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Shear-thinning is an important rheological property of many biological fluids, such
as mucus, whereby the apparent viscosity of the fluid decreases with shear. Certain
microscopic swimmers have been shown to progress more rapidly through shear-
thinning fluids, but is this behavior generic to all microscopic swimmers, and what are
the physics through which shear-thinning rheology affects a swimmer’s propulsion?
We examine swimmers employing prescribed stroke kinematics in two-dimensional,
inertialess Carreau fluid: shear-thinning “generalized Stokes” flow. Swimmers are
modeled, using the method of femlets, by a set of immersed, regularized forces. The
equations governing the fluid dynamics are then discretized over a body-fitted mesh
and solved with the finite element method. We analyze the locomotion of three distinct
classes of microswimmer: (1) conceptual swimmers comprising sliding spheres em-
ploying both one- and two-dimensional strokes, (2) slip-velocity envelope models of
ciliates commonly referred to as “squirmers,” and (3) monoflagellate pushers, such
as sperm. We find that morphologically identical swimmers with different strokes
may swim either faster or slower in shear-thinning fluids than in Newtonian fluids.
We explain this kinematic sensitivity by considering differences in the viscosity of
the fluid surrounding propulsive and payload elements of the swimmer, and using
this insight suggest two reciprocal sliding sphere swimmers which violate Purcell’s
Scallop theorem in shear-thinning fluids. We also show that an increased flow decay
rate arising from shear-thinning rheology is associated with a reduction in the swim-
ming speed of slip-velocity squirmers. For sperm-like swimmers, a gradient of thick
to thin fluid along the flagellum alters the force it exerts upon the fluid, flattening
trajectories and increasing instantaneous swimming speed. © 2013 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4818640]

. INTRODUCTION

Microscopic swimmers pervade the natural world, from bacteria and algae to the sperm cells
of animals, and the study of their swimming is pertinent to numerous problems in medicine and
industry, for example, in reproductive science and biofuel production. Microscopic self-propulsion
has been a rich area of applied mathematics for the past 60 years, motivating the development of
singularity methods such as slender body theory'-? and the method of regularized stokeslets.?

Because of the small length-scales of microscopic flows, viscous forces dominate inertia. As
such, there is no time dependence in the equations that govern microscopic flow, and any periodic
swimming stroke that generates net displacement must be non-reciprocal, i.e., distinguishable from
its time-reversal. Thus, many swimming strokes that are effective at macroscopic length-scales,
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FIG. 1. Swimming techniques in inertialess flows that are examined in this study. Conceptual swimmers may comprise
sliding spheres that have simple kinematics, such as (a) the collinear motion of the Najafi-Golestanian swimmer and
(b) paddling motion. These swimmers can provide insight into more complex biological systems.? (c) Ciliates beat many
surface cilia in a coordinated fashion. This is often modeled mathematically with envelope methods, either as a small
perturbation to the cell morphology (dashed), or through a surface slip velocity. (d) Sperm, an archetypal “monoflagellate
pusher,” propagate a bending wave down a single flagellum, shown here in a time-lapse manner.

such as the opening and closing of a clam shell, do not generate progress at microscopic scales, as
famously described by Taylor* and Purcell.’

Microswimmers may employ a wide variety of kinematic behaviors (Figure 1) in order to
progress. For instance, sperm swim by propagating a bending wave down a single active flagellum,
whereas ciliates “squirm” forward through the coordinated beating of many surface cilia. Motivated
by the question of what would constitute the simplest microswimmer, Purcell® considered three
linked hinges undergoing periodic, irreversible motion, which continues to inspire research, see, for
example, Tam and Hosoi,® Passov and Or.’

A new avenue was opened for the study of simple, conceptual microswimmers by Najafi and
Golestanian,® who showed that a swimmer comprising three sliding, collinear spheres could progress
through viscous fluid. Such models provide insight into the physics of viscous propulsion for more
complicated models,”'? and may also be instructive in the design of artificial microswimmers,'!
and microfluidic pumps.

Many microscopic swimmers must progress through biological fluids, for example, cervical
mucus'? and bacterial extracellular slime,'>'* that are suspensions of long polymer chains. These
suspended polymers endow biological fluids with complex non-Newtonian flow properties that may
impact a swimmer’s ability to progress through them. One such property that has received much
recent study, both theoretical'>~'8 and experimental,'” is viscoelasticity, whereby the fluid retains an
elastic memory of its recent flow history. In viscoelastic fluids, those swimmers exhibiting small-
amplitude oscillations are hindered®*?> whereas flagellates exhibiting large-amplitude waveforms
can gain propulsive advantages by timing their stroke with the fluid elastic recoil.?? Additionally,
reciprocal swimmers that cannot progress in simple fluids may progress through viscoelastic fluids,
in violation of Purcell’s Scallop theorem.!”

Another important rheological property of biological fluids is shear-thinning,’* whereby the
viscosity of the fluid decreases with flow shear. This behavior arises from the tendency of the
suspended polymers that constitute the fluid to align locally with flow, decreasing the apparent
viscosity of the fluid. However, after early progress with modified resistive force theories® the
effects of shear-thinning on microscopic swimming have only recently begun to be reexamined.’%-%8

Montenegro-Johnson et al.”® showed that the progress of two particular swimmers, a three-
sphere swimmer and a sperm-like swimmer, was enhanced by shear-thinning rheology. This raises
two questions: do all swimmers progress more quickly in shear-thinning fluids, and what are the
physical mechanisms through which shear-thinning interacts with a swimmer’s kinematics? Fur-
thermore, if reciprocal swimmers can progress in viscoelastic fluids, might this also be true in
shear-thinning fluids?
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In this paper, we will show that other model swimmers, including the much-studied tread-
milling squirmer, may instead be hindered by shear-thinning rheology. We will also give quantitative
and qualitative explanations of the physical mechanisms that underlie the interactions of shear-
thinning rheology with conceptual sliding sphere swimmers, slip-velocity squirmers, and sperm-like
swimmers (Figure 1). Finally, based upon these mechanisms, we suggest reciprocal sliding sphere
swimmers that are able to progress through shear-thinning fluids. We will begin by briefly describing
our mathematical and numerical modeling, which was introduced by Montenegro-Johnson et al.?®

Il. MATHEMATICAL MODELING
A. Fluid mechanics of microscopic swimming

Newtonian fluid modeling has provided important insights into the mechanisms underlying
viscous propulsion. However, the need for detailed study of non-Newtonian swimming has long
been recognized,””-*" and experimental observations of sperm in methylcellulose medium suggest’!
that non-Newtonian effects may be important. We will adopt a continuum approach to model-
ing swimming in biological fluids, as used in, for instance, Lauga,”’ Fu et al.,*! Zhu et al.,”
Teran et al.,>> whereby the nanoscale structure of suspended polymers has been averaged into bulk
flow properties.

At microscopic length-scales, viscous forces dominate inertia. We will examine microscopic
swimmers in inertialess generalized Stokes flow.>> The equations governing the dynamics of such
flow are

V. Quet(y)e(w)) —Vp+F =0, V.u=0, (1)

for u the fluid velocity field, wg the effective, or apparent, viscosity of the flow, p the pressure, F
any body forces, and e(u) = (Vu + Vu’)/2, the strain rate tensor.

A model of shear-thinning polymer suspensions is given by the four-parameter Carreau consti-
tutive law3?

REEW) = too + (o — o)1+ A)H" V2 0 <n <1, 2)

for shearrate y = (281' j(w)e;; (u)) Y 2. The effective viscosity p.s of the flow decreases monotonically
between a zero shear viscosity, (Lo, and an infinite shear viscosity (. As the time parameter A
increases, lower shear rates are required to thin the fluid.

For swimmers with prescribed strokes, a characteristic velocity is given by U = wL, where w
is the angular frequency of the swimmer’s stroke and L is a characteristic length, for instance, the
length of the flagellum. Upon substitution of the viscosity (2) into Eq. (1) and non-dimensionalizing,
we derive the dimensionless equations,

V. [2 (1 + L’f—“ - 1} [1 + (m;ﬁ)z]("_l)/z) é(ﬁ)} —Vp+F=0, (3a)

V-i=0. (3b)

Thus, for swimmers exhibiting prescribed beat kinematics, trajectories are dependent only on
three dimensionless quantities: the viscosity ratio o/, the power-law index n, and the shear index
Sh = Aw (referred to as De by Montenegro-Johnson et al.?®). The parameter Sh has the physical
interpretation of the ratio of the fluid’s time parameter to the swimmer’s beat period. Newtonian
flow is recovered if any of wo/teo = 1, n =1, 0r Sh = 0.

This non-dimensionalization reduces the number of free parameters from four to three. In
contrast, Newtonian flow arising from prescribed boundary motion has no free parameters. As
such, the trajectories of swimmers with prescribed kinematics in Newtonian Stokes flow exhibit
no dependency on the absolute value of the viscosity. These values only become important when
considering the magnitude of the forces on the swimmer.

When prescribing the kinematics of a swimming stroke, it is convenient to employ the swimmer’s
intrinsic “body frame,”* in which its body neither rotates nor translates. The configuration and



081903-4 Montenegro-Johnson, Smith, and Loghin Phys. Fluids 25, 081903 (2013)

(a) Schematic of the body frame and domain

oD, dir

aDneu

(b) Full computational domain used for simulation

i

FIG. 2. (a) A schematic of the fluid domain D containing a model human sperm dDgyim, showing no-slip channel walls
9Dgir and open boundaries 9Dy, . The relationship between the lab frame, (x, y) and the body frame, (v, y’) is also shown,
where the body frame origin X is a fixed point on the swimmer. Femlets are distributed along the boundary dDgyim, shown
here as a sperm head and flagellum. (b) The full computational domain used in this study. The domain and swimmer are
shown to scale.

deformation of the swimmer are specified by a mathematical function relative to the body frame,
and these are transformed into the global “lab frame” coordinates in which we solve the governing
equations. This transformation entails use of the a priori unknown translational velocity U and
angular velocity €2 of the swimmer. The swimming velocities U and 2 result from the swimmer’s
body frame kinematics at any particular time, and are constrained by the conditions that zero net
force® and torque® act on the swimmer. A schematic showing the relationship between the body
and lab frames is shown in Figure 2(a), along with the computational domain used for this study
(Figure 2(b)).

It is well-known that in two-dimensional, inertialess Newtonian flow, no solution is possible for
the flow arising from translating rigid bodies in unbounded fluid domains. This is known as Stokes’
Paradox, and arises because the flow resulting from a point force in two dimensions diverges as log r
far from the force.’” However, the swimmers we will model are force-free; no net forces or torques
act upon them. Furthermore, since we model swimmers in channels, the far-field decays at least as
quickly as O(1/r). Many cells swim close to boundaries, so that finite domain modeling can be
used to give a faithful representation of their environment. It is highly instructive®3%3% to consider
two-dimensional flow models of swimming and thus we will present results for swimmers in finite,
two-dimensional domains.
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(a) Envelope of a single femlet (b) Envelope of a superposition of femlets
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FIG. 3. The envelope function of the force exerted by the flagellum on the fluid. The function is approximately zero in
the black regions, and increases as the colors lighten. (a) An example elongated femlet cut-off function, given by a two-
dimensional elongated Gaussian, oriented by a coordinate transform to align locally with the swimmer’s body. (b) A plot
showing the smooth force distribution envelope generated by a sum of such cut-off functions when projected on a finite
element mesh; femlet centroids are marked by dots.

B. The method of femlets

In order to solve microscopic swimming problems in fluids with shear dependent viscosity, the
method of femlets was developed by Montenegro-Johnson et al.”® Drawing inspiration from the
method of regularized stokeslets® and the immersed boundary method,***!' the method of femlets
represents the interaction of the swimmer with the fluid through a set of concentrated “blob” forces
of unknown strength and direction, with spatial variation prescribed by a cut-off function (Figure 3).
While the method of regularized stokeslets reduces the problem to finding the coefficients in a linear
superposition of velocity solutions of known form, the method of femlets proceeds by applying the
finite element method to solve for the fluid velocity field and strength and direction of the forces
simultaneously.

For a one-dimensional filament of length L and centerline parameterization &(s, t), the force
exerted by the filament on the fluid is given by

L
F(Xv t) = / (S(X - &(S, t))f(sv t) dS, (4)
0

where f(s, ) is a force per unit length determined by the swimmer’s velocity. In the method of
femlets, we discretize Eq. (4) by a set of regularized forces

N
Fx, 1)~ Y g% [Rse) - [x — £(si)]} (sp). )

k=1

The rotation R(sy) is chosen such that the axis R(sy) - [x — &(s¢)] = (xif’c, y}("c T is aligned locally
to the swimmer’s tangent at the location of each femlet, and o, o are anisotropic regularization
parameters. For this study, we choose an elongated Gaussian cut-off function, as in Montenegro-
Johnson et al.,*®

100} (x|00)2 (yl()C)2

T x = exp{ —
g7 p 2072 27

(©)

The regularization parameter o, is chosen to give a smooth representation along the swimmer of the
force (Figure 3(b)), while reducing o, produces a closer approximation to a line force (Eq. (4)). A
validation of the method of femlets is provided in the Appendix.

We will model swimmers in the truncated channel D shown in Figure 2. On the channel walls
dDg;r, we specify Dirichlet velocity conditions, for example, the no-slip condition ug;, = 0, and at
the truncated boundary 9Dy, we apply the zero normal stress condition o - n = 0. The swimmer



081903-6 Montenegro-Johnson, Smith, and Loghin Phys. Fluids 25, 081903 (2013)

0Dgywim 1s not a Dirichlet boundary, but rather a manifold of points within D on which we specify
the swimmer’s body frame velocity. This is where the femlets are distributed.

For the two-dimensional problem, 2 degrees of freedom are associated with each femlet &, the
lab frame force of the femlet in the x and y directions (fi«, fo¢). This produces 2N additional scalar
variables. To calculate the 2Ny force unknowns, we enforce 2Ny constraints in the form of Dirichlet
velocity conditions u, given by the swimmer’s velocity in the body frame and applied at the location
of each femlet.

lll. RESULTS AND ANALYSIS
A. Sliding sphere swimmers

In the results that follow, the fluid domain is given by a channel of length 10L and height 5L,
where L is a characteristic length for the swimmer, normalized here to L = 1 unit. To ensure the
independence of the results from the truncation length of the channel, swimmers were also tested in
a channel of length 20L.

We will begin by examining the effects of shear-thinning rheology on a class of model viscous
swimmers comprising sliding collinear spheres that oscillate out of phase. The first such swimmer
was proposed by Najafi and Golestanian;® it is formed of three spheres which move with the four-
stage beat pattern shown in Figure 4. The kinematics of the beat is divided into two “effective”
strokes, during which the swimmer travels in the direction of net progress, and two “recovery”
strokes, during which the swimmer readjusts its configuration to reinitiate an effective stroke. While
performing a recovery stroke, the swimmer moves in the opposite direction to the direction of net
progress.

We refer to the swimmer’s “progress” as the distance it travels over an effective stroke, “regress”
as the distance it travels over arecovery stroke. The swimmer’s “net progress” is the distance travelled
over an entire beat cycle. The net progress can be seen as the sum of the distances travelled over all
effective strokes minus the sum of the distances travelled over all recovery strokes. In other words,

Negr Nrec
net progress = Zprogressi - Zregressi @)
i=1 i=1
for Ngr, Nrec the number of effective and recovery strokes, respectively.

Figure 4 shows that at any instant, the swimmer can be thought of as comprising a propulsive
element and a drag-inducing “payload” element. By force balance, leftward relative motion of an
outer sphere results in rightward motion of the remaining spheres through the fluid, and vice versa.
The principle underlying the propulsion of collinear sphere swimmers is that the total drag on the
two payload spheres is reduced if they are brought closer together. Thus, the swimmer shown in
Figure 4 will exhibit overall leftward progress.

Propulsive sphere

OoO— Effective 1

EEEEEEEE Direction of payload travel

OoO— Effective 2

—20 Recovery 1

-——

~—0O Recovery 2

-

FIG. 4. A complete beat cycle of the Najafi-Golestanian swimmer showing the position of the outer spheres relative to the
central sphere, the direction in which the propulsive sphere moves (solid arrow) relative to the payload, and the direction and
magnitude of swimming (dashed arrow).
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TABLE 1. The body frame positions of the three spheres of the Najafi-Golestanian swimmer we will model, for d = 0.5,
a = 0.25, over each portion of its beat cycle.

Najafi-Golestanian swimmer

Stroke X1 X2 X3 Time ¢
Eff 1 —(d + a) + 8at 0 d—a [0, 1/4)
Eff 2 —(d—a) 0 d—a+ 8a(t — 1/4) [1/4,1/2)
Rec 1 —(d — a) — 8a(t — 1/2) 0 d+a [1/2, 3/4)
Rec 2 —(d+ a) 0 d—+ a — 8a(t — 3/4) [3/4, 1)

Montenegro-Johnson et al.*® found that a version of the Najafi-Golestanian swimmer with
smoothed kinematics progressed more rapidly through shear-thinning fluid. However, the physics
behind this enhanced progression were not apparent. We will now consider the simpler original
Najafi-Golestanian swimmer, for which the outer spheres move at constant speed during each
portion of the four-stage beat cycle shown in Figure 4. The body frame positions of the three spheres
i=1,2,3 are given as a function of time ¢ in Table I, where d = 0.5, a = 0.25 in our model.

Figure 5 shows the effects of shear-thinning rheology upon the Najafi-Golestanian swimmer
for varying power-law index n. As n is decreased from the Newtonian case n = 1, the swimmer’s
progress over its effective strokes (Figure 5(a)) and regress over recovery strokes (Figure 5(b)) are
both decreased. At all moments during its beat cycle, the swimmer swims more slowly in shear-
thinning fluid. This effect is slight: for » = 0.5, the swimmer’s speed is approximately 3% lower
during the effective strokes and 5% lower during the recovery strokes than for n = 1 (Newtonian
fluid). However, since swimming velocity is reduced more during the recovery strokes, the result
is in fact an increase in net progress, shown in Figure 5(c). This behavior is demonstrated in

(a) Effective stroke (b) Recovery stroke
0.198 0.175
» 0.196 "
e 4
2 0.194 o 017
0.192 ¢
0.165 §
0.19
0.6 0.8 1 0.6 0.8 1
power-law index n power-law index n
(c) Full beat
1072
5.3 ¢
£ 52
2
- =4
§ 5.1
5
0.6 0.8 1

power-law index n

FIG. 5. The effects of shear-thinning on the Najafi-Golestanian swimmer with the four-stage beat pattern given in Table 1.
(a) The progress during each effective stroke and (b) the regress during each recovery stroke as functions of the power-law
index n. Since the decrease in regress is greater for n < 1, the overall effect of shear-thinning is an increase in net progress
as n decreases (c). In each panel, the case corresponding to Newtonian fluid is marked in lighter gray.
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0.8 F
—— Position Newtonian
Position Carreau
0.6 1 --- Progress Newtonian

Progress Carreau

0.4 A / {//‘xr
0.2 \ '///v//v

beat

position

FIG. 6. Simulation results of the position of the Najafi-Golestanian swimmer over five beat cycles, demonstrating how
decreasing the instantaneous swimming speed at all times in shear-thinning fluid can lead to an increase in overall progress,
provided swimming speed is decreased more during the recovery stroke. The rheological parameters of the Carreau fluid are
Holthoo =2,n=0.5,and Sh=1.

Figure 6, which shows the position of the swimmer over five complete beat cycles in Newtonian and
shear-thinning fluid.

The swimmer’s progress and regress are reduced by shear-thinning, but regress is reduced more
and hence overall progress is increased. But what is responsible for this decrease in instantaneous
swimming speed, and why is this effect enhanced during the recovery stroke?

Figure 7 shows the effective viscosity of the fluid surrounding the swimmer at time t = 0
for rheological parameters o/t = 2, n = 0.5, and Sh = 1. The effective viscosity of the fluid
surrounding the propulsive sphere is significantly lower than that surrounding the payload. In the lab

(a) Effective stroke

0.95

0.9

0.8

(b) Recovery stroke

.- m 0.85 Heft

FIG. 7. The effective viscosity of Carreau fluid, normalized to pp = 1, surrounding the Najafi-Golestanian swimmer
(Table I) at (a) the start of effective stroke 1 and (b) the start of recovery stroke 2 for po/teo = 2, n = 0.5, and Sh = 1. The
fluid around the propulsive sphere is thinner than that around the payload.
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frame, the propulsive sphere moves more quickly than the payload, thereby thinning the surrounding
fluid to a greater extent.

The drag on a sphere moving in inertialess Newtonian fluid is proportional to the viscosity of
the fluid. While Carreau fluid is non-Newtonian, this observation is key to understanding the effects
of shear-thinning rheology. If fluid is relatively thicker around the payload spheres, the resistance
coefficient of those spheres will be relatively higher than that of the propulsive sphere. Thus, the
instantaneous velocity of the swimmer will be reduced.

We examine this effect by calculating the average viscosity of the flow at points on a small
circle, of radius € say, surrounding each sphere i centered at (x;, y;)

i = flege(y (u(r;))), (8)

for ; coordinates (x, y) such that (x — x,)*> + (y — y;)*> = €2. The average for each sphere is
calculated from 20 azimuthal coordinates. We then split the set of viscosities into the viscosities of
the fluid surrounding propulsive ,uf.’mp and drag-inducing payload ,u?rag spheres. We then calculate
the “viscosity differential”

.l Npmp 1 Ndrag

Z 'u?rop o Z M;irag7 (9)

N,
prop drag T

Mdiff = N

for Nprop and Nyr,e the number of propulsive and drag-inducing spheres, respectively. For the Najafi-
Golestanian swimmer, Npop = 1 and Ngrae = 2, and the propulsive and payload spheres change
according to the portion of the beat cycle, as demonstrated in Figure 4. The decrease in the Najafi-
Golestanian swimmer’s instantaneous velocity is shown as a function of the viscosity differential
(9) in Figure 8.

At time ¢ = 0, the swimmer initiates an effective stroke. The velocity of the swimmer at
t = 0, relative to the Newtonian case, is shown as a function of pgi in Figure 8(a), for varying
n (light gray), o/« (dark gray), and Sh (medium gray). This figure shows that the result of varying
these parameters is approximately equivalent with respect to the viscosity differential. Furthermore,
Figure 8(a) demonstrates that the reduction in velocity arising from shear-thinning rheology is
approximately proportional to the viscosity differential. This proportionality is to be expected,
because the drag coefficients of the spheres are approximately proportional to the viscosity of the
fluid surrounding them.

However, the coefficient of proportionality between the relative instantaneous velocity and the
viscosity differential is greater during the recovery stroke (Figure 8(b)). This increase entails that

(a) Effective stroke (b) Recovery stroke
1 1
— Ho/ e v — fio/ oo
—5Sh —5Sh
n n

/
/

0.98 0.98

°

—0.1 —0.05 0 —0.1 —0.05 0
viscosity differential piqiz viscosity differential jiqie

0.96 0.96

vel. relative to Newtonian
vel. relative to Newtonian

FIG. 8. The velocity relative to the Newtonian case of the Najafi-Golestanian swimmer when initiating an effective stroke
(a) and a recovery stroke (b) as a function of the viscosity differential pgirr. The velocity has been calculated while
varying the three rheological parameters of Carreau flow for n = 0.5, po/pe € [1, 2], Sh = 0.5 (dark gray), n = 0.5,
o/thoo = 2, Sh € [0, 0.5] (medium gray), and n € [0.5, 1], po/ttec = 2, Sh = 0.5 (light gray). This figure demonstrates an
apparent proportionality between the velocity and the viscosity differential, and that the viscosity differential is enhanced
during the recovery stroke.
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(a) Paddler (b) Effective stroke
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FIG. 9. The effects of shear-thinning on the paddler (a) with the two-stage beat pattern given in Table II. During the portions
of the beat represented by the dashed black lines, the swimmer does not progress and as such they are not considered here.
The dashed arrow shows the swimming direction. (b) The progress during the effective stroke and (c) the regress during the
recovery stroke as functions of the power-law index n. The greater increase in regress results in a decrease in net progress
with shear-thinning rheology, (d). In each panel, the case corresponding to Newtonian fluid is marked in lighter gray.

the velocity is decreased more during the recovery stroke, and must arise not from the viscosity at
the surface of the spheres, but in some way from the rate at which the viscosity field increases away
from each sphere.

These results raise three interesting questions: (1) is the viscosity differential always negative,
reducing instantaneous velocity, for three-sphere swimmers, (2) will the coefficient of proportionality
between the instantaneous velocity and the viscosity differential always be greater during the recovery
stroke, and (3) how does the rate at which viscosity increases away from the swimmer affect progress?
To answer these questions, we will first consider a morphologically identical three-sphere swimmer
with different beat kinematics.

B. A three-sphere “paddler”

Drescher et al.*> showed that the far-field flow induced by the biflagellate green alga Chlamy-
domonas reinhardtii may be approximated by three stokeslets: two outer stokeslets exerted a back-
wards force, representing the flagella, balanced by a central stokeslet, representing the cell body.
Inspired by this approximation, one could consider a paddling three-sphere swimmer® exhibiting
the kinematics shown in Figure 9(a).

The central sphere is stationary in the body frame, and represents the swimmer’s body, or
payload. The two outer spheres move along closed, non-intersecting curves in the same plane as
the body, such that these curves are a mirror image of one another. The behavior of this swimmer
in Newtonian fluid was analyzed by Polotzek and Friedrich;’ it was shown that the direction the
swimmer travels is dependent upon the loci of the outer swimming spheres.

We will consider a swimmer for which the swimming spheres move along rectangles, centered
in line with body sphere. The effective stroke occurs when the outer spheres are nearer the body, so
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TABLE II. The body frame positions of the three spheres for the paddling swimmer over the effective and recovery stroke,
where in our model d = 0.5, yrec = 0.75, and yer = 0.25.

Three sphere paddler
Stroke (1, y1) (x2, y2) (x3,y3) Time ¢
Rec d — 4dt, Yrec 0,0 d — 4dt, —Yrec [0, 1/2)
Eff —d + 4d(t — 1/2), yefr 0,0 —d + 4d(t — 1/2), —yett [1/2, 1)

that the swimmer shown in Figure 9(a) will generate a net displacement downwards. Since no net
motion of the swimmer occurs while the swimming arms are moving directly towards or away from
one another, we may consider only the two parts of the stroke given in Table II.

For d = 0.5, yrec = 0.75, and y. = 0.25, Figures 9(b) and 9(c) show the swimmer’s progress
and regress over its effective and recovery strokes, respectively. In contrast to the Najafi-Golestanian
swimmer considered above, shear-thinning increases the instantaneous swimming speed of this
paddler. Progress is increased by around 1%, and regress by around 2%. The result is a decrease
in net progress (Figure 9(d)). Thus, despite swimming more quickly at all times, this swimmer
is hindered by shear-thinning flow. This behavior is demonstrated in Figure 10, which shows the
position of the swimmer over five complete beat cycles in Newtonian and shear-thinning fluid.

As with the Najafi-Golestanian swimmer, the effect of shear-thinning is small for the parameters
considered. However, these effects are sensitive to kinematics. The Najafi-Golestanian swimmer and
the paddler both comprise three sliding spheres, but through their kinematics they are affected by
shear-thinning in opposite manners.

To balance the forces induced by the two propulsive spheres, the lab frame velocity of the
drag-inducing sphere is greater than the lab frame velocity of the propulsive spheres. Thus in
shear-thinning flow, fluid will be relatively thinner around the drag-inducing sphere than around the
propulsive spheres (Figure 11). Accordingly, the viscosity differential for this swimmer is positive,
in contradistinction to the Najafi-Golestanian swimmer above, and thus the swimmer’s instantaneous
velocity is increased by shear-thinning rheology. But why is this effect enhanced during the recovery
stroke when the spheres are further apart?

Figure 12 shows the velocity of the swimmer relative to the Newtonian case as a function
of the viscosity differential at a moment during an effective stroke (Figure 12(a)) and a recovery
stroke (Figure 12(b)). During the recovery stroke, the velocity relative to the Newtonian case is
again approximately proportional to the viscosity differential. The constant of proportionality is
approximately half that for the Najafi-Golestanian swimmer (Figure 8), which may be because there
are twice as many propulsive elements.

—— Position Newtonian
Position Carreau
--- Progress Newtonian
1 Progress Carreau \

position

0.5

e

beat

FIG. 10. Simulation results of the position of the paddler over five beat cycles, demonstrating how increasing the instantaneous
swimming speed at all times in shear-thinning fluid can lead to an decrease in net progress, provided swimming speed is
decreased more during the recovery stroke. The observed effect is exactly opposite to that of the Najafi-Golestanian swimmer,
summarized in Figure 6. The rheological parameters of the Carreau fluid are po/ptoc =2, n = 0.5, and Sh = 1.
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(a) Effective stroke

0.95
0.9
0.85
Heft
0.8
0.75

0.7

(b) Recovery stroke

- 0.95
0.9

“ 0.85 ot

0.8
0.75
- 0.7

FIG. 11. The effective viscosity of Carreau fluid, normalized to po = 1, surrounding the paddler (Table II) at (a) the start
of the effective stroke and (b) the start of the recovery stroke for po/pteo = 2, n = 0.5, and Sh = 1. The fluid around the
propulsive sphere is thinner than that around the payload.

However, this proportionality fails during the effective stroke, when the spheres are close to
one another. Each sphere thins a significant region of fluid, and these regions overlap substantially,
decreasing the effect of the viscosity differential. This decrease is apparent when considering the
shear-index data in Figure 12(a). For low values of Sh, high shear is required to thin the flow. Thus,
the viscosity fields generated by the spheres that comprise the swimmer do not interact, and the
proportionality between the viscosity index and the increase in velocity is equal to that during the
recovery stroke (Figure 12(b)), for which the spheres are further apart. When the value of Shincreases

(a) Effective stroke (b) Recovery stroke
g 1.015 E 1.015
= — po/ oo g — 1o/ e ,
£ —Sh £ —5Sh :
E 1.01 n g 1.01 n
Z, : Z ’
2 3
[} [}
= =
£ 1.005 S 1.005
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FIG. 12. The velocity relative to the Newtonian case of the paddler at the commencement of (a) an effective stroke and
(b) a recovery stroke as functions of the viscosity differential rqifr. The velocity has been calculated while varying the three
rheological parameters of Carreau flow for n = 0.5, no/ieo € [1, 2], Sh = 0.5 (dark gray), n = 0.5, no/fteo = 2, Sh €
[0, 0.5] (medium gray), and n € [0.5, 1], no/itoo =2, Sh=0.5 (light gray). During the recovery stroke (b), spheres are far apart
and there is approximate proportionality between the increase in velocity and the viscosity differential. During the effective
stroke (a), however, interactions between the viscosity fields of the spheres reduce the effect of the viscosity differential. For
low values of Sh (medium gray), more shear is required to thin the flow. Thus, proportionality between velocity increase and
viscosity differential is maintained with the same constant for effective and recovery strokes due to decreased viscosity field
interactions.
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FIG. 13. A schematic of a ciliated surface. Cilia beat with an effective-recovery stroke pattern, marked with E and R,
respectively, pushing fluid locally in the direction shown. The cilia are activated in a coordinated, metachronal fashion. The
envelope of this motion is given by the dashed green line.

past a critical value, despite increases in the viscosity differential velocity is in fact decreased. After
a further critical value, the viscosity differential is in fact decreased by increasing Sh.

The envelope of thinned fluid surrounding the swimmer during the effective stroke inhibits its
progress. Increasing the shear index past the optimum increases the size of this envelope, further
hindering swimming. This result is consistent with the existence of an optimum value of Sh for the
progress of the Najafi-Golestanian swimmer considered by Montenegro-Johnson et al.?

Thus, in the limit of large separation between spheres, the envelopes of thinned fluid surrounding
each sphere do not interact, and instantaneous velocity is approximately proportional to the viscosity
differential. If spheres are close enough to generate an envelope of thinned fluid surrounding the
whole swimmer, that envelope hinders swimming, reducing the constant of proportionality between
swimming velocity and the viscosity differential. To examine the effects of the envelope of thinned
fluid further, we will now consider squirming models of ciliates.

C. Slip velocity squirmers

Much like sphere swimmers, cilia utilized for locomotion typically beat with an asymmetric
effective-recovery stroke pattern.*> They perform an effective stroke when fully extended, moving
through the fluid perpendicular to their centerline, and then recover by moving tangentially to their
centerline (Figure 13).

Ciliated swimmers generally express a large number of cilia which beat with a phase difference
between neighbors.** Examples are the protozoa Opalina and Paramecium® and the alga Volvox
Carteri. This type of swimming motivates “envelope” modeling approaches*® whereby the array of
cilia are represented by either a slip velocity condition on the cell surface, or by small “squirming”
deformations of the cell body.*”-48

We will analyze a model swimmer with a time independent stroke, the effects of coordinated
ciliary beating being time averaged over a beat as a constant slip velocity. The tangential slip velocity

is typically decomposed into “swimming modes” of spherical harmonics*’
o0
up(0) = )y Ku(cos h), (10)
n=1
for
(2n 4+ 1)sinf _,
K, (cos0) = ———————L) (cosb), (11)
nn—+1)

with L,(cos 6) the nth Legendre polynomial. Thus, slip velocity squirmers are characterized by the
coefficients «,, of the modes of their swimming.

The simplest two-dimensional squirmer has a single mode, i.e., @, = O for all n > 2. This
“treadmilling” squirmer has a radius » = L/2 and generates a time independent tangential slip
velocity in the body frame of

ug = (1/2)sinf@ onr = L/2. (12)

A treadmilling squirmer is shown alongside an image of Volvox carteri, in Figure 14. Since swimmer
kinematics and the fluid domain are symmetric about the line y = 0, the squirmer swims purely in
the positive x direction.
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(a) Two-dimensional model (b) Live Volvox Carteri

FIG. 14. (a) A schematic of a two-dimensional treadmilling squirmer, along with (b) a micrograph of a Volvox carteri colony,
showing surface cilia that beat in a coordinated fashion to propel the colony forwards. This cell also shows a number of
characteristic “daughter” colonies within it. Image taken by Professor Raymond E. Goldstein, University of Cambridge;
reprinted with permission.

Shear-thinning decreases the velocity of this squirmer (Figure 15). This result draws an interest-
ing parallel with the work of Zhu et al.,’> who found that spherical squirmers were also hindered by
a different non-Newtonian fluid property, viscoelasticity. Figure 15(c) shows a striking apparently
linear dependence of the swimming velocity upon the power-law index n. The decrease in velocity
is small; for po/peo = 2, n = 0.5, and Sh = 1, the velocity is reduced by a little over 3%.

The effective viscosity field of the flow has a simple form; even relatively near to the swim-
mer, contours of equi-viscosity are approximately circular, centered on the swimmer (Figure 16).
However, very near to the surface, the fluid surrounding the propulsive elements of the treadmilling
squirmer is relatively thicker than that surrounding the drag-inducing portions. Thus, the viscosity
differential for this squirmer is positive, yet its velocity is decreased by shear-thinning, demonstrating
that slip velocity models differ from no-slip multiple sphere swimmers in this respect. The reduction
in velocity arises from the envelope of thinned fluid surrounding the squirmer.

Figure 17 shows the radial variation in the effective viscosity of the fluid surrounding the
squirmer. As n decreases, the viscosity immediately surrounding the swimmer decreases, but the

(a) (b)
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FIG. 15. The velocity of the treadmilling squirmer with slip velocity given by Eq. (12) as a function of (a) the viscosity ratio
1o/ thoo With n = 0.5 and Sh = 1, (b) the shear index Sh with » = 0.5 and o/t = 2, and (c) the power-law index n with
10/hoo = 2 and Sh = 1. In each panel, the case corresponding to Newtonian fluid is marked in lighter gray.
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FIG. 16. The effective viscosity peg of Carreau fluid, normalized to po = 1, surrounding the treadmilling squirmer for
1no/thoo =2, n = 0.5, and Sh = 0.5. These parameter values are the extremal values used for the data in Figures 17 and 18.
Away from the swimmer surface, contours of equi-viscosity are approximately circular. On the surface, fluid is relatively
thicker surrounding the propulsive portions of the swimmer. The squirmer is aligned to the positive x-axis, as in Figure 14(a),
and the direction of travel is indicated by the dashed arrow.

rate at which the viscosity approaches the zero-shear value increases. As a result of this increase,
the size of the envelope of thinned fluid surrounding the swimmer varies little with changes in
rheological parameters (Figure 17(a)). For any fixed value of the radial coordinate r, with » = 0.5
being the squirmer’s surface, the effective viscosity at that point decreases approximately linearly
with n (Figure 17(b)).

Since the decrease in swimming velocity also exhibits a linear dependence upon the power-law
index n, we examine the dependence of swimming velocity on the effective viscosity of the fluid
surrounding the squirmer. Figure 18(a) shows the decrease in swimming velocity relative to the
Newtonian case as a function of the effective viscosity of the fluid envelope at r = 0.52, a small
distance from the squirmer’s surface, for varying viscosity ratio, shear index, and power-law index.
This figure demonstrates a strong linear correlation between the effective viscosity of the fluid a
small distance from the swimmer’s surface and the swimmer’s velocity.

However, while the absolute values of viscosity do not affect swimmers with prescribed kine-
matics, the envelope of thinned fluid shields the far field flow from the flow generated by the
squirmer. As fluid becomes relatively thinner around the squirmer, the decay rate of the near-field
flow increases. This draws an interesting parallel with the work of Zhu et al.,”> who found a similar
effect for viscoelastic (Giesekus) fluids. In the near-field, along the line 6 = 0, the velocity of the
flow is approximately

A
u~—, . logu~logA—alogr. (13)

r

(a) Viscosity at fixed n (b) Viscosity at fixed distances
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FIG. 17. The effective viscosity of the fluid envelope surrounding the treadmilling squirmer. (a) Changes in the viscosity
field as a function of the radial coordinate r for different values of the power-law index n. The swimmer surface is given by
r=0.5. (b) For fixed values of r, the effective viscosity exhibits a near linear dependence upon the power-law index 7.
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(a) Envelope viscosity (b) Flow decay
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FIG. 18. The velocity relative to the Newtonian case of the treadmilling squirmer as a function of (a) the effective viscosity
on the contour 7 = 0.52 and (b) the rate of decay « of the velocity from the surface of the squirmer relative to the Newtonian
case anewt. The velocity has been calculated while varying the three rheological parameters of Carreau flow for n = 0.5,
no/theo € [1, 2], Sh = 0.5 (dark gray), n = 0.5, uo/pteo = 2, Sh € [0, 0.5] (medium gray), and n € [0.5, 1], pno/ttoo = 2,
Sh = 0.5 (light gray). This figure demonstrates a striking proportionality between the velocity and the decay rate of the fluid.

Thus, the flow decay rate is given by
Alogu

Alogr’ (14)
Close to the squirmer’s surface, the Newtonian flow decay rate apeyt = 1.95.

Figure 18(b) shows the swimming velocity of the squirmer as a function of this decay rate at
r=0.52, 6 = 0, a small distance from the squirmer’s surface, relative to the Newtonian case for
varying rheological parameters o/, 71, and Sh. The decrease in velocity and increase in flow
decay exhibit a linear relationship, and are the same magnitude; the slope of the curve is close to —1.
This observation motivates the following argument: The squirmer generates an envelope of thinned
fluid around itself when swimming through Carreau fluid. This envelope increases the decay rate
of flow away from the squirmer’s surface. Thus, prescribed motion on the surface moves relatively
less fluid, which decreases the swimming velocity.

However, models of squirmers exhibiting surface velocity distribution may neglect effects
arising from rheological interactions at the scale of individual cilia. These interactions may be
captured more effectively by squirming models for which the surface is subject to small deformations.
For many ciliates, such as the protozoa Opalina, surface deformation provides a better representation
of the swimmer than slip velocity modeling. It may be that rheologically enhanced propulsion at the
cilium scale is captured by envelope models with surface deformation.

D. Monoflagellate pushers

We will now examine the effects of shear-thinning rheology on the swimming of a two-
dimensional model sperm with prescribed waveform. Since the trajectories of such swimmers are
two-dimensional, we will analyze their shape using variables from Computer Aided Semen Analysis
(CASA), see, for example, Mortimer.>® Our usage will differ slightly, in that CASA variables are
statistical averages over many beat cycles determined from video microscopy of living cells sampled
at a given frequency, whereas we will generate a smooth, time periodic waveform and thus our
parameters will be measured over a single beat. The variables we will consider are demonstrated for
an example trajectory over one beat cycle in Figure 19.

Sperm do not exhibit an effective-recovery stroke pattern, but rather swim by propagating
a travelling wave along the flagellum. As such, we now refer to a swimmer’s “progress” as the
distance between its start and end points over a beat. We will also consider its straight line velocity
VSL = progress/T and its curvilinear, or instantaneous, velocity VCL, the velocity of the cell at
any given point in time. The amplitude of the cell’s lateral head displacement ALH, is given by the
difference between the maximum and minimum y values on the trajectory. We also consider the path
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progress = —eg---------

VSL = progress/T ALH

FIG. 19. Swimming parameters for the trajectory (dark gray) of a swimmer moving from right to left over one beat cycle of
period T. The instantaneous velocity is the derivative of arclength s along the path with respect to time.

length PL of the trajectory, that is, the total distance travelled, as well as the straightness of the path
STR = progress/PL.

The swimmer is propelled by a single flagellum that propagates a bending wave along its length,
generating the forces required to move the cell forward. We parameterize the flagellum in terms of
its shear angle ¥ (s, #) given in the body frame. A shear angle of the form

Y(s,t) = Cscos[2m (ks — wt)], (15)

represents a bending wave propagating down the flagellum, steepening towards the less stiff distal
end with a linear envelope. This shear angle produces a waveform representative of sperm swimming
in high viscosity fluids,?' shown in Figure 20. The lab frame position of the flagellum is then given
by rotating the centerline in the body frame by the swimmer’s orientation, and translating by the
current head position.

Length scales are normalized to the flagellum length, so that one length unit corresponds to
55 um, and one time unit corresponds to a single beat of the flagellum. Thus, for a tail beating at
10 Hz one time unit corresponds to 0.1 s.

Montenegro-Johnson et al.?® showed that particular sperm-like swimmer progressed further
in shear-thinning fluids. In this study, we will show that this behavior arises for other sperm-like
swimmers, and examine the interplay between physical mechanisms and morphological changes in
swimming trajectory that cause it.

We will examine the trajectories of swimmers with waveforms generated by the shear angle
(15) for maximum shear angle A = 0.457 and wavenumber k = 2.5, i.e., 2.5 waves on the flagellum.
We have also examined waveforms produced by other parameter values, and found that the effects
of shear-thinning were consistent for all values considered. The cell head will be given by an ellipse
of fixed eccentricity, but different area, given in Table III.

Figure 21 shows the trajectories of an example sperm for three values of the viscosity ratio.
From this figure, it is apparent that shear-thinning increases the progress of sperm-like swimmers
significantly; for uo/teo = 4, n = 0.5, and Sh = 1, this increase is around 40% over the Newtonian
case. However, it is not immediately apparent how much of the increase in progress is associated

(a) Model sperm cell

(b) Live sperm cell

FIG. 20. (a) The flagellar waveform generated by shear angle (15) and (b) a micrograph of a human sperm in medium
containing 1% methylcellulose, a fluid with comparable viscosity to that of cervical mucus.
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TABLE III. Elliptical head morphologies of constant eccentricity, but dif-
ferent area scaled with flagellum length, corresponding to the data in
Figure 22. These morphologies, from top to bottom correspond with dark to

light plots.

Sperm head morphologies
ay ay Area Circumference
0.045 0.036 0.00167 0.255
0.05 0.04 0.0027 0.284
0.055 0.044 0.00247 0.312

with increased path straightness (STR) and how much arises from increased instantaneous velocity
(VCL).

Figure 22 demonstrates the effects of shear-thinning on the shape of the swimming trajectory
for sperm with the three different head sizes given in Table III. The trajectories that these swimmers
with different head sizes follow in Stokes flow are shown in Figure 22(a), showing that increasing
head size leads to a small decrease in progress, due to increased drag. Shear-thinning increases
progress (Figure 22(b)) by reducing the side-to-side motion of the cell ALH (Figure 22(c)) but
increasing its instantaneous velocity VCL, as reflected by increased path length PL (Figure 22(d)).
This increases the swimmer’s path straightness, STR, shown in Figure 22(e), which is apparent when
the trajectories of a single swimmer, with a, = 0.05 and a, = 0.04, for various values of the viscosity
ratio are plotted together (Figure 21).

These effects are robust to morphological and kinematic changes. Varying the eccentricity of
the cell head or the wavenumber changes the swimmer’s trajectory, but the rheological effects that
we show are consistent with changes in these parameters. To understand the increase in cell progress,
we will now examine the viscosity field surrounding the swimmer, and the force generated by the
flagellum.

The viscosity field surrounding the swimmer is shown for four values of the shear index Sh in
Figure 23. Fluid is thickest around the cell head, and there is a gradient of thick to thin fluid along
the flagellum, as well as the slightly less obvious feature of a gradient of thick to thin fluid across
the swimmer which alternates in sign at local maxima of the shear angle . As Sh is increased to an
optimum value, these gradients are enhanced, after which they decrease because the fluid becomes
thinned substantially at the head end of the flagellum. Montenegro-Johnson et al.*® found an optimal
value of Sh for a particular sperm-like swimmer’s progress. We now find that this optimal progress
is associated with maximal gradients along the flagellum.

We examine the forces exerted by the flagellum on the fluid at five equally spaced instants over
half its beat cycle for varying viscosity ratio. At each moment, the gradient of thick to thin fluid
along the flagellum that arises in shear-thinning fluids entails that forces generated in the proximal
(near to head) portion of the flagellum have greater magnitude relative to those in the distal (near
to tip) portion, when compared to the Newtonian case (Figure 24). Thus, shear-thinning induces a
redistribution of force from the distal to the proximal end of the flagellum. This redistribution has
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FIG. 21. Trajectories of the body frame origin X¢, given by the head-flagellum junction, of a two-dimensional sperm-like
swimmer in Carreau fluid for different values of the viscosity ratio (o//to, Showing an increase in progress and a decrease
in ALH as po//teo increases.
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FIG. 22. (a) Trajectories of the cells with head morphologies given in Table III, swimming in Stokes flow with n = 0.5,
1o/thoo = 4, and Sh = 1. For n = 0.5 and Sh = 1, the effect of varying the viscosity ratio jo/(o on (b) the swimmers’
progress, (c) the amplitude of the swimmers’ lateral head displacement, (d) the path length of the swimmers’ trajectories,
and (e) the swimmers’ path straightness.

the effect of making the force distribution more symmetric about the body axis, and thus straightens
the trajectory. This effect is shown in Figure 25, where the magnitude and direction of swimming
have been plotted for a sperm aligned with the negative x-axis at times t = 0, 0.1, ..., 0.4 for
changing values of the viscosity ratio. Figure 25 also demonstrates the increase in the magnitude of
instantaneous velocity resulting from shear-thinning rheology. The increased instantaneous velocity
acts in concert with the straightened path to yield significant increases in progress.

IV. DISCUSSION

We have analyzed the effects of shear-thinning rheology on three distinct classes of microscopic
swimmer with prescribed kinematics in Carreau fluid. This continuum approach to modeling biolog-
ical fluids may not be appropriate when the swimmer and the suspended fibers are of a comparable
length, as with bacteria in mucus,'? but it can still provide insight into important effects.

While our modeling is two-dimensional, the observed physical effects are likely to be present
for three-dimensional swimmers: sliding spheres exert stresses on the fluid, thereby thinning a
surrounding envelope. The Najafi-Golestanian swimmer payload travels more slowly through the
fluid than its propulsive sphere. Consequently, fluid surrounding the propulsive sphere is thinned
more than fluid surrounding the payload spheres, resulting in a decrease in instantaneous velocity.



081903-20 Montenegro-Johnson, Smith, and Loghin Phys. Fluids 25, 081903 (2013)

(a) (b)

i 1 = 1
0.95 0.95
0.9 0.9
0.85 0.85

o—— "4 0.8 fer r}\a 0.8 fos
0.75 0.75
0.7 0.7
0.65 0.65
0.6 0.6

) )
— 1 1
0.95 0.95
0.9 0.9
0.85 0.85
® 0.8 fet (O 0.8 Hest
0.75 0.75
0.7 0.7
0.65 0.65
0.6 0.6

FIG. 23. The impact of varying Sh = Aw on the effective viscosity pefr of Carreau fluid surrounding a two-dimensional
sperm-like swimmer at (a) Sh = 0.2, (b) Sh = 0.8, (c) Sh = 1.5, and (d) Sh = 3 with to/iteo =2 and n = 0.5. In these figures,
the area of the cell head is 0.002x, the wavenumber k£ = 2.5 and the maximum shear angle A = 0.457x.

By contrast, the paddler payload moves more quickly through the fluid than the propulsive elements,
fluid around the payload is relatively thinner, thereby increasing instantaneous velocity. The relatively
higher decay rate of three-dimensional flow will be associated with an increased decay of the
viscosity field around each sphere. This decay will in turn reduce the asymmetry between the effects
of shear-thinning on the effective and recovery strokes. So while shear-thinning will decrease both
the progress and regress of a Najafi-Golestanian swimmer, we therefore predict that the increase in
net progress will be relatively less than for an equivalent two-dimensional swimmer.

The squirmer in three dimensions will again thin an envelope of surrounding fluid, enhancing
flow decay rate and thereby decreasing swimming velocity in shear-thinning fluids. For sperm-like
swimmers, the prescribed waveforms we considered increase in velocity to the distal portion of the
flagellum, and are therefore likely to generate a gradient of thick to thin fluid along the flagellum as

1 1
—— Newtonian ‘
0.8 Carreau “
0.6
= /
0.4 \
\ “/
0.2 f v

0 02 04 06 08 1

S

FIG. 24. The magnitude of the force that the flagellum exerts upon the fluid at time ¢+ = O for Newtonian (dark gray)
and Carreau (light gray) fluids with po/ee = 2, n = 0.5, and Sh = 0.8, close to the optimal value of Sh found by
Montenegro-Johnson et al.?$
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FIG. 25. The magnitude and direction of swimming of a sperm oriented in the negative x direction with wavenumber
k = 2.5 and maximum shear angle A = 0.45x at times r = 0, 0.1, 0.2, 0.3, 0.4, for varying viscosity ratio. These times
span half a complete beat cycle. This figure demonstrates that shear-thinning results in straighter swimming and increased
instantaneous velocity.

in the two-dimensional case. However, in three dimensions, fluid can also pass over the flagellum,
and so this gradient may be reduced.

The effects found also give insight into sliding sphere swimmers that may violate Purcell’s
Scallop theorem. Since the instantaneous velocity of the sliding sphere swimmers analyzed is
approximately proportional to the viscosity differential, an asymmetry between the body frame
speed of effective and recovery strokes should allow a reciprocal swimmer to progress through
inertialess Carreau fluid. Net progress is made possible because faster motion thins the fluid to a
greater extent, thereby inducing an asymmetry between the effective and recovery flow viscosity
fields. In Newtonian fluid, no such asymmetry arises, and due to the time independence in the
governing equations, such reciprocal motion will not result in net progress.

Two such reciprocal swimmers may be formed from each of the Najafi-Golestanian swimmer and
the three-sphere paddler, as shown in Figure 26. We refer to these models as the speed-asymmetric

(a) Speed-asymmetric collinear swimmer (b) Speed-asymmetric paddler
Pusher Puller Pusher Puller
Eff Rec Eff Rec Eff Eff
T ? ~—2o0 o—
l —o0 o—
g A
! Rec Rec
. : L o—~ o
; ; .
v o~ ~0

FIG. 26. Reciprocal sliding sphere swimmers that cannot progress through inertialess Newtonian fluid, but may progress
through inertialess Carreau fluid. These swimmers are pusher and puller versions of (a) the Najafi-Golestanian swimmer and
(b) the paddler, showing the effective and recovery strokes with an indication of the velocity of the propulsive sphere (solid
arrow) and the magnitude and direction of progress over each stroke (dashed arrow).
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TABLE IV. The body frame positions of the three spheres of the speed-asymmetric collinear pusher over its effective stroke,
which lasts for 3/4 of the beat period, and the recovery stroke, which lasts for 1/4 of the beat period.

Speed-asymmetric collinear pusher

Stroke X1 X2 X3 Time ¢
Eff —(d — a) — 8atl3 0 d—a [0, 3/4)
Rec —(d + a) + 8a(t — 3/4) 0 d—a [3/4, 1)

collinear swimmer and paddler, respectively. For each speed-asymmetric swimmer, a “pusher” and
“puller” version of the swimmer may be modeled: pushers are swimmers whose payload is pushed
from behind, such as most animal sperm, whereas pullers, such as algae are pulled from the front.

The net propulsion due to stroke speed asymmetry is, however, very slight. For the speed-
asymmetric collinear pusher described in Table IV, simulations in a channel of length 20L were
performed to minimize boundary truncation effects, and for fixed Sh = 1, po/ite0 = 2, net progress
over a beat was maximized at 0.001L for n = 0.7, which is approximately 0.2% of the body frame beat
amplitude. This is in contrast to the Najafi-Golestanian swimmer given in Table I, which progresses
approximately 10% of its amplitude per beat. The difference between pushers and pullers was not
discernible to within the resolution of our method.

Instead of a kinematic description, sliding sphere swimmers may also be defined in terms of
a prescribed force. While we will not fully examine this question in this work, it is interesting to
consider how shear-thinning would affect such a swimmer. The above reasoning and methodology
can be used to provide insight into these effects. For example, during the effective stroke of a
Najafi-Golestanian swimmer, the swimming arm exerts a prescribed force on the fluid which is
independent of viscosity. By force balance, this propulsive force is equal to the drag force on the
payload. However, in shear-thinning fluid, the payload thins an envelope of surrounding fluid, which
decreases its drag coefficient, thereby increasing the swimming speed for a given drag force. Thus,
our results suggest that the instantaneous velocity of a prescribed force Najafi-Golestanian swimmer
may increase with shear-thinning: the opposite behavior to that of the prescribed kinematic swimmer.
More complex regulation of swimmer beating will be an interesting avenue of future research.

V. CONCLUSIONS

Shear-thinning is an important property of many biological fluids. In this paper, we found
that its effects upon microscopic swimmers are highly sensitive to the swimming stroke employed.
The collinear sliding sphere swimmer experiences decreases in instantaneous velocity during both
effective and recovery strokes, but increases in net progress; the opposite effect occurs for the
paddler. A slip-velocity squirmer was hindered by shear-thinning, and sperm-like swimmers were
aided by it. The magnitudes of these effects were small (of order 3%) for sliding sphere swimmers
and squirmers, but could be larger (of order 10%) for sperm-like swimmers.

The effects of shear-thinning on sliding sphere swimmers can be understood by considering the
viscosity differential, provided the spheres are sufficiently separated. Positive viscosity differential
entails thicker fluid around the propulsive spheres relative to the payload, increasing instantaneous
velocity and vice versa. When spheres are closer together, the envelope of thinned fluid surrounding
the swimmer hinders swimming, as with the squirmer. This envelope resulted in a smaller increase
in velocity during the effective stroke than during the recovery stroke of the paddler, reducing net
progress. The same effect induced a greater decrease in velocity during the recovery stroke of the
Najafi-Golestanian swimmer, increasing net progress.

The envelope of thinned fluid surrounding the squirmer was shown to reduce the swimmer’s
instantaneous velocity. This reduction was associated with enhanced flow decay within the thinned
envelope. However, the envelope approach of time-averaging the coordinated action of many cilia
into a surface slip velocity might neglect rheological interactions that occur on the scale of each
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cilium, and thus it may be desirable in the future to consider squirming models exhibiting small
surface deformations, or models incorporating discrete cilia.

Sperm-like swimmers induced a gradient of thick to thin fluid along their flagellum, which
was associated with both a flattening of the swimming trajectory and an increase in instantaneous
velocity. These effects were complementary, leading to significant increases in progress per beat.

Finally, we suggested two model reciprocal swimmers comprising sliding spheres which achieve
progression through Carreau fluid by manipulating the viscosity differential. This effect results from
speed asymmetry between the effective and recovery strokes. However, the net progress achieved
over a beat is slight; the net progress of the speed-asymmetric collinear pusher considered was
approximately 0.2% of the body frame beat amplitude, in contrast to 10% for the Najafi-Golestanian
swimmer.

The viscosity differential, rheologically enhanced flow decay and surface gradients of viscosity
provide insight into the effects of shear-thinning on microswimmers. While idealized, our models
show that shear-thinning has both significant and subtle effects on the trajectories and speeds of
migratory cells, emphasizing the need to take such properties into account when investigating the
physics of microswimming in complex fluids.
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APPENDIX: A VALIDATION OF THE METHOD OF FEMLETS

To validate the method of femlets, we will begin by comparing the flow arising from an isolated,
two-dimensional blob force in an enclosed circular domain of Newtonian fluid as calculated by:
(i) the method of femlets, (ii) the established method of regularized stokeslets.> For a cut-off
function of the form,

3e3

2w (x| 4 €2)3/2° (AD

gFx) =

the fluid flow field arising from a single regularized stokeslet g€(x — x; )f; located at x; is given by

L e(,/r%—}—ez—i—k)
u(x):—k In(/r24+e+¢€)—
4 k
(,/rk? +e2+e> NTE

1 ,/1‘,3—}—624-26

+ m[fk (X = xp)] (X — x¢) 5
(,/r,f + €2 +€) NTET

= SG(X, Xk) . fk, (A2)

for rp = |x — x;|. The outer boundary dD is given by r = 10, and a single regularized stokeslet is
placed at the origin. The flow field in domain D is then given by

u(x) = f SU(x, &(s)) - f(s)ds + S?(x, 0) - £y, (A3)
aD
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FIG. 27. (a) The speed of the flow arising from a regularized force of the form (A1), with € = 0.1, situated at the origin in a
no-slip circular cavity of radius 10 as calculated by the method of femlets and (b) the absolute difference between the flow
speed as calculated by the method of femlets and the method of regularized stokeslets.

for &£(s) a parameterization of the boundary in terms of arclength s. The outer boundary is discretized
by 60 equal length, constant force elements,”' which correspond to the edge elements of the finite
element mesh. Each element comprises 210 quadrature points, the force per unit length exerted by
each element on the fluid is constant, and the regularization of the boundary stokeslets €; = 0.001.
The outer boundary is given the no-slip velocity condition ugir = 0. A single regularized stokeslet
with €, = 0.1 is placed at the origin, where the velocity is specified to be u = (1, 0), giving a total
of 61 degrees of freedom.

Calculating the fluid flow in the domain with the method of regularized stokeslets is a two-
stage process. First, forces are calculated by specifying velocities for each element and the central
stokeslet and inverting a matrix system. Then, these forces are used to calculate the flow at each
point in the finite element mesh. In contrast, the method of femlets calculates the forces and flow
simultaneously, and thus entails 7042 degrees of freedom for this example. Here, we implement the
method of femlets with the same regularized stokeslet cut-off function (A1), and Dirichlet conditions
are specified on the outer boundary.

Figure 27(a) shows the speed of the flow driven by the immersed force over the whole domain
as calculated by the method of femlets, while Figure 27(b) shows the absolute difference between
the femlet and regularized stokeslet calculations of the speed as evaluated at the finite element mesh
points. The difference is O(10~*), which is within acceptable accuracy. Hence, we conclude that the
method of femlets satisfactorily calculates the forces required to drive a specified flow.

We also wish to check that as the regularization of femlets is decreased, the femlet solution
converges to that of an equivalent moving boundary. For the two-dimensional treadmilling squirmer
of radius r = L/2 with slip velocity uy = Asin6 on r = L/2, in infinite fluid, the swimming velocity is
given by U = A/2.°? While the finite element method is only applicable for finite domains, by taking

TABLE V. The velocity of the treadmilling squirmer as calculated with the method of femlets as a function of the regularization
parameters o, o, showing that the error associated in approximating a moving Dirichlet boundary by femlets decreases as
approximately O(ay).

Squirmer speed

# femlets Oy oy Velocity Rel. error err/oy
100 0.0222 0.0111 0.25897 0.0359 3.23
100 0.0222 0.00555 0.25462 0.0185 3.33
100 0.0222 0.00278 0.25246 0.00984 3.54
50 0.0444 0.0111 0.26067 0.0427 3.85
200 0.0111 0.00555 0.25421 0.0168 3.03

400 0.00555 0.00278 0.25192 0.00768 2.76
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FIG. 28. Relative error in the calculated speed of the flow induced by the treadmilling squirmer in Newtonian fluid, compared
with the analytical solution of Blake? for an infinite fluid. The maximum relative error close to the squirmer is 1.2%, and is
approximately 0.2% throughout the majority of the domain.

a large enough open channel we may closely approximate a free swimmer in an infinite domain. For
a channel of length 20 L and height 10 L, the treadmilling squirmer is modeled by femlets with a
Gaussian cut-off function, and the regularization parameters o, o, varied.

The calculated swimming velocity in Newtonian fluid is given as a function of the regularizing
parameters o, o, in Table V. These results show that the difference associated with approximating
a moving boundary by femlets decreases linearly with both o and o,

The velocity field driven by the treadmilling squirmer in infinite fluid is given in cylindrical
polar coordinates by>>

1 (L/2)
u,(r,0) :EA( r/z)

cos 8, (Ada)

RN
ug(r, 6) _EA 3 sinf6. (A4b)

r

The relative error in the numerically calculated flow speed for o, = 0.0222, o, = 0.00278 is
shown in Figure 28. The error is approximately O(o,), and is largest in the near field where the
approximation of the boundary as an immersed regularized force driving the flow is most apparent.
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