2L∗), is small compared to the cone radius allowing the
subsequent analysis to capture the effects of curvature on the stability problem. For
smaller values of radius, a, the problem reduces to that of the planar case (flow over
a wedge). The values of a will be chosen to correspond to prior studies (see § 4). The
angle of the cone and the flow parameters from these studies enable the corresponding
value of a to be obtained. It is convenient to scale out parameters such as Tw and µw

as shown by Cowley & Hall (1990) to simplify the analysis. Thus, the following scales
are introduced:

x = 1+ Re−3/8µ3/8
w T9/8

w M3/4X, (2.12a)

a= Re−3/8µ3/8
w T9/8

w M−1/4a, (2.12b)

t = Re−1/4µ1/4
w T3/4

w M1/2τ. (2.12c)

These scales are fixed throughout the triple-deck structure.

2.3.1. Lower deck
The lower deck is the region in which viscous effects are important. The

nonlinearity of the problem appears here. The scalings here take the form

r − a= Re−5/8µ5/8
w T7/8

w M1/4Y, (2.13a)
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u∼ Re−1/8µ1/8
w T3/8

w M1/4U, (2.13b)

v ∼ Re−3/8µ3/8
w T1/8

w M−1/4V, (2.13c)

w∼ Re−1/8µ1/8
w T3/8

w M−3/4W, (2.13d)

Ay ∼ Re−1/8µ1/8
w T3/8

w M5/4Ay, (2.13e)

p∼ γ −1M−2 + Re−1/4µ1/4
w T−1/4

w M−3/2P, (2.13f )
T ∼ Tw, (2.13g)

ρ ∼ T−1
w . (2.13h)

Substituting these expressions into the non-dimensional continuity and Navier–Stokes
equations gives to leading order

UX + VY + 1
a

Wφ = 0, (2.14a)

Uτ + UUX + VUY + W

a
Uφ = UYY, (2.14b)

Wτ + UWX + VWY + W

a
Wφ =−1

a
Pφ +WYY . (2.14c)

In the hypersonic limit (M→∞) the term PX does not appear at leading order. The
conditions to be satisfied on the surface of the cone are no-slip (coupled to the porous
boundary). In addition, the solution here must match with the main deck in the limit
Y→∞. Thus the necessary boundary conditions to be satisfied are

U =W = 0 and V = AyP on Y = 0, (2.15a)

U→ λ(Y + A(X, φ, τ )), W→ D/Y as Y→∞. (2.15b)

Here A is a displacement function whose evolution will be obtained from the nonlinear
stability analysis and D satisfies the equation DX = −Pφ/a. λ is the boundary-layer
skin friction from the undisturbed middle-deck solution.

2.3.2. Middle deck
The middle deck has the same thickness as the undisturbed boundary layer. Since

Tw � 1 for M � 1, there exists a thin transition region in which T is quickly
reduced to its free-stream value of unity. Thus the middle deck consists of three
regions: (i) a high-temperature boundary-layer region (where T ∼ O(M2)) of thickness
O(Re−1/2M3/2); (ii) a thin region of O(Re−1/2) thickness (T ∼ O(1)); and (iii) a small
transition region between the two. Similar solutions occur in all three regions, and we
focus on region (i) where the basic temperature is large and find the scalings here
to be

r − a= Re−1/2µ1/2
w T1/2

w y, (2.16a)

u∼ U0(y)+ Re−1/8µ1/8
w T3/8

w M1/4AU0y, (2.16b)

v ∼ Re−1/4µ1/4
w T−1/4

w M−1/2AXU0, (2.16c)

w∼ Re−1/4µ1/4
w T−1/4

w M−1/2DU0R0, (2.16d)

p∼ Re−1/4µ1/4
w T−1/4

w M−3/2P, (2.16e)

ρ ∼ R0(y)+ Re−1/8µ1/8
w T3/8

w M1/4AR0y. (2.16f )
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Here U0 and R0 are the non-dimensional velocity and density respectively of the basic
boundary-layer flow.

2.3.3. Upper deck
In the upper deck the basic flow quantities go to their values just below the shock.

It is here that the curvature effects are important. Since the shock location is within
the upper deck we require that θs ∼ Re3/13M−40/13 for Sutherland’s law (Stephen 2006).
The disturbances here can be scaled as pressure–acoustic waves using

r = Re−3/8µ3/8
w T9/8

w M−1/4r, (2.17a)

p∼ Re−1/4µ1/4
w T−1/4

w M−3/2p̃. (2.17b)

The governing inviscid equations then reduce after simplification to

∂2p̃

∂r2
+ 1

r

∂ p̃

∂r
+ 1

r2

∂2p̃

∂φ2
− ∂2p̃

∂X2
= 0. (2.18)

The boundary conditions to be satisfied are obtained by matching the solution with the
main deck as r→ a, and by applying the necessary constraint at the location of the
shock (r = rs). The matching condition yields

p̃r = AXX and p̃= P at r = a. (2.19)

By considering linear waves beneath the shock, Seddougui (1994) shows the required
shock condition to be

p̃= 0 at r = rs. (2.20)

As a result of the shock, the solution to (2.18) will allow outgoing and incoming
waves (Kluwick, Gittler & Bodonyi 1984).

2.4. Axisymmetric problem
We now discuss the solution for axisymmetric disturbances. Here the disturbances lose
their φ-coordinate dependence. This situation must be considered separately as now
the Mach number can be completely scaled out of the stability problem (Duck & Hall
1989). In the lower-deck equations (2.14), to leading order, the pressure gradient term
PX must be retained. The porous-layer admittance now scales as

Ay = Re−1/8µ1/8
w T3/8

w (M2 − 1)
3/8

Ay, (2.21)

while the pressure perturbation scales as (M2 − 1)−1/4 instead of M−3/2. This
necessitates changes in the factors of M for u and ρ in the upper-deck equations
(2.18). The analysis follows that for non-axisymmetric disturbances with M replaced
by appropriate powers of (M2 − 1).

3. Stability problem
We proceed with analysing the stability of the system of equations described in

§ 2. We adopt the method of Smith (1979) (see also Smith 1980) who implemented
a weakly nonlinear analysis of the stability of an incompressible Blasius boundary
layer to Tollmien–Schlichting waves. The objective of the analysis is to monitor the
streamwise development of the Tollmien–Schlichting-type (first-mode) disturbances.
This problem for the solid-wall case was investigated by Stephen (2006). The planar
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case was considered by Seddougui & Bassom (1994). We consider disturbances
proportional to

E = exp[i(αX + nφ −Ωτ)], (3.1)

where α is the streamwise wavenumber, Ω is the frequency and n is the azimuthal
wavenumber which is an integer > 0. The subsequent analysis is strictly valid for
n> 0, with the special case of axisymmetric disturbances (n= 0) described in § 3.4.

Consider a weakly nonlinear disturbance that is allowed to develop in the vicinity
of a linear neutral point (real α,Ω with fixed n). If the relative amplitude of the
disturbance in the lower deck is O(h), h� 1, then Smith (1979, 1980) demonstrated
that the scaled amplitude A of the mode will evolve on an O(h2) length scale. A
lower bound on the possible size of h is obtained from Hall & Smith (1984) who
demonstrated that to neglect non-parallel effects we must have (for Sutherland’s law)

O(Re−3/32M3/16T21/64
w )� h� 1. (3.2)

If the lower bound of this inequality is attained, then the length scale over which
the disturbance amplitude modulates becomes identical to the length scale over which
non-parallelism of the basic flow occurs.

We now take the linear stability of the flow to occur at x = 1 and consider a
perturbation at the point

x= 1+ h2x2. (3.3a)

Since the skin friction is a function of x, it will also be slightly perturbed from its
neutral value as

λ= λ1 + h2λ2, (3.3b)

where λ2 = x2 (dλ/dx)|x=1. If we were to only consider the linear problem, then λ is
a constant and can also be scaled out of the problem as in Cowley & Hall (1990)
and Seddougui & Bassom (1997). We fix the azimuthal wavenumber n and allow the
frequency to vary as

Ω =Ω1 + h2Ω2, (3.3c)

where Ω1 is the neutral value of the frequency obtained from the linear stability
problem. To account for the slow streamwise modulation of the amplitude we now
introduce a new streamwise coordinate as

X̃ = h2X. (3.3d)

By the method of multiple scales we know that ∂/∂X→ (∂/∂X) + h2(∂/∂X̃). We now
seek solutions to our system of equations (2.14) (lower deck) and (2.18) (upper deck).
The perturbations imply that for h� 1 we seek solutions of the form

U = (λ1 + h2λ2)Y + hU1 + h2U2 + h3U3 + O(h4), (3.4a)

(V,W,P,A, p̃)=
3∑

j=1

hj(Vj,Wj,Pj,Aj, p̃j)+ O(h4). (3.4b)

Substitution of (3.4) into (2.14) and (2.18) leads to a hierarchy of problems in
increasing orders of h which are considered in turn. The details can be found in
Michael (2012).
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3.1. First-order: eigenrelation
The linear stability problem is described by the equations at O(h). The analysis
follows that of Seddougui & Bassom (1997). They obtained the eigenrelations that
govern the linear stability of the flow for the solid-wall case. This analysis is extended
in a straightforward manner for the porous-wall case by incorporating the porous-wall
boundary condition. We seek solutions here of the form

A1 = A11E + (c.c.), (3.5a)

where E is given by (3.1) and (c.c.) represents the complex conjugate of the form
Ac

11E−1. The solution to the problem at this order leads to the linear eigenrelation.
The details can be found in Seddougui & Bassom (1997) and Stephen & Michael
(2012). This equation governs the linear stability of the flow to infinitesimal first-mode
disturbances and is given by

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ) dξ
= (iα)1/3

[
Ay + in2

αa2

]
In(iαrs)Kn(iαa)− In(iαa)Kn(iαrs)

In(iαrs)K′n(iαa)− I′n(iαa)Kn(iαrs)
, (3.6)

where Ai is the Airy function and In and Kn are modified Bessel functions of order
n. In obtaining this equation we made the transformation ξ = (iα)1/3Y + ξ0, where
ξ0 = −iΩ(iα)−2/3. The eigenrelation (3.6) is valid for non-axisymmetric disturbance
modes. The corresponding relation for axisymmetric disturbances is given in § 3.4. The
solid-wall case is recovered by setting Ay = 0 in (3.6). For a detailed discussion of
the results of the linear stability problem the interested reader is referred to Stephen &
Michael (2012).

3.2. Second-order
We now proceed to the nonlinear stability of the problem and at O(h2) seek solutions
here in the form

A2 = A22E2 + Ac
22E−2 + A20. (3.7)

The analysis for solutions to the lower-deck problem follows that of Smith (1979)
and is omitted here. The effect of the porous wall comes in through the vertical
velocity terms V22 and V20 evaluated on the cone surface. These terms are zero for
the solid-wall problem. The solution to upper-deck problem is obtained in terms of I2n

and K2n.

3.3. Third-order: amplitude equation
The analysis at O(h3) will reveal an evolution equation for the unknown amplitude
function A11(X̃). The coefficients of the terms in this equation will be complex
and they will be evaluated numerically. This in turn will allow us to determine the
stabilizing or destabilizing effects of nonlinearity on the flow. We proceed by seeking
solutions of the form

A3 = A31E + A32E2 + A33E3 + Ac
31E−1 + Ac

32E−2 + Ac
33E−3 + A30. (3.8)

The lower-deck equations here are reduced to an inhomogeneous differential equation
forced by terms involving the linear solution. We thus need to establish a ‘solvability
condition’. The approach is to consider the adjoint of this equation following Hall
& Smith (1982). To complete the problem we need to solve the upper-deck problem
which is given by an inhomogenous Bessel’s equation. By matching this solution



Hypersonic flow over a cone 541

with that from the lower deck we can obtain the evolution equation for A11 in the
form

a1
dA11

dX̃
= (a2λ2 + a3Ω2)A11 + a4A11|A11 |2 . (3.9)

The coefficients in (3.9) are complex constants for fixed values of a and rs and
given by

a1 =−i4/3 T1
κ
− n2

αa2

Ai′(ξ0)

κ
P1

∫ ∞
ξ0

[K(ξ)L(ξ)] dξ − 2 (iα)1/3 Ai(ξ0)αP−1
1

×
[
(bnfn + cndn)

{
Kn(iαa)− Ai′(ξ0)

κ
(iα)−1/3 P1K′n(iαa)

}
− (bndn + cnen)

{
In(iαa)− Ai′(ξ0)

κ
(iα)−1/3 P1I′n(iαa)

}]
, (3.10a)

a2 = i−2/3αL2+ ακ−1Ayi1/3T3, (3.10b)

a3 = (iα)1/3 κ−1T18, (3.10c)

a4 = i−2/3α5/3

κ|κ |2
[
L11− Ay

[
α2/3P1T22− P2T25L12

]− Ac
yP

c
1L13

]
, (3.10d)

where κ = ∫∞
ξ0

Ai(s) ds, P1 = (Ay + (in2/αa2))
−1, P2 = (Ay + 2(in2/αa2))

−1; K(ξ) and
L(ξ) are terms from the adjoint equation and defined in Bassom (1989); bn to fn are
constants (defined in Stephen 2006) that depend on the neutral values of α for fixed
values of a and rs and involve modified Bessel functions. All other abbreviations Tij,
Lij are defined in the Appendix.

3.4. Axisymmetric problem
We again consider the case of axisymmetric disturbances separately. For these
disturbances the corresponding linear eigenrelation can be obtained as

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ) dξ
=− (iα)1/3 [Ay + iα

] I0(iαrs)K0(iαa)− I0(iαa)K0(iαrs)

I0(iαrs)K1(iαa)+ I1(iαa)K0(iαrs)
. (3.11)

At the third-order we consider solutions for fixed frequency Ω , thus the resulting
amplitude equation is

a10
dA11

dX̃
= a20λ2A11 + a40A11|A11 |2 . (3.12)

The analysis at third order is carried out in a similar fashion to the non-axisymmetric
case. The solution obtained is similar to the non-axisymmetric solution, but with all
the terms now functions of modified Bessel functions of order zero. The coefficients in
(3.12) may be expressed as

a10 =−i4/3 T1
κ
− 2 (iα)1/3 Ai(ξ0)αP−1

10

×
[
(b0f0 + c0d0)

{
K0(iαa)− Ai′(ξ0)

κ
(iα)−1/3 P10K′0(iαa)

}
− (b0d0 + c0e0)

{
I0(iαa)− Ai′(ξ0)

κ
(iα)−1/3 P10I′0(iαa)

}]
, (3.13a)
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a20 = i−2/3αL2+ ακ−1Ayi1/3T3, (3.13b)

a40 = i−2/3α5/3

κ|κ |2
[
L110 − Ay

[
α2/3P10T22− P20T25L120

]− Ac
yP

c
10L130

]
, (3.13c)

where the corresponding axisymmetric versions of the abbreviations Pi, Lij are defined
in the Appendix.

4. Nonlinear stability results
We will begin this section by presenting the results of the nonlinear stability

analysis for the solid wall with flow parameters corresponding to the experiments of
Maslov (2003) and Fedorov et al. (2006). This was not done by Stephen (2006). We
will then present corresponding results obtained using the different porous-wall models
and deduce the effect of the porous walls on the nonlinear stability. A relationship
between the angular frequency of disturbances propagating through the pore (ω)
and the first-mode disturbance frequency (Ω) (in the lower deck) is obtained. This
accounts for the fact that Ω∗ is non-dimensionalized using the streamwise distance L∗

as the reference length and that ω∗ is non-dimensionalized using the boundary-layer
displacement thickness δ∗. For non-axisymmetric disturbances we have

ω = R

Re

[
Re1/4µ−1/4

w T−3/4
w M−1/2

]
Ω, (4.1)

and for axisymmetric disturbances

ω = R

Re

[
Re1/4µ−1/4

w T−3/4
w (M2 − 1)

1/4
]
Ω, (4.2)

where R is the Reynolds number based on the boundary-layer displacement thickness.
These scalings are used to find ω corresponding to Ω used in the calculations.

4.1. Solid wall
In order to present our results in regimes of practical interest, we will use the flow
parameters from the relevant experimental studies. We take M = 5.3, Re1 = 15.2× 106,
T∗− = 56.4 K, Pr = 0.708, γ = 1.4 and the cone wall temperature to be at the adiabatic
temperature. The cone angle and Mach number from the experiments will determine
the shock angle θs and the scaled cone radius a. Using θc = 7◦ and M∞ = 6 in (2.1)
gives σ = 12.3◦ which matches the lower bound of (2.11). Once the shock angle has
been determined, the ratio a/rs may be obtained from geometric arguments. We find
for a slender cone of half-angle θc = 7◦ and M∞ = 6 that

a

rs
≈ sin θc

tan θs + sin θc
= 0.57, (4.3)

where we have taken cos θc ≈ 1 and θs = 5.3◦. Thus all our results are presented
for a/rs = 0.57. We consider 0 < a < 5, which corresponds to 0 < L∗ < 14 m for
non-axisymmetric modes.

We turn to the non-axisymmetric problem and the evolution equation (3.9). We
can solve this equation using separation of variables. Following Stuart (1960) we can
determine an explicit expression for the amplitude |A11 |2 as

|A11 |2 = 2K eK X̃[
K C1 − 2Re

(
a4

a1

)
eK X̃

] , (4.4a)
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FIGURE 2. The first five neutral modes of (3.6) with n= 1. Shown is Ω against local cone
radius a for a/rs = 0.57:—, solid wall; - - -, regular microstructure model (2.5).

where K = 2Re ((a2/a1)λ2 + (a3/a1)Ω2) and C1 is a constant of integration. When
K > 0 we have linear instability. Note that λ2 is negative downstream of the
neutral location. If Re (a4/a1) > 0, the nonlinear effects are destabilizing and we
have subcritical instability where there is a threshold amplitude between disturbances
growing or decaying. If Re (a4/a1) < 0, nonlinear effects are stabilizing and the
linearly unstable mode is supercritically stable with an equilibrium amplitude given
by

|A11| =

√√√√√√√
Re
(

a2

a1
λ2 + a3

a1
Ω2

)
−Re

(
a4

a1

) . (4.4b)

Typical neutral solutions for solid and regular porous microstructure cases are shown
in figure 2 for Ω with n = 1. Details of the porous parameters used are given in
§ 4.2 below. The presence of the shock allows multiple neutral modes. Here regions of
instability lie above the curve. We can see in figure 2 that the neutral values of Ω are
lower for the porous wall than for the solid wall. Thus, there is a destabilizing effect
in that disturbances of lower frequencies can become unstable. This effect is greater
for the higher modes. The results for spatial growth rates shown in Stephen & Michael
(2012) show that the porous wall leads to larger unstable growth rates.

In figure 3(a) we show Re(a2/a1) as a function of a for n = 1 corresponding to
the first five neutral modes of (3.6) for a solid wall. The arrows here and on all the
subsequent figures indicate increasing mode number. We can see that this quantity is
always negative. The results for n = 2 are shown in figure 4(a). The magnitudes are
decreased when compared to n= 1. The corresponding values of Re(a3/a1) are shown
in figures 3(b) and 4(b), respectively for n = 1 and n = 2. There is a difference in
behaviour of Re(a3/a1) for the first mode for small values of a, corresponding to
the anomalous behaviour of the lowest neutral solution; see figure 2. The effect of
increasing the azimuthal wavenumber is to decrease the magnitude of Re(a3/a1).
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FIGURE 3. (a) Re(a2/a1) and (b) Re(a3/a1), as a function of local cone radius a for the first
five modes. Results are shown for a solid wall with n= 1 and a/rs = 0.57.

We now investigate the effect of nonlinearity on linearly unstable disturbances by
considering the sign of Re(a4/a1). In order to see the behaviour of the different modes
the value of Re(a4/a1) versus a for 0 6 a 6 1 is shown in figure 5(a) and versus
a for 1 6 a 6 5 is shown in figure 5(b) for n = 1. In figure 5(a,b) we can see that
the sign of Re(a4/a1) is always positive for the first mode (m = 1). Thus nonlinear
effects always destabilize this mode, possibly leading to a subcritical instability. The
effect of nonlinearity on the remaining four modes depends on the value of a. For
a < 1, Re(a4/a1) < 0 leading to supercritical instability. As the value of a increases,
the sign of Re(a4/a1) becomes positive beginning with the higher modes indicating
that nonlinear effects now destabilize these linearly unstable modes. In the limit of
large a we can see that Re(a4/a1)→ 0 for all the modes, with the first mode having
the highest amplitude. Recall that for a fixed cone angle the effect of increasing a is
to move further along the cone surface. Thus at large streamwise distances we can
expect nonlinear disturbance amplitudes to be very small. The corresponding results
for Re(a4/a1) with n = 2 can be seen in figures 6 and 7. In figure 6 we can see
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FIGURE 4. (a) Re(a2/a1) and (b) Re(a3/a1), as a function of local cone radius a for the first
five modes. Results are shown for a solid wall with n= 2 and a/rs = 0.57.

that the effects of nonlinearity on mode numbers > 1 for n = 2 are similar to that
for n = 1. Higher azimuthal wavenumber allows the stabilizing effect of nonlinearity
to persist for larger ranges of a. In figure 7 we see that Re(a4/a1) becomes positive
for a> 2.3 with the higher modes becoming destabilized first. The effect of azimuthal
wavenumber is more significant on the first mode as can be seen in the inset of
figure 6. Here we see that the first mode is stabilized by nonlinearity for a narrow
range of a (Re(a4/a1) < 0 when 1.6 < a < 3.3). In the limit of large a nonlinear
effects on the first mode persist while the effects on the higher modes diminish as
Re(a4/a1) remains small for these modes. The effect of nonlinearity for disturbances
with n = 3 have also been investigated. The results (not shown) indicate that overall
trends remain similar to that for n = 2. We may thus conclude that nonlinear effects
tend to stabilize the higher modes for a wider range of a for higher azimuthal
wavenumbers, and the first mode becomes the most destabilized by nonlinearity at
large values of a.
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FIGURE 5. Re(a4/a1) for the first five modes as a function of local cone radius a for (a)
06 a6 1.0; (b) 1.06 a6 5.0. Results are shown for a solid wall with n= 1 and a/rs = 0.57.

We consider the effect of nonlinearity on axisymmetric disturbances next. The
axisymmetric equivalent of figure 2 is shown in figure 8 where the neutral values
of Ω are shown as a function of a for a/rs = 0.57 for the first four modes. The
overall features remain the same as the non-axisymmetric case. The destabilizing
effect of the porous wall is smaller when compared to its effect on non-axisymmetric
disturbances. Axisymmetric disturbances are linearly unstable if Re(a20λ2/a10) > 0. If
Re(a40/a10) < 0 for these disturbances then nonlinear effects are stabilizing and the
linearly unstable modes are supercritically stable with an equilibrium amplitude

|A11| = (−λ2)
1/2

(−Re(a20)

−Re(a40)

)1/2

. (4.5)

In figure 9(a) we can see Re(a20/a10) as a function of a for the first four modes.
We notice that this quantity is always negative so disturbances are linearly unstable.
Figure 9(b) shows Re(a40/a10) versus a. We see that this quantity is negative for all
the modes with the exception of the first mode. For this mode Re(a40/a10) becomes
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FIGURE 6. Re(a4/a1) for the first five modes as a function of local cone radius a for
0 6 a 6 2.3. Results are shown for a solid wall with n = 2 and a/rs = 0.57. Inset: Re(a4/a1)
for the first mode as a function of a.
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FIGURE 7. Re(a4/a1) for the first five modes as a function of local cone radius a for
2.36 a6 5.0. Results are shown for a solid wall with n= 2 and a/rs = 0.57.

slightly positive for a> 2.3. Thus, we can expect nonlinear effects to stabilize linearly
unstable axisymmetric disturbances with the exception of the first mode which is
slightly destabilized above a certain value of a.

The results discussed above for Re(a40/a10) and Re(a4/a1) differ from those
presented by Stephen (2006). In that paper it was reported that Re(a40/a10) and
Re(a4/a1) were always negative, so the nonlinear effects were always stabilizing. Our
results correcting the numerical error in Stephen (2006) have shown the significant
result that the nonlinear effects are destabilizing for particular ranges of a.
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FIGURE 8. The first four neutral modes of (3.11). Shown is Ω against local cone radius a for
a/rs = 0.57 and n= 0: —, solid wall; - - -, regular microstructure model (2.5).

4.1.1. Effect of the shock
Before proceeding to investigate the effect of porous walls on the nonlinear stability

it is useful to consider the stability problem in the absence of a shock. The problem
in the absence of a shock was first considered by Duck & Hall (1989, 1990). It can
be shown that the neutral curves in the absence of a shock differ fundamentally from
those in the presence of shock as solutions are only possible for a finite range of
a (Seddougui & Bassom 1997). This is because if no shock is present, solutions to
(2.18) at first-order are only proportional to Kn(iαr), allowing only outgoing waves
as r→∞. This modifies the resulting eigenrelation. The nonlinear stability analysis
can be carried out in a straightforward manner for this problem. Figure 10 shows
Re(a4/a1) as a function of a for n = 1 and n = 2. It can be seen that the sign of
Re(a4/a1) is always negative and two solution branches exist for 0 < a < 0.75 for
n= 1 and 0< a< 1.75 for n= 2. Thus in the absence of a shock nonlinear effects are
stabilizing for all admissible values of a.

4.2. Effect of porous walls
We now investigate the effect of porous coatings. First of all, the results using
the regular microstructure model comprising a regular array of cylindrical pores of
circular cross-section are compared to the results for a solid wall for non-axisymmetric
modes. The flow conditions match the experimental conditions of Maslov (2003). The
porous parameters are pore radius r∗p = 28.5 µm, porosity φ0 = 0.2 and pore depth
h∗ = 450 µm. Neutral results for n = 1 were presented in figure 2 which showed that
the porous wall reduces the neutral values of Ω . The porous wall has only a small
effect on the neutral values of α (not shown). The corresponding results for n = 2 are
shown in figure 11. We can again notice the destabilizing effect of the porous wall.
The difference between the neutral curves of the solid and porous walls is smaller
for n = 2 compared to n = 1 especially for the lower neutral curves. To investigate
the effect of nonlinearity we turn to figure 12 which compares Re(a4/a1) for n = 1
between the solid and regular porous walls for the first five modes (m = 1–5). We
see that nonlinear effects are enhanced by the porous wall giving larger values of
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FIGURE 9. (a) Re(a20/a10) and (b) Re(a40/a10) for the first four modes as a function of local
cone radius a. Results are shown for a solid wall with n = 0 and a/rs = 0.57. Results for the
first mode are indicated by ◦.

Re(a4/a1). In the presence of the porous wall nonlinear effects destabilize the lower
modes (first and second) while stabilizing the higher modes (three to five). We can see
this from the fact that Re(a4/a1) for the porous wall has larger positive values for the
first and second modes compared to the solid wall and that Re(a4/a1) for the porous
wall becomes positive at larger values of a compared with the solid wall for the higher
modes. However once destabilized, the higher modes of the porous wall have larger
values of Re(a4/a1) compared to the solid wall. For large enough values of a, we can
expect the nonlinear effects to diminish just as in the solid wall case. Figure 13 shows
the corresponding results for Re(a4/a1) with n = 2. Here we see that nonlinearity
destabilizes the first, second, third and fourth modes in comparison to corresponding
modes of the solid wall, while stabilizing the fifth and possibly higher modes of the
porous wall. Results obtained for n= 3 (not shown) show that nonlinearity destabilizes
all of the first five modes of the porous wall compared to the solid wall. We can thus
infer that in the presence of the porous wall, nonlinearity destabilizes lower modes,
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FIGURE 10. Re(a4/a1) as a function of local cone radius a in the absence of shock. Results
are shown for solid wall with (a) n= 1 and (b) n= 2.

with their mode number increasing with azimuthal wavenumber. Thus disturbances of
large enough amplitude could lead to transition to turbulence.

We now compare the effect of porosity on the nonlinear stability of axisymmetric
disturbances. Looking at figure 14 which shows Re(a40/a10) as a function of a for the
porous wall and solid wall, we see that in the presence of the porous wall all the
modes are destabilized by nonlinearity with the most significant effect being felt by
the first mode. This mode is destabilized for all values of a.

Next we consider the random microstructure model of (2.9). The results using this
model are compared with those obtained using the regular microstructure model. The
porosity of the felt metal is taken to be 0.75 and the fibre diameter is 30 µm. For
comparison the regular microstructure model is used with a porosity of 0.2 and pore
radius of 30 µm. In figure 15 we see that, with the exception of the first mode, neutral
values of Ω for the felt metal are significantly lower than the corresponding ones for
the regular porous model. This is mainly as a result of the larger value of porosity
for the felt metal (see Stephen & Michael 2012 for more discussion). Figure 16 shows
Re(a4/a1) for n= 1 for both models. We see that nonlinear effects destabilize the first
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FIGURE 11. The first five neutral modes of (3.6) with n= 2. Shown is frequency Ω against
local cone radius a for a/rs = 0.57: —, solid wall; - - -, regular microstructure model (2.5).
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FIGURE 12. Re(a4/a1) for the first five modes as a function of local cone radius a for n= 1
and a/rs = 0.57: —, solid wall; - - -, regular microstructure model (2.5).

two modes of the felt metal model when compared to the regular porous model. The
effect on the higher modes is opposite as we see that Re(a4/a1) becomes positive for
smaller values of a for the regular porous model as compared to the felt metal model.
Once destabilized, values of Re(a4/a1) are more positive for the felt metal indicating
that nonlinear amplification of disturbances will be stronger. Similar trends are also
observed (not shown) for the case of axisymmetric disturbances.

Finally we consider the mesh microstructure model of (2.7). The results using this
model are compared with those obtained using the regular microstructure model. The
porosity of the mesh model is 0.8, and width of each pore section is 100 µm. For
comparison the regular porous model is used with a porosity of 0.2 and pore radius of
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n= 0 and a/rs = 0.57: —, solid wall; - - -, regular microstructure model (2.5). Results for the
first mode are indicated by • for solid wall and ◦ for porous wall.

30 µm. In figure 17 we can see that neutral curves corresponding to the mesh model
are slightly lower than the corresponding ones for the regular porous model. Figure 18
shows Re(a4/a1) for n = 1 for both models. The effect of the two models on the
first mode is similar with the stabilizing effects of nonlinearity being stronger for the
mesh model compared to the regular model. For the higher modes nonlinear effects are
slightly more destabilizing for the regular model compared to the mesh model. This
can again be seen by noting that Re(a4/a1) becomes positive for smaller values of a
for the regular model compared to the mesh model. At large values of a, Re(a4/a1)

is more positive for the mesh model for the first four modes while for the fifth and
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FIGURE 15. The first five neutral modes of (3.6) with n = 1. Shown is frequency Ω against
local cone radius a for a/rs = 0.57: —, random microstructure model (2.9); - - -, regular
microstructure model (2.5).
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FIGURE 16. Re(a4/a1) for the first five modes as a function of local cone radius a for n = 1
and a/rs = 0.57: —, random microstructure model (2.9); - - -, regular microstructure model
(2.5).

possibly higher modes Re(a4/a1) is larger for the regular model. Corresponding results
for axisymmetric disturbances (not shown) indicate very slight differences between the
effects of the two models.

5. Discussion
The weakly nonlinear stability of the first Mack mode (viscous) disturbances in the

hypersonic boundary layer on a sharp slender cone with passive porous walls has been
investigated. The analysis shows that small-amplitude linearly unstable disturbances
can either evolve from the linear neutral point towards an equilibrium amplitude or
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FIGURE 17. The first five neutral modes of (3.6) with n = 1. Shown is frequency Ω against
local cone radius a for a/rs = 0.57: —, mesh microstructure model (2.7); - - -, regular
microstructure model (2.5).
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FIGURE 18. Re(a4/a1) for the first five modes as a function of local cone radius a for n= 1
and a/rs = 0.57: —, mesh microstructure model (2.7); - - -, regular microstructure model

(2.5).

there is a threshold amplitude. The stability of this disturbance is dependent on the
mode number and the local cone radius a where the viscous–inviscid interaction
takes place. There are two situations depending on whether Re(a4/a1) is negative or
positive for a particular value of a. If Re(a4/a1) < 0 we have supercritical instability
and an equilibrium amplitude so linearly unstable disturbances grow but saturate. If
Re(a4/a1) > 0 then we have subcritical instability and an initial threshold amplitude.
Disturbances with amplitude smaller than this threshold grow but ultimately decay. For
disturbances larger than this threshold there will be unbounded growth. Thus, in the
latter case nonlinear effects could lead a finite-amplitude mode towards breakdown and
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transition to turbulence. Thus, the size of the incoming disturbances is important in
leading to transition to turbulence. The analysis here reveals the particular values of a
for which the equilibrium state is subcritically unstable. Here nonlinearity enhances the
amplification of a small-amplitude disturbance proportional to E that interacts with its
harmonic, E2 and mean flow disturbance, E0. The effect of the attached shock is found
to be significant. The presence of the shock leads to multiple unstable modes for all
values of a. In the absence of a shock, unstable solutions are possible only for a finite
range of cone radius a and nonlinearity stabilizes linearly unstable disturbances for all
admissible values of a.

For axisymmetric disturbances on a solid wall, nonlinear effects tend to stabilize
all higher modes, while the lowest mode is slightly destabilized when a becomes
large enough. In the presence of the porous wall all the modes are destabilized when
compared to those on the solid wall. Linear stability results (Stephen & Michael 2012)
show that the lowest mode is the most unstable and has the largest spatial growth
rates for both solid and porous walls. This most dangerous mode is also the most
destabilized by nonlinearity in the presence of the porous wall. For non-axisymmetric
disturbances on a solid wall, nonlinear effects destabilize the lowest mode, while the
higher modes are stabilized up to a certain value of a which increases with azimuthal
wavenumber. All porous-wall models considered destabilize the neutral modes. When
considering the effect of nonlinearity on linearly unstable modes, we can state that
lower modes are greatly destabilized by nonlinearity while it has a stabilizing effect
on the higher modes. Stephen & Michael (2012) show that it is the higher modes that
have the largest spatial growth rates in the presence of the porous wall. The effect of
nonlinearity is to stabilize these most linearly amplified modes by pushing the point of
subcritical instability to larger values of a.

The random microstructure felt metal model was compared with the regular porous
model. The felt metal significantly destabilizes the neutral modes and strongly
amplifies the linearly unstable modes with the higher modes giving the largest growth
rates (Stephen & Michael 2012). Nonlinear effects in the presence of the felt metal
wall stabilize these more dangerous higher modes over a larger range of a while
destabilizing the more slowly growing lower modes. When comparing the difference
between the mesh microstructure model and the regular porous model, we notice
similar effects for both models on all the modes. The regular porous model slightly
destabilizes all modes when compared to the mesh model. Since the felt metal and
mesh coating have higher porosity, to corroborate these findings, nonlinear stability
results for the regular porous model with a higher porosity of φ0 = π/4 were obtained.
In figures 19(a) and 19(b) for n= 0 and n= 1 respectively, we see that higher porosity
leads to nonlinearity having a stabilizing effect on mode numbers greater than one.
This is a result of the increase in the value of a at which Re(a4/a1) becomes positive.
However, for large values of a the destabilizing effect of nonlinearity is stronger, with
Re(a4/a1) being slightly larger for higher porosity. In figure 20(a) for n= 2 we see the
stabilizing effect for mode numbers greater than two and in figure 20(b) for n = 3 we
see it for mode numbers greater than three. Thus porous coatings with higher porosity
allow nonlinear effects to stabilize higher mode number disturbances at a particular
location, with the mode number of the lowest mode that is stabilized increasing with
increasing azimuthal wavenumber.

We can deduce the significance of curvature on the nonlinear stability by comparing
our results for a solid wall to those obtained from the analysis of Seddougui &
Bassom (1994) for the weakly nonlinear stability of flow over a wedge. Figure 21
shows the variation of Re(a3), the coefficient of the nonlinear term of the amplitude
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FIGURE 19. Re(a4/a1) as a function of local cone radius a for a/rs = 0.57 and (a) n= 0; (b)
n = 1. Results are shown using the regular microstructure model (2.5): —, φ0 = π/4; - - -,
φ0 = 0.2. Symbols refer to mode number: ×, m= 1; �, m= 2; ♦, m= 3; ◦, m= 4; •, m= 5.

equation in their paper (cf. their equation (5.1)) with β1, the leading-order scaled
spanwise wavenumber. The results are shown for a scaled shock distance ys = 1.73
which corresponds to the shock angle expected from the flow conditions considered
in this paper. Corresponding results shown in Seddougui & Bassom (1994) (cf.
their figure 5) were obtained using incorrect values for two constants in their
equation (4.12). Our corrected results shows the significant result that for a small
range of 0 6 β1 6 0.7, Re(a3) > 0. Thus nonlinear effects will be destabilizing for
disturbances with these spanwise wavenumbers. By comparing the magnitudes of
Re(a3) and Re(a4/a1) we can infer that curvature has the effect of making the
nonlinear effects stronger.

There have been some studies that investigate the nonlinear behaviour of viscous
first-mode disturbances. Bicoherence diagrams from the experimental investigation
of Bountin et al. (2010) show that in the low-frequency range (f1, f2 < 100 kHz)
nonlinear processes proceed more intensely on the porous surface compared to the



Hypersonic flow over a cone 557

–1.5

–1.0

–0.5

0

1 2 3 4

–0.8

–0.6

–0.4

–0.2

0.2

0

0.5 1.5 2.5 3.5 4.5

0 5

a

–2.0

0.5

–1.0

0.4

(a)

(b)

FIGURE 20. Re(a4/a1) as a function of local cone radius a for a/rs = 0.57 and (a) n= 2; (b)
n = 3. Results are shown using the regular microstructure model (2.5): —, φ0 = π/4; - - -,
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solid. The authors suggest that this may be caused by the growth of the low-
frequency disturbance amplitudes due to surface roughness. Bicoherence measurements
of Chokani et al. (2005) have also identified a nonlinear interaction that is associated
with the destabilized Mack’s first mode. Simulations by De Tullio & Sandham (2010)
of transition over a flat plate in the presence of an oblique Mack’s first mode show
that the first mode grows faster than Mack’s second mode and drives the flow directly
to a turbulent state by nonlinear interactions. De Tullio & Sandham (2010) state that
the first mode regains importance in the transition process at high Mach numbers
for porous surfaces. Our results show that for sufficiently large a, nonlinear effects
destabilize all linearly unstable viscous modes on a solid cone surface. At small values
of a, corresponding to typical lengths of models tested in wind tunnels, it is the
unstable mode with the lowest frequency that is destabilized by nonlinearity. Spatial
instability results (Stephen & Michael 2012) indicate that these are the fastest growing
disturbances but maximum growth rates are significantly smaller than the second
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ys = 1.73 (cf. equation (5.1) of Seddougui & Bassom 1994).

Mack mode. This may explain why in experiments transition has been observed
due to the second Mack mode on solid cones. In the presence of porous walls,
lower-frequency first Mack modes are also destabilized by nonlinearity while higher-
frequency first Mack modes that are destabilized on the solid wall at a particular
location now become stabilized for a range of a. This effect is enhanced by models
with higher porosity. Thus over porous surfaces we can expect interaction of first
Mack modes in the low-frequency spectrum to lead to nonlinear amplification of
disturbance amplitudes beyond the critical value.

From this discussion it is clear that further research is required to establish whether
Mack’s first-mode instability can cause transition to turbulence in the presence of
porous walls. The work presented here should be extended to consider resonant
interactions between the unstable modes identified in this study and their harmonics.
Parametric studies of porous-wall models are underway with the focus on minimizing
the destabilizing effect on the first Mack mode (Wang & Zhong 2010, 2011a,b).
Future stability and nonlinear interaction studies should include porous-wall models
with these novel parameters and configurations. It is hoped that such studies will
provide optimum design of porous coatings for incorporation into thermal protection
systems as effective techniques for laminar flow control in hypersonic flight vehicles.
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Appendix
Definitions of the abbreviations Tij,Lij in equations (3.10) and (3.13):

T1= i−1/3

∫ ∞
ξ0

[
K(ξ)+ K ′(ξ)(ξ − ξ0)

](∫ ξ

ξ0

Ai(s) ds

)
dξ, (A 1)

T3=−i−1/3Ai(ξ0)Ai′(ξ0), (A 2)

T6=−i1/3

∫ ∞
ξ0

K ′(ξ)
(∫ ξ

ξ0

Ai(s)ds

)(∫ ξ

ξ0

(∫ ξ1

∞
f ∗∗(t) dt

)
dξ1

)
dξ, (A 3)

T7= i1/3

[
dH(ξ)

dξ

]
ξ=ξ0

, (A 4)

T8=−i4/3

∫ ∞
ξ0

K ′(ξ)
(∫ ξ

ξ0

H(t) dt

)(∫ ξ

ξ0

Ai(s) ds

)c

dξ, (A 5)

T10= i2/3

∫ ∞
ξ0

K ′(ξ)
(∫ ξ

ξ0

(∫ t

ξ0

H(s) ds

)
dt

)(
Ai′(ξ)

)c
dξ, (A 6)

T11= i1/3

∫ ∞
ξ0

K ′(ξ)
(∫ ξ

ξ0

(∫ t

ξ0

Ai(21/3s) ds

)
dt

)
(Ai(ξ))cdξ, (A 7)

T12= 2i2/3

∫ ∞
ξ0

H̄(t) dt, (A 8)

T13= 22/3i1/3

∫ ∞
(21/3ξ)

Ai(s) ds, (A 9)

T14=−21/3 d

d
(
21/3ξ

) [Ai
(
21/3ξ

)]
ξ=ξ0, (A 10)

T15= i1/3

∫ ∞
ξ0

K ′(ξ)
(

Ai′(ξ)− Ai′(ξ0)− ξ
(∫ ξ

ξ0

Ai(s) ds

))(∫ ξ1

∞
f ∗∗(t) dt

)
dξ,

(A 11)

T16=
∫ ∞
ξ0

K ′(ξ)
(

Ai′(ξ)− Ai′(ξ0)− ξ
(∫ ξ

ξ0

Ai(s) ds

))c

H(ξ) dξ, (A 12)

T17= i−1/3

∫ ∞
ξ0

K ′(ξ)
(

Ai′(ξ)− Ai′(ξ0)− ξ
(∫ ξ

ξ0

Ai(s) ds

))c

Ai(21/3ξ) dξ, (A 13)

T18=
∫ ∞
ξ0

K ′(ξ)
(∫ ξ

ξ0

Ai(s) ds

)
dξ, (A 14)

T20= T6+ T8+ 2T10− T15− T16, (A 15)

T21= T9+ 2T11− T17, (A 16)

T22= i
∫ ∞
ξ0

K ′(ξ)
(∫ ξ1

∞
f ∗∗(t) dt

)
Ai′(ξ0) dξ, (A 17)

T23=
∫ ∞
ξ0

K ′(ξ)H̄(ξ)Ai′ (ξ0)
c dξ, (A 18)
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T24= i−1/3

∫ ∞
ξ0

K ′(ξ)Ai(21/3ξ)Ai′ (ξ0)
c dξ, (A 19)

T25= i
∫ ∞
ξ0

K ′(ξ)Ai (ξ)c dξ, (A 20)

L2=−iT1κ−1 − 2i2/3Ai(ξ0)Ai′(ξ0)κ
−1, (A 21)

L9=
{

2
in2

α2/3a2
g2nT13− T14+ {α1/3g2nT13

}
Ay

}−1

, (A 22)

L10=
{

T7+ 2
in2

α2/3a2
g2nT12+

[
α1/3g2nT12+ T2

gn

2

]
Ay

}
, (A 23)

L11= T20− T21L9L10, (A 24)

L12= α−4/3T14L9L10+ α−4/3T7− AyP1T13, (A 25)

L13= T23− T24L9L10, (A 26)

L90 = {2iα4/3g0
2nT13− T14+ {α1/3g0

2nT13
}

Ay

}−1
, (A 27)

L100 =
{

T7+ 2iα4/3g0
2nT12+

[
α1/3g0

2nT12+ T2
g0

n

2

]
Ay

}
, (A 28)

L110 = T20− T21L90L100, (A 29)

L120 = α−4/3T14L90L100 + α−4/3T7− AyP10T13, (A 30)

L130 = T23− T24L90L100, (A 31)

P10 =
(
Ay + iα

)−1
, (A 32)

P20 =
(
Ay + 2iα

)−1
, (A 33)

gn = In(iαrs)Kn(iαa)− In(iαa)Kn(iαrs)

In(iαrs)K′n(iαa)− I′n(iαa)Kn(iαrs)
, (A 34)

g2n = I2n(2iαrs)K2n(2iαr)− I2n(2iαr)K2n(2iαrs)

I′2n(2iαa)K2n(2iαrs)− I2n(2iαrs)K′2n(2iαa)
, (A 35)

g0
n =

I0(iαrs)K0(iαr)− I0(iαr)K0(iαrs)

I0(iαrs)K′0(iαa)− I′0(iαa)K′0(iαrs)
, (A 36)

g0
2n =

I0(2iαrs)K0(2iαr)− I0(2iαr)K0(2iαrs)

I0(2iαrs)K′0(2iαa)− I′0(2iαa)K′0(2iαrs)
. (A 37)

Functions H̄(ξ) and f ∗∗(ξ) are defined in Michael (2012).
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