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ARTICLE OPEN

ACUTE MYELOID LEUKEMIA

Reproducible measurable residual disease detection by
multiparametric flow cytometry in acute myeloid leukemia
Maximilian A. Röhnert 1✉, Michael Kramer1, Jonas Schadt 1, Philipp Ensel1, Christian Thiede 1,2, Stefan W. Krause 3,
Veit Bücklein 4,5, Jörg Hoffmann6, Sonia Jaramillo7, Richard F. Schlenk7,8, Christoph Röllig 1, Martin Bornhäuser 1,9,
Nicholas McCarthy10, Sylvie Freeman 10, Uta Oelschlägel1,11 and Malte von Bonin 1,11

© The Author(s) 2022

Measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC) is associated with unfavorable outcome in
patients with AML. A simple, broadly applicable eight-color panel was implemented and analyzed utilizing a hierarchical gating
strategy with fixed gates to develop a clear-cut LAIP-based DfN approach. In total, 32 subpopulations with aberrant phenotypes
with/without expression of markers of immaturity were monitored in 246 AML patients after completion of induction
chemotherapy. Reference values were established utilizing 90 leukemia-free controls. Overall, 73% of patients achieved a response
by cytomorphology. In responders, the overall survival was shorter for MRDpos patients (HR 3.8, p= 0.006). Overall survival of
MRDneg non-responders was comparable to MRDneg responders. The inter-rater-reliability for MRD detection was high with a
Krippendorffs α of 0.860. The mean time requirement for MRD analyses at follow-up was very short with 04:31 minutes. The
proposed one-tube MFC approach for detection of MRD allows a high level of standardization leading to a promising inter-
observer-reliability with a fast turnover. MRD defined by this strategy provides relevant prognostic information and establishes
aberrancies outside of cell populations with markers of immaturity as an independent risk feature. Our results imply that this
strategy may provide the base for multicentric immunophenotypic MRD assessment.

Leukemia; https://doi.org/10.1038/s41375-022-01647-5

INTRODUCTION
Acute myeloid leukemia (AML) is a heterogeneous disease. After
undergoing intensive induction chemotherapy, about 70% of
eligible patients achieve a complete remission (CR). Without
further treatment, 50% of the patients relapse within 6 months [1].
Post induction therapy is stratified by relapse risk and includes
chemotherapy or allogeneic hematopoietic stem cell transplanta-
tion (aHSCT). The prognosis is partially determined upfront by
cytogenetic and molecular genetic aberrations [2]. Remaining
leukemic cells in bone marrow (BM) with <5% blasts are called
measurable residual disease (MRD) and provide additive informa-
tion for tailored treatment decisions and refinement of the
prognosis. MRD positivity indicates residual disease and a high
probability of relapse, whereas MRD negativity characterizes deep
CR with low risk of relapse. At diagnosis, in at least 80% of AML
patients molecular genetic aberrations are detectable by next-
generation sequencing [3]. However, only some of these

aberrations can be detected with sensitive routine assays
providing clinically relevant prognostic information: mNPM1 is
present in 30% [4], CBFB::MYH11 in 5% [5] and RUNX1::RUNX1T1 in
7% [2, 5–7] of non-acute promyelocytic leukemia patients,
respectively.
MRD monitoring by multiparametric flow cytometry (MFC) has

been shown to be applicable to almost all patients [8–17]. The
precise workflow varies across laboratories. Sample processing
and measurement differ between institutions, and there are two
distinct analysis strategies to detect leukemic cell populations:
the leukemia-associated immunophenotype (LAIP) and the
different from normal (DfN) approach. In the LAIP concept,
one or more individual LAIP are identified at diagnosis and
tracked during follow-up. Depending on the antibody panel, at
least one LAIP with aberrant antigen expression pattern is found
in 80–95% of patients at diagnosis [18, 19]. The DfN strategy
searches for aberrant immunophenotypes rarely observed in
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leukemia-free BM during follow up independent of pre-
treatment samples [20]. Both strategies require experienced
investigators and rely partly on individualized gates. The LAIP
approach is considered more sensitive, but also more suscep-
tible to phenotypic shifts and false negative results [21, 22]. The
LAIP analysis is time consuming and the individualized gating
for each patient leads to a low inter-rater reliability (IRR)
[18, 23, 24]. In contrast, the DfN approach may lead to false
positive results due to reactive changes in hematopoiesis
exposed to chemotherapy [25, 26]. In addition, differences in
the analysis strategy for both concepts lead to heterogeneous
MRD results with different prediction values [27, 28]. As LAIP and
DfN approaches differ in their strengths and weaknesses, the
European LeukemiaNet (ELN) recommends a combinatorial
concept, termed LAIP-based DfN approach [29].
The HARMONIZE consortium was established in 2016 to

implement standards for MFC based MRD detection within two
German AML study groups (SAL, AMLCG). Here, we present a
stable, fast and reproducible LAIP-based DfN analysis approach
that preserves the prognostic value of MRD assessment.

METHODS
Study cohort
Samples from newly diagnosed AML patients at diagnosis (in median
2 days before start of induction therapy) and after completion of intensive
induction chemotherapy (in median 34 days after start of the last induction
cycle) were shipped from 30 centers within 24–48 h to the laboratory of
the AML Registry of the Study Alliance Leukemia (SAL) in Dresden
(institutional review board Dresden, 98032010; clinicaltrials.gov,
NCT03188874). Both, BM aspirates and peripheral blood were suitable
for MFC at diagnosis. At follow-up, only BM aspirates were utilized. The
clinical data was extracted from the registry.

Reference cohort
All leukemia-free controls (LFC, n= 90) were treated at the University
Hospital Dresden (Supplementary Table 1) and analyzed by three
independent investigators. The aberrant subpopulations as described
below (n= 32) were also observed in LFC with different frequencies. The
upper limit of the one-sided 97.5% reference range for the percentage of
each aberrant population among CD45+ events was set as reference value.
LFC included BM aspirates of BM donors (n= 30), of patients with acute
lymphoblastic leukemia in molecular CR (ALL molCR) (n= 19) with a prior
exposure to chemotherapy (median 40 days after start of the last
chemotherapy cycle), of hip surgery patients (n= 32) representing older
patients and of patients with untreated primary central nervous system
lymphoma (PCNSL, n= 9).

Sample preparation and acquisition
The antibody panel (Supplementary Table 2) consists of eight monoclonal
antibodies (mAb) and was designed in 2016 by the HARMONIZE
consortium [30–32]. The ELN also recommends the targeted antigens as
mandatory core MRD markers [33]. In addition, a comparable mAb panel is
used by HOVON/SAKK [29, 34, 35]. However, both panels propagate
different mAb clones with divergent fluorochromes.
At least 500,000 events were acquired per tube. The samples were

measured centrally and analyzed by at least one of three different
investigators. Further details concerning cell preparation and acquisition
can be found in the Supplementary material.

Gating strategy
Kaluza 2.1 software (Beckman Coulter) was used for analysis. An SQL server
and Excel (all by Microsoft) served to analyze, store and process the data.
Our proposed LAIP-based DfN analysis is based on a hierarchical gating

strategy with fixed gates. The investigators adjusted only the gates for
doublet discrimination, exclusion of debris, leukocytes, progenitors/
monocytes (P/M) and lymphocytes. The P/M population had to express
at least one of the myeloid markers CD13 or CD33 (myP/M) and was
subdivided afterward by expression of CD34, CD117 and HLA-DR (the

Fig. 1 Detailed gating strategy for the proposed LAIP-based DfN MRD approach. (1) individual gating for blasts/monocytes and
lymphocytes using CD45/SSC (2) fixed gates for the expression of at least one myeloid marker (CD13 and/or CD33) on events in the blasts/
monocytes gate (3) fixed gate for CD34 on myeloid blasts/monocytes (4) fixed gates to distinguish 8 different myeloid blast populations by
CD34, CD117 and HLA-DR (5) fixed gates to define events within the myeloid blasts/monocytes with a deficiency of CD13 or CD33 and a cross-
lineage expression of CD7 or CD56 leading to 32 subpopulations (6) applying reference values for each subpopulations (7) MRD assessment
by four different categories. Not shown: exclusion of doublets and debris.
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backbone markers recommended by the EuroFlow Consortium) [36]
resulting in 8myP/M main populations. These main populations were
further characterized by four distinct aberrant categories: deficiency of
CD13 or CD33, cross-lineage expression of CD7 or CD56 leading to
32 subpopulations. Subpopulations that exceeded their reference values
were used to calculate the MRD load. The difference between measure-
ment and reference value represented disease burden (percentage of
CD45+ cells). Disease burden of subpopulations with identical aberrant
category were summed up leading to an aggregated size for deficiency of
CD13 or CD33, cross-lineage expression of CD7 or CD56. Only the aberrant
category with the highest sum was used to quantify the MRD load.
In our approach, the gates for the myeloid markers (CD13, CD33), the

backbone markers (CD34, CD117 and HLA-DR) and the cross-lineage
markers (CD7, CD56) were fixed (Fig. 1). The positioning of the fixed gates
was driven by review of reference measurements (leukemia-free controls)
and internal controls within AML samples (in particular lymphocytes). The
leukemic cell population itself never guided the definition of the fixed
gates. Consequently, gates sometimes cut through leukemic cell popula-
tions and did not follow visual demarcations within the blast population.
The gates in our strategy identify pronounced aberrant features only.
Deficiency of CD13 and CD33 represent a true absence of these antigens
rather than a weak expression. The cross-lineage expression of CD7 and
CD56 represents a strong rather than a weak expression.

Definition of MRD in AML samples
At diagnosis, an aberrant category was defined as LAIP (aLAIP) when ≥10%
myP/M were affected. At follow-up only subpopulations with at least ≥20
events were analyzed. MRDpos was defined by at least one aberrant
subpopulation exceeding its reference value. When this aberrant category
was already detectable at diagnosis this reoccurrence was defined as
MRDpos by aLAIP. MRDpos by post-treatment DfN (ptDfN) was defined as
de-novo appearance of an aberrant category.
As ELN recommends a flat 0.1% cut-off for MRD [2, 33], we interpreted

our data in two additional ways. First, the analysis was restricted to
aberrant subpopulations expressing at least one marker of immaturity and
the cut-off for those populations was uniformly set to 0.1% (MRDposELN vs.
MRDnegELN). Second, MRDpos was subdivided according to the MRD load in
MRDposLo (our reference values were exceeded by <0.1) and MRDposHi

(excess of the reference values by ≥0.1).
Many MFC approaches rely on populations expressing markers of

immaturity (e.g. CD34+ and/or CD117+) whereas monopoietic cells
(identified by SSC and CD45) are frequently excluded. Monocytic AMLs
often present without immunophenotypically immature populations [37].
Therefore, we performed additional analyses selecting only aberrant
subpopulations expressing at least one marker of immaturity
(n= 24, MRDposImmOnly vs. MRDnegImmOnly).

Cross-validation
To validate the proposed MRD approach, the results were compared with
two already published and established methods to analyze MFC data for
presence of MRD: a traditional (manual) flow cytometry approach based on
the conventional detection of an aberrant LAIP (convLAIP) [19, 38] and an
unsupervised computational approach (Unsup) [39, 40]. The convLAIP
approach was restricted to the samples used to calculate the IRR of the
proposed approach (n= 117, see below). Three investigators indepen-
dently analyzed these samples. The Unsup approach encompassed all
follow-up samples.
Furthermore, we compared the results of the proposed MRD approach

also with molecular MRD results. Established and decisive molecular
markers (CBFB::MYH11, mNPM1 and RUNX1::RUNX1T1) as well as other
clonal aberrations (e.g. mRUNX1, mIDH1) were used. A cut-off of 0.1%
variant allele frequency was utilized as recommended recently by ELN to
distinguish MRD positivity (Molpos) and MRD negativity (Molneg) [33].
Particular attention was given to patients rated MRDpos only by ptDfN as

this cohort was regarded vulnerable to misinterpretation.

Inter-rater reliability (IRR)
Three independent investigators analyzed the first 117 follow-up and all
LFC samples to define the IRR as quality parameter of the proposed MRD
approach. Krippendorffs α (Kα) as value for the IRR was calculated for
two parameters: (I) percentage of CD45+ events for each of the
32 subpopulations within the LFC and (II) the final MRD status within the
AML samples.

Time requirements for sample analysis
The time to perform the different analysis steps was independently
evaluated in 10 samples of the LFC and 10 samples of patients with AML at
diagnosis and at follow-up by three investigators, respectively. Different
work steps were evaluated: (I - gating) Import of MFC files into Kaluza
software and adjusting the non-fixed gates; (II - export) Export of raw data
into the SQL database; (III – report) evaluating the MRD status using Excel
and creating a MRD report using an Access database.

Statistical analysis
To define IRR, Kα, a reliability coefficient ranging from 0 to 1, with 1
representing perfect agreement between multiple raters [41], was
calculated.
To quantitatively compare different models in their ability to predict

clinical outcome, the Akaike information criterion (AIC) was used [42, 43].
The Kaplan–Meier method was used to estimate survival probabilities.

Survival curves were compared utilizing the Cox regression model. Multi-
variable Cox regression models were used to describe the effect of different
variables on survival. A p< 0.05 was regarded as statistically significant.
Overall survival (OS) was defined as the time from diagnosis to death from all
causes, relapse free survival (RFS) as the time from response to AML relapse or
death. In this regard, response was characterized by achievement of complete
remission (CR), CR with incomplete hematologic recovery (CRi), or
morphologic leukemia-free state (MLFS) [2]. Hematologic relapse, molecular
relapse (2 consecutive positive samples for NPM1mut/ABL> 1% in a previously
for mNPM1 MRD negative patient) or a drop in overall chimerism <80% after
aHSCT were consistent with relapse [44]. Event free survival (EFS) was defined
as time from diagnosis to death from any cause, relapse or allogeneic
hematopoietic stem cell transplantation >180 days after completion of
intensive induction therapy, whatever occurred first.

RESULTS
Reference values
Reference values were in the range of 0.001% of CD45+ for the
aberrant subpopulation CD34+CD117+HLA-DR-CD56+ up to 1.992%
for the subpopulation CD34-CD117-HLA-DR+CD13-. They were
substantially influenced by the heterogeneity of the LFC cohorts.
Fifteen of the 32 aberrant subpopulations (47%) were mainly
influenced by ALL in molecular CR, 10 (31%) by BMD, 5 (16%) by
patients undergoing hip surgery and only 2 (6%) by PCNSL
(Supplementary Table 3). E.g. cross-lineage expression of CD56 and
deficiency of CD13 were mostly seen in ALL, while CD33 deficiency
was observed in patients undergoing hip surgery. In general, ALL
samples showed the largest variance for most aberrant categories.
Due to the minimum population size (≥20 events for AML samples),
an aberrant subpopulation with a very low reference value can turn
MRD positive (MRDpos) only when a large number of CD45+ events is
acquired. For example, an aberrant subpopulation barely exceeding
its reference value of 0.001%, at least 2,000,000 CD45+ events
would be necessary to obtain ≥20 relevant events. Four aberrant
subpopulations (CD34+CD117+HLA-DR-CD13-, CD34+CD117+

HLA-DR-CD7+, CD34+CD117+HLA-DR-CD56+, CD34+CD117-HLA-DR-

CD56+) were affected by this phenomenon at the targeted
acquisition of 500,000 events.

Inter-rater reliability (IRR) of the leukemia-free controls (LFC)
In the LFC cohort, Kα for the 8 main populations was 0.757–0.990. All
but one main population presented with Kα ≥ 0.800. The popula-
tions with the lowest contingency (CD34-CD117+) only differed in
the expression of HLA-DR. Even for the subpopulations with
aberrant features (n= 32), there was a considerable high IRR for
the percentage of CD45+ events with a Kα > 0.900 for the deficiency
of CD13, followed by Kα for the deficiency of CD33, the cross-lineage
expression of CD7 and the cross-lineage expression of CD56 with
>0.800, >0.700, and >0.600, respectively (Supplementary Table 3).

Time requirements for sample analysis
The mean time for gating (I) and export of the results (II) was
01:18 min and 00:47 min, without significant differences between
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diagnosis, follow-up and LFC samples. Overall time for analysis,
data transfer and generation of a report was 04:17 min and
04:31 min for diagnosis and follow-up samples, respectively
(Table 1).

MRD assessment
Our analysis included 246 patients with AML (non-APL) who were
treated with intensive induction therapy and for whom reliable
clinical data and at least one suitable MRD analysis at follow-up
was available (Table 2).
Diagnosis and follow-up samples were available for 216/246

patients (88%). At diagnosis, at least one aberrant category
affecting ≥10% or ≥5% of the myP/M could be detected in 152/
216 (70%) or 179/216 patients (83%), respectively. In the following,
the 10% threshold for the presence of a LAIP was used as formerly
recommended by ELN [2, 23, 45]. In 56/152 (37%) of patients the
aLAIP was defined exclusively by aberrant subpopulations with
markers of immaturity and in 72/152 (47%) without markers of
immaturity. The most common aberrant category at diagnosis was
deficiency of CD13 in 75/152 patients (49%). Cross-lineage
expression of CD56, CD7 and deficiency of CD33 was detectable
in 44/152 (29%), 44 (29%), and 41 patients (27%), respectively.
One, two, or three categories were simultaneously detectable in
103/152 (68%), 46 (30%), and 3 (2%), with the most common
combination of CD13 deficiency plus cross-lineage expression of
CD56 in 21/49 (43%) of the patients.
At follow-up, in total 157/246 patients (64%) were MRDpos

(Fig. 2A). They were classified as MRDpos by aLAIPonly, ptDfNonly

and aLAIP/ ptDfN in 33/157 (21%), 80 (51%) and 44 (28%) cases,
respectively. In MRDpos patients, deficiency of CD13 or CD33,
cross-lineage expression of CD7 or CD56 was observed in 76/157
(48%), 66 (42%), 74 (47%) and 87 (55%). One, two, three and four
aberrant categories could be simultaneously detected in 71/157
(45%), 41 (26%), 30 (19%), and 15 (10%). Most of the patients of
the MRDpos group had undergone immunophenotyping at
diagnosis (137/157; 87%).
In the subgroup of responders (n= 180) the proportion of

MRDpos patients was significantly lower compared to non-
responders (n= 66): 99/180 (55%) versus 58/66 (89%;
p < 0.0001). For most of the MRDpos responders a measurement
at diagnosis (86/99; 87%) was available and MRDpos was classified
by aLAIPonly, ptDfNonly and aLAIP/ ptDfN in 24/86 (28%), 45 (52%)
and 17 (20%), respectively (Fig. 2B).
MRD assessment by three independent investigators for a

cohort of 117 consecutive samples showed that 107/117 (92%)
cases were classified concordantly leading to a Kα of 0.86.
The median follow-up time for the entire cohort was

18.9 months (IQR 10.9–29). Compared to MRDneg patients, the
OS was significantly shorter in the MRDpos group (HR 5.6, CI:
2.2–14.1, Fig. 2A). Thus, the 2-year OS was 92% (CI: 86–99%) for
MRDneg and 63% (CI: 55–73%) for MRDpos, respectively. MRD
status retained its importance on OS in patient cohorts stratified
according to response (CR/CRi/MLFS and RD/PR, Fig. 2B). In
responders, the 2-year OS was 91% (CI: 84–99%) for MRDneg and
68% (CI: 57–81%) for MRDpos (HR 3.8; CI: 1.5–10.0; p= 0.006). The

OS for the MRDneg non-responders was comparable with MRDneg

responders. The MRD status also retained its impact on OS after
stratifying patients according to ELN risk category (Supplementary
Fig. 1A–C).
Regarding RFS and EFS, MRDpos was associated with a

significantly shorter RFS and EFS (HR 2.6, CI: 1.4–5.0; and HR 2.7,
CI: 1.5–5.0, Fig. 2C, D).
Most importantly, in a multivariable Cox regression model,

MRDpos retained its significant prognostic impact on OS for all
patients, OS for responders, RFS and EFS (Table 3).
As ELN recommends a 0.1% cut-off [29], we interpreted our data

in two additional ways. First, the analysis was restricted to aberrant
subpopulations expressing at least one marker of immaturity
(CD34+ and/or CD117+) and the appendant reference values were
uniformly set to 0.1%. In this context, evidence of MRD was
termed MRDposELN. Of the 246 patients, only 24% (n= 60) fulfilled
MRDposELN criteria. The MRDELN analysis still showed significant
prognostic relevance, however, the discriminatory power was less
compared to the original strategy (Supplementary Fig. 2A).
Second, MRDpos was subdivided according to the MRD load in
MRDposLo (the reference value was exceeded by <0.1) and
MRDposHi (excess of the reference value by ≥0.1). Of the 157
MRDpos patients, one third was assigned to the MRDposLo cohort.
The MRD load (MRDposLo vs. MRDposHi) did not provide further
prognostic information regarding OS (Supplementary Fig. 2B).
As many analysis strategies are focused on aberrancies in the

immature compartment, the data was further analyzed utilizing a
strategy restricted to aberrant subpopulations expressing at least
one of those markers (24 subpopulations) and compared to the
strategy encompassing all aberrant subpopulations (32 subpopula-
tions). Of the 246 patients, 49% (n= 121) were classified as
MRDposImmOnly providing slightly less prognostic impact compared
to the proposed MRD approach utilizing all subpopulations.
Differential analysis of MRDpos by aLAIPonly, ptDfNonly or aLAIP/
ptDfN did not improve the prediction of outcome (Supplementary
Fig. 2C, D, Table 5).
With respect to clinical characteristics (Table 2), variables known

to negatively impact patient outcome were enriched in MRDpos

patients (age, ELN risk category, karyotype, FLT3 mutation status,
MRC score and morphological response). Accordingly, the
frequency of aHSCT was higher in the MRDpos group (MRDneg

55% (49/89) versus MRDpos 77% (121/157), p < 0.0001).

Cross-validation
The convLAIP approach was applicable to n= 106 cases with
measurements at diagnosis and follow-up. In 99% of the pre-
therapeutic samples at least one traceable aLAIP could be detected
by the convLAIP approach, in contrast to 78% by the proposed
methodology. The aLAIP detected by both approaches typically
shared similar features (in 99% of cases). Kα for MRD assessment by
convLAIP was 0.59. The MRD status of 69% of follow up samples was
rated concordantly by the convLAIP approach and the proposed
approach (convLAIPpos/ MRDpos 39%, convLAIPneg/ MRDneg 30%).
There was disagreement on the MRD status in 31% of follow up
samples, almost always as convLAIPneg/MRDpos constellation

Table 1. Time requirement (minutes:seconds) of the working steps at diagnosis and follow-up, leukemia-free controls (LFC).

I - gating II - export III – report overall

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Diagnosis 01:03 (00:12) 00:46 (00:09) 02:33 (00:16) 04:17 (00:33)

Follow-up 01:31 (00:30) 00:51 (00:11) 02:09 (00:20) 04:31 (00:49)

LFC 01:20 (00:17) 00:45 (00:08) not intended not intended

overall 01:18 (00:24) 00:47 (00:10)
aSD standard deviation, LFC leukemia-free controls.
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Table 2. Patient and disease characteristics, MRD classification according to the proposed MRD approach.

Overall MRDneg MRDpos

n= 246 n= 89 (36%) n= 157 (64%)

Age

Median (IQR) Years 56 (46–63) 50 (36–60) 58 (51–64) p < 0.0001

>65 years n (%) 36 (15) 7 (8) 29 (19) p= 0.0381

Sex

Female n (%) 104 (42) 40 (45) 64 (41) p= 0.6438

ECOG

Miss n 29 15 14

0–1 n (%) 202 (93) 70 (95) 132 (92) p= 0.7284

2–4 n (%) 15 (7) 4 (5) 11 (8)

AML type

Miss n 27 13 14 p= 0.1783

De-novo n (%) 185 (75) 68 (76) 117 (75)

sAML n (%) 19 (8) 6 (7) 13 (8)

tAML n (%) 15 (6) 2 (2) 13 (8)

BM blasts in %

Miss n 28 14 14

Median (IQR) 60 (39–80) 65 (50–80) 55 (33–80) p= 0.1022

WBC in GPt/l

Miss n 27 13 14

Median (IQR) 9.7 (2.9–43.8) 17.9 (4.3–43.6) 7.6 (2.7–43.3) p= 0.0870

Complex karyotype

Miss n 50 19 (21) 31 (20)

Yes n (%) 15 (8) 1 (1) 14 (11) p= 0.0306

FLT3

Miss n 12 7 5

FLT3-ITD n (%) 64 (27) 32 (39) 32 (21) p= 0.0053

NPM1

Miss n 11 5 6

NPM1mut n (%) 83 (35) 36 (43) 47 (31) p= 0.0967

ELN 2017

Miss n 4 0 4

Favorable n (%) 86 (36) 44 (49) 42 (28) p= 0.0005

Intermediate n (%) 89 (37) 31 (35) 58 (38)

Adverse n (%) 67 (28) 14 (16) 53 (35)

MRC index

Miss n 55 21 34

Good n (%) 12 (6) 9 (13) 3 (2) p < 0.0001

Standard n (%) 73 (38) 34 (50) 39 (32)

Poor n (%) 106 (56) 25 (37) 81 (66)

Induction

2 cycles n (%) 128 (52) 52 (58) 76 (48) p= 0.1680

Consolidation

Chemo n (%) 76 (31) 40 (45) 36 (23) p < 0.0001

alloHSCT <6 month n (%) 107 (43) 34 (38) 73 (46)

alloHSCT >6 month n (%) 63 (26) 15 (17) 48 (31)

Response at follow-up

RD n (%) 23 (9) 2 (2) 21 (13) p < 0.0001

PR n (%) 43 (18) 6 (7) 37 (24)

CR/CRi/MLFS n (%) 180 (73) 81 (91) 99 (63)
aIQR interquartile range, ECOG Eastern Cooperative Oncology Group Performance Status Scale, sAML secondary AML, tAML therapy related AML, BM bone
marrow, WBC white blood cell, ELN 2017 European LeukemiaNet risk stratification by genetics 2017, MRC Index Medical Research Council Index for risk
stratification of AML, alloHSCT allogeneic hematopoietic stem cell transplantation, RD refractory disease, PR partial remission, CR complete remission,
CRi complete remission with incomplete count recovery, MLFS morphological leukemia-free state.
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(Supplementary Table 4). Nevertheless, the convLAIP provided
prognostic power regarding overall survival (Supplementary Fig. 3A),
but convLAIPneg/ MRDpos patients showed a comparable outcome to
patients rated MRD positive by both approaches (convLAIPpos/
MRDpos, Supplementary Fig. 3B).
The Unsup pipeline was applicable to 244/246 (99%) of follow-

up measurements. The Unsup pipeline and the proposed
approach showed a slightly higher concordance on MRD rating
(Unsuppos/ MRDpos 45%, Unsupneg/ MRDneg 28%) compared to the
conventional LAIP approach. This time, inconsistent results were
spread to both conflicting categories (Unsupneg/ MRDpos 19%,
Unsuppos/ MRDneg 8%) (Supplementary Table 4). The Unsup
pipeline also provided significant prognostic power (Supplemen-
tary Fig. 3C).
In 99/246 patients (40%), decisive molecular markers for MRD

monitoring were available at diagnosis (mNPM1: 78, RUNX1::-
RUNX1T1: 8, CBFB::MYH11: 13). For 85 of these 99 patients (mNPM1:
67, RUNX1::RUNX1T1: 6, CBFB::MYH11: 12) molecular MRD results at
follow-up were available. In addition, tracking of less established
molecular markers (biallelic mCEBPA: 7, mCEBPA-TAT: 1, mDNMT3A:
1, FLT3-ITD: 4, FLT3-TKD: 1, mIDH1: 1, mIDH2: 7, KMT2A::MLLT3: 2,
KMT2A-PTD: 10, PICALM::MLLT10: 1, mRUNX1: 2, mSRSF2: 1, mTET2:
1, mTP53: 1, mUTAF1: 1) was done. Discordant results (Molneg/
MRDpos or Molpos/ MRDneg) were observed in 15/126 (12%) and
26/126 (21%), respectively (Supplementary Table 4). A shorter OS
was observed for Molpos compared to Molneg without reaching
statistical significance (Supplementary Fig. 3D).
As patients classified as MRDpos by ptDfNonly were regarded

vulnerable to misinterpretation this cohort was analyzed in
more detail. A measurement at diagnosis was available in 59/80
(74%) cases. In 43/59 (73%) of these patients, a minor subclone
(<10% of myP/M) with identical aberrant category was already
detectable at diagnosis (affecting in median 1.9% of myP/M, IQR
4.2%). The reduction of the population size to define an aLAIP at
diagnosis considerably lowered the number of patients classi-
fied as MRDpos by ptDfNonly: ≥10%: 59, ≥5%: 49, ≥2.5%: 41, and
≥1%: 30. Only in 16/59 (27%) patients the aberrant category of
ptDfNonly was not detectable at all at diagnosis (cross-lineage
expression of CD56: 10, deficiency of CD13: 1, and deficiency of
CD33: 5). For MRDpos by ptDfNonly patients a simultaneous
molecular MRD testing was available in 11/80 (14%) cases.
Concordant results were observed in 64% of these cases
(mNPM1: 4, CBFB::MYH11: 1, mIDH2: 1, FLT3-ITD: 1). MRDpos by
ptDfNonly patients were rated convLAIPpos in 31% of the cases. In
13/80 (16%) CR/CRi samples obtained at later time points
(during/after conventional consolidation) from patients rated
MRDpos by ptDfNonly post-induction, the same “de-novo post
treatment aberrant category” could be detected again in 62% of
cases. A measurement at relapse was available for 14/80 (18%)
patients rated MRDpos by ptDfNonly at post-induction. The same
“de-novo post treatment aberrant category” could be observed
in 71% of relapse samples.

DISCUSSION
Even though MRD assessment by MFC is technically available for
the majority of patients with AML, its broad applicability is still
hampered due to the lack of standardization. The focus of this
work was to develop a robust, fast and reproducible LAIP-based
DfN analysis strategy to evaluate MRD by MFC.
The analysis strategy focused separately on two kinds of

abnormalities: reduced expression of myeloid antigens and cross-
lineage expression of lymphoid antigens [46]. The reduced
expression of CD13 and CD33 as part of a LAIP has been variably
described in 10–22% and 18–36% of AML cases, respectively
[47–49]. Also, the frequency of the cross-lineage expression of CD7
and CD56 varies substantially with 17–43% [45, 49, 50]. This
variability is not only explainable by the aberration-defining gate

itself, but also preceding gating steps and the reference
population have a major impact on the observation frequency.
Deviating from most analysis strategies for MRD-assessment, we

decided to establish one single tube, but augmented the number
of populations to be analyzed. The progenitor cell gate was
expanded to include monocytes (P/M). P/M cells were required to
express at least CD13 or CD33 (myP/M). At diagnosis, this myeloid
assignment was negligible as in median 94% (IQR 18.1%) of cells
in the P/M gate fulfilled this criterion. At follow-up in median only
84% (IQR 20.3%) of P/M cells met this specification. As unique
selling point our MRD analysis includes also the CD34-CD117-

compartment within myP/M largely representing monopoietic
cells. Indeed, acute monoblastic/monocytic leukemia represents
approximately 12% of the AML patients [51] and shows an
expression of CD34+ or CD117+ only in 7.7% and 19.8% of cases,
respectively [37]. Within our approach, the reference values for the
aberrant populations without markers of immaturity were higher
compared to aberrant populations expressing either CD34 or
CD117 (Supplementary Table 5). For other entities like MDS, the
evaluation of monocytes using e.g., CD56 is part of various
diagnostic scores [52, 53]. In addition, CD56 expression has been
described to distinguish clonal monocytes within CMML from
reactive monocytosis [54–56]. These observations have led us to
also analyze aberrations outside of the CD34+CD117+ compart-
ment. In fact, exclusion of aberrant populations without expres-
sion of markers of immaturity mostly led to a decline in the
informative value of the here proposed MRD approach as
calculated by the AIC, which supports the assumption that
populations beyond phenotypically immature cells also contain
prognostic information. Most MRDpos patients (n= 84) showed
aberrancies in both compartments. Of note, 36 patients were
classified as MRDpos solely by aberrations within the compartment
without expression of markers of immaturity. Some of these
patients were at the same time also HLA-DR negative. The most
common aberrant categories were cross-lineage expression of
CD56 and deficiency of CD33 (each 44%). A cross-lineage
expression of CD7 or a deficiency of CD13 was not found in
these cases. This observation fits well with previously published
data reporting that leukemic immature monocytes used for MRD
monitoring by a LAIP-approach were frequently characterized by
decreased expression of HLA-DR and increased expression of
CD56 and CD13 [57]. Again, the assignment of these cells to the
monopoietic compartment and their maturity remained some-
what speculative as the panel did not allow a proper categoriza-
tion as neither monocytic markers nor other antigens associated
with immaturity e.g., CD133 were evaluated [58].
In only 28% of MRDpos responders, the rating was based solely

on the detection of an aberrant category already evident at
diagnosis, whereas ptDfNonly defined MRDpos in 51% of cases. This
unexpected high rate of ptDfNonly is partly related to the
availability of measurements at diagnosis and the LAIP definition
used in our approach. By modifying the aLAIP definition to ≥5% of
myP/M, in 83% of patients at least one LAIP was detectable at
diagnosis and the MRDpos rate by ptDfNonly dropped from 38% to
31%. A minor subclone with identical aberrant category was
already detectable at diagnosis in 73% of these patients. In
addition, the assumption that ptDfNonly mostly represents “true”
MRD than phenotypic shifts, was supported by simultaneous
molecular MRD testing that showed 64% concordant results.
Furthermore, the same “de-novo post treatment aberrant
category” could be observed in 71% of relapse samples. Indeed,
selection pressure by chemotherapy can change the original
composition and initially existing but rather small populations
expand, as documented for (molecular) genetics [59] and
immunophenotypes [21]. However, phenotypic shifts might have
also contributed. This conception was supported by the observa-
tion that 32/105 (30%) patients were assessed discordantly at
follow-up using the proposed MRD approach and the convLAIP
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approach (convLAIPneg/ MRDpos). Features of the aLAIP defined by
the convLAIP at diagnosis were detected in 99% by the proposed
MRD approach. Leukemic cells can undergo phenotypic shifts
during the course of the disease due to an evolution (emergence
of not previously present immunophenotypes). At relapse, a gain
in the expression of immaturity markers is frequently described
[21]. Phenotypic shifts as a result of selection pressure or clonal
evolution are usually not clearly distinguishable, but nevertheless
representing both “true” MRDpos. But abnormalities in immuno-
phenotype have been also observed leukemia-independent (age
and treatment related) and might result in false positive results
[20, 25, 60]. Clonal hematopoiesis is also suggested to be
associated with phenotypic aberrations [61, 62].
The reference values for the aberrant populations with markers

of immaturity correspond well with previously published sensitiv-
ity levels of MFC methods (10−4–10−5) [49, 63]. To smoothen the
heterogeneity in reference values, ELN recommended a flat 0.1%
cut-off (10−3) as this level had been of prognostic relevance in
most publications and is at least one log above the published
sensitivity level for MRD by MFC [63]. In our approach, 7 out of 32
aberrant populations presented with reference values >10−3, so
these subpopulations (all expressed neither of CD34 nor CD117)
had to be excluded from the analysis with this uniform cut-off
(termed MRDposELN). In the end, the different approaches reduced
the informative value of our gating strategy.

The quality of MRD assessment by MFC is considerably affected
by the reference values. Although, the cohort of ALL molCR only
represented 21% of the LFC samples, roughly this cohort
determined 50% of the reference values. BMD, the most
commonly used LFC cohort with predominantly young subjects,
represented 30% of the LFC cohort and only established 31% of
reference values. This distribution pattern underpins the necessity
to include a broad range of different LFC cohorts as various factors
(e.g., prior exposition to chemotherapy and age) substantially
influence the frequency of certain expression profiles.
Most importantly, our LAIP-based DfN analysis strategy (includ-

ing cell compartments with and without expression of markers of
immaturity) provided significant prognostic information on clinical
outcome after intensive induction treatment. MRDpos patients
showed a significantly shorter OS and a higher relapse risk, both in
univariable as well as multivariable regression models. The 2017
ELN genetic risk stratification is frequently used for pretreatment
risk assessment [2]. Of note, our MRD results helped to further
segregate the prognosis within each ELN risk category. The MRD
status was most predictive for outcome in patients with favorable
and adverse risk. The importance in the adverse risk category was
not surprising, as MRD status pre-transplant has been described to
be of prognostic significance [46]. Whether allogeneic transplan-
tation and intensity of the conditioning regimen can have an
influence on the MRD-associated prognosis is a matter of debate

Fig. 2 Outcome stratified by the proposed LAIP-based DfN MRD approach. A Overall survival for all patients, B Overall survival stratified by
cytomorphologic response and MRD status, C Relapse free survival, D Event free survival.
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[39, 64, 65]. The discriminatory power of the MRD status remained
valid when established baseline prognostic variables were
considered. MRDpos was associated with adverse outcome in
responding as well as non-responding patients. However, in non-
responders, the MRD status did not reach statistical significance
due to low patient numbers. Nevertheless, our data suggest that
the proposed approach can reliably distinguish vigorous hema-
topoietic regeneration with an increase in normal progenitors
from persistence of leukemic cells. This is of particular importance
as both scenarios are associated with a totally different prognosis.
Summarizing, our analysis strategy could confirm the prognostic
significance of the MRD status after intensive induction treatment.
In contrast to previous reports, we explicitly focused on

applicability of the MRD assessment within clinical routine. Current
protocols with manual gating are time-consuming (no published
data available), they rely on the expertise of the individual
investigator and are therefore prone to inter-rater variations
[20, 34]. The proposed MRD approach is fast and shows a very
promising IRR. Artificial intelligence is established as a research
tool in order to circumvent these disadvantages [39, 66, 67], but
has not been implemented as diagnostic test in the daily clinical
routine yet. The introduction of fixed gates within our approach
resulted in a high inter-rater reliability with respect to both, LFC
and AML samples and in short analysis time.

CONCLUSION
We present a hierarchical gating strategy, combining the LAIP and
DfN analysis approaches, which allows a high level of MFC
standardization and a promising inter-rater reliability in MRD
detection. Our standardized MFC approach is implementable at
other laboratories and enables standardized multicentric immu-
nophenotypic MRD assessment. Such standardization is an
important step towards individualized treatment decisions within
routine AML therapy and MFC may thus also serve as a biomarker
within prospective clinical trials.
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