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Abstract
Low-carbon economic development is at the heart of the post-pandemic green recovery scheme worldwide. It requires economic recovery
without compromising on the environment, implying a critical role that green productivity plays in achieving the carbon neutrality goal. Green
productivity measures the quality of economic growth with consideration for energy consumption and environmental pollution. This study
employs the slacks-based measure directional distance function (SBM-DDF) approach and the Malmquist-Luenberger (ML) index to calculate
green productivity and its components of 30 provinces in China between 2001 and 2018. Using a spatial panel data model, we empirically
analyzed the conditional b-convergence of China's green productivity. We found that overall, since 2001, China's green productivity has
demonstrated a continuous upward trend. When taking into account spatial factors, China's green productivity demonstrates a significant
conditional b-convergence. In terms of regional effects, the results indicate that the green productivity of the eastern and western regions
demonstrates club convergence, implying a more balanced green economic development. Moreover, the convergence rate of China's green
productivity increases with the addition of environmental regulation variable, and so the corresponding convergence time decreases. It indicates
that environmental regulations help to facilitate the convergence of China's green productivity, narrowing the gap between the regional green
economic development. The findings provide guideline for achieving a low-carbon development and carbon neutrality from a regional green
productivity perspective.

Keywords: Green productivity; Slacks-based measure of directional distance function (SBM-DDF); Malmquist-Luenberger (ML) index; Conditional b-conver-
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1. Introduction

During the COVID-19 pandemic, although the demand for
fossil fuels has decreased dramatically, the demand for green
energy has demonstrated an increasingly growing pattern
(Wan et al., 2021; Tian et al., 2022). It is thus not surprised
that instead of a pure economic recovery like economic
stimulus scheme after 2008 global financial crisis, many
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countries have proposed and implemented green recovery
schemes (Barbier, 2020; Liu et al., 2021b) in which low-
carbon development is the primary goal (Liu et al., 2021c).
China has been pioneering and leading the low-carbon re-
covery (Xu et al., 2021), e.g., on September 22, 2020, the
Chinese government has announced the aim to “have CO2

emissions peak before 2030 and achieve carbon neutrality
before 2060”, highlighting China's strong commitment to the
carbon neutrality (Huang and Zhai, 2021). Moreover, China's
national carbon emission trading scheme (ETS) began formal
trading from July 2021. As the world's largest ETS, the carbon
market currently covers more than 4 Gt of annual emissions,
more than two thousand coal-fired and gas-fired power gen-
eration firms in the first stage, and plans to include other high
energy-consuming and high-polluting industries such as steel
and chemical industry in the next few years. China's rapid
industrialization has long been characterized by ‘high input,
high energy consumption, and high discharge’ and by an
environmental practice of ‘pollution first and remediation
later’. This development model has compromised on the
environment and resources (Shao et al., 2021), and has
continuously increased the gap between energy supply and
demand. The reason for the widening gap between energy
supply and demand is mainly due to China's energy con-
sumption structure.

Moreover, it has aggravated the cost of environmental
degradation and the loss due to ecological damage (Jie et al.,
2021). Ma et al. (2019) reported that the total cost due to
environmental degradation and ecological damage was
1538.95 billion and 441.7 billion CNY, accounting for 3.5%
and 1.0%, respectively, of the 2014 China's gross domestic
product (GDP). From 2004 to 2014, the annual growth rate of
the total costs in terms of environmental degradation and
ecological damage was 13.7% and 9.6%, respectively. Real-
izing that economic growth dependent on high input and
discharge is harmful and not sustainable, the Chinese gov-
ernment has adopted a series of policies and regulations to
tackle the increasingly severe environmental issues.

Resources and the environment are not only rigid con-
straints to the scale and speed of economic development but
also endogenous variables of economic growth (Giddings
et al., 2002; Lin et al., 2020). Traditional measurements of
total factor productivity (TFP) do not consider undesirable
outputs resulting from resource and energy consumption. The
traditional approaches of analyzing and assessing economic
performance only consider TFP and omit the constraining
effect of resources and the environment. Therefore, these ap-
proaches have a possible bias (Hailu and Veeman, 2000; Long
et al., 2015). In comparison, green productivity (GP), or green
total factor productivity (GTFP), considers energy consump-
tion and environmental pollution and can measure the quality
of economic growth more accurately (Liu et al., 2021c).
Therefore, it is an important indicator for assessing the eco-
nomic growth modes and the sustainable development of a
country or region (Liu et al., 2021a). As a new type of pro-
ductivity measurement, green productivity builds on the
traditional total factor productivity measurement and
incorporates energy and environmental constraints into the
measurement framework, thereby embodying green and sus-
tainable economic development principles (Zhu et al., 2020).

The core issue is how to incorporate energy consumption
and environmental pollution into the classical measurement
framework of total factor productivity. Prior research usually
adopts the following four approaches. The first approach treats
energy consumption and environmental pollution as input
factors (Hailu and Veeman, 2001) and employs input distance
functions to measure the productivity that incorporates envi-
ronmental factors. The second approach performs certain
algebraic transformations of the undesirable outputs by using
two methods: the first method takes the reciprocals of the
undesirable outputs as desirable inputs (Scheel, 2001; Lovell
et al., 1995); and the second method converts the undesir-
able outputs into desirable inputs through a linear monotone
decreasing transformation (Seiford and Zhu, 2002). The third
approach employs the metafrontier technique to measure eco-
efficiency (Picazo-Tadeo et al., 2014; S�aez-Fern�andez et al.,
2012), which defines all the feasible combinations of eco-
nomic value added (EVA) and environmental pressures as the
‘pressure generating metatechnology set (PGMT)’. The fourth
approach employs the directional distance function (DDF).
F€are and Grosskopf (2010) further combined the DDF and
slacks-based measure (SBM) and proposed the SBM-DDF.
This approach can measure productivity from multiple as-
pects and can also measure the impact when inputs or outputs
have none-zero slacks. In comparison with the first three ap-
proaches, the advantage of the SBM-DDF is that, it in-
corporates both desirable and undesirable outputs into the
measurement without any algebraic transformation, thus
retaining the original data of undesirable outputs and reflecting
a PPS that is better aligned with the actual green production
process (Arabi et al., 2015; Halick�a and Trnovsk�a, 2021).
Meanwhile, the model meets the convexity requirement and
can be solved via linear programming. Therefore, a large
volume of research has adopted the DDF and its extension
methods to study the GP of different countries or regions.

Moreover, analyzing the convergence of regionalGP, whether
it is converging or diverging, is critical to identifying differences
in regional economic growth and to enhancing the coordinated
development of regional economies (Gerschenkron, 1962;
Grossman and Helpman, 1991; Young, 1995; Easterly and
Levine, 2001; Islam, 2003). The existing research proposes
two types of convergence: absolute convergence, in which pro-
ductivity converges at the same level, and conditional conver-
gence, in which productivity converges at different levels.
Typical absolute convergences mainly include the s-conver-
gence and absolute convergence (Baumol, 1986; Barro and Sala-
I-Martin, 1995), while conditional convergence includes the
conditional b-convergence (Miller and Upadhyay, 2002). The
implication of absolute convergence is that underdeveloped re-
gions can eventually catch up with and surpass developed re-
gions and reach the same stable level, whereas conditional
convergence means that underdeveloped regions and developed
regions can reach their respective stable states but underdevel-
oped regions cannot surpass the developed regions.
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During recent years, some scholars began to study whether
energy efficiency and GP in different countries and regions
converge. For instance, Miketa and Mulder (2005) examined
the convergence of energy productivity of 10 manufacturing
sectors in 56 developed and developing countries between
1971 and 1995; the empirical results showed that the cross-
country energy productivity demonstrates certain degrees of
convergence. Mulder and De Groot (2012) studied the
convergence of the energy intensity of 50 sectors of
manufacturing and services in 18 OECD countries during the
period 1970e2005 and found that for most sectors, lagging
countries are catching-up with leading countries in terms of
energy intensity; it is noted that the convergence rate of energy
intensity in the service sectors is higher than that of the
manufacturing sectors. Huang et al. (2018) used China's city-
level data to test the regional convergence of energy produc-
tivity. Their results of the generalized method of moments
(GMM) model indicated that China's regional energy pro-
ductivity has three different types of club convergence and that
the regional resource endowment and differences in institu-
tional arrangements are major reasons for the differences in
the convergence of regional energy productivity. To control
trade-flow related spatial effects, Wan et al. (2015) applied the
spatial panel data model and examined the energy productivity
of the manufacturing sector of 16 European Union (EU)
countries. The results indicated that the energy productivity
has both s- and b-convergence. It is noted that the tests of the
convergence of regional productivity discussed above tend to
use regional data; but they fail to consider the fact that
regional data usually have a significant spatial correlation.

Existing research has examined the influencing factors of
green productivity, however, little attention has been received
for the convergence of regional green productivity. This is
important because understanding the convergence pattern of
China's regional green productivity is advantageous for coor-
dinating regional ‘green’ development and so has important
implications for high-quality economic development.
Although existing studies have tried to use the SBM-DDF
method to measure China's green productivity, they fail to
investigate the spatial pattern and time-varying pattern of
China's regional green productivity and its components.
Ignoring regional GP's spatial correlation has serious impacts
on the test results for convergence and considerably reduces
the effectiveness of the empirical analysis.

Therefore, using the panel data of China's 30 province-level
administrative divisions (hereafter referred to as provinces)
from 2001 to 2018, this study employs the slacks-based
measure directional distance function (SBM-DDF) approach
and the Malmquist-Luenberger (ML) productivity index to
calculate China's regional GP and its components. Moreover,
the global spatial autocorrelation technique is applied to test
whether the GP and its components among different regions
have significant spatial correlations. Building on the spatial
correlation test, we constructed a spatial panel data model and
empirically analyzed the conditional b-convergence of China's
GP and its components. Last but more important, it is
particularly imperative to analyze China's regional GP and its
convergence from the perspective of reducing regional
development gaps, promoting the coordinated development
among regions. As such, we further examined whether envi-
ronmental regulations affect the conditional b-convergence of
China's GP.

This paper makes contributions to the existing literature
from three aspects. Firstly, this paper applies the SBM-DDF
method to calculate the green productivity and its decompo-
sition components in China, and so analyzes the spatial
characteristics and changing patterns of China's regional green
productivity and its components. Second, we contribute to the
green productivity literature by applying the spatial econo-
metric models to examine the convergence of China's regional
green productivity. Third, considering the importance of
institutional factors in China, we contribute to the literature by
demonstrating dynamics between environmental regulation
and the convergence of China's regional green productivity.
When different regions intensify environmental regulation, the
differences of green productivity among regions will be
reduced, resulting in the convergence of regional green
productivity.

2. Method and data
2.1. SBM-DDF model
Based on F€are et al.'s (2013) theoretical framework, to
develop the optimal production frontier, this study constructs
the PPS that includes both desirable and undesirable outputs.
In this way, China's provinces are treated as decision-making
units (DMU ). Assume that there are K DMUs; xk, yk and bk

represent the N-dimensional input vector, the M-dimensional
desirable output vector, and the L-dimensional undesirable
output vector, respectively. For DMUkðk ¼ 1;…; KÞ, during
period tðt ¼ 1; 2;…;TÞ, the three vectors satisfy the following:
xt;k¼ �xt;k1 ;xt;k2 ;/;xt;kN

�
2RN

þ ð1Þ

yt;k¼ �yt;k1 ;yt;k2 ;/;yt;kM
�
2RM

þ ð2Þ

bt;k¼ �bt;k1 ;bt;k2 ;/;bt;kL
�
2RL

þ ð3Þ

Tt ¼
(
ðxt;yt;btÞ :

XK
k¼1

ltky
t
km� ytkm;m¼1;…;M;

XK
k¼1

ltkx
t
kn� xtkn;n¼1;/;N;

XK
k¼1

ltkb
t
kl� xtkl;

l¼1;/;L;ltk�0

) ð4Þ

Under the condition that input (x) and desirable output (y)
are strongly disposable and undesirable output (b) is weakly
disposable, the DEA production technology during period t is
given in Eq. 1, where l ¼ ðlt1; lt2;…; ltKÞ is a K-dimension
weighting vector. Building on Tone's (2001) approach, the
SBM model for the undesirable output is developed as:



q¼ min
sx;sy;sb;l

1� 1

N

XN
n¼1

sxn
xtk0n

1þ 1

Mþ L

 XM
m¼1

sym
ytk0m

þ
XL
l¼1

sbl
btk0l

!

s:t:
XK
k¼1

ltkx
t
kn þ sxn ¼ xtk0n;n¼ 1;/;N;

XK
k¼1

ltky
t
km � sym ¼ ytk0m;m¼ 1;/;M;

XK
k¼1

ltkb
t
kl þ sbl ¼ btk0l; l¼ 1;/;L;ltk � 0;k ¼ 1;/;K; sxn � 0; sym � 0; sbl � 0

ð5Þ
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Eq. 5 is the SBM-DEA model under a constant return to
scale. If the constraint

P
l ¼ 1 is added to the model, then it

becomes the SBM model under changing returns to scale. In
the equation, q is the efficiency, and ðxtk0n; ytk0m; btk0lÞ are the
input vector, desirable output vector, and undesirable output
vector, respectively, of the kth DMU; ðsxn; sym; sbl Þ are the slack
variables of the input, desirable output, and undesirable
output, respectively, indicating excessive input or insufficient
output. If q ¼ 1, then all slack variables have a value of zero,
implying that there is excessive input or insufficient output.
Under this circumstance, the DMU is completely effective in
terms of technology.
2.2. Green productivity and its decomposition
The definition of the GP is based on the distance function;
therefore, it can be directly expressed using the measurement
of SBM-DEA efficiency (Zhou et al., 2008). Assume
qtðxtþ1

k ; ytþ1
k ; btþ1

k Þ and qtþ1ðxtþ1
k ; ytþ1

k ; btþ1
k Þ are the kth DMU's

efficiencies in period t and t þ 1 as a function of input vector,
desirable output vector, and undesirable output vector of
period t; and qtðxtþ1

k ; ytþ1
k ; btþ1

k Þ and qtþ1ðxtþ1
k ; ytþ1

k ; btþ1
k Þ are

the kth DMU's efficiencies in period t and t þ 1 as a function
of input vector, desirable output vector, and undesirable output
vector of period t þ 1. So the GP of the kth DMU from period
t to t þ 1 can be calculated as:

GPt;tþ1
k ¼

"
qt
�
xtþ1
k ; ytþ1

k ;btþ1
k

�
qt
�
xtk;y

t
k;b

t
k

� ,
qtþ1
�
xtþ1
k ; ytþ1

k ;btþ1
k

�
qt
�
xtk;y

t
k;b

t
k

� #1=2
ð6Þ
GPt;tþ1
k ¼qtþ1

�
xtþ1
k ;ytþ1

k ;btþ1
k

�
qt
�
xtk;y

t
k;b

t
k

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GEC
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�, qt
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k
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�
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k ;btþ1
k

�
#
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GTC
where GPt;tþ1
k measures the change in the GP of the kth DMU

from period t to period t þ 1. If GPt;tþ1
k > 1, then the GP has

increased; if GPt;tþ1
k < 1, it has decreased; if GPt;tþ1

k ¼ 1, then
no change has occurred. In accordance with F€are et al. (1994),
GPt;tþ1

k is decomposed into two components: green technology
efficiency change (GEC ) and green technical progress change
(GTC ), as shown in Eq. 7. GEC reflects the intertemporal
relative change in efficiency, and GTC measures the change in
the optimal production frontier from period t to period t þ 1. A
value of GP, GEC, and GTC that is greater than (less than) 1
denotes a GP increase (decrease), an improvement (deterio-
ration) of green efficiency, and frontier technical progress
(retrogression), respectively. The calculation in Eq. 7 involves
four SBM-DDFs, which require solving through the corre-
sponding linear programming.
2.3. GP convergence test and spatial panel data model
The preferential policies of the Chinese government could
drive factors of production and innovation input to relatively
underdeveloped regions and enhance their endogenous
development; therefore, these policies advance the conver-
gence of regional GP. Therefore, in reality, the spatial
convergence of regional GP depends on a variety of factors,
including the cross-regional learning effect, knowledge diffu-
sion, and government policies. This study employs the b-
convergence approach to examine the convergence of China's
regional GP. The b-convergence can be manifested in the form
of absolute convergence or conditional convergence. This
conditional convergence assumption better reflects the
1=2

fflfflfflffl} ð7Þ
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economic development reality than the assumptions under the
absolute convergence approach. Therefore, we focused on
conditional b-convergence. When analyzing the convergence
of regional GP, the model's effectiveness could be significantly
undermined if the spatial correlation between variables is not
considered. This impact is because when constructing the
model using regional data, due to the widespread spatial
spillovers between geographic units, the variables have a
strong autocorrelation and spatial heterogeneity. In spatial
models, this relationship between the variables is an important
source of endogeny, which, in turn, has a severe impact on
statistical inference.

The commonly-used spatial data model includes spatial
autoregression models and spatial error models, which can
help to control the impact of the autocorrelation between
variables (Kelejian and Piras, 2017). We considered the spatial
effects among Chinese provinces and sets the spatial model of
the conditional convergence of regional GP as follows:

GPit

�
GPit�1 ¼ ai þ r1W �GPit

�
GPit�1 þ bGPit�1 þ gTXit þ mit

mit ¼ r2W � mit�1 þ εit

ð8Þ
where GPit denotes the GP of region i during period t, ai is the
random effect, and W denotes the spatial weighting matrix. r
is the spatial error autoregression coefficient, and Xit denotes a
set of control variables that represent the characteristics of the
economic structure of region i in period t. The value of b can
be used to determine whether the GP demonstrates conditional
convergence. If b is a negative value, then the GP demon-
strates conditional convergence; otherwise, no conditional
convergence exists for the GP. If conditional convergence
exists, the following equations can be used to further calculate
the convergence rate (r) and the convergence time (T) required
to reduce the gap by half:

r¼ � lnð1þ bÞ
t

ð9Þ

T¼ ln 2

r
ð10Þ
China's GP and its components.

Year GP GTC GEC
2.4. Data
2001e2002 0.9738 0.9623 1.0120

2002e2003 0.9881 0.9921 0.9960

2003e2004 0.9804 0.9943 0.9860

2004e2005 0.9913 1.0054 0.9860

2005e2006 1.0004 0.9732 1.0280

2006e2007 1.0004 0.9895 1.0110

2007e2008 1.0201 1.0232 0.9970

2008e2009 1.0053 1.0083 0.9970

2009e2010 1.0190 1.0160 1.0030

2011e2012 1.0023 1.0196 0.9830

2012e2013 1.0060 1.0000 1.0060

2013e2014 1.0133 1.0083 1.0050

2014e2015 1.0136 1.0036 1.0100

2015e2016 1.0454 1.0444 1.0010

2016e2017 1.0305 1.0213 1.0090

2017e2018 1.0288 1.0278 1.0010
We collected the panel data of 30 provinces (due to the lack
of data, Tibet was excluded) in mainland China from 2001 to
2018 and applies the SBM-DDF approach to calculate the GP.
Although China's National Bureau of Statistics began to
publish environmental statistics in 1997, the data from 1997 to
2000 are not comparable with those after 2000 due to the
change of statistical caliber in 2000. Therefore, we took 2001
as the starting point of the research sample. In the SBM-DDF
model, the input variables consist of the capital stock, labor
input, and energy input. The capital stock is measured by the
physical capital stock and is calculated by using the perpetual
inventory system (with a depreciation rate of 9.6%). The labor
input is measured by the number of workers, which is the year-
end number of employees in each of the three primary sectors.
The energy input is measured by each province's total annual
energy consumption. The output variables include both
desirable and undesirable outputs. The desirable outputs are
measured by each region's total annual production, which is
converted to real GDP by using the year 2000 as the base year.
The undesirable outputs are measured by each province's
annual discharges of three types of waste: sulfur dioxide, solid
industrial waste, and wastewater. The data are collected from
China Statistical Yearbook (2002e2019), China Environment
Yearbook (2002e2019), and China Energy Statistical Year-
book (2002e2019). Based on China's Five-Year Plans, we
divided the sample period (2001e2018) into four stages
(2001e2005, 2006e2010, 2011e2015, and 2016e2018) to
analyze the changing characteristics of China's green produc-
tivity in different stages.

3. Results
3.1. Patterns of China's regional GP

3.1.1. China's regional GP and its components
The results indicate that China's GP, GTC, and GEC have

shown a continuous growing trend since 2001 (see Table 1).
The GP increased from 0.9738 in 2001 to 1.0288 in 2018,
although the overall upward trend also contains some short-
term ‘up-down-up’ fluctuations. The GTC increased from
0.9623 in 2001 to 1.0278 in 2018, demonstrating a continu-
ously growing trend. The GEC increased from 1.0120 to
1.0010 during the sample period. The changes in the GTC and
GEC show that GTC plays an increasingly critical role in the
sustainable economic development in China and has become
the main driver in improving the nation's green total factor
productivity (GTFP).

3.1.2. GP changes in each development phase
During 2001e2005, the main approach to economic growth

in China was “to treat development as the main theme, take
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structural adjustment as the main thread, and capitalize on
reform and opening up as well as technological progress as the
driving force” (Yueh, 2013). As a result, the economy expe-
rienced high growth, but the environment did not receive as
much attention as it should have. Table 2 shows that the GP
was only 0.9837 and experienced a decline during
2001e2005; the GTC and GEC were 0.9882 and 0.9954,
respectively, during this period and demonstrated a continuous
declining trend.

During 2006e2010, the Chinese government declared
resource conservation as a fundamental national policy and
proposed to develop the circular economy and preserve the
ecological environment (Yueh, 2013). Specifically, the gov-
ernment required energy consumption per unit GDP to be
reduced by 20% and major pollutant discharges (COD and
SO2) to be reduced by 10%; these requirements were inte-
grated into China's 11th Five-Year Plan Outline as mandatory
measures, which enhanced the protection of the environment.
During this period, the GP, GTC, and GEC all experienced
continuous growth, substantiating the effectiveness of the
policies. As a result of the policy incentives, many firms
started using environmentally friendly raw materials and en-
ergy to conduct research and development (R&D) in order to
upgrade existing products, which led to high levels of tech-
nological innovation (Wang et al., 2021a).

During 2011e2015, the Chinese government set the major
economic development goal as maintaining stable yet rela-
tively high growth but still emphasized speeding up the
development of a resource-conserving and environment-
friendly society and continued pursue of the circular econ-
omy initiated in 2006e2010 (Yueh, 2013). During the is
period, the decrease rate of energy consumption per 10 thou-
sand CNY GDP increased from 2% in 2011 to 5.6% in 2015.
The values of GP, GTC, and GEC indicates that China's GP
experienced a continuous upward trend.

During 2016e2018, the Chinese government defined the
‘development philosophy’ as “being green, innovation, coor-
dination, openness, and sharing”. These five concepts consti-
tuted the major development mode and guided the key social-
economic development areas during 2016e2018 and beyond.

3.1.3. Spatial distribution of China's GP
We further analyzed China's regional GP by classifying

sample provinces into three regions based on classification
standard from National Bureau of Statistics of China,
including eastern, central, and western regions (see Table A1
in Appendix A). Results show that overall, the changes in
each regions' GP and their components vary significantly.
Table 2

China's GPI and its components during different phases.

Phase GPI GTC GEC

2001e2005 0.9837 0.9882 0.9954

2006e2010 1.0101 1.0025 1.0076

2011e2015 1.0170 1.0156 1.0014

2016e2018 1.0252 1.0205 1.0046
Specifically, the results in Table A1 show that the national
average of the GP between 2001 and 2018 is 1.1442, indi-
cating that China's green total factor productivity experienced
significant improvement in recent two decades, with an annual
growth rate of 6.74%. The two components of the GP, namely,
the GTC and the GEC, have an average value of 1.1095 and
1.0313, respectively.

In terms of the GEC, it takes on higher values in the central
and western regions, at 1.1132 and 1.0374, respectively, while
the eastern region has a relatively lower value of 1.0069. This
indicates that for over more than a decade, some development
strategies implemented by the central and western regions
have had effects.

In terms of the GTC, the eastern region scores the highest
value, 1.1299, followed by the central and western regions,
with scores of 1.1173 and 1.0906, respectively. Although a
consensus has been reached on the ability of technological
progress to enhance productivity, disparities in the develop-
ment environment, human resources, and the existing tech-
nical foundation among different regions has led to major
differences in the effect of technical progress. The eastern
region has the most solid foundation for promoting economic
development through technical progress and thereby has the
highest GTC; in contrast, the western region has the weakest
foundation and therefore the lowest GTC. Almost all of the 30
provinces have experienced certain technical progress1 and
have a GTC greater than 1; however, the progressions vary
across regions. The five provinces that have seen the most
significant technical progress are Guangdong, Hebei, Zhe-
jiang, Xinjiang, and Guangxi. Ranked in the first place,
Guangdong has seen an average annual growth rate of 19.48%
in its GTC. Moreover, in terms of the regional GP, the central
region has the highest score (1.1811), followed by the eastern
and western regions, with scores of 1.1307 and 1.1193,
respectively. During the study period, all regions have seen
significant improvements in their GP, which indicates that they
have all made progress in upgrading their industry structure
and transforming the development pattern. An increase in the
GP occurred in all 30 provinces except for Hainan Province.
The top five provinces in the GP ranking are: Hubei, Jiangxi,
Hunan, Liaoning, and Guangdong.
3.2. Spatial correlation test of China's green productivity
The global spatial autocorrelation analysis was performed
to test the spatial autocorrelation of China's GP. We used the
Moran I test to examine whether China's GP has a significant
spatial correlation (Table A2).

Most Moran I test results are positive and significant under
different spatial weighting matrices during the period
2001e2018. The reason for choosing three different spatial
weight matrices is that the relevant conclusions of spatial
econometric analyses are related to the specific form of spatial
1 Only Hainan and Inner Mongolia experienced technical retrogression, with

a GTC value less than 1.



Table 3

Test for spatial panel model settings.

Test statistic KNN spatial

weight matrix

Exponential distance

spatial weighting

matrix

Spatial weighting

matrix based on

economic

relationships

LM (lag) 7.9234*** 8.6477*** 8.9208***
Robust LM (lag) 10.6604*** 9.3086*** 10.8184***
LM (error) 0.1775 0.1782 0.1396

Robust LM (error) 0.1547 0.1374 0.1260

Wald (lag) 13.5258*** 13.6067*** 14.6190***
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weight setting. In order to obtain more robust empirical con-
clusions, we thus used three different spatial weight matrices
for relevant calculations. The significantly positive results
mean that the spatial distribution of China's green productivity
has significant spatial autocorrelation during the study period
and that this autocorrelation has been continuously strength-
ened. Therefore, the positive correlation indicates that the
spatial correlation of China's green productivity exists dem-
onstrates a characteristic of spatial clustering (Huang et al.,
2021).
Wald (error) 0.1951 0.1979 0.1396

LR (lag) 10.5153*** 10.3186*** 11.1185***
LR (error) 0.1756 0.1295 0.1996
3.3. Conditional convergence of China's GP
Spatial Hausman 22.3224*** 24.5936*** 22.6947***

Note: *, **, and *** denote results statistically significant at the 10%, 5%, and

1% confidence level, respectively.

2 Whether the convergence trend of green productivity exists can be judged

by the sign and significance of the coefficient of GPit‒1. If the coefficient is

significant and negative, it indicates that the convergence trend of green

productivity exists.
Existing studies (Su et al., 2020; Wang et al., 2021b; Xie
et al., 2021) indicate that the degree of population urbaniza-
tion (URB), industry upgrade (IND), openness (OPE ), and
marketization (MAR) affect productivity and the efficiency of
green development. The migration into urban areas enables a
more intensive use of resources and energy; the internal
learning effect and advantages of diversification also help to
increase the output from each input unit. A high degree of
openness enables a region to attract and integrate resources at
a large scope and to acquire more advanced technologies
through trade expansion to improve productivity. Besides, a
high degree of marketization creates reasonable competition in
the marketplace and a favorable business environment that
drives firms to adopt more resource-conserving and environ-
mentally friendly production methods. Therefore, we selected
the four factors discussed above as the control variables in the
analysis of conditional convergence of China's GP.

Specifically, the four control variables are defined as fol-
lows: urbanization is measured by the proportion of the non-
agricultural population in the total regional population; in-
dustry structure upgrading is measured by the proportion of
value added from the second and tertiary sectors in the total
regional GDP; openness is measured by the proportion of total
foreign investment (adjusted by average annual exchange rate)
in the regional GDP; and marketization is measured by the
proportion of workers in privately or individually owned
businesses in the total regional population.

The following static spatial panel model is developed to test
the b-convergence of China's regional GP:

GPit=GPit�1 ¼ ai þ r1W �GPit=GPit�1 þ bGPit�1 þ g1URBit

þg2INDit þ g3OPEit þg4MARit þ mit

mit ¼ r2W � mit�1 þ εit

ð11Þ
Before running the spatial panel model, a Lagrange

Multiplier (LM) test and a spatial Hausman test are performed
for testing the model settings. As aforementioned, to avoid test
failures due to inappropriate settings of the spatial weighting
matrices, this stully applies the KNN spatial weight matrix
(K ¼ 3), the exponential distance spatial weighting matrix
(a ¼ 2) and the spatial weighting matrix based on socio-
economic relationships to implement the spatial econometric
model. The results are shown in Table 3.
The results in Table 3 indicate that the Lagrange Multiplier
(lag), Robust LM (lag), Wald (lag), LR (lag) are significant at
the 1% level, while the Lagrange Multiplier (error), Robust
LM (error), Wald (error), LR (error) are not significant.
Therefore, the spatial autoregression model shall be applied
(Anselin, 2002, 2003). Further, the spatial Hausman test in-
dicates that the fixed-effects spatial panel model should be
used.

Considering the complexity in the spatial correlation of the
regional GP, to test the conditional b-convergence of China's
30 provinces over the period 2001e2018, three types of spatial
weighting matrices are employed. The results are displayed in
Table 4.

Table 3 indicates that the spatial lag coefficient r is sig-
nificant for all three spatial weighting matrices. Under the
three spatial weighting matrices that consider the spatial
impact, the GP demonstrates a trend of convergence at the
5%e10% level.2 Whereas the results from the model in which
the spatial impact is not considered, China's GP does not
demonstrate a trend of convergence. Accordingly, biased re-
sults are likely when spatial factors are not included when
analyzing China's green total factor productivity. Therefore,
our analysis will be based on the results from models using the
three spatial weighting matrices.

Specifically, under the KNN spatial weight matrix (K ¼ 3),
the exponential distance spatial weighting matrix (a ¼ 2) and
the spatial weighting matrix based on socio-economic re-
lationships, the convergence rate of China's GP is 3.21%,
2.49%, and 1.35%, respectively, suggesting the respective
convergence time required to close the gap by half is 22.10,
28.53, and 52.97 years. Among the control variables, URB and
IND have a positive impact on GP growth and are significant
at the 5% level. This is an indication that population urbani-
zation and industry upgrading help to enhance China's GP
growth. The regions with low GP can accelerate population



Table 4

Results of spatial convergence of China's GP.

Variable No spatial

weighting matrix

KNN spatial

weight matrix

Exponential

distance spatial

weighting matrix

Spatial weighting

matrix based on

economic relationships

r 0.0244*** (0.0073) 0.0991* (0.0716) 0.0807** (0.0494)

GPIit�1 0.0113 (0.1599) �0.0316** (0.0180) �0.0246* (0.0165) �0.0134** (0.0086)

URB 0.2212** (0.1034) 0.8886** (0.4770) 0.6467*** (0.1843) 0.6851*** (0.2801)

IND 0.5843*** (0.3150) 0.2807*** (0.1083) 0.6422** (0.2099) 0.6364** (0.1973)

OPE 0.5543 (0.8980) 0.5562 (1.2818) 0.1246 (0.3261) 0.3421 (0.3969)

MAR �0.7566*** (0.2040) �0.6210* (0.3903) �0.8303** (0.4047) �0.9164** (0.4812)

Province effect Yes Yes Yes Yes

Year effect Yes Yes Yes Yes

Convergence rate 0.0321 0.0249 0.0135

Adjust R2 0.4593 0.3792 0.4015 0.3983

Note: Values in parentheses are robust standard error. *, **, and *** denote results statistically significant at the 10%, 5%, and 1% level, respectively.
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urbanization and encourage industry upgrading to improve
their GP. OPE does not have a significant impact on the GP,
and MAR has a significant negative impact on the GP, partially
because certain heavy industries create an overuse of energy
and environmental pollution, thereby reducing GP.
3.4. Further discussion
To further analyze the regional effects of China's GP
convergence and its two components, we implemented the
spatial econometric model with the three spatial weighting
matrices again to each of the three China's regions (Section
3.4.1) and to GEC and GTC (Section 3.4.2), respectively.

3.4.1. Green productivity convergence in different regions
Table 5 shows the spatial convergence of GP in different

regions. The GP of the eastern region demonstrates significant
conditional convergence trend; when the spatial effect is
considered, the convergence rate is even higher. Under the KNN
spatial weight matrix (K ¼ 3), the exponential distance spatial
weightingmatrix (a¼ 2) and the spatial weightingmatrix based
on socio-economic relationships, the convergence rate of the
eastern region's GP is 6.36%, 6.58%, and 6.24%, respectively;
and the respective corresponding convergence time required to
close the gap by half is 10.90, 10.53, and 11.11 years. TheGP of
the central region does not demonstrate any convergence trend.
The GP of the western region demonstrates significant
convergence trend; when the spatial effect is considered, the
convergence rate is even higher. In comparison with the
convergence rate of the eastern region, however, the conver-
gence rate in thewestern region is considerably lower. Under the
three types of spatial weighting matrices, the convergence rate
of the western region's GP is 2.28%, 2.48%, and 2.35%,
respectively; the respective convergence time required to close
the gap by half is 30.46, 28.18, and 29.53 years. The geographic
location of the central region is an important reason why theGP
does not demonstrate a convergence trend. To promote eco-
nomic development, the aim of some provinces in the central
region is to catch up with the eastern region, while some others
try to align with their counterparts in the western region. These
differences in development strategies lead to greater disparities
in central China's Green Productivity.

Among the control variables, the coefficients of URB and
MAR of the eastern region are negative and significant. The
eastern region mainly consists of provinces that are more
economically developed and located on the coast. Urbaniza-
tion in this region is close to saturation, and further growth in
the urban population may have a negative impact on the GP;
the eastern region's results are contrary to the overall results at
the national level. As for the marketization process, in the
eastern region, some firms with heavy pollution have been
established, which also contributes to the negative coefficient.
OPE does not have a significant impact on the GP of the
eastern region, while IND has a significant positive impact. In
the developed eastern region, to improve the TFP that contains
environmental efficiency, the industry structure needs to be
upgraded to improve the efficiency of resource and energy
consumption. URB has a significant positive impact on the
central region's GP, while OPE and MAR have a significant
negative impact. The possible reason for this is that in com-
parison with the eastern region, the central region has neither a
superior geographic location nor a strong ability to attract a
large amount of foreign investment into the tertiary industries,
such as the service sector; rather, most investment in this re-
gion is in the industries with high energy consumption and
heavy pollution. Marketization attracts a large number of
factors of production into the region; however, the market
mechanism cannot effectively phase out firms with high en-
ergy consumption and heavy pollution, which leads to the GP
decline. Therefore, the most effective approach to improving
the central region's GP is still industry structure upgrading;
that is, making every effort to grow the tertiary sector. Eco-
nomic development in the western region lags behind that of
other regions. Except for OPE, which does not have a sig-
nificant impact on the region's GP, all other three indicators
have a significant positive impact. In the western region,
advancing urbanization could help develop the urban labor
force, improve productivity, and promote the economy.



Table 5

Spatial convergence of GP in different regions.

Variable No spatial

weighting matrix

KNN spatial

weight matrix

Exponential

distance spatial

weighting matrix

Spatial weighting

matrix based on

economic relationships

Eastern

region

r 0.1720** (0.0989) 0.1759*** (0.0467) 0.1468*** (0.0585)

GPit-1 �0.0539* (0.0382) �0.0616** (0.0335) �0.0637*** (0.0243) �0.0605*** (0.01933)

URB �0.5520** (0.3110) �0.8066** (0.4586) �0.6323* (0.4399) �0.5230** (0.2674)

IND 0.8252** (0.3896) 0.8037** (0.3893) 0.2354*** (0.0894) 0.3011*** (0.0962)

OPE 0.1430 (0.5881) 0.2522 (0.4993) 0.1267 (0.2305) 0.1343 (0.1485)

MAR �0.2513** (0.1374) �0.6722** (0.3466) �0.6043*** (0.1931) �0.3723*** (0.1466)

Province effect Yes Yes Yes Yes

Year effect Yes Yes Yes Yes

Convergence rate 0.0554 0.0636 0.0658 0.0624

Adjust R2 0.4080 0.5158 0.6593 0.4342

Central

region

r 0.1022*** (0.0277) 0.1990*** (0.0921) 0.1232*** (0.0473)

GPit-1 0.0135 (0.04773) 0.0182 (0.0483) 0.0091 (0.0624) 0.0065 (0.0093)

URB 0.6943*** (0.2042) 0.3911** (0.2142) 0.2077*** (0.0664) 0.2835** (0.1199)

IND 0.4942** (0.2560) 0.9467*** (0.2453) 0.1268** (0.0589) 0.3651*** (0.0976)

OPE �0.6882* (0.4774) �0.7534** (0.3874) �0.6436* (0.4908) �0.8387** (0.4280)

MAR �0.5451*** (0.2196) �0.5793*** (0.2191) �0.5195*** (0.1472) �0.7664*** (0.2012)

Province effect Yes Yes Yes Yes

Year effect Yes Yes Yes Yes

Convergence rate

Adjust R2 0.5352 0.5496 0.5660 0.6881

Western

region

r 0.1602** (0.08804) 0.1528** (0.0821) 0.1891*** (0.0782)

GPit-1 �0.0170** (0.0098) �0.0225*** (0.0073) �0.0243** (0.0146) �0.0232*** (0.0082)

URB 0.2237*** (0.0590) 0.9440* (0.6596) 0.9136** (0.4688) 0.1697** (0.0983)

IND 0.1854** (0.1083) 0.1366** (0.0821) 0.5672** (0.3047) 0.4477*** (0.1286)

OPE 0.0744 (0.3765) �0.0210 (0.0305) 0.0340 (0.2745) 0.0561 (0.1571)

MAR 0.7287** (0.3723) 0.3563** (0.1704) 0.3441* (0.2362) 0.5615*** (0.1586)

Province effect Yes Yes Yes Yes

Year effect Yes Yes Yes Yes

Convergence rate 0.0172 0.0228 0.0248 0.0235

Adjust R2 0.4677 0.4292 0.3798 0.4164

Notes: Values in parentheses are robust standard error.*, **, and *** denote results statistically significant at a 10%, 5%, and 1% confidence level, respectively.
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3.4.2. Spatial convergence of GP components
The spatial convergence tests for the components of the

GTC and GEC are performed, and the results are shown in
Table 6.

The results indicate that without considering the spatial
impact, neither the GTC nor the GEC demonstrates a trend of
convergence. After the spatial impact is considered, however,
the GTC demonstrates a trend of convergence; under the three
spatial weighting matrices, the convergence rate of the GTC is
3.47%, 3.87%, and 3.17%, respectively; the respective
convergence time required to close the gap by half is 20.04,
17.89, and 22.01 years. Even after considering the spatial
impact, the GEC still does not demonstrate a trend of
convergence.

4. Environmental regulation and the spatial convergence
of GP

The picture of the convergence of China's GP is incomplete
if institutional factor is not considered. For example, Shen
et al. (2020) uses panel data of 48 coastal cities in China
from 2004 to 2017 to explore the impact of local government
competition on water pollution by using a two-way fixed-ef-
fect panel regression model. Results show that local govern-
ment competition has significantly increased water pollution.
The government can improve the quality of economic growth
through advantageous institutional arrangements (Dong et al.,
2020; Tian et al., 2020). Environmental regulation constitutes
the most important policy arrangement in China's environ-
mental management system and is especially pertinent in the
industrial sector where environmental measures are tasked
with promoting industry growth while reducing energy con-
sumption and waste discharge. Prior research has not reached
a consensus on the relationship between environmental regu-
lation and green economic growth. Some researchers argue
that strict regulations imposed on firms may bring about social
benefits but are not conducive to fostering innovation capacity
and environmental stewardship among firms (Gray, 1987; Jaffe
and Palmer, 1997). Some other researchers state that strict yet
appropriate environmental regulations not only generate
beneficial externalities that contribute to public benefits but
also create the ‘offset effects of innovation’ among firms in the



Table 6

Spatial convergence of GTC and GEC.

Variable No spatial weighting matrix KNN spatial weight matrix Exponential distance spatial

weighting matrix

Spatial weighting matrix

based on economic

relationships

GTC r 0.1631*** (0.0399) 0.1579*** (0.0266) 0.1553*** (0.0388)

GTCit-1 �0.0182 (0.0503) �0.0341** (0.0184) �0.0380** (0.0253) �0.0312*** (0.0083)

URB 0.2891** (0.1280) 0.3533** (0.1854) 0.8132*** (0.2170) 0.4346*** (0.1041)

IND 0.7088*** (0.1532) 0.4510** (0.2406) 0.8813*** (0.2810) 0.1339*** (0.0341)

OPE 0.6343 (1.1441) 0.4991 (2.2332) 0.1876 (0.3254) 0.9555 (2.3737)

MAR �0.3240*** (0.0893) �0.4403** (0.2375) �0.6455** (0.3644) �0.2052*** (0.0492)

Province effect Yes Yes Yes Yes

Year effect Yes Yes Yes Yes

Convergence rate 0.0347 0.0387 0.0317

Adjust R2 0.4502 0.5243 0.4051 0.5796

GEC r 0.1326 (1.6568) 0.1373 (0.4333) 0.1245 (0.1766)

GECit-1 0.0033 (0.0142) �0.0121 (0.0150) 0.00245 (0.0068) 0.0127 (0.0203)

URB 0.3897*** (0.0667) 0.7213*** (0.1047) 0.7733* (0.5170) 0.8604*** (0.3071)

IND 0.6682*** (0.2143) 0.8388** (0.4783) 0.2195** (0.1284) 0.7493*** (0.1772)

OPE 0.4352 (1.1640) 0.2680 (0.4932) 0.7702 (1.4525) 0.1341 (0.4426)

MAR �0.5054*** (0.1393) �0.6256** (0.1346) �0.9382** (0.5446) �0.4920*** (0.1038)

Province effect Yes Yes Yes Yes

Year effect Yes Yes Yes Yes

Adjust R2 0.4335 0.5312 0.5630 0.5734

Notes: Values in parentheses are robust standard error. *, **, and *** denote results statistically significant at the 10%, 5%, and 1% confidence level, respectively.
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long run. Under this proposition, firms subjected to these
regulations are induced to optimize resource allocation,
improve production processes and techniques, and enhance
their innovation capacity. Therefore, the firms' economic
performance and environmental performance are both
improved (Porter and van der Linde, 1995; Brunnermeier and
Cohen, 2003).

To test the impact of environmental regulations on the
convergence of China's GP, we develop a spatial autore-
gression model as follows:

GPIit=GPIit�1 ¼ ai þ rW �GPIit=GPIit�1 þ qERit þ bGPIit�1

þg1URBit þ g2INDit þ g3OPEit þ g4MARit þ mit

ð12Þ
ERit denotes the environmental regulations, and the other

variables are the same as those in Eq. (12). In the reality of
environmental regulation, the intervention modes of the gov-
ernments are not fixed, and the types of policy instruments are
also diverse. We divided the environmental regulations into
administrative controls (DEM ), fee-based regulatory measures
(COST ), and investment-based regulatory measures (INV).
DEM is measured by the number of cases that involve
administrative fines in response to the firms' environmental
breach. COST is measured by the annual waste discharge fees
collected by each region, with larger amount of discharge fee
indicates a more stringent regulation. We apply the GDP
deflator by using 2000 as the base year to adjust the effect of
inflation. INV is measured by each region's total annual in-
vestment in reducing pollution and remediating the environ-
ment: a large amount indicates a more vigorous regulation.
Similarly, the GDP deflator is applied to adjust the nominal
investment amount to account for inflation. The data source is
the China Statistical Yearbook.

The results in Table 7 indicate that environmental regula-
tion has a significant impact on the spatial convergence of
China's regional GP. Specifically, all three types of regulatory
measures, DEM, COST, and INV, have a significant positive
impact on the spatial convergence of China's regional GP. It is
evident that after the environmental regulation is added to the
model as a variable, the convergence rate of the GP increases,
and the convergence time required to reduce the gap by 50%
decreases. For instance, under the KNN spatial weight matrix,
after the variables of DEM, COST, and INV are introduced, the
GP convergence rate is 6.56%, 5.47%, and 5.26%, respec-
tively, and the convergence time required to reduce the gap by
50% is 10.60, 12.73, and 13.24 years, respectively. The
convergence rate is significantly higher than that when the
environmental regulation is not introduced into the model.
Therefore, the environmental regulation effectively reduces
the disparity between the regional GP and could help to
improve the convergence of GP.

5. Conclusion and policy recommendations

This study uses the panel data of China's 30 provinces from
2001 to 2018 to calculate each province's GP and further
employs the spatial econometric model to analyze the
convergence of the regional GP. The findings indicate that the
GP and its components (GTC and GEC ) have demonstrated a
continuous upward trend since 2001. The GP increased from
0.9738 in 2001 to 1.0288 in 2018, although short-term ‘up-
down-up’ fluctuations occurred during the overall upward



Table 7

Environmental regulation and spatial convergence of GP.

Variable KNN spatial

weight matrix

Exponential

distance spatial

weighting matrix

Spatial weighting

matrix based on

economic relationships

r 0.1451***
(0.0386)

0.1813***
(0.0344)

0.1185***
(0.0310)

0.1769***
(0.0402)

0.1965***
(0.0274)

0.1739***
(0.0361)

0.1379***
(0.0260)

0.1933***
(0.0643)

0.1327***
(0.0183)

DEM 0.819**
(0.4144)

0.680*
(0.5279)

0.676**
(0.3294)

COST 0.6160**
(0.3052)

0.4312**
(0.2189)

0.4451**
(0.0264)

INV 0.2768**
(0.1432)

0.4033**
(0.1995)

0.3321**
(0.1944)

GPIit�1 �0.0635***
(0.0147)

�0.0532***
(0.0193)

�0.0512***
(0.0103)

�0.0692***
(0.0142)

�0.0567***
(0.0194)

�0.0522***
(0.0144)

�0.0571***
(0.0121)

�0.0522***
(0.0152)

�0.0500***
(0.0085)

URB 0.3781**
(0.1986)

0.4696**
(0.2438)

0.8403**
(0.4842)

0.2844***
(0.0591)

0.8781**
(0.4594)

0.6266**
(0.3184)

0.4773**
(0.2236)

0.9006***
(0.2320)

0.4053***
(0.0742)

IND 0.3959**
(0.1892)

0.6690*
(0.4744)

0.6652***
(0.1955)

0.4111**
(0.2077)

0.6183**
(0.3210)

0.2077**
(0.1038)

0.2542***
(0.0542)

0.7005***
(0.2066)

0.8310**
(0.4863)

OPE 0.7554

(0.8791)

0.9311

(1.0547)

0.2409

(2.1284)

0.5954

(1.0942)

0.9534

(3.1583)

0.1552

(0.2232)

0.9213

(1.8568)

0.6931

(0.7948)

0.3988

(0.5044)

MAR �0.2343***
(0.0493)

�0.5566***
(0.1811)

�0.2397***
(0.0581)

�0.4201***
(0.0653)

�0.7996***
(0.1193)

�0.6572***
(0.1362)

�0.7215***
(0.1982)

�0.3348***
(0.0579)

�0.1942***
(0.0365)

Province

effect

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year effect Yes Yes Yes Yes Yes Yes Yes Yes Yes

Convergence

rate

0.0656 0.0547 0.0526 0.0717 0.0584 0.0536 0.0588 0.0536 0.0513

Adjust R2 0.5123 0.5881 0.5038 0.6504 0.6675 0.6812 0.6891 0.6188 0.6320

Notes: Values in parentheses robust standard error. *, **, and *** denote results statistically significant at the 10%, 5%, and 1% confidence level, respectively.
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trend. The GTC increased from 0.9623 in 2001 to 1.0278 in
2018, demonstrating a trend of continuous growth. The GEC
increased from 1.0120 in 2001 to 1.0010 in 2018, demon-
strating more fluctuations than did the GTC. After considering
the spatial impact, China’ GP demonstrates a trend of
convergence. Moreover, when environmental regulation is
introduced to the model, the convergence rate increases, and
the convergence time required to close the gap by half de-
creases. Therefore, environmental regulation effectively re-
duces the disparity between China's regional GP and is
conducive to the GP convergence. Based on the results of the
empirical findings, China's green economic development shall
focus more on the following aspects.

First, integrate green productivity into regional economic
development strategic plans. High-quality economic develop-
ment requires stable economic growth while promoting the
environmental quality, which highlights the important role of
green production in the economic development. The fluctua-
tion pattern of China's green productivity as indicated in our
findings indicates the need to stabilize green production and so
enhance the economic development quality. To achieve and
promote the stabilization of green production, we find that
urbanization and industrial structure upgrade exert a positive
impact on China's green productivity. Therefore, appropriate
measures should be taken to enhance the quality of urbani-
zation and the industrial structure upgrade. The urbanization
process should focus more on the intensive use of resources,
be mindful of the green economy; and should promote
consumer products that are more energy-conserving to develop
green cities. For the eastern and central regions, a reasonable
spatial layout should be developed between cities and smaller
urban centers; the integration of urban and rural areas should
be accelerated, and cities should play a leading role in driving
rural development. An early warning mechanism for the
ecosystem should be developed in cities; and an over-
concentration of production factors should be avoided in
order to improve development efficiency and prevent unnec-
essary generation of environment pollution. For the western
region, urban centers should be developed based on sound
urban planning and in an orderly manner; industry develop-
ment should become the driving force for employment growth,
population agglomeration, and urbanization. In addition, the
industrial structure should be transformed and updated. To
achieve a balanced development mode between productivity
improvement and resource and energy conservation, the gov-
ernment should strictly control the extensive expansion and
facility replication of the high-pollution industry (Grubb et al.,
2021). Increasing the capacity of independent innovation
should be at the heart of industrial structure adjustments. The
government should encourage the use of more advanced fac-
tors of production, reduce the local economies' reliance on
high energy consumption industries, and strive to develop a
resource-conserving and environmentally friendly economy.
Relatively underdeveloped regions should embrace the inter-
regional transfer of industries (Jia et al., 2021), especially the
import of knowledge and intelligence-intensive industries
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from developed areas, in order to reduce the gap in industrial
development and knowledge accumulation. This could foster
the capacity of endogenous development and reduce the large
green productivity disparity caused by the gap in industrial
development.

Second, the findings indicate that environmental regulation is
conducive to the convergence of China's regionalGP. Therefore,
the Chinese central and local governments should further
improve environmental regulations. In addition to strengthening
the existing regulatory measures, the government should try to
combine and utilize multiple policy instruments. China has
piloted the national emissions trading scheme (ETS) recently
and encouraged innovative green financing schemes to support
green projects. Therefore, exploring novel environmental
regulation possibilities from various instruments paves the basis
for China to achieve a low-carbon development and ultimately
accelerate the carbon neutrality process.

We have used province-level data to analyze China's
regional green productivity and the convergence of the
regional green productivity. The within-province heterogene-
ity might generate more interesting and important findings
than the province-level findings. Therefore, future studies may
collect sub-provincial data such as city-level or county-level
data to further explore more specific spatial and time-
varying characteristics of China's regional GP. Moreover, the
policy effect on China's regional green productivity has not
been explored in this study. Chinese government has made
substantial efforts to improve environmental performance and
achieved great improvements in recent years. The relevant
environmental policies have generated positive impacts on
China's green productivity. Future studies can investigate the
impacts of important environmental policies on regional green
productivity such as the recently launched national carbon
emissions trading scheme (ETS).
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