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Abstract: Rapid transit systems play a significant role in supporting rapid social and economic
development in large cities all over the world. However, the systems consume a large amount of
energy, which brings increasing environmental concerns. A number of energy-saving technologies
have been studied on railways. However, few of the outcomes have been tested and evaluated in
practice. This paper presents the development of a timetable optimization and trial test on a metro
line to reach the full potential of the train regenerative braking system. To achieve this purpose, a
timetable optimization algorithm has been developed, and a trial test of the optimal timetable has
been arranged on a metro line for a whole day. In the test, all the trains running in the network were
organized to operate in accordance with the optimal timetable. The trial test results indicate that by
applying the optimal timetable, the regenerative braking energy utilization can be improved, thereby
reducing the overall network energy usage.

Keywords: timetable; optimization; trial test; metro; regenerative braking; energy saving

1. Introduction

Rapid transit systems have gained popularity because of their efficiency and con-
venience in modern cities. However, due to the rising awareness of environmental sus-
tainability, modern electric railway systems are receiving more attentions in the recent
arguments on energy saving because of the high energy usage in day-to-day services [1].
For instance, the annual electricity consumption of the London Underground is 1.3 TWh [2]
at an estimated cost of GBP 159 m, which is equivalent to all the households in Notting-
ham. To improve energy efficiency, modern trains are equipped with regenerative braking
systems, which capture the kinetic energy from braking and convert it into electrical power
that can be used by other motoring trains. Therefore, timetables make an important im-
pact on train regenerative braking utilization. An optimal timetable is able to provide a
means of reducing energy consumption by reaching the full potential of train regenerative
braking systems.

A large number of scholars have presented different methods to model railway op-
erations and develop optimal running strategies to improve operational efficiency. Zhi
developed a common train timetabling mathematical model, which can calculate the most
appropriate timetable according to different objectives, including robustness and dwell
time [3]. Parbo proposed the use of an optimally synchronized timetable to reduce the pas-
senger waiting time when using public transportations [4]. The method was demonstrated
on a large rail network and the result shows an annual weighted waiting time reduction
of approximately GBP 5.3 m. Shuai developed an approach to adjust the service time for
multiple trains to maximize the utilization time of train regenerative braking systems [5].
Xin presented a new method to optimize a timetable on a metro network [6]. Using the
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optimal timetable, the train stopping pattern was optimized. Therefore, the majority of
train regenerative energy can be used by other motoring trains. Shoichiro also developed a
similar algorithm to improve energy-saving performance utilizing the ATO (automatic train
operation) system, which extended the application range of the algorithm [7]. Montrone
proposed an optimization problem to identify the inter-station running times for the rail-
way timetable definition to minimize the energy consumption. The result was compared
with commercial software to prove its effectiveness [8]. Lopez carried out a comprehensive
study on DC railway system energy issues and found that train regenerative braking can
facilitate railway energy efficiency [9].

Most of the previous timetable optimization research outcomes are based on sim-
ulations without trial tests or practical vilifications. For example, Xin has developed
scheduling rules to improve the train overlapping time, but has not identified the impact
on the regenerative braking energy utilization [6]. Montrone has used two simulation
tools, namely modeFRONTIER and Opentrack, to calculate and validate the train energy
consumption results [8]. Due to environmental and human disturbances, such as high
passenger boarding and alighting rates in peak-time hours, system failures, etc., trains may
perform differently compared with their modelling and simulation results [10]. Therefore,
in order to identify and prove the practicability of the proposed approach, trial tests should
be carried out.

The content of the paper is shown as follows. Firstly, train kinematics modelling is
described to provide a general understanding of train energy consumption calculations.
Secondly, the development of timetable modelling and an optimization algorithm is pre-
sented, followed by the description of a trial test on a typical metro line. The energy
consumption data were exported from train onboard measurement systems after the test to
evaluate the optimization results.

2. Train Motion Kinematics

To facilitate the understanding of the impact of timetable optimization, Equation (1) is
used to calculate the fundamental physics of train motions, which is based on Newton’s
laws of motion [11]. 

Ftotal = Ftr(v)− Fbr(v)− Rd(v)− Rc(v)− Fg

Rd(v) = a + b|v|+ cv2

Rc(v) = θ
Rad

Mg

Fg = Mgsin(α)

(1)

where Ftotal is the total force; v is the train speed; Ftr and Fbr are the tractive effort and
braking effort, respectively; Rd is the motion resistance, which is formed by train speed and
three constant numbers, a, b and c, known as the Davis equation [12]; Rc is the resistance
due to the curve; Fg is the resistance due to the gradient; θ is a fixed number, the value
is set at 600 in this modelling; Rad is the radius of curvature; M is the train mass; g is the
gravitational acceleration; α is the gradient angle. The train motion equation can be further
described based on different train movement modes, including motoring, cruising, coasting
and braking, as shown in Table 1 [13].

Table 1. Train movement modes.

Movement Mode Equations

Motoring Ftotal = Ftr(v)− Rd(v)− Rc(v)− Fg
Cruising Ftotal = Ftr(v)− Rd(v)− Rcu(v)− Fg = 0
Coasting Ftotal = −Rd(v)− Rc(v)− Fg
Braking Ftotal = −Fbr(v)− Rd(v)− Rc(v)− Fg
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In the motoring mode, the tractive power is used to overcome the resistance and
increase the train speed. This movement mode requires a large amount of tractive energy.
When the train is in the cruising mode, the tractive power is used to overcome the train
resistance and gravitational force only. The train speed is maintained at a constant number.
The power demand in this mode is much smaller than that in the motoring mode. In the
coasting mode, no tractive power is required. The train speed is affected by the resistance
and the gravitational force. Finally, in the braking mode, the braking effort produced by air
braking systems or regenerative braking systems is applied to reduce the train speed.

3. Methodology
3.1. Timetable Optimization

In modern railways, the train braking force is generally provided by air braking
systems and regenerative braking systems. Air braking systems reduce the train speed by
applying friction braking blocks. The train kinetic energy is then converted to heat, and
therefore wasted. Regenerative braking systems reduce the train speed by converting the
train kinetic energy to electrical energy as an electric generator. The produced energy can
be used by other trains in the same electrical network. However, due to the high costs of
trackside and train onboard energy storage systems, if the regenerated energy cannot be
utilized by other trains instantly, it will be discarded.

In the timetable optimization, to reach the full potential of the train regenerative
braking systems, a braking synchronization strategy is developed. As shown in the green
box of Figure 1, if Train 1 is braking when Train 2 is motoring in the same electrical section,
the regenerative power produced from Train 1 can be used by Train 2, thereby improving
the energy efficiency. This pair of trains is recognized as a synchronized group. The
overlapping time of the motoring and braking is recognized as synchronized time.
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Figure 1. Regenerative braking power utilization.

The optimization proposed in this work aims to maximize the synchronized groups
and synchronized time by searching for the most suitable train service interval times with
journey time constraints. Equation (2) shows the optimization fitness function.

min TST =
SGn
∑

i=1
(STi × wst)

[SGn, STset] = f (SIset)

(2)

where TST is the overall synchronized time that will be minimized; SGn is the number of
the synchronized groups; ST is the synchronized time for each synchronized group; wst
is the weighting that is associated with the ST. The value of the weighting depends on
the distance between the braking train and the motoring train. If the distance is long, the
power transmission loss becomes high; thus, a small weighting shall be given; SI is the train
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service interval. The train single journey time and whole day operation time are shown in
Equation (3). 

Tsingle =
sn
∑

i=1
(ITi + DTi)

Tday =
tn
∑

i=1

(
Tsingle + SIi

)
, i f |SIi − SIsi| ∈ [0, SIallow]

Tday = Tsday

SI ≥ HDLmin

(3)

where Tsingle is the single train journey time; sn and tn are the numbers of trains and
stations operating in the line every day; IT is the inter-section journey time; DT is the
dwelling time; Tday and Tsday are the simulated and scheduled whole day running time; SIs
is the original service interval; SIallow is the allowance between the original service interval
and the optimal service interval; HDLmin is the minimum headway time according to the
signaling system. In practice, the train dwelling time is specifically calculated to meet the
passenger demand. Therefore, the dwelling time is not considered in the optimization.

3.2. Optimization Algorithm Development

For a given problem, numerical algorithms, such as brute force or dynamic program-
ming, can guarantee that one can find the global optimal result, as these algorithms calculate
all possible solutions in the solution domain. Unfortunately, as the problem becomes more
complex, the numerical algorithms become impractical due to large computation times.
Therefore, a genetic algorithm has been developed in this work. As a metaheuristic method,
the algorithm applies a heuristic random searching method using biological evolution. It
includes an iterative process that operates based on a population of individuals. The pro-
cess includes a few steps, such as initialization, evaluation, crossover, mutation, selection,
and replacement, as shown in Figure 2. The algorithm uses heuristic guidance to search
for the optimum, thereby significantly reducing the computation time with satisfactory
suboptimal solutions.
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Figure 2. Flowchart of the GA.

Step 1: Initialization. As shown in the process below, to form the initial generation,
the genetic algorithm firstly produces a random population of individuals (inum). Each
individual represents a potential solution to the optimization problem. The number of the
individual numbers is recommended at 100 in this work [14].

(1) When i = 1, the algorithm generates a vector V1 to represent a single solution.
(2) Let i = i + 1; the algorithm generates another vector Vi.
(3) Repeat (2) until i > inum to form the full generation. The algorithm then moves to

Step 2 below.

Step 2: Evaluation. All the produced solutions need to be evaluated to identify their
performance to the given problem.

(1) Each solution will be used to produce a full-day timetable.
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(2) The full-day timetable will be imported to a train simulator to calculate the synchro-
nized groups, overlapping time, train regenerative energy and full-day energy usage.

EVALUATION(V) = g(ITset, STset) (4)

(3) The solution with the smallest energy consumption represents the best individual.
Then, it moves to Step 3 below.

Step 3: Genetic Operation. A genetic operation is introduced to choose appropriate
individuals for producing new individuals to form the next generation. The operation
contains different phases, including selection, crossover, mutation and replacement. In
the selection phase, the top-ranking individuals (e.g., tnum = 10) will be retained for the
next generation. In the crossover and mutation phase, the following individuals (e.g.,
cnum = mnum = 40) will be chosen for the crossover and mutation [15].

(1) When i = 1, the algorithm produces a vector V′ = EVALUATION(Vi).
(2) Let i = i + 1; the algorithm repeats the above process and generates V′i until i > tnum.

The program then moves to the crossover operation.
(3) When j = 1, the algorithm chooses one element from two individuals and exchanges the ele-

ments with each other randomly. Assuming the individuals Vα =
(
v1, . . . , vp, . . . , vq, . . .

)
and Vβ =

(
v′1, . . . , v′p, . . . , v′q, . . .

)
, the elements p and q are chosen. After the

crossover operation, the new individuals will look as V′α =
(

v1, . . . , v′p, . . . , v′q, . . .
)

and V′β =
(
v′1, . . . , vp, . . . , vq, . . .

)
.

(4) Let j = j + 2; the algorithm repeats the process above until j > cnum. The program then
moves to the mutation operation.

(5) When k = 1, the algorithm chooses one element from an individual and replaces it
with a random value, which meets all the constraints in Equations (2) and (3). For
instance, assuming the individual Vγ = (v1, . . . vs, . . . ), the element s is selected. After
the mutation operation, the new individual will look as V′γ = (v1, . . . v′s, . . .).

(6) Let k = k + 1; the genetic algorithm repeats the process above until k > mnum.

Step 4: Replacement. In the replacement phase, the algorithm will produce random
individuals to replace the remaining individuals (e.g., rnum = 10) in EVALUATION(V);

(1) When l = 1, the existing Vl is replaced by V′l , which is produced randomly by the
algorithm and meets all constraints in Equations (2) and (3).

(2) Let l = l + 1; the algorithm repeats the process above until l > rnum.

Step 5: Assembling. After the genetic operations, the produced individuals will be
formed into a new generation.

V′ =
[
V′i , . . . ., V′i+tnum

, . . . , V′i+tnum+cnum ,, . . . V′i+tnum+cnum+mnum ,, . . . V′i+tnum+cnum+mnum+rnum , . . . , V′inum

]
(5)

Step 6: Termination. The new generation will be evaluated to identify their per-
formance to the given problem from Step 2 above. The iteration will continue until the
termination condition is matched (e.g., the generations number exceeds 100).

4. Metro Line Trial Test
4.1. Trial Test Introduction

A timetable optimization has been introduced in the previous chapters. It is important
to apply the optimization result in a trial test to verify its performance and evaluate its
reliability. In this work, a trial test was arranged on one of the metro lines in Guangzhou
city, China. It is an urban metro line connecting the city center to suburban areas. The
line is approximately 17 km long, with 7 intermediate stations. The single journey time is
45 min and the turn-over times at the terminal stations are 135 s and 145 s, respectively.
The station dwelling times at the intermediate stations are between 35 and 45 s depending
on the passenger flow.
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A total of 144 train services are provided every day and 45 services operate during
the peak-time hours, with 3 min service intervals. In the off-peak time hours, the service
interval increases to 8 min. The interval time is designed based on the up-to-date passenger
demand and can be re-scheduled every 4 months in practice. Therefore, this line was
chosen for the trial test. Tables 2 and 3 show the scheduled inter-section journey times and
service intervals of the line.

Table 2. The scheduled inter-station journey times.

Down Direction Up Direction

Dwelling Time,
Seconds

Inter-Station Journey
Time, Seconds Station Number Inter-Station Journey

Time, Seconds
Dwelling Time,

Seconds

Turnover at the terminal station: 145 s

90 225 1 0 50
35 154 2 295 35
40 162 3 155 40
35 139 4 182 35
45 120 5 142 45
35 143 6 120 35
35 133 7 144 35
35 90 8 130 35
50 0 9 90 90

Turnover at the terminal station: 135 s

Table 3. Scheduled service intervals and optimal service intervals.

Service Pattern for the
Whole Day Number of Services

Service Interval (mm:ss)

Scheduled Timetable Optimal Timetable

Peak-shift time 6 05:54 to 09:35 05:54 to 09:35
Morning peak-time 20 05:16 05:22 (+6 s)

Peak-shift time 1 06:40 06:40
Morning off-peak time 58 08:20 08:17 (−3 s)

Peak-shift time 1 05:40 05:40
Evening peak-time 25 05:16 05:22 (+6 s)

Peak-shift time 1 05:20 05:20
Evening off-peak time 28 08:20 08:17 (−3 s)

Peak-shift time 2 09:45 to 09:55 09:45 to 09:55

Total time: 144 66,228 s 66,240 s

Total braking synchronized
time: 115,232 123,373

Table 4 shows the train traction system characteristics. The train is equipped with a
regenerative braking system with the maximum traction power and regenerative power at
3700 kW. The train tare mass is 204 tonnes and the top operational speed is 80 km/h. The
passenger load is changing depending on the passenger flow. The train uses a DC 1500 V
third-rail power supply system. The total train length is 118 m with 6 carriages. The train
can be controlled by a human driving system or an automatic train operation system.

Table 3 shows the proposed optimal service intervals calculated by the developed
algorithm with the constraints requested by the metro operator. The morning and evening
peak-time service interval is increased by 6 s from 5:16 to 5:22, and the off-peak time service
interval is reduced by 3 s. The difference between the whole day operation time is only 12 s,
which is accepted by the operator. Furthermore, when using the optimal timetable, the total
synchronized time is increased from 115,232 to 123,373, compared with the number using
the scheduled timetable. The improved synchronized time can improve the utilization of
the regenerative braking energy, and thus reduce the maximum power demand and energy
usage on the line.
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Table 4. Train characteristics.

Subjects Value

Rolling stock mass (tonne) 204
Maximum passenger load (tonne) 127
Power supply DC 1500 V
Maximum tractive power (kW) 3700
Maximum braking power (kW) 3900
Rotary allowance 0.08
Tractive force (kN) 290
Braking force (kN) 350
Train formation EMU 4M2T (4 motor cars, 2 trailer cars)
Train length (meter) 118
Top operational speed (km/h) 80

The trial test was arranged in the following three steps:

(1) The optimal timetable was submitted to the operation department of the metro
operator for approval, along with a trial test plan, which shows the test process,
and the potential impact on the network operation.

(2) Before the trial test, the staff from the operation department shall import the optimal
timetable into the traffic management system (TMS). All the trains (with automatic
train operation systems or human drivers) in the network shall operate following the
new arrangement.

(3) The whole-day train energy usage results from the trial test shall be compared with the
data on a different day using the scheduled timetable (but the day of the week remains
the same, e.g., Wednesday vs. Wednesday). To reduce any uncertainty, the test was
arranged on a workday, rather than at weekends. This is because the passenger flow
at the weekends may change significantly due to events or weather.

As the first trial test, to reduce the test complexity and minimize the impact of the
change, the optimal timetable must meet the constraints given by the metro operator. For
example, the changes in the service intervals must be within 5 s.

4.2. Results and Discussion

It is important to note that all the train running data are recorded using the onboard
train monitoring recorder (OTMR), which is a device that records data about the train
performance in response to the driver’s controls, including the time, position, tractive
power, etc. Therefore, all the results presented in Table 5 are real-world data, rather
than simulations.

Table 5. Comparison between the optimal timetable trial test and normal operation.

TCMS Output Data Normal Operation Day
(with Scheduled Timetable)

Trail Test Day
(with Optimal Timetable)

Operation time 18.4 h 18.4 h
Total energy usage 51,767 kWh 50,649 kWh (−2.2%)

Train tractive energy usage 64,187 kWh 64,030 kWh (−0.2%)
Auxiliary energy usage 11,428 kWh 11,442 kWh (+0.1%)

Train regenerative braking
energy usage 23,848 kWh 24,823 kWh (+4.1%)

In Table 5, the energy consumption and journey time are compared with the data
captured on the other day using the scheduled timetable. It can be found that after applying
the optimal timetable, the whole day journey time is not changed, which proves that the
optimum timetable did not bring a significant impact on the train network. Furthermore,
the differences in the train tractive energy usage and auxiliary energy usage are very small
(within 0.2%), which means the passenger flow demand on these two days is similar. It can
be observed from the table that the whole-day train regenerative braking energy utilization
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is increased by 4.1% from 23,848 kWh to 24,823 kWh. This shows that by implementing
the optimal timetable, the efficiency of the regenerative braking system can be improved
as the trains are operating with a more advanced energy utilization strategy. Such an
improvement helps to reduce the total network energy consumption from 51,767 kWh to
50,649 kWh, without affecting the passenger flow.

In practice, the timetable of this metro line is reviewed every season and can be re-
designed if necessary (for example, if the passenger flow demand is changed). The energy
reduction from the trial test meets the requirements of the metro operator. Therefore, the op-
timal timetable can be permanently applied to the network for daily services. Furthermore,
as the first trial test, the existing algorithm only optimized the service interval. The result
can be further improved if other variables, such as the dwelling time, can be considered in
the optimization.

5. Conclusions

In this paper, a timetable optimization and trial test work have been presented. The
article has firstly introduced a train kinematics model to develop a train motion simulation.
After this, an optimization algorithm has been proposed to reach the full potential of the
train regenerative braking system and maximize the utilization of the regenerative braking
energy. A trial test was carried out on a metro line for a whole day to verify the performance
and practicability of the optimization results. All the trains running on the network
during the trial test are required to operate in accordance with the optimal timetable. The
energy consumption data were captured from the train onboard measurement systems and
compared with the data from another day with the scheduled timetable.

The trial test shows that by implementing the optimal timetable, the utilization of the
regenerative braking energy is improved, and the train energy usage can be reduced. The
optimal timetable meets the constraints requested by the operator, which ensures the impact
of the timetable rescheduling is minimized. The energy saving can be further improved
if the metro operator liberalizes the optimization constraints when feasible in the future.
The developed algorithm is shown to provide satisfactory results and meets the design
requirements. However, the computation time of the existing optimization is relatively
high (6 min). It is advised that the algorithm is more appropriate for implementation in
off-line situations.
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