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Abstract

How can sparse graph theory be extended to large networks, where
algorithms whose running time is estimated using the number of ver-
tices are not good enough? I address this question by introducing
‘Local Separators’ of graphs. Applications include:

1. A unique decomposition theorem for graphs along their local 2-
separators analogous to the 2-separator theorem;

2. an exact characterisation of graphs with no bounded subdivision
of a wheel [9].

1 Introduction

One of the big challenges in Graph Theory today is to develop methods and
algorithms to study sparse large networks; that is, graphs where the number
of edges is about linear in the number of vertices, and the number of vertices
is so large that algorithms whose running time is estimated in terms of the
vertex number are not good enough. Important contributions that provide
partial results towards this big aim include the following.

1. Benjamini-Schramm limits of graphs. Benjamini and Schramm
introduced a notion of convergence of sequences of graphs that is based
on neighbourhoods of vertices of bounded radius in [6]. Applications
of these methods include: testing for minor closed properties [7] by
Benjamini, Schramm and Shapira or the proof of recurrence of planar
graph limits by Gurel-Gurevich and Nachmias [21].

2. From Graphons to Graphexes. Graphons have turned out to be a
useful tool to study dense large networks [27, 28]. Motivated by these
successes, analogues for sparse graph limits are proposed in [8, 12, 25].

1



3. Graph Clustering. The spectrum of the adjacency matrix of a graph
can be used to identify large clusters, see the surveys [38] or [35].

4. Nowhere dense classes of graphs. In their book [29], Nešetřil and
Ossana de Mendez systematically study a whole zoo of classes of sparse
graphs and the relation between these classes.

5. Refining tree-decompositions techniques. Empirical results by
Adcock, Sullivan and Mahoney suggest that some large networks do
have tree-like structure [1]. In [2], these authors say that: ‘Clearly,
there is a need to develop Tree-Decompositions heuristics that are
better-suited for the properties of realistic informatics graphs’. And
they set the challenge to develop methods that combine the local and
global structure of graphs using tree-decompositions methods.

Much of sparse graph theory – in particular of graph minor theory – is
built upon the notion of a separator, which allows to cut graphs into smaller
pieces, solve the relevant problems there and then stick together these partial
solutions to global solutions. These methods include: tree-decompositions
[32], the 2-separator theorem and the block-cutvertex theorem, Seymour’s
decomposition theorem for regular matroids [37], as well as clique sums and
rank width decompositions [30]. Understanding the relevant decomposition
methods properly is fundamental to recent breakthroughs such as the Graph
Minor Theorem [33] or the Strong Perfect Graph Theorem [34]. As whether
a given vertex set is separating depends on each vertex individually. So in
the context of large networks it is unfeasible to test whether a set of vertices
is separating. We believe that in order to extend such methods from sparse
graphs to large networks, it is key to answer the following question. What
are local separators of large networks?

Here, we answer this question. Indeed, we provide an example demon-
strating that the naive definition of local separators misses key properties
of separators. Then we introduce local separators of graphs that lack this
defect. Our new methods have the following applications.

A) A unique decomposition theorem for graphs along their local 2-separators
analogous to the 2-separator theorem;

B) an exact characterisation of graphs with no bounded subdivision of a
wheel. This connects to direction (4) outlined above [9];

C) (work in progress) an analogue of the tangle-tree theorem of Robertson
and Seymour, where the decomposition-tree is replaced by a general
graph. This connects to direction (5).
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Figure 1: The graph C6 �K1.

Example 1.1. What is the structure of the graph in Figure 1? According to
the 2-separator theorem, this graph is 3-connected and hence a basic graph
that cannot be decomposed further. In this paper, however, we consider
finer decompositions and according to our main theorem, the structure of
this graph is: a family of complete graphs K4 glued together in a cyclic way.

Our results. The 2-separator theorem1 (in the strong form of Cunning-
ham and Edmonds [13]) says that every 2-connected graph has a unique min-
imal tree-decomposition of adhesion two all of whose torsos are 3-connected
or cycles. We work with the natural extension of ‘tree-decompositions’ where
the decomposition-tree is replaced by an arbitrary graph. We refer to them
as ‘graph-decompositions’.

Addressing the challenge set by Adcock, Sullivan and Mahoney, our main
result is the following local strengthening of the 2-separator theorem.

Theorem 1.2. For every r ∈ N∪{∞}, every connected r-locally 2-connected
graph G has a graph-decomposition of adhesion two and locality r such that
all its torsos are r-locally 3-connected or cycles of length at most r.

Moreover, the separators of this graph-decomposition are the r-local 2-
separators of G that do not cross any other r-local 2-separator.

A key step in the proof of Theorem 1.2 is the following result, which
seems to be of independent interest. This can be seen as a local analogue
of the fact that any 2-connected graph that is not 3-connected in which any
2-separator is crossed is a cycle.

1See [13, Section 4] for an overview of the history of the 2-separator theorem, see also
[37]. An alternative formulation of this theorem in terms of ‘2-sums’ is given in Section 2.
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Theorem 1.3. Let r ∈ N ∪ {∞} and let G be a connected graph that is r-
locally 2-connected. Assume that every r-local 2-separator of G is crossed by
an r-local 2-separator. Then G is r-locally 3-connected or a cycle of length
at most r.

Beyond applications (A) to (C) mentioned above, this research includes
the following applications.

D) An algorithmic advantage of our main theorem is that the parallel run-
ning time of the corresponding algorithm does not depend on the number
of vertices of the graph but just on the local structure2; and we expect
that our novel tool will be useful to study large networks. Indeed, a
consequence of Theorem 1.2 is that one can pick the local 2-separators
greedily, and all maximal graph-decompositions constructed in that way
are essentially the same; in the sense that they contain the minimal
graph-decomposition and additionally only have a few insignificant lo-
cal 2-separators within cycles of length at most r.

E) Covers are important tools in Topology [24] and Group Theory [36, 3].
For covers of graphs, we refer the reader to the book [20] or the recent
survey [26]. Recent work includes [4], [5], [15] and [17]. The universal
cover of a connected graph G is always a tree and covers G. The r-local
cover, which is obtained by relaxing all cycles not generated by cycles
of length at most r, is covered by the universal cover but covers G. Our
r-local 2-separator theorem lifts to the r-local cover of G, characterising
the torsos of the 2-separator theorem of the cover as being the torsos of
the r-local 2-separator theorem of G.

F) Local tree-decompositions are considered in [18] and [16]. Here (and
in the follow-up work [11] for arbitrary local separators), we offer tools
to unify such collections of local tree-decompositions to a single graph-
decomposition displaying the global structure of the graph.

G) Tree-decompositions have been used to study Cayley graphs of groups
and other highly symmetric objects [22, 23]. However, these tools were
most helpful for infinite groups as finite groups do not look like trees
(roughly speaking). The graph-decompositions we construct here are
invariant under the group of automorphisms and we expect that they

2Indeed, we prove that for any pair of crossing local 2-separators there must be a cycle
of length at most r through their vertices.
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can be used as a combinatorial tool to study geometric properties of
finite groups.

The remainder of this paper is structured as follows. In Section 2 we
give an alternative formulation of Theorem 1.2, and start explaining basic
concepts, which we continue in Section 3.

We invite all readers to look at Section 4 just after Section 3. Indeed, in
there we prove a local strengthening of the block-cutvertex theorem. This
is a straightforward exercise, and it is not used in the rest of the paper.
However, we believe it helps to digest the rest of the paper.

In Section 5, we prove an interesting special case of our main result
(the parts of the proof that are not needed in our proof of Theorem 1.2 are
put into the extended online version [10]). Before proving Theorem 1.3 in
Section 7, we do some preparation in Section 6.

In Section 8, we prove Theorem 8.12, which implies Theorem 2.1, a vari-
ant of Theorem 1.2. Graph-decompositions are introduced in Section 9, and
we conclude this section by deducing Theorem 1.2 from Theorem 8.12. Fi-
nally, in Section 10 we discuss directions for further research. To make it
easier for the reader to navigate through this paper, we added important
definitions of this paper to the ‘table of content’, allowing readers to hyper-
link to them in the pdf via the table of contents. Throughout the paper we
fix a parameter r ∈ N ∪ {∞}.

2 Constructive perspective

In this section we give an alternative formulation for Theorem 1.2 and define
some basic notions for this paper.

The 2-separator theorem can be stated in the decomposition version (as
we did in the Introduction) as well as as the ‘constructive version’. For
technical reasons we find it easier to work with the constructive version in
the proofs and we will deduce the decomposition version in Section 9. We
start by explaining the constructive version in this section.

We recall the classical 2-separator theorem in the constructive version in
full detail. This theorem has two aspects, the existential statement (which is
the easy bit), and the uniqueness statement. The existential statement says
that every 2-connected graph G can be constructed from 3-connected graphs
and cycles via 2-sums [[31],§83]. Clearly, 2-sums commute. Hence this sum
is uniquely determined by the set of those summands that are basic; that is,
they do not arise as a 2-sum of other summands. We refer to the set of basic
summands as a decomposition for G. We say that one decomposition for G
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is coarser (or smarter) than another if it has the same set of 3-connected
graphs and its cycles can be build from cycles of the other decomposition
(via the implicitly defined 2-sums). The uniqueness statement says that
there is a decomposition for G with the universal property that it is coarser
than any other decomposition for G.

In analogy to 2-sums, we introduce the notion of r-local 2-sum. This
notion includes the usual 2-sums operation but additionally one is allowed
to glue along edges of the same graph – as long as they have distance at
least r (roughly speaking). We also introduce local 1-separators and local
2-separators and essentially3 define that a graph is locally 2-connected if it
has no local 1-separator; and ‘locally 3-connected’ is defined analogously. All
these terms carry the parameter ‘r’ that measures how local this is (when the
precise value of the parameter is not clear from the context, we shall write
‘r-local’ in place of just ‘local’). The constructive version of Theorem 1.2 is
the following.

Theorem 2.1. Every r-locally 2-connected graph can be constructed via r-
local 2-sums from r-locally 3-connected graphs and cycles of length ≤ r.

There is such an r-local decomposition with the universal property that
it is coarser than any other r-local decomposition for G.

Remark 2.2. As for the classical 2-separator theorem, our local 2-separator
theorem has two parts; the first sentence gives the existential statement and
the second is the uniqueness statement. The uniqueness statement is more
difficult to prove.

We continue by defining some of the basic notions for this paper rigor-
ously. How do we define local cutvertices? Roughly, a vertex should be a
local cutvertex if the ball around it gets disconnected after its removal. But
which definition of ball do we take? Do we take the definition where we allow
edges in the ball joining two vertices of maximum distance or not? Answer:
we take both definitions, as formalised in Definition 2.3. Informally, the ball
around a vertex consists of all edges and vertices on closed walks of bounded
length starting at that vertex.

Definition 2.3. Given a graph G with a vertex v and an integer s, the ball
of radius s around the vertex v is the induced subgraph of G, whose vertices
are those of distance at most s from v and without all edges joining two
vertices of distance precisely s. Similarly, given a half-integer s+ 1

2 , the ball

3See Section 3 below for the complete definition.
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of radius s + 1
2 around the vertex v is the induced subgraph of G, whose

vertices are those of distance at most s from v. We denote the ball of radius
s around v by Bs(v). Below we will often consider the graph Bs(v)− v, to
which we refer as a punctured ball. Given a parameter r ∈ N∪{∞}, a vertex
v is an r-local cutvertex of G if it separates the ball of radius r/2 around v;
formally: Br/2(v)− v is disconnected.

Lemma 2.4. Given a parameter r ∈ N and a graph, all cycles of the sub-
graph Br/2(v) are generated by the cycles of length at most r.

Proof. Construct a spanning tree of Br/2(v) rooted at v so that a vertex
with distance d ≤ r/2 in G from v has distance d in the spanning tree; this
can easily be done by induction building the spanning tree layer by layer.
Every fundamental cycle of this spanning tree has length at most r (if r is
even, note that there is no edge between two vertices of distance r/2 from
v. And if r is odd note that there are no vertices of distance exactly r/2
from v). As every cycle is generated by the fundamental cycles, the cycles
of length at most r generate.

Remark 2.5. The bound r in Lemma 2.4 is sharp as can be seen by con-
sidering graphs G that are equal to cycles of length r.

Informally speaking, the ‘2-sums operation’ on graphs can be seen as
the inverse operation of cutting along 2-separators and taking torsos. In
the following we will introduce a local version of the ‘2-sums operation’ on
graphs.

Definition 2.6 (Local 2-sum). Given a family of weighted graphs (Gi|i ∈
[n]) and a set of weighted directed edges ei of Gi, the local 2-sum of this
family is the graph obtained from the disjoint union of the set of graphs
{Gi|i ∈ [n]} by identifying the start-vertices of the edges ei, and the terminal
vertices of the edges ei, and then deleting all edges ei. For this local 2-sum
to be valid, it must further satisfy the following condition for each i ∈ [n].
For each i ∈ [n], we denote by γi the length of the shortest path between
the endvertices of the edge ei in the graph Gi − ei. By δi we denote the
minimum of the values γj for j 6= i. We now further require that the length
of the edge ei is equal to δi.

Remark 2.7. We stress that the graphs Gi just form a family, so some of
them may coincide, but the edges ei form a set, so they must all be distinct.
In the disjoint union of the set of graphs Gi we only have one copy for every
graph, no matter how often it appears in the family.
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Often, we will not explicitly specify a direction of the edges ei but assume
it is given implicitly by the context or just take an arbitrary choice.

We say that a local 2-sum is r-local if any pair consisting of two starting-
vertices or two terminal vertices, respectively, of edges ei and ej that live in
the same host graph Gi = Gj have distance at least r + 1.

Remark 2.8. While in this section we have been working with graphs whose
edges are assigned positive integer lengths bounded by r, in the rest of the
paper all graphs have no weights on their edges. This is essentially the same;
indeed, to get from such a weighted graph to a genuine graph just replace
each weighted edge by a path of the same length.

3 Explorer neighbourhood

In this section we define local 2-separators and explain the motivation behind
our definition.

The notion of local 1-separators has been explained above. But how
should one define local 2-separators? The first thing is that perhaps one
only might want to consider pairs of vertices as local 2-separators if they
have bounded distance between them. Indeed, otherwise if they were sep-
arating we would rather like to think about them as each being a local
1-separator. Okay, so we have a pair (v, w) of vertices of bounded distance
that separates their neighbourhood. But how do we define their neighbour-
hood precisely? Something that looks almost right is just picking one of
the vertices arbitrarily and taking a ball around them. More precisely, one
could require that Br/2(v) − v − w is disconnected for some parameter r.
However, it could be that when we swap v and w then it switches from
disconnected to connected. So perhaps the next attempt would be to take
(Br/2(v) ∪ Br/2(w))− v − w; just to make it symmetric in v and w. Below
we will refer to this long expression as the punctured double-ball.

The disadvantages of this definition, although almost correct, are more
subtle. The main reason is perhaps that with that definition our proofs do
not seem to work, as important structural properties are simply not true.
Indeed, with this definition Lemma 6.10 (Corner Lemma) does not work.
This lemma is a natural generalisation of a lemma for usual separators,
and we believe that any natural notion of local separators should have this
property. The reason why that lemma is not true in this case is that the
double-ball Br/2(v) ∪ Br/2(w) may contain cycles that are composed of a
path from the ball Br/2(v) and from Br/2(w) but are not a cycle of either
of these two balls, see Figure 2.
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x
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Figure 2: The balls Br/2(v) and Br/2(w) are marked by grey stripes, in
rising and falling patters, respectively. Two paths between the vertices x
and y, one from either ball, form a cycle that is contained in neither ball.

Informally speaking, the definition we take is similar to the double ball
Br/2(v) ∪ Br/2(w) and actually agrees with it up to distance r − d, where
d is the distance between the vertices v and w – but towards the boundary
it ‘gets more fuzzy’. We will call our notion of neighbourhood ‘explorer-
neighbourhood’ and think about it as follows: imagine two explorers discov-
ering the graph starting from the vertices v and w respectively, with the goal
of separately discovering the graph and at the end combining their maps of
the balls Br/2(v) and Br/2(w) into a single map. First they discover all
shortest paths between the vertices v and w together and put them on the
common map. We refer to the set of vertices on these paths as the core.
Then they return to their respective starting vertices and start exploring the
graph from there up to distance r/2. On their map they mark each vertex
by the set of shortest paths to that vertex from the core (within their re-
spective balls). There may be vertices with distance r/2 from the core that
have distance at most r/2 to the vertex v but a larger distance to the vertex
w. Such vertices are only discovered by the explorer based at v. There may
also be vertices u discovered by both explorers. However they might not
discover a common shortest path to that vertex. In this case there will be
two copies of that vertex in the explorer-neighbourhood, while there is only
one copy in the double ball Br/2(v) ∪Br/2(w).

Definition 3.1 (Explorer-neighbourhood). Now we give a formal definition
of the explorer-neighbourhood of parameter r in a graph G with explorers
based at the vertices v and w with distance4 at most r

2 . The core is the set

4In this paper the explorer-neighbourhood of vertices v and w of distance more than
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of all vertices on shortest paths between the vertices v and w. We take a
copy of the ball Br/2(v) where we label a vertex u with the set of shortest
paths from the core to u contained in the ball Br/2(v). Similarly, we take a
copy of the ball Br/2(w) where we label a vertex u with the set of shortest
paths from the core to u contained in the ball Br/2(w). Now we take the
union of these two labelled balls – with the convention that two vertices
are identified if they have a common label in their sets; that is, there is
a shortest path from the core to that vertex discovered by both explorers.
(Note that the same vertex x of G could be in both balls but the label sets
could be disjoint, see Figure 3. In this case there would be two copies of
that vertex in the union. In such a case the union would not be a subgraph
of the original graph). We denote the explorer neighbourhood by Exr(v, w).
This completes the definition of explorer neighbourhood.

v w v w

x x1

x2

Figure 3: On the right we depicted the explorer-neighbourhood Exr(v, w)
of the graph on the left. The value for r/2 is seven. Here the grey paths
all have length equal to (r/2) − 2. The core is just the path of length four
between v and w. The cycle of length r is still a cycle in Exr(v, w) since as a
cycle it is included in both Br/2(v) and Br/2(w), see Lemma 3.4 for details.
The cycle of length r + 2 is not contained in one of the balls Br/2(v) or
Br/2(w) and hence some of its vertices get two copies in Exr(v, w). Indeed,
the vertex x has distance at most r from both vertices v and w. Still it has
the two copies x1 and x2 in the explorer-neighbourhood.

Lemma 3.2. Given two vertices a1 and a2 of distance at most r/2, all
vertices on shortest paths between a1 and a2 and edges incident with such
vertices have unique copies in Exr(a1, a2).

In particular, edges incident with vertices of the core have unique copies
in Exr(a1, a2).
r
2

is undefined; and hence throughout the paper in statements where the explorer-
neighbourhood is mentioned we have implicitly the assumption that the involved vertices
have distance at most r

2
.
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Proof. By definition vertices on shortest paths between a1 and a2 have
unique copies in Exr(a1, a2). Let e be an edge one of whose endvertices
is in the core. If both endvertices of e are in the core, e has a unique copy.
Otherwise, the edge e is a shortest path from the core to the other endver-
tex. Clearly, the edge e is in one of the balls Br/2(a1) or Br/2(a2). If it is in
both balls, then the two copies of its endvertex must agree as they are both
labelled with the edge e.

The ‘In particular’-part follows immediately.

Example 3.3. Lemma 3.2 implies that neighbours of vertices in the core
have unique copies ‘most of the time’. Here we give an example of a graph
where neighbours of vertices in the core do not have unique copies. Let C
be a cycle of length r+ 1, where r is an even number. Let a1 and a2 be two
vertices on C of distance r

2 . Then the neighbours of ai with distance r
2 to

ai+1 do not have unique copies in Exr(a1, a2); indeed, Exr(a1, a2) is a path
of length 3r

2 .

Lemma 3.4. Let o be a cycle (or more generally a closed walk) of length
at most r containing vertices a1 and a2. Vertices of o have unique copies in
Exr(a1, a2).

Proof. Let o be a closed walk as in the statement of the lemma, and let x
be an arbitrary vertex on o. Let S be a shortest path from x to the core
in the underlying graph (not just some subballs). We will show that S is
completely included in both balls Br/2(a1) and Br/2(a2). By symmetry, it
suffices to show that S is completely included in Br/2(a1).

For any pair of vertices of the set {a1, a2, x}, pick a shortest path between
these vertices. Let o′ be the closed walk obtained by concatenating these
three paths. Let y be the endvertex of the path S on the core. We can pick,
and we do pick, the shortest path between a1 and a2 so that it contains the
vertex y. Hence the vertex y is on the closed walk o′. As the closed walk
o also contains the vertices a1, a2 and x, its length is at least that of the
closed walk o′; that is, the closed walk o′ has length at most r.

Let o′′ be the closed walk obtained by concatenating a shortest path
from a1 to x, the path S and a shortest path from the vertex y to a1. Such
a closed walk o′′ can be obtained from the closed walk o′ by replacing a
subwalk from x via a2 to y by the path S. As S is a shortest path between
its endvertices, the length of o′′ is at most that of o′; and thus at most r.
Hence the closed walk o′′ is completely contained within the ball Br/2(a1)
around a1. Thus the shortest path S is contained in that ball. As S was
chosen arbitrarily, every shortest path from x to the core is included in the
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ball Br/2(a1). By symmetry, the same is true for ‘a2’ in place of ‘a1’. Thus
x has a unique copy in the explorer-neighbourhood Exr(a1, a2).

The balls Br/2(v) and Br/2(w) are embedded within the explorer neigh-
bourhood by construction. We refer to these embedded balls as ι(Br/2(v))′

and ι(Br/2(w))′, or simply Br/2(v)′ and Br/2(w)′ if the embedding map ι is
clear from the context.

Remark 3.5. Every cycle of Exr(a1, a2) of length at most r containing one
of the vertices a1 or a2, say a1, is a cycle of G. Indeed, it is contained in the
ball of radius r/2 around a1 and as such a cycle of G. This can be seen as a
converse of Lemma 3.4, and we shall use this observation in various places
throughout the paper.

Lemma 3.6. Every cycle o of the explorer neighbourhood Exr(v, w) is gen-
erated from the cycles of the embedded balls Br/2(v)′ and Br/2(w)′.

Proof. Each vertex of the cycle o is a vertex of Br/2(v)′ or Br/2(w)′. We
mark it with the respective vertex v or w; and if it is in both, we mark
it with both vertices v and w. For each vertex x on the cycle o marked
by a vertex y ∈ {v, w}, we pick a shortest path from x to the core within
the ball Br/2(y)′. If a vertex is marked with v and w by the definition of
explorer-neighbourhood, then we can assume, and we do assume, that we
picked the same path for y = v and y = w.

Now for each edge e ∈ o we construct a closed walk oe as follows. Start
with e and the two paths chosen at either endvertex of e, then join their
endvertices in the core by a path within the core (which is connected by
construction). Since for each edge e of o, there is a mark y ∈ {v, w} that
is present at both endvertices of edge e, the closed walk oe is contained in
Br/2(v)′ or Br/2(w)′.

Our aim is to generate the cycle o from cycles of Br/2(v)′ and Br/2(w)′.
For that we first add to o the sum of all the cycles oe ranging over all e ∈ o
(taken over the binary field F2). This sum takes only non-zero entries at
edges of the core. As the core is a subset of Br/2(v)′∩Br/2(w)′, the remainder
is generated from the common cycles of Br/2(v)′ and Br/2(w)′.

Definition 3.7 (Local separators). Given a graph G with distinct vertices
v and w, we say that the set {v, w} is an r-local 2-separator if the punctured
explorer-neighbourhood Exr(v, w)− v − w is disconnected, and the vertices
v and w have distance at most r/2 in the graph G.

12



A connected graph is r-locally 2-connected if it does not have an r-local
cutvertex and it has a cycle of length at most r. So there are no r-locally
2-connected graphs for r < 3. A graph is r-locally 2-connected if all its
components are r-locally 2-connected.

A connected r-locally 2-connected graph is r-locally 3-connected if it does
not have an r-local 2-separator and it has at least four vertices. A graph is
r-locally 3-connected if all its components are r-locally 3-connected.

Example 3.8. A cycle of length r+1 is not r-locally 2-connected. Moreover
if it has more than three edges, any of its vertices together with any of its
neighbours forms an r-local 2-separator.

Cycles of lengths at most r are r-locally 2-connected and not r-locally
3-connected if they have at least four edges.

Lemma 3.9. An r-locally 3-connected graph G is r-locally 2-connected.

Proof. Assume that the graph G is connected, has at least four vertices and
contains a cycle. We are to show that if G has an r-local cutvertex, then
G has an r-local 2-separator. So let x be an r-local cutvertex. If x is not
contained in any cycle, x is a genuine cutvertex of the graph G. As the
graph G is not a star by assumption, the vertex x has a neighbour so that
x together with that neighbour is a 2-separator of G. So G has an r-local
2-separator.

So we may assume that x is contained in a cycle o. Let y be a neighbour
of the vertex x on the cycle o. We claim that {x, y} is an r-local 2-separator.
Let C be a component of the punctured ball B r

2
(x)−x that does not contain

the vertex y. Let W be the set of edges incident with the vertex x and the
other endvertex in the component C. Let z be a neighbour of x in C.

Suppose for a contradiction that the punctured explorer-neighbourhood
Exr(x, y)−x−y is connected. Then in particular, Exr(x, y)−x is connected.
So there is a path P in there from y to z. Then P + xz is a cycle traversing
the edge set W precisely once. By Lemma 2.4 and Lemma 3.6 P + xz is
generated by cycles of length at most r over F2; hence one of these cycles
intersects the edge set W oddly. In particular, this cycle contains the vertex
x, so it is a cycle of the ball B r

2
(x). So we found a cycle of B r

2
(x) that

intersects the cut W oddly. This is a contradiction. Hence Exr(x, y)−x− y
is disconnected; and so {x, y} is an r-local 2-separator.

In a sense the next lemma says that local 2-components sitting at a
local 2-separator are local (in that they contain a short path between the
neighbours of the two separating vertices).
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Lemma 3.10 (Local 2-Connectivity Lemma). Let {v, w} be an r-local 2-
separator in an r-locally 2-connected graph G. For every connected compo-
nent k of the punctured explorer-neighbourhood Exr(v, w)− v−w, there is a
cycle o′ of length at most r containing the vertices v and w, and o′ contains
a vertex of the component k and o′ contains an edge incident with v whose
other endvertex is a vertex not in k.

Proof. Let k = k1 be an arbitrary component of the punctured explorer-
neighbourhood Exr(v, w) − v − w, and let k2 be the union of all other
components of the punctured explorer-neighbourhood Exr(v, w) − v − w,
which is nonempty as {v, w} is a local 2-separator. If one component of
Exr(v, w)−v−w had only one of the vertices v and w in its neighbourhood,
then that vertex would be a local cutvertex. However, this is not possi-
ble as G is r-locally 2-connected by assumption. Hence all components of
Exr(v, w) − v − w have both vertices v and w in their neighbourhood. In
particular, the vertex v is adjacent to vertices of k1 and k2.

Let xi be an arbitrary neighbour of the vertex v in ki (for i = 1, 2).
As the graph G is r-locally 2-connected, the vertex v is not a cutvertex of
the ball Br/2(v). So there is a path P included in that ball from x1 to x2
avoiding v. Let o be the cycle obtained from P by adding the vertex v. By
Lemma 2.4, the cycle o is generated from cycles of the ball Br/2(v) of length
at most r. Consider the set C of these cycles that contain the vertex v. As
o has precisely one edge to k1 incident with v, there must be a cycle o′ in C
that contains an odd number of edges to k1 incident with v. As the cycle o′

has maximum degree two, it contains precisely one edge to k1 incident with
v. The other edge of o′ incident with v has its other endvertex in k2 + w.
This completes the proof.

Remark 3.11. The bound r for the cycle o′ in Lemma 3.10 (Local 2-
Connectivity Lemma) is best possible as can be seen by considering graphs
that are a single cycle of length r. The cycle o′ in Lemma 3.10 is not only
a cycle in Exr(v, w) but also in G by Remark 3.5.

Remark 3.12. The cycle o′ of Lemma 3.10 (Local 2-Connectivity Lemma)
contains an edge incident with v whose other endvertex is not in k; that
is, this other endvertex is equal to the vertex w or else in a component of
Exr(v, w)− v − w different from k.

Remark 3.13. The notion of the explorer-neighbourhood is crucial in the
proof of Lemma 6.15 (Projection Lemma) and Lemma 6.10 (Corner Lemma)
below. This is explained in detail in Remark 6.21 and Remark 6.7 below.
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Remark 3.14. Above we said the explorer-neighbourhood and the double-
ball ‘almost lead’ to the same notion of local 2-separator. This can be quan-
tified as follows. If the punctured explorer-neighbourhood is connected, then
so is the punctured double ball. If the punctured double ball of radius r/2
around two vertices of distance at most d is connected, then the punctured
explorer-neighbourhood of radius (r/2) + d is connected.

4 Intermezzo: Block-Cutvertex Graphs

The results of this section are not applied in the rest of the paper but they
can be seen as a toy case for the main result. In this section we prove a
generalisation of the block-cutvertex theorem allowing for r-local cutvertices,
which generalise cutvertices (indeed, the r-local cutvertices for r = ∞ are
precisely the cutvertices). See Section 2for a defintion of r-local cutvertices
and Section 9 for a definition of graph-decompositions.

It seems to us that the most natural generalisation of the block-cutvertex
theorem to this context is the following.

Theorem 4.1. Given r ∈ N ∪ {∞}, every connected graph has a graph-
decomposition of adhesion one and locality r such that all its bags are r-
locally 2-connected or single edges.

Remark 4.2. The strengthening of Theorem 4.1 with ‘bags are r-locally
2-connected’ replaced by ‘bags are r-locally 2-connected subgraphs’ is not
true. An example is given in Figure 8.

As a preparation for the proof of Theorem 4.1, we investigate the oper-
ation of locally cutting vertices, defined as follows.

Given a parameter r ≥ 1 and a graph G with a vertex v, the graph
obtained from G by r-locally cutting the vertex v is defined as follows. Let
X be the set of connected components of the ball of radius r around v with
v removed; formally X is the set of components of the graph Br/2(v) − v.
Define a new graph from G by replacing the vertex v by one new vertex for
each element of the set X, where the vertex labelled with x ∈ X inherits the
incidences with those edges incident with v that are incident with a vertex
of the connected component X. We refer to the new vertices as the slices of
v. This completes the construction of the r-local cutting of G.

Observation 4.3. Let G′ be obtained from G by r-locally cutting a vertex
v into a set X of new vertices. Then in the graph G′, no vertex x ∈ X is
an r-local cutvertex.
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The next lemma says that r-local cuttings commute.

Lemma 4.4. Given a graph G with vertices v and w, first r-locally cutting
v and then w results in the same graph as first locally cutting w and then v.

Proof. Consider the graphG′ obtained fromG by r-locally cutting the vertex
v. We denote the ball of radius r/2 around the vertex w in the graph G by
Br/2(w), and by B′

r/2(w) we denote the ball of radius r/2 around the vertex

w in the graph G′.
In the graphs G and G′, the vertex w has the same neighbours. Indeed,

if v and w are not adjacent, this is immediate. Otherwise w is adjacent with
a unique slice of v in G′, and in the following we will suppress a bijection
between the vertex v and this particular slice of v – in order to simplify
notation. With this notation at hand, we next prove the following.

Sublemma 4.5. Two neighbours x and y of w are in the same connected
component of Br/2(w) − w if and only if they are in the same connected
component of B′

r/2(w)− w.

Proof. If x and y are in the same connected component of B′
r/2(w)−w, they

are joined by a path in that graph and this path is also is a path (or a walk)
in the graph Br/2(w)− w.

Hence conversely assume that x and y are vertices of the same connected
component of the ball Br/2(w) − w. Let P be a path between these two
vertices in the graph Br/2(w) − w. Then this path P together with the
vertex w forms a cycle, which we denote by o. By Lemma 2.4, the cycle o
is generated by cycles of length at most r in the graph Br/2(w)− w.

If one of these cycles does not include the vertex v, then it is also a cycle
in the graph B′

r/2(w). Otherwise, such a cycle is also a cycle completely

contained with in the ball Br/2(v) around v in G. In particular this cycle
witnesses that the two neighbours on that cycle adjacent to v are in the
same connected component of Br/2(v) − v. Thus these two neighbours are
neighbours of the same slice of the vertex v in G′. Hence this cycle is also a
cycle in G′ and hence in the ball B′

r/2(w). To summarise, all those cycles of

length at most r that generate o are cycles in B′
r/2(w). In the ball B′

r/2(w)

they generate (the edge set of) o. So o is an eulerian subgraph in B′
r/2(w),

and so a cycle as it cannot have a vertex of degree strictly more than two and
it is connected. In particular the vertices x and y are in the same connected
component of the punctured ball B′

r/2(w)− w.

It is a direct consequence of Sublemma 4.5 that cutting locally commutes.
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Lemma 4.6. Let G be a connected graph. Let G′ be obtained from G by
r-locally cutting all r-local cutvertices of G. Then G′ is r-locally 2-connected.

Proof. First we remark that the graph G′ is well-defined by Lemma 4.4.
Let v1, v2, ..., vn be an enumeration of the vertices of G. Here we stress
that we include vertices in this enumeration that are not r-local cutvertices;
and cutting them does not change the graph at all. We may assume by
Lemma 4.4 that we obtain G′ from G by first cutting v1, then v2, etc., so
that in the final step we cut the vertex vn. By Observation 4.3, all slices
of the vertex vn are not r-local cutvertices. As cutting locally commutes by
Lemma 4.4, we can argue the same for any other ordering of the vertices of
G. Hence no vertex of the graph G′ is an r-local cutvertex.

Proof of Theorem 4.1. Let r ∈ N ∪ {∞} be a parameter. Let G be a con-
nected graph. We construct the graph H from G by r-locally cutting all
r-local cutvertices of G. By Lemma 4.4 this is well-defined, and the graph
H is r-locally 2-connected by Lemma 4.6.

Let S be the set of r-local cutvertices of G. Let B be the set of connected
components of the graph H. We define a bipartite graph with bipartition
(B,S), where we add one edge between an r-local cutvertex s of G to a
connected component k of the graph H for every slice of s that is contained
in k. The map associated to that edge map the singleton subgraph s to
its corresponding slice. We set Gs = s and Gb = b for s ∈ S or b ∈ B,
respectively.

This defines a graph-decomposition of adhesion one and locality r all of
whose bags are r-locally 2-connected; compare Section 9 for definitions.
It is straightforward to check that the underlying graph of that graph-
decomposition is the graph G.

5 The existential statement of the local 2-separator
theorem

In this section, we prove the lemmas necessary to deduce the existential
statement of the local 2-separator theorem; that is, the first sentence of
Theorem 2.1.

Definition 5.1 (Local cutting). Given a graphG with an r-local 2-separator
{v0, v1}, the graph obtained from G by r-locally cutting {v0, v1} is defined
as follows. Let X be the set of connected components of the punctured
explorer-neighbourhood Exr(v0, v1)− v0 − v1. We now replace in the graph
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G the vertices v0 and v1 each by one copy for every element of X. Here
a copy of vi labelled by some x ∈ X inherits an edge from vi if the other
endvertex of that edge is a vertex of the component x. We refer to the
newly added vertices as the slices of the vertices v1 or v2, respectively. We
additionally add a weighted edge between any two slices for the same x ∈ X.
Its weight is given by the minimum length of a path between v0 and v1 in
the explorer-neighbourhood Exr(v0, v1) with the component x removed. It
follows that all but one of these weights are always the same. We refer to
these additional edges as torso edges. If the vertices v0 and v1 share an edge
e in G, we add a new connected component consisting of the edge e and one
edge in parallel to e. This other edge is a torso edge and its length is the
minimum length of a path between v0 and v1 in the explorer-neighbourhood
Exr(v0, v1) minus e. Finally, we replace each torso edge by a path of the
same length; we refer to such paths as torso-paths5. This completes the
definition of local cutting, see Figure 4 for an example.

Figure 4: The graph on the left is obtained from the graph on the right by
locally splitting at the local 2-separator given by the blue edge. This blue
edge gets two copies on the left, one for each local component. In Section 9
we shall investigate the inverse operation of local cutting.

Remark 5.2. All edges incident with the vertices v0 or v1 are inherited by
a unique slice except for possibly an edge between v0 and v1, which is in
this artificial component of size two. If an edge between v0 and v1 in G is
a shortest path between these vertices, its length is the length of all torso
edges.

5This technical step reduces technicalities elsewhere; indeed, the explorer-
neighbourhood is not defined for weighted graphs, and doing so would lead to techni-
calities.
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Lemma 5.3. Slices of the same vertex have distance at least r + 1.
And slices for the same component have distance at most r/2 in a graph

obtained from an r-locally 2-connected graph by local cutting.

Proof. Firstly, suppose for a contradiction that there was a path P of length
at most r joining two slices of a vertex v. Pick P so that no interior vertex is
a slice of v. Then all vertices on the path P have distance at most r/2 from
v in the original graph. So the path P projects to a closed walk completely
contained in the ball B r

2
(v). Hence all interior vertices of P are in the same

local component in any explorer-neighbourhood around v and some other
vertex w. So we get a contradiction to the assumption that P joins two
different slices of the vertex v.

Secondly, let {a1, a2} be an r-local 2-separator of a graph G, and let
a′1 and a′2 be slices for a local component k in the graph G′ obtained from
G by local cutting. As G is r-locally 2-connected, by Lemma 3.10 (Local
2-Connectivity Lemma) there is a cycle of length at most r of G through
the vertices a1 and a2 that contains a vertex of the local component k. This
cycle is a cycle of G by Remark 3.5. In the graph G′ there is a cycle o′

obtained from o by possibly replacing one of its subpaths from a1 to a2 by a
torso path. The cycle o′ has the same length as o and contains the vertices
a′1 and a′2, as it contains their neighbours from k. So a′1 and a′2 have distance
at most r/2.

Lemma 5.4. Let G′ be obtained from a graph G by r-locally cutting a local
2-separator {v, w}. Then G can be obtained from G′ by r-local sums.

Proof. The family of graphs for the local sum consists of copies of the graph
G′, one copy for each component of the punctured explorer-neighbourhood
Exr(v, w) − v − w, together with the artificial component of size two if vw
is an edge of G. We move from G′ to a weighted graph by replacing the
torso paths by the torso edges of the cutting. Now we take an r-local 2-sum
where the gluing edges are the torso edges.

It follows directly from the definitions of local cutting and local sums
that the graph G is equal to the graph obtained from G′ by applying the
local 2-sum as described above. This local sum is r-local by Lemma 5.3.

Lemma 5.5. Let G′ be a graph obtained from an r-locally 2-connected graph
G by r-locally cutting a local 2-separator. Then the graph G′ is r-locally 2-
connected.

Proof. By Lemma 3.10 (Local 2-Connectivity Lemma), every connected
component of the graph G′ contains a cycle of length at most r. So it
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remains to show that there are no r-local cutvertices. Let v be an arbitrary
vertex of the graph G′. We distinguish two cases.

Case 1: the vertex v is a slice. We denote the local 2-separator of G
at which we cut by {a, b}. We may assume, and we do assume, that the
vertex v is a slice of the vertex a. Let X denote the set of components
of the punctured explorer-neighbourhood Exr(a, b)− a− b. Recall that the
ball Br/2(a) of radius r/2 around a in the graph G is a naturally embedded
subgraph of the explorer-neighbourhood Exr(a, b) (and we shall suppress
this natural embedding). For each component x ∈ X, we let Hx be the
intersection of the punctured ball Br/2(a)− a with the component x. Note
that b has distance at most r/2 from a in G by Lemma 3.10 (Local 2-
Connectivity Lemma). The punctured ball Br/2(a)−a is obtained by taking
the union of the graphs Hx and adding the vertex b together with its incident
edges. As this punctured ball is connected by assumption, all graphs Hx

must have the vertex b in their neighbourhood and all graphs Hx + b must
be connected. The punctured ball Br/2(v) − v around v in G′ is Hy + b,
where y is the component of Exr(a, b) − a − b that belongs to the slice v.
So Br/2(v)− v is connected. Thus the vertex v is not an r-local cutvertex.
This completes Case 1.

Case 2: the vertex v is not a slice. Then the vertex v is a vertex of the
graph G.

Suppose for a contradiction that the punctured ball Br/2(v)−v around v
of radius r/2 in the graph G′ is disconnected. Let w′

1 and w′
2 be two arbitrary

neighbours of v in G′ in different components of that punctured ball. Let
w1 and w2 be the vertices of the graph G from which the vertices w′

1 and w′
2

are slices of or that are equal to them, respectively. Then the vertices w1

and w2 are adjacent to the vertex v in the graph G by the definition of local
cutting. As the punctured ball Br/2(v)− v of radius r/2 around the vertex
v in the graph G is connected by assumption, there is a path P within that
punctured ball from w1 to w2. This path together with the vertex v is a
cycle o within that ball. So by Lemma 2.4 this cycle is generated by cycles
within that ball of length at most r.

Let W ′ be the set of neighbours of the vertex v in the graph G′ in the
component of the punctured ball containing the vertex w′

1. Let W be the
set of vertices of the graph G that are equal to vertices in W ′ or that have
slices in the set W ′. By E(W ) we denote the set of edges in the graph G
from v to a vertex in W .

By construction the cycle o contains precisely one edge from the set
E(W ). Hence there must be a cycle ô of G from the generating set that
contains an odd number of edges from E(W ). As ô has maximum degree
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two, it contains precisely one edge from the set E(W ).
We denote the local 2-separator of G at which we locally cut by {a, b}.
Case 2A: the cycle ô does not contain any of the vertices a or b. Then

ô − v is a path in the graph G′ from a vertex of W ′ to a neighbour of the
vertex v outside W ′. This is a contradiction to the assumption that the
punctured ball is disconnected. This completes this case.

Case 2B: the cycle ô contains one of the vertices a or b. If ô was a cycle
of the graph G′, then we would get the desired contradiction as the path
ô− v would join two vertices in different components of the punctured ball
around v in G′. So assume that this is not the case. Then ô contains both
vertices a and b. Let Q be the a-b-subpath of ô containing v. Then Q plus
a torso edge between two slices of a and b is a cycle of G′ whose length is
no longer than the length of ô. Denote this cycle by o′. Then o′ − v joins
two vertices in different components of the punctured ball around v in G′,
a contradiction. This completes Case 2, and hence the whole proof.

Remark 5.6. In [10] we give an alternative proof of the first sentence of
Theorem 2.1 that only relies on lemmas of the paper proved up to this point.
We encourage the reader to look at this proof next.

6 Properties of local 2-separators

In this section we prove some lemmas that are used in our proof of Theo-
rem 1.3 and Theorem 1.2.

A cut is the set of edges between a bipartition of the vertex set. The
bipartition classes are referred to as the sides of the cut.

Lemma 6.1. Let Y be a cut in a graph G. Then the endvertices of a path
P are on the same side of Y if and only if P intersects Y evenly.

Proof: by induction on the length of the path P .

Definition 6.2 (Crossing). Given an r-local 2-separator {v, w} and a pair
of vertices {a, b} of the explorer-neighbourhood Exr(v, w), we say that {a, b}
pre-crosses {v, w} if a and b are in different components of the punctured
explorer-neighbourhood Exr(v, w) − v − w. And {a, b} crosses the r-local
2-separator {v, w} if it pre-crosses it and there is a cycle of length at most r
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in Exr(v, w) through a and b in the explorer-neighbourhood; note that this
cycle contains v and w6.

We say that a pair {a, b} of (distinct) vertices of G crosses a local 2-
separator {v, w} of G if there exist copies a′ and b′ of a and b in the explorer-
neighbourhood Exr(v, w), respectively, so that {a′, b′} crosses {v, w}.

Remark 6.3. If {a, b} is a local separator in an r-locally 2-connected graph,
then the existence of a cycle o of length at most r through a and b is guaran-
teed by Lemma 3.10 (Local 2-Connectivity Lemma). Hence ‘crossing’ essen-
tially means ‘pre-crossing’ plus the crossing vertices are ‘near’ to the local
separator. Phrasing being ‘near’ in terms of this cycle seems particularly
natural in view of Lemma 6.5 (Alternating Cycle Lemma) and Corollary 6.6
below.

Definition 6.4 (Alternating cycle). Given two disjoint sets A1 and A2, we
say that a cyclic ordering alternates between A1 and A2 if it has even length
and each element of the cyclic ordering in Ai has its two neighbours in Ai+1

(for i ∈ F2).
A pre-alternating cycle is a cycle o together with two local 2-separators

{a1, a2} and {b1, b2} such that the order in which these four vertices appear
on the cycle o alternates between the two local separators (i.e., it is a1b1a2b2
or its reverse a1b2a2b1). An alternating cycle is a pre-alternating cycle o
such that the two neighbours of ai on o are in different components of
Exr(a1, a2) − a1 − a2 for i = 1, 2, and analoguously the two neighbours
of bi on o are in different components of Exr(b1, b2) − b1 − b2 for i = 1, 2.
Below sometimes it will be more convenient to refer to this situation by
saying that the cycle o alternates between the local 2-separators {a1, a2}
and {b1, b2}, see Figure 5.

The ‘nearness’ condition in the definition of ‘crossing’ is equivalent to
the following stronger property.

Lemma 6.5 (Alternating Cycle Lemma). Let {a1, a2} and {b1, b2} be r-
local 2-separators in an r-locally 2-connected graph G. The following are
equivalent:

1. {a1, a2} crosses {b1, b2};
6We remark that this definition is a little subtle, as there may well be vertices a and

b of G that lie on a common cycle of G of length at most r and that are in different
components of
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a1 a2

b1

b2

Figure 5: An alternating cycle. The vertices a1 and a2 of the first local
2-separator are indicated by boxes, the vertices b1 and b2 of the second local
2-separator are indicated by crosses. The cyclic order of the cycle induced
on these four vertices alternates between the two local separators.

2. there is a cycle of G of length at most r alternating between {a1, a2}
and {b1, b2};

3. every cycle of length at most r of G containing a1 and a2 alternates
between {a1, a2} and {b1, b2};

4. every cycle of length at most r of G containing a1 and a2 pre-alternates
between {a1, a2} and {b1, b2} and the neighbours of b1 on o are in
different components of Exr(b1, b2)− b1 − b2.

Proof. To see that (3) implies (2) note that by r-locally 2-connectivity there
is a cycle of length at most r containing a1 and a2 by Lemma 3.10 (Local
2-Connectivity Lemma); and it is a cycle of G by Remark 3.5.

To see that (2) implies (1), let o be a cycle alternating between {a1, a2}
and {b1, b2}. By Lemma 3.4, o is a cycle of Exr(b1, b2) and all its vertices
have unique copies in Exr(b1, b2). For simplicity, we suppress a map between
the vertices ai and their unique copies in Exr(b1, b2). As o is alternating, the
vertices a1 and a2 are in different components of the punctured explorer-
neighbourhood Exr(b1, b2)− b1 − b2.

Next we show that (1) implies (4). For this assume that the vertices a1
and a2 have copies a′1 and a′2, respectively, in different components of the
punctured explorer-neighbourhood Exr(b1, b2)− b1 − b2 such that there is a
cycle o of Exr(b1, b2) of length at most r containing a′1 and a′2. So the cycle
o has to intersect the 2-separator {b1, b2} of Exr(b1, b2) in both its vertices.
Thus by Lemma 3.4, all vertices on o have unique copies in Exr(b1, b2). For

23



simplicity, we suppress a map between the vertex ai and its unique copy a′i
in Exr(b1, b2). We have shown that in G there is an a1-a2-path P of length
at most r/2 containing one of the vertices bi, say b1.

Now let u be an arbitrary cycle of length at most r containing a1 and a2.
Let Q be a subpath of G of that cycle from a1 to a2 of length at most r/2.
The closed walk PQ has length at most r. As it contains the vertex b1, by
Remark 3.5 it is a closed walk in Exr(b1, b2). Hence the path Q traverses the
separator {b1, b2}. So it contains a vertex bi. So by Remark 3.5, the cycle
u is a cycle of Exr(b1, b2). It follows that the cycle u pre-alternates between
the local 2-separators {a1, a2} and {b1, b2}. As a1 and a2 are in different
components of Exr(b1, b2)−b1−b2, this completes the proof that (1) implies
(4).

Finally, we show how (4) implies (3). Let u be a cycle length at most
r of G containing a1 and a2. By (4) it pre-alternates between {a1, a2}
and {b1, b2} and the neighbours of b1 on o are in different components of
Exr(b1, b2) − b1 − b2. By Lemma 3.4, the vertices b1 and b2 have unique
copies in Exr(a1, a2), and we suppress a map between the vertex bi and its
unique copy in Exr(a1, a2). It suffices to show that the vertices b1 and b2
are in different components of Exr(a1, a2)− a1 − a2.

Suppose for a contradiction that they are in the same component. By
Lemma 3.10 (Local 2-Connectivity Lemma), there is a cycle c of length
at most r in Exr(a1, a2) containing a1 and a2 such that one of its a1-a2-
subpaths does not contain a vertex bi. By Remark 3.5, c is a cycle of
G. Let R be an a1-a2-subpath of c of length at most r/2. Then PR is a
closed walk of G of length at most r. As it contains the vertex b1, it is a
cycle of Exr(b1, b2). So R contains a vertex bi. So by Remark 3.5, c is a
cycle of Exr(b1, b2). As the vertices a1 and a2 are in different components
of Exr(b1, b2) − b1 − b2, every subpath of c has to contain a vertex bi, a
contradiction to the choice of c. Hence the vertices b1 and b2 are in different
components of Exr(a1, a2) − a1 − a2. So every cycle u alternates between
{a1, a2} and {b1, b2}.

The next lemma essentially says that crossing is a symmetric relation on
r-local 2-separators.

Corollary 6.6. Let G be an r-locally 2-connected graph with two r-local
2-separators {a1, a2} and {b1, b2}. If {a1, a2} crosses {b1, b2}, then {b1, b2}
crosses {a1, a2}.

Furthermore the punctured explorer-neighbourhood Exr(a1, a2)− a1 − a2
has precisely two components.
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Proof. For the first part assume that {a1, a2} crosses {b1, b2}. This is equiv-
alent to the symmetric condition (2) in Lemma 6.5 (Alternating Cycle
Lemma), so it follows that {b1, b2} crosses {a1, a2}.

To see the ‘Furthermore’-part, by condition (3) of Lemma 6.5 (Alternat-
ing Cycle Lemma) every cycle c of length at most r in Exr(a1, a2) containing
a1 and a2 has to contain a vertex bi on each of its a1-a2-subpaths. By the
contrapositive of Lemma 3.10 (Local 2-Connectivity Lemma), we conclude
that every component of Exr(a1, a2) − a1 − a2 contains a vertex bi. So
Exr(a1, a2) − a1 − a2 has at most two components, and it has exactly two
as {a1, a2} is a local separator.

Remark 6.7. A key-feature of separators in graphs is the ‘Corner Prop-
erty7’. In the classic version for 2-separators, the Corner-Lemma says that
if two 2-separators {a1, a2} and {b1, b2} cross, then {a1, b1} is a 2-separator
– under certain non-triviality conditions. We shall prove that this property
also holds for our local 2-separators. This is in fact a central lemma of the
paper and the notion of ‘explorer-neighbourhood’ is key to this lemma.

Intuitively speaking, the reason why this lemma is true is the following.
As the Corner-Lemma is true for separators in the classical version, the
only reason why a local version could break is essentially if one of the in-
volved vertices, say a1, would explore a new path around the local separator
{b1, b2} to the other component of the punctured explorer-neighbourhood
Exr(b1, b2) − b1 − b2 that was not known to b1 or b2. If we used ‘double
balls’ instead of our local notion of ‘explorer-neighbourhoods’, this could
well happen, see Figure 6 below for an example. The intuition now is that
a1 may well ‘explore’ a new path to the other local component but when the
explorers compare their maps, they have given the things different names
and so the explorers do not realise that between them they know a path
around. Hence they believe that the corner {a1, b1} is separating. That
is how we think about locally separating: the explorers cannot prove that
there is a way round with their local information.

This is somewhat similar to the following situation. Imagine you are
running on a graph and at any point in time you can only see your neigh-
bours. If the graph is a cycle, you cannot tell its length – and you even
cannot distinguish it from the 2-way-infinite path Z.

Now we start setting up some notation for Lemma 6.10 below.

Definition 6.8 (Corner-Setting). Given an r-local separator {a1, a2} cross-
ing an r-local 2-separator {b1, b2}, by Corollary 6.6 and Lemma 6.5 (Al-

7In modern terms, it just says that the connectivity function is submodular.
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ternating Cycle Lemma), {b1, b2} crosses {a1, a2} and there is a cycle o of
length at most r alternating between these two local separators. A person of
type one is a vertex x of V (o)−a1−a2− b1− b2 that has a copy in the same
component of Exr(a1, a2)−a1−a2 as b1 and a copy in the same component of
Exr(b1, b2)−b1−b2 as a1. A person of type two is a neighbour x of b1 outside
the cycle o that has a copy in the same component of Exr(b1, b2) − b1 − b2
as a1. A person of type three is a neighbour x of a1 outside the cycle o that
has a copy in the same component of Exr(a1, a2)−a1−a2 as b1. A person is
a person of type one, two or three. We say that a person lives in the corner
{a1, b1} if there exists a person.

Remark 6.9. A person of type one has unique copies in Exr(a1, a2), Exr(b1, b2)
and Exr(a1, b1) by Lemma 3.4. For a person x of type two, the edge xb1 has
unique copies in Exr(b1, b2) and Exr(a1, b1) by Lemma 3.2. Hence we define
the copy of a person of type two in these neighbourhoods to be the unique
endvertex of that edge that is a copy of x. Hence to simplify notation, be-
low we suppress a bijection between a person and its unique copies in the
explorer-neighbourhoods where copies are unique.

Lemma 6.10 (Corner Lemma). Assume G is r-locally 2-connected and as-
sume the corner-setting. Assume a person x lives in the corner {a1, b1},
then {a1, b1} is an r-local 2-separator.

Moreover, x is in a different component of Exr(a1, b1) − a1 − b1 than
(copies of) a2 and b2.

Proof. By Lemma 3.4, the vertices a1, a2, b1 and b2 have unique copies
in Exr(a1, b1); hence for this proof we suppress a bijection between these
vertices and their copies in Exr(a1, b1). We start by showing the following.

Sublemma 6.11. The vertices b1 and b2 are in different components of the
graph Exr(a1, b1)− a1 − a2.

Proof. Suppose not for a contradiction. Then there is a path P of the graph
Exr(a1, b1)− a1 − a2 from b1 to b2.

LetW be the neighbourhood of the set {a1, a2} in the punctured explorer-
neighbourhood Exr(a1, a2) − a1 − a2 in the component containing b1. By
Lemma 3.2 neighbours of a1 or a2 have unique copies in the explorer-
neighbourhood Exr(a1, a2); hence there is a bijection between the neighbours
of a1 and a2 in G and the explorer-neighbourhood. To simplify notation we
suppress this map in our notation. And we will simply consider W as a
vertex set of the graph G, as well. Let E(W ) be the set of edges of the
graph G from {a1, a2} to W .
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Recall that by the corner-setting, there is a cycle of length at most r
alternating between the local separators {a1, a2} and {b1, b2}. Thus it has
a subpath Q from b1 to b2 of length at most r/2; this subpath contains
precisely one of the vertices a1 and a2. This alternating cycle is also a cycle
of the explorer-neighbourhood Exr(a1, a2) and the path Q has to intersect
the set E(W ) oddly8 as it connects vertices in different components. Vertices
of o have unique copies in Exr(a1, b1) by Lemma 3.4. We suppress a bijection
between vertices of o and their unique copies in Exr(a1, b1). So in Exr(a1, b1),
Q is a path from b1 to b2.

Let u be the closed walk of the explorer-neighbourhood Exr(a1, b1) ob-
tained by concatenating P and Q. The path P considered as a walk of
the graph G contains no vertex ai and thus does not intersect the edge set
E(W ). Thus the closed walk u, considered as an edge set of the graph G
intersects the edge set E(W ) in an odd number of edges.

By Lemma 3.6 the closed walk u is generated by cycles of G included
in the balls Br/2(a1) and Br/2(b1). These cycles are in turn by Lemma 2.4
generated by cycles of length at most r included in these balls. Hence one
of the generating cycles has to intersect the edge set E(W ) oddly. Call such
a cycle u′. So the cycle u′ contains the vertex a1 or a2. As it has bounded
length, it is a cycle of the explorer-neighbourhood Exr(a1, a2). This is a
contradiction as in the explorer-neighbourhood Exr(a1, a2) the cycle u′ and
the cut E(W ) cannot intersect oddly. Thus the vertices b1 and b2 must be
in different components of the graph Exr(a1, b1)− a1 − a2.

By exchanging the roles of the ‘ai’ and ‘bi’ in Sublemma 6.11 one obtains
the following.

Sublemma 6.12. The vertices a1 and a2 are in different components of the
graph Exr(a1, b1)− b1 − b2.

Proof. The proof is analogous to that of Sublemma 6.11.

By C(a, i) we denote the component of Exr(a1, b1)− a1 − a2 containing
the vertex bi. By C(b, i) we denote the component of Exr(a1, b1) − b1 − b2
containing the vertex ai.

By assumption there is vertex x of G that is a person living in the corner
{a1, b1}. If x is a person of type one, then it is contained in both components
C(a, 1) and C(b, 1), as the vertices b1 and a1 are in the respective compo-
nents. If x is a person of type two, then it is contained in the component
C(a, 1) as b1 ∈ C(a, 1). Next we verify that it is in C(b, 1). By definition

8In fact it intersects this set just once but we will not need that strengthening.
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a1 ∈ C(b, 1). As x is in the sam component of Exr(b1, b2)−b1−b2 as a1, pick
a path joining them in there and add the edges b1x and the subpath b1oa1
of o that avoids b2. This forms a cycle. By Lemma 3.6 and Lemma 2.4,
this cycle is generated by cycles of length at most r. From these cycles take
those that contain the vertex b1. The sum of these cycles with the vertex
b1 removed gives a closed walk in Br/2(b1) from x to the neighbour of b1 on
b1oa1 (which is equal to a1 or a person of type one). This walk witnesses
that x ∈ C(b, 1). Like for persons of type two, we show for persons of type
three that they are contained in C(a, 1) and C(b, 1). To summarise, in every
case the intersection of C(a, 1) and C(b, 1) contains the person x.

In particular, the intersection of C(a, 1) and C(b, 1) is nonempty and in-
cludes a component of Exr(a1, b1)−a1−a2−b1−b2. Denote such a component
containing the person x by k. As the component k is included in C(a, 1), it
does not contain any neighbour of the vertex b2 by Sublemma 6.11. Simi-
larly, k does not contain any neighbour of the vertex a2 by Sublemma 6.12.
Hence k is also a component of Exr(a1, b1)− a1 − b1. As k does not contain
the vertex a2, the punctured explorer-neighbourhood Exr(a1, b1)−a1− b1 is
disconnected. Thus {a1, b1} is an r-local 2-separator.

The ‘Moreover’-part is clear by construction.

Remark 6.13. In the next paragraph we define ‘contacts’. This definition
is technical and results in quite a few technicalities later on. In contrast
to this, the intuition behind contacts is rather simple: given a graph G′

obtained from a graph G by locally cutting at {a1, a2}. We would like to
move back and forth between local separators of G and G′. Specifically, if
{b1, b2} is disjoint from {a1, a2}, then {b1, b2} is a local separator of G if and
only if it is a local separator of G′; compare Lemma 6.15 (Projection Lemma)
and Lemma 8.4 (Lifting Lemma) below. If the sets {b1, b2} and {a1, a2} are
not disjoint, we still want to move back and forth between local separators,
and contacts are our way to formalise it; they associate to every vertex bi
of G a canonical vertex of G′ relative to {b1, b2}. (Imagine you phone a
‘helpline’ and they redirect your call to the ‘next contact’. Don’t worry:
unlike for many helplines, here this happens only once.) The proofs below
would simplify a lot if one (carelessly) assumed that {b1, b2} and {a1, a2}
were disjoint.

Definition 6.14 (Contacts). Given a graph G′ obtained from G by locally
cutting a local 2-separator, by definition there is a bijection between the
edges of G and the edges of G′ that are not on torso paths. To simplify
notation, we suppress this bijection from our notation. Let b be a vertex
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of G and let b′ be a vertex of G′ that is equal to b or a slice thereof. Let
e be an edge of G that is incident with the vertex b. Then the edge e is
incident with the vertex b′ in G′ or else the vertex b′ must be a slice, and
thus is incident with a unique edge on a torso path. The contact of the edge
e at the vertex b′ is the edge e itself if e is incident with b′ in G′ or else the
contact is the unique edge on a torso path incident with b′.

Given a local 2-separator {b1, b2} in a graph G and two edges e and f
each with one endvertex in {b1, b2}, we say that e and f are separated by
{b1, b2} if the edges e and f have endvertices in different components of the
punctured explorer-neighbourhood Exr(b1, b2)− b1 − b2.

For a vertex x′ of G′ that is not an interior vertex of a torso-path, there
is a unique vertex of G that is equal to x′ or such that x′ is a slice of that
vertex. We denote this vertex by x.

Lemma 6.15 (Projection Lemma). Assume G is r-locally 2-connected. For
any r-local 2-separator {b′1, b′2} of G′ such that the b′i are not interior vertices
of torso-paths, the set {b1, b2} is an r-local 2-separator of G.

More specifically, edges e and f each with one endvertex in {b1, b2} are
separated by {b1, b2} in G if their contacts are separated by {b′1, b′2} in G′.

Proof. In this proof we will distinguish between the vertices of G and G′ by
adding a dash to the vertices of the graph G′; for example we write b′1 when
we consider b1 as a vertex of G′ and b1 when we consider it as a vertex of the
graph G (whenever b′1 is not an interior vertex of a torso path). We prove
the ‘More specifically’-part, as this suffices.

Let e and f be edges incident with precisely one of b1 or b2 such that
their contacts are separated by {b′1, b′2} in G′.

Sublemma 6.16. There is at most one edge on a torso path incident with
vertices of {b′1, b′2}.

Proof. Let {a1, a2} be a local 2-separator of G such that G′ is obtained from
G by locally cutting at {a1, a2}. Suppose for a contradiction that there are
two edges on torso paths incident with vertices of {b′1, b′2}. As each vertex
is incident with at most one torso edge, both b′1 and b′2 must be slices.

As {b′1, b′2} is an r-local 2-separator, the vertices b′1 and b′2 have distance
at most r/2. So b′1 and b′2 cannot be slices of the same vertex by Lemma 5.3.
By symmetry assume that b′1 is a slice of a1 and b′2 is a slice of a2. As there
are at least two torso edges, b′1 and b′2 must be slices for different components
of Exr(a1, a2) − a1 − a2. As {a1, a2} is an r-local 2-separator, the vertices
a1 and a2 have distance at most r/2. It follows from the definition of local
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cutting that slices of a1 and a2 have the same distance as a1 and a2, so this
distance is upper-bounded by r/2.

Let a′1 be the slice of the vertex a1 for the same component as the slice b′2
of a2. So the distance from a′1 to b′2 is at most r/2. So the distance between
the distinct slices a′1 and b′1 of a1 is at most r. This is a contradiction to
Lemma 5.3. Hence there is at most one torso edge incident with vertices of
{b′1, b′2}.

Let k′ be the component of the punctured explorer-neighbourhood Exr(b
′
1, b

′
2)−

b′1− b′2 in G′ that contains an endvertex of the contact for e9. Let W be the
set of edges of G′ with one endvertex in {b′1, b′2} and the other endvertex in
k′. By Sublemma 6.16 and by exchanging the roles of the edges e and f if
necessary, we may assume, and we do assume, that no edge on a torso path
incident with a vertex of {b′1, b′2} has its other endvertex in the component
k′. Hence the edge set W is also an edge set of the graph G. By Lemma 3.2,
edges of W have unique copies in Exr(b1, b2). For simplicity we suppress a
bijection between W and its uniquely defined copy in Exr(b1, b2).

Sublemma 6.17. There is a path Q from b1 to b2 contained in Exr(b1, b2)
that contains an even number of edges from W .

Proof. As G′ is r-locally 2-connected by Lemma 5.5, by Lemma 3.10 (Local
2-Connectivity Lemma) there is a cycle o′ of length at most r included in
Exr(b

′
1, b

′
2) containing the vertices b′1 and b′2. By Lemma 5.3, the cycle o′

can contain edges of at most one torso path (note that if a cycle contains
edges from a torso path, it must include the whole torso path). Hence there
is a path Q′ from b′1 to b′2 included in o′ that does not contain any edges of
torso paths. As Q′ has both its endvertices on the same side of the cut W ,
it intersects that cut evenly. The edges of Q′ form a path Q in the graph G
from b1 to b2. By definition of local splitting, there is a cycle o of G of the
same length as o′ that includes the path Q. So by Lemma 3.4, Q is a path
in Exr(b1, b2).

Suppose for a contradiction that the edges e and f are not separated by
{b1, b2} in G; that is, they are incident with vertices of the same component
of the punctured explorer-neighbourhood Exr(b1, b2)− b1 − b2.

Sublemma 6.18. There is a cycle o of the explorer-neighbourhood Exr(b1, b2)
in G that intersects the set W oddly.

9This is well-defined as the contact for e is an edge that has exactly one endvertex in
{b′1, b′2}, and the other endvertex defines the component k′ uniquely.
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Proof. By assumption, there is a path P included in the punctured explorer-
neighbourhood Exr(b1, b2) − b1 − b2 between the endvertices of the edges e
and f outside {b1, b2}. Now we extend the path P to a walk by adding the
edges e and f at the endvertices of P . The endvertices of this extended walk
are in the set {b1, b2}. This walk intersects the edge set W precisely in the
edge e. Either this walk is a cycle, or it is a path whose endvertices are b1
and b2. While we are done immediately in the first case, in the second case
we concatenate this path ePf with a path Q as in Sublemma 6.17. This
way we obtain a closed walk, which includes the desired cycle o.

Sublemma 6.19. There is a cycle o1 of G contained in the explorer-neighbourhood
Exr(b1, b2) of length bounded by r that intersects the set W oddly.

Proof. Let o be a cycle as in Sublemma 6.18. By Lemma 3.6, the cycle o is
generated from cycles that are included within the balls of radius r/2 around
the vertices b1 and b2. These cycles, in turn by Lemma 2.4, are generated
by cycles within the respective balls of length bounded by r. To summarise:
the cycle o is generated over the finite field F2 by cycles of G contained in
the explorer-neighbourhood Exr(b1, b2) of length bounded by r. As the cycle
o intersects the set W oddly, one of the cycles in the generating set has to
intersect the set W oddly. We pick such a cycle for o1.

Sublemma 6.20. There is a cycle o′ of G′ included in the explorer-neighbourhood
Exr(b

′
1, b

′
2) of length bounded by r that intersects the set W oddly.

Proof. Let o1 be a cycle as in Sublemma 6.19. First assume the cycle o1
does not traverse the local 2-separator {a1, a2} (here we say that a cycle
traverses a local 2-separator if the cycle traverses10 this set as a separator
of the explorer-neighbourhood [of parameter r]). Then the cycle o1 of G is
a cycle of G′. So we can take o′ = o1 and are done. Hence we may assume,
and we do assume, that the cycle o1 traverses the local 2-separator {a1, a2}.
We remark that as the cycle o1 is a cycle of the graph G – not just of the
explorer-neighbourhood – it cannot contain two copies of a vertex of the
graph G.

One of the subpaths of o1 from a1 to a2 contains an even number of edges
of W , the other one an odd number of edges of W . Let P be the subpath
of o1 from a1 to a2 that contains an odd number of edges of W . Then the

10Given a cycle o and separator S in a graph G, a traversal of o is a minimal subpath of
o such that the vertex just after and just before that subpath are in different components
of G \ S. A cycle traverses a 2-separator in exactly two subpaths, each being a single
vertex, or not at all.
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edges of P form a path of the graph G′ from a slice of a1 to a slice of a2. We
obtain the cycle o′ from P by adding a torso path (which is added by the
definition of local cutting between the two slices a′1 and a′2), which is does
not intersect W by the choice of the component k′.

The edge set W is a cut of the explorer-neighbourhood Exr(b
′
1, b

′
2), and

the cycle o′, which is given by Sublemma 6.20, is a cycle of that graph. So
they must intersect evenly (as all cuts and cycles do). This is a direct con-
tradiction to Sublemma 6.20. Hence the punctured explorer-neighbourhood
Exr(b1, b2)− b1 − b2 in G is disconnected, and so {b1, b2} is an r-local sepa-
rator of the graph G. More specifically, the edges e and f are separated by
{b1, b2}.

Remark 6.21. Here we come back to Remark 3.13. If the punctured double
ball around two vertices is disconnected, then so is the punctured explorer-
neighbourhood around them. We say that an r-local separator {v, w} is
mundane if the punctured double-ball around v and w is disconnected.
Lemma 6.15 (Projection Lemma) says that the class of local 2-separators has
the corner property, a property which plays a central role in the structural
theory of genuine separators. The subclass of mudane local 2-separators
does not have this property, which can be seen from Figure 6 as follows.
If one obtained G′ from the depicted graph by locally cutting at the mu-
dane local separator {b1, b2}, the corner {a1, b1} becomes a mudane local
separator, which does not come from a mudane local separator of G.

Example 6.22. While Figure 6, already shows that a notion of local 2-
separators based on punctured double balls would not have all the desired
properties, here we give a second more advanced example that demonstrates
that even more properties fail for the class of mudane local separators.

We start by giving a formal definition of the graphG depicted in Figure 7.
Given a parameter r ≥ 6, let M be the graph obtained from a cycle o of
length 2r by adding a paths of length two between two antipodal vertices
of o (that is, any two vertices of o of distance precisely r). We obtain G
from M by picking an edge e of o arbitrarily and subdividing it four times.
Informally speaking, the graph G is a subdivided Moebius strip, see Figure 7.

Now we give names to four vertices of G. Denote the two endvertices of
the edge e by a2 and b2. Denote the antipodal vertex of the vertex a2 on o
by a1, and let b1 be the subdivision vertex of the edge e that has distance
two from a2 (and consequently distance three from b2).

We observe (and prove below) that:
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a1

a2

b1b2

Figure 6: Two crossing local separators. They are highlighted in grey and
denoted by {a1, a2} and {b1, b2}. The long red strip joins a neighbour of
a1 with a neighbour of b1. Its length is long enough so that the punctured
double-balls (Br/2(a1)∪Br/2(a2))−a1−a2 and (Br/2(b1)∪Br/2(b2))−b1−b2
are disconnected but so short that the punctured double-ball (Br/2(a1) ∪
Br/2(b1))− a1 − b1 is connected.
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(1) B r
2
(a1) ∪B r

2
(b1)− a1 − b1 is disconnected;

(2) B r
2
(b1) ∪B r

2
(b2)− b1 − b2 is disconnected ALTHOUGH;

(3) B r
2
(a1) ∪B r

2
(a2)− a1 − a2 is connected AND;

(4) B r
2
(a1) ∪B r

2
(b2)− a1 − b2 is connected;

To see (1) note that the ball B r
2
(b1) is included in the ball B r

2
(a1) and

B r
2
(a1) − a1 − b1 is disconnected. Condition (2) follows from the fact that

{b1, b2} is a global 2-separator. To see (4), just note that the union of these
two balls includes the whole graph G; and similarly to see (3) note that the
union of the two relevant balls is equal to the graph G with a single vertex
removed.

Similarly as Figure 6, this example shows that the corner property does
not in general hold for the class of mudane local separators. Also the fol-
lowing rather obscure thing happens. Let G′ be the graph obtained from
G by r-locally cutting at the local 2-separator {a1, b1}. Then B r

2
(a1) ∪

B r
2
(a2)− a1 − a2 is disconnected in the graph G′, while (3) above says that

this property does not hold in G. It seems like {a1, a2} should be an r-local
2-separator in any sensible r-local decomposition for G.

a1

b1
a2

b2

Figure 7: A subdivided Moebius strip.

7 When all local 2-separators are crossed...

In this section we prove Theorem 1.3, which later will be used in the proof
of Theorem 2.1.

Proof of Theorem 1.3. Let r ∈ N ∪ {∞} and let G be a connected graph
that is r-locally 2-connected. Assume that every r-local 2-separator of G
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is crossed by an r-local 2-separator. We are to show that G is r-locally
3-connected or a cycle of length at most r.

Let {a1, a2} be an r-local 2-separator, and let {b1, b2} be an r-local 2-
separator that crosses it. By Lemma 6.5 (Alternating Cycle Lemma), there
is a cycle o of length at most r alternating between these two local separators.
Our aim is to show that the graph G is equal to the cycle o. Suppose not
for a contradiction. Then there is a vertex outside the cycle o. As the graph
G is connected, there is a vertex that is outside o and adjacent to a vertex
on the cycle o. Pick such a vertex and call it x2, and denote one of its
neighbours on the cycle o by x1. We distinguish two cases.

Case 1: there is no vertex y on the cycle o such that {x1, y} is an r-local
2-separator.

By S we denote the set of r-local 2-separators with both their vertices
on the cycle o. Given {c1, c2} ∈ S, by Lemma 3.4 all vertices on the cycle
o have a unique copy in the explorer-neighbourhood Exr(c1, c2). For these
vertices we suppress a bijection between them and their unique copies in
Exr(c1, c2) to simplify notation. By Γ(c1, c2) we denote the set of vertices
on the cycle o in the component of o − c1 − c2 that contains the vertex
x1. The size of a local separator {c1, c2} in S is |Γ(c1, c2)|. The set S is
nonempty as {a1, a2} ∈ S. Pick a local separator {w1, w2} ∈ S of minimal
size.

Sublemma 7.1. In Case 1, no r-local 2-separator crosses {w1, w2}.

Proof. Suppose for a contradiction there is an r-local 2-separator {v1, v2}
that crosses {w1, w2}. By Lemma 6.5 (Alternating Cycle Lemma) there is
a cycle o′ alternating between {v1, v2} and {w1, w2}. Hence by Lemma 3.4
the vertices v1, v2, w1 and w2 have unique copies in Exr(v1, v2); and so in
the following we will suppress a bijection between them and their copies in
Exr(v1, v2) from our notation. Let P ′ be a subpath of o′ between w1 and w2

of length at most r/2. Let P be a subpath of o between w1 and w2 of length
at most r/2. Let o′′ be the closed walk obtained by concatenating P and P ′.
The path P ′ must contain one of the vertices v1 or v2, say v1. Hence o′′ is a
closed walk through v1 of length at most r; so it is contained within Br/2(v1).
So the path P is a path of the ball Br/2(v1). As w1 and w2 are in different
components of the punctured explorer-neighbourhood Exr(v1, v2)− v1 − v2,
the path P must contain the vertex v1 or v2. Thus the cycle o contains the
vertex v1 or v2. By condition (2) of Lemma 6.5 (Alternating Cycle Lemma),
the cycle o alternates between the local separators {v1, v2} and {w1, w2}.

By Corollary 6.6 each of the punctured explorer-neighbourhoods Exr(v1, v2)−
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v1 − v2 and Exr(w1, w2) − w1 − w2 has precisely two components. Hence
there is a corner {vi, wj} with i, j ∈ {1, 2} such that the vertex x1 is a per-
son of type one living in the corner {vi, wj}. Hence by Lemma 6.10 (Corner
Lemma), {vi, wj} is an r-local 2-separator. It is in the set S. We claim that
its size is strictly smaller than that of {w1, w2}. Indeed, by the ‘Moreover’-
part of Lemma 6.10 (Corner Lemma), Γ(vi, wj) only contains those ver-
tices of o on the path between vi and wj containing x1. As the vertices x1
and vi are in the same component of the punctured explorer-neighbourhood
Exr(w1, w2)−w1−w2, all vertices of Γ(vi, wj) are also in Γ(w1, w2) but that
set additionally contains the vertex vi. This is the desired contradiction.
Thus no r-local 2-separator crosses {w1, w2}.

Sublemma 7.1 contradicts the assumptions of the theorem. Hence the
graph G is a cycle. Having finished Case 1, it remains to treat the following
(which will be somewhat similar).

Case 2: not Case 1; that is, there is a vertex y on the cycle o such
that {x1, y} is an r-local 2-separator.

By S we denote the set of r-local 2-separators with both their vertices
on the cycle o and one of these vertices is equal to the vertex x1. Given
{c1, c2} ∈ S, by Lemma 3.4 all vertices on the cycle o have a unique copy
in the explorer-neighbourhood Exr(c1, c2). For these vertices we suppress
a bijection between them and their unique copies in Exr(c1, c2) to simplify
notation. Moreover, the edge x1x2 of G has a unique copy in Exr(c1, c2) by
Lemma 3.2. We suppress a bijection between the vertex x2 of G and the
endvertex of the edge x1x2 in Exr(c1, c2) that is a copy of x2.

By Γ(c1, c2) we denote the set of vertices on the cycle o in the component
of the punctured explorer-neighbourhood Exr(c1, c2)− c1− c2 that contains
the vertex x2. The size of a local separator {c1, c2} in S is |Γ(c1, c2)|. The
set S is nonempty by the assumption of Case 2. Pick a local separator
{w1, w2} ∈ S of minimal size.

Arguing the same as in the proof of Sublemma 7.1 but referring to the
fact that ‘x2 is a person of type two’ instead of ‘x1 is a person of type one’,
one proves the following11.

Sublemma 7.2. In Case 2, no r-local 2-separator crosses {w1, w2}.

This completes all the cases. Hence in all cases, there is an r-local 2-
separator that is not crossed by any other r-local 2-separator. This is a

11By local 2-connectivity, if there is no person of type one but a person of type two,
there is also a person of type three. So we need not to rely on persons of type three in
our arguments.
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contradiction to the assumptions of this theorem. Hence the graph G must
be equal to the cycle o.

8 The uniqueness statement of the local 2-separator
theorem

In this section we prove Theorem 2.1. Our first goal is to prove Lemma 8.4
below, which can be seen as the ‘inverse’ of Lemma 6.15 (Projection Lemma).

Let G′ be a graph obtained from a graph G by r-locally cutting an r-local
2-separator {a1, a2}. Let {b1, b2} be an r-local 2-separator of G.

Lemma 8.1. Assume G is r-locally 2-connected. Assume {b1, b2} is not
crossed by {a1, a2}. Then there is a cycle o′ of the graph G′ of length at
most r that contains vertices b′i that are equal to bi or a slice of bi (for
i = 1, 2).

Moreover, for any i ∈ {1, 2} with bi 6∈ {a1, a2} the two edges of o′ incident
with b′i are separated by {b′1, b′2} – or else the edge b′1b

′
2 is on o′.

We remark that the neighbours of b′i are also neighbours of bi (unless
the edge joining them is on a torso path), and they have unique copies in
Exr(b1, b2) by Lemma 3.2; in this sense the ‘Moreover’-part is unambiguously
defined.

Proof of Lemma 8.1. As the graph G is r-locally 2-connected, we can apply
Lemma 3.10 (Local 2-Connectivity Lemma) to deduce that there is a cycle
o of length at most r in G through the vertices b1 and b2 and such that
interior vertices of different subpaths of o between b1 and b2 are in different
components of the punctured explorer-neighbourhood Exr(b1, b2) − b1 − b2
– or else the cycle o contain the edge b1b2.

If the cycle o does not contain any vertex ai, it is a cycle of the graph G′

and we are done. So we may assume, and we do assume, that a vertex ai, say
a1, is on the cycle o. So the cycle o is a cycle of the explorer-neighbourhood
Exr(a1, a2). In there, {a1, a2} is a genuine 2-separator. There are three
cases: if o does not contain any of its vertices, then o is a cycle of the graph
G′ and we are done. If o contains precisely one vertex, all other vertices
must be in a single local component and so o is a cycle of the graph G′

and we are done. Hence it remains to consider the third case that both
vertices a1 and a2 are on the cycle o. As the local separator {a1, a2} does
not cross {b1, b2}, the vertices a1 and a2 must be in the same component of
the punctured explorer-neighbourhood Exr(b1, b2) − b1 − b2. In particular,
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the cycle o does not pre-alternate between the local separators {a1, a2} and
{b1, b2}. So there is a subpath P of o between the ai containing no vertex bj
as an interior vertex. We obtain o′ from o by replacing the path P by a torso
path to obtain a cycle of the graph G′. By the definition of the length of the
torso paths the length of o′ is at most that of o. And o′ contains the vertices
bi or slices thereof. This completes the proof except for the ‘Moreover’-part.

To see the ‘Moreover’-part, pick bi under the constraint that it is not in
{a1, a2}. The two incident edges of the vertex b′i on o′ are not edges on torso
paths. By the construction of the cycle o′, the two neighbours of b′i on o′ are
separated by {b′1, b′2}.

Definition 8.2 (Lift). A lift of a local 2-separator {b1, b2} of G is a set
{b′1, b′2} of G′ such that each vertex b′i is equal to bi or a slice thereof, and
such that there is a cycle o′ of length at most r containing b′1 and b′2.

Remark 8.3. Under the circumstances of Lemma 8.1, it can be shown that
for each local 2-separator {b1, b2} a lift is uniquely defined – unless {b1, b2}
is identical to {a1, a2} (note that {a1, a2} does not cross itself). Indeed, if
no bi is in the set {a1, a2}, this is clear. Otherwise there can be at most one
vertex bi that is in {a1, a2}, say it is b1. A vertex b′1 in a lift has distance
at most r/2 from b2 = b′2. As any other slice x′ of b1 has distance at least
r+1 from b′1 by Lemma 5.3, the vertex b2 has a too large distance from that
vertex. So {x′, b2} cannot be a lift. Thus we will in the following always
refer to ‘the’ lift.

Lemma 8.4 (Lifting Lemma). Assume G is r-locally 2-connected. Let
{b1, b2} be an r-local 2-separator of G. Assume {b1, b2} is not crossed by
{a1, a2} and they are not identical. Then the lift {b′1, b′2} of {b1, b2} is an
r-local 2-separator of G′.

More specifically, if edges e and f with precisely one endvertex in {b1, b2}
are separated by {b1, b2} in G, then their contacts are separated by {b′1, b′2}
in G′.

Proof. The proof strategy is somewhat similar to that of Lemma 6.15 (Pro-
jection Lemma). Like in the proof of Lemma 6.15, in this proof we will
distinguish between the vertices of G and G′ by adding a dash to the ver-
tices of the graph G′.

Let e and f be edges incident with precisely one of b1 or b2 that are
separated by {b1, b2} in G.

Sublemma 8.5. There is a single component k of Exr(b1, b2) − b1 − b2
containing an endvertex of every edge incident with precisely one of b1 or b2
whose contact is an edge of a torso path.
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Proof. By assumption not both vertices b1 and b2 are in the set {a1, a2}. As
we are done otherwise, we assume that precisely one of the vertices bi is in
{a1, a2}. By symmetry, we assume that b1 = a1.

Next, we determine the component of Exr(a1, a2)− a1− a2 belonging to
the slice b′1 of a1. As {b1, b2} is an r-local 2-separator, by Lemma 3.10 (Local
2-Connectivity Lemma), there is a cycle o of length at most r through b1
and b2. By Lemma 3.4, the vertex b2 has a unique copy in Exr(a1, a2). So
there is a unique slice of the vertex a1 that has distance at most r/2 from the
vertex b2 = b′2. This is the slice for the component of Exr(a1, a2) − a1 − a2
containing b2. Denote that component by k2. Hence the vertex b′1 is the
slice of the vertex a1 for the component k2.

Next we define the component k. As {a1, a2} is an r-local 2-separator,
by Lemma 3.10 (Local 2-Connectivity Lemma), there is a cycle of length at
most r through a1 and a2. By Lemma 3.4, the vertex a2 has a unique copy
in Exr(b1, b2). Let k be the component of Exr(b1, b2)− b1 − b2 that contains
the vertex a2.

Now let e be an edge of G incident with precisely one of b1 or b2 whose
contact is an edge of a torso path. Then e is incident with the vertex
b1 = a1. Let x be the endvertex of the edge e aside from b1. As the contact
for e is an edge on a torso path, the vertex x is outside the component k2
of Exr(a1, a2) − a1 − a2. As G is r-locally 2-connected, the punctured ball
Br/2(a1)−a1 is connected. So there is a path P from x to a2 within that ball.
As the vertex b2 is in a different connected component of Exr(a1, a2)−a1−a2
than x, it is also in a different connected component of Br/2(a1) − a1 − a2
than x. So the path P does not contain the vertex b2. Thus P is a path from
x to a2 included in the component k. Note that P is a path of Exr(b1, b2);
indeed, it is within the ball of radius r/2 around b1 (which is equal to a1
here). So the path P witnesses that the vertex x is in the component k of
Exr(b1, b2)− b1 − b2.

As the edge e was arbitrary, the component k contains an endvertex of
every edge incident with precisely one of b1 or b2 whose contact is a torso
edge.

Let k1 be the component of the punctured explorer-neighbourhood Exr(b1, b2)−
b1 − b2 containing an endvertex of the edge e. By exchanging the roles of e
and f if necessary, we assume that the component k1 is different from the
component k in Sublemma 8.5. Let W be the set of edges of G with one
endvertex in {b1, b2} and the other endvertex in k1. By Sublemma 8.5, the
edge set W does not contain an edge of a torso path and hence is an edge
set of the graph G′ consisting of edges with precisely one endvertex in the
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set {b′1, b′2}.

Sublemma 8.6. There is a path Q′ from b′1 to b′2 contained in Exr(b
′
1, b

′
2)

that contains an even number of edges from W .

Proof. As G is r-locally 2-connected, by Lemma 3.10 (Local 2-Connectivity
Lemma) there is a cycle o included in Exr(b1, b2) containing the vertices b1
and b2 of length at most r, and o contains vertices in two different compo-
nents of Exr(b1, b2) − b1 − b2 or an edge from b1 to b2. In the second case,
we immediately set Q to be the edge from b1 to b2. In the first case we
define Q as follows. As {a1, a2} does not cross {b1, b2} by condition (4) in
Lemma 6.5 (Alternating Cycle Lemma), one of the two subpaths of o from
b1 to b2 has no vertex ai as interior vertex. Pick such a path and call it Q.
As {a1, a2} 6= {b1, b2}, one of the vertices b′i is equal to bi. Hence the cycle
o is in the ball of radius r/2 around that vertex, and so in the explorer-
neighbourhood Exr(b

′
1, b

′
2). Thus the subpath Q is within Exr(b

′
1, b

′
2).

As Q has both its endvertices on the same side of the cut W , it intersects
that cut evenly. The edges of Q form a path Q′ in the graph G′ from b′1 to
b′2, which is also a path in Exr(b

′
1, b

′
2) as shown above.

Suppose for a contradiction that the contacts for the edges e and f are
not separated by {b′1, b′2} in G′; that is, they are incident with vertices of
the same component of the punctured explorer-neighbourhood Exr(b

′
1, b

′
2)−

b′1 − b′2.

Sublemma 8.7. There is a cycle o′ of the explorer-neighbourhood Exr(b
′
1, b

′
2)

in G′ that intersects the set W oddly.

Proof. By assumption, there is a path P ′ included in the punctured explorer-
neighbourhood between the endvertices of the contacts for the edges e and
f outside {b′1, b′2}. Now we extend the path P ′ to a walk by adding the
contacts for the edges e and f at the two ends. This walk intersects the set
W precisely in the edge12 e. If we added the same vertex to both ends, we
obtained the desired cycle o′.

Otherwise we obtain a path between the vertices b′1 and b′2 in the explorer-
neighbourhood that intersects the set W oddly. Concatenating this path
with a path Q′ as in Sublemma 8.6 yields a closed walk intersecting oddly.
This closed walk is an edge-disjoint union of cycles and one of those cycles
intersects W oddly.

12Sublemma 8.5 implies that one of the edges e and f is its own contact. By fixing the
roles of e and f above in the definition of the set W , we ensured that the edge e is its own
contact.
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Sublemma 8.8. There is a cycle o′1 of G′ contained in the explorer-neighbourhood
Exr(b

′
1, b

′
2) of length bounded by r that intersects the set W oddly.

Proof. Let o′ be a cycle as in Sublemma 8.7. By Lemma 3.6, the cycle o′

is generated from cycles of that are included within the balls of radius r/2
around the vertices b′1 and b′2. These cycles, in turn by Lemma 2.4, are
generated by cycles within the respective balls of length bounded by r. To
summarise: the cycle o′ is generated over the finite field F2 by cycles of G′

contained in the explorer-neighbourhood Exr(b
′
1, b

′
2) of length bounded by r.

As the cycle o′ intersects the set W oddly, one of the cycles in the generating
set has to intersect the set W oddly. We pick such a cycle for o′1.

Sublemma 8.9. There is a cycle o of G of length bounded by r that inter-
sects the set W oddly. Moreover, o is a cycle of Exr(b1, b2).

Proof. Let o′1 be a cycle as in Sublemma 8.8. We remark that as the cycle
o′1 is a cycle of the graph G′ – not just of the explorer-neighbourhood – it
cannot contain two copies of a vertex of the graph G′. As the cycle o′1 has
length at most r, by Lemma 5.3 it contains at most one slice of any vertex
of G. In particular, the cycle o′1 contains at most one torso path.

First assume the cycle o′1 does not use any edges on torso paths. Then
the edges of the cycle o′1 of G′ form a cycle o of G. So we are done in this
case.

Hence we may assume, and we do assume, that the cycle o′1 contains a
unique torso path. We denote by Q′ the subpath of o′1 obtained by removing
this torso path. Then Q′ bijects to an edge set Q of the graph G. As the
torso path is not in W by construction, we deduce that Q contains an odd
number of edges of W .

By the definition of local cutting, there is a path P of13 G between a1
and a2 associated to the torso path of o′1 such that the cycle o′1 with the
torso path replaced by P is a cycle of the graph G of the same length as o′1.
We denote that cycle by o.

To see the ‘Moreover’-Part note that the cycle o contains at least one
edge of W and so must contain a vertex bi and so is in the ball of radius r/2
around that vertex and thus is embedded in the explorer-neighbourhood
Exr(b1, b2). From now on we consider this embedding of o in Exr(b1, b2)
(note that this is unambiguous as if o contained both vertices bi, then the
embedding would be unique by Lemma 3.4).

13Formally, the path P lives in the explorer-neighbourhood Exr(a1, a2) and in there it
is included in a cycle of length at most r and by Remark 3.5, this cycle is a cycle of G,
and so P is a path of G.
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As Q contains an odd number of edges of W , it remains to show that
the path P contains an even number of edges from the set W . Denote by a′1
and a′2 the copies of the vertices a1 and a2 on o, respectively. The existence
of o implies that {a1, a2} does not pre-cross {b1, b2}; that is, the copies a′1
and a′2 are in the same component of Exr(b1, b2) − b1 − b2. So they are on
the same side of the cut W . So by Lemma 6.1, P contains an even number
of edges of W . Thus the cycle o, which is composed of the paths P and
Q contains an odd number of edges of W . The ‘Moreover’-Part has been
shown in the text, so this completes the proof.

The edge set W is a cut of the explorer-neighbourhood Exr(b1, b2), and
a cycle o as in Sublemma 8.9 is a cycle of that graph. So they must intersect
evenly (as all cuts and cycles do). This is a direct contradiction to Sub-
lemma 8.9. Hence the punctured explorer-neighbourhood Exr(b

′
1, b

′
2)−b′1−b′2

in G′ is disconnected, and so {b′1, b′2} is an r-local separator of the graph G′.
More specifically, the contacts for e and f are separated by {b′1, b′2}.

Lemma 8.10. Let G be an r-locally 2-connected graph. Let {a1, a2}, {b1, b2}
and {c1, c2} be r-local 2-separators so that {a1, a2} crosses neither {b1, b2}
nor {c1, c2}. Construct G′ from G by r-locally cutting {a1, a2}.

Then the lifts of {b1, b2} and {c1, c2} cross in G′ if and only if {b1, b2}
and {c1, c2} cross in G.

Proof. Assume {b1, b2} and {c1, c2} cross in G. Then by condition (2) of
Lemma 6.5 (Alternating Cycle Lemma) there is a cycle o of length at most
r alternating between {b1, b2} and {c1, c2} traversing the local separator
{b1, b2} twice (that is, the subpaths of o between b1 and b2 have interior
vertices in different components of the punctured explorer-neighbourhood
Exr(b1, b2)− b1 − b2).

If the cycle o does not traverse the local separator {a1, a2} twice, then
o is a cycle of the graph G′ (by the argument already given in the proof of
Lemma 8.1). Then by Lemma 8.4 (Lifting Lemma), o traverses the lift of
{b1, b2} twice. Thus the lifts of {b1, b2} and {c1, c2} cross in G′.

Hence we may assume, and we do assume, that the cycle o traverses
the local separator {a1, a2} twice. As {a1, a2} crosses neither {b1, b2} nor
{c1, c2}, one a1-a2-subpath of o must contain both vertices b1 and b2. As the
cycle o alternates, this path must also contain one vertex ci between b1 and
b2 and it must contain the second vertex ci as {a1, a2} does not cross {c1, c2}
(in the form of condition (4) of Lemma 6.5 (Alternating Cycle Lemma)). So
there is an a1-a2-subpath P of o containing none of the vertices bi or cj as
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interior vertices. Let o′ be the cycle obtained from o by replacing the path
P by a torso path. The cycle o′ contains a lift of {b1, b2} by construction.
As the lift is unique by Remark 8.3, it must contain the lift of {b1, b2}. The
cycle o′ traverses the lift of {b1, b2} twice by the ‘More specifically’-part of
Lemma 8.4 (Lifting Lemma). Similarly, o′ traverses the lift of {c1, c2} twice.
So it alternates between the lifts of {b1, b2} and {c1, c2}. Thus the lifts of
{b1, b2} and {c1, c2} cross by Lemma 6.5 (Alternating Cycle Lemma).

Next assume that the lifts {b′1, b′2} and {c′1, c′2} of {b1, b2} and {c1, c2}
cross. Then by condition (2) of Lemma 6.5 (Alternating Cycle Lemma) there
is a cycle o′ of length at most r alternating between {b′1, b′2} and {c′1, c′2}
traversing {b′1, b′2} twice. Note that o′ contains at most one torso path by
Lemma 5.3. Let o be the cycle obtained from the cycle o′ by replacing
torso paths by paths of G of the same length. By Lemma 6.15 (Projection
Lemma) the cycle o traverses the local separator {b1, b2} twice. As the cycle
o alternates between the local separators {b1, b2} and {c1, c2}, these two
local separators cross by Lemma 6.5 (Alternating Cycle Lemma).

Sometimes we will omit the term ‘lift’ and simply consider local separa-
tors of G as local separators of a graph G′ obtained by cutting. The next
lemma says that r-local cuttings along non-crossing 2-separators commute.

Lemma 8.11. Let G be an r-locally 2-connected graph with distinct non-
crossing r-local 2-separators {a1, a2} and {b1, b2}. Then the graphs obtained
from r-locally cutting these two local separators in either order are identical.

Proof. Let G′ be the graph obtained from G by r-locally cutting {a1, a2}.
Let G′′ be the graph obtained from G′ by r-locally cutting (the lift of)
{b1, b2}. Let G2 be the graph obtained from G by first cutting {b1, b2}
and then (the lift of) {a1, a2}. Let {b′1, b′2} be the lift of {b1, b2} in G′. By
Lemma 8.4 (Lifting Lemma), the slices of {b1, b2} in G′′ and G2 are identical.
By symmetry, the same is true for slices of {a1, a2}. Vertices that are not
slices are identical by construction. This defines a bijection between the
vertices of the graphs G′′ and G2. It is straightforward to check that this
bijection between the vertices extends to a bijection between the edges.

Given a set S of r-local 2-separators of a graph G that pairwise do not
cross, we say that a graph G′ is obtained from G by r-locally cutting S if
G′ is obtained from G by the following procedure. Pick a linear ordering of
the set S. Then starting with the graph G we cut along the local separators
of S in that linear order. By Lemma 8.4 (Lifting Lemma) and Lemma 8.10
this is well-defined. By Lemma 8.11, changing the linear ordering does not
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affect the graph obtained by cutting. Hence in the following we shall speak
of the graph obtained from G by cutting along S.

Given a graph G, by N we denote the set of all r-local 2-separators of
G that are not crossed by any r-local 2-separator.

Theorem 8.12. Assume G is r-locally 2-connected, and let G′ be the graph
obtained from G by r-locally cutting N . Then every connected component of
G′ is r-locally 3-connected or a cycle of length at most r.

Let G′′ be a graph obtained from G by r-local cuttings such that all con-
nected components are r-locally 3-connected or cycles of length at most r.
Then in the construction of G′′ one has to cut at any local separator X or
one of its lifts for all X ∈ N .

Proof. Fix a linear ordering of the set N and let Gi be the graph obtained
from G by r-locally cutting the first i elements of N . By Lemma 5.5 applied
recursively each graph Gi is r-locally 2-connected. The graph G′ is the last
graph Gi.

Suppose for a contradiction that some connected component of the graph
G′ is neither r-locally 3-connected nor a cycle of length at most r. Then
by Theorem 1.3, the graph G′ has an r-local 2-separator {v, w} that is not
crossed by any other r-local 2-separator of G′. By Lemma 6.15 (Projec-
tion Lemma) applied recursively, {v, w} is also an r-local 2-separator of the
graph G. By the construction of the graph G′, the local separator {v, w} is
not in the set N . Thus there is some r-local 2-separator {a, b} of G that
crosses {v, w}. By the choice of the set N , the local 2-separators {v, w}
and {a, b} are not crossed by any local separator of N . Hence we can apply
Lemma 8.4 (Lifting Lemma) recursively to deduce that {a, b} is a local sep-
arator of the graph G′. Applying Lemma 8.10 recursively yields that {v, w}
and {a, b} are crossing in the graph G′. This is a contradiction to the fact
that {v, w} ia not crossed in G′. Thus every connected component of the
graph G′ is r-locally 3-connected or a cycle of length at most r.

Now let G′′ be a graph obtained from G by r-local cuttings such that
all connected components are r-locally 3-connected or cycles of length at
most r. Let (Gi) be a sequence of graphs starting with G0 = G and ending
with Gn = G′′ such that Gi+1 is obtained from Gi by r-local cutting. By
Lemma 5.5 applied recursively each graph Gi is r-locally 2-connected.

Suppose for a contraction there is an r-local 2-separator {v, w} of the set
N such that neither it nor any of its lifts is identical to a local 2-separator
at which we locally cut to obtain Gi+1 from Gi.

We will show by induction that {v, w} does not cross any local sepa-
rator of any graph Gi. Assume we have shown it does not cross any local
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separator of a graph Gj . By Lemma 6.15 (Projection Lemma), all local
2-separators of Gj+1 are lifts of local 2-separators of Gj . Applying this re-
cursively yields that all local 2-separators at which we locally cut are lifts of
local 2-separators of the graph G. So by Lemma 8.10 {v, w} does not cross
any local separator of the graphs Gj+1. This completes the induction step.

Thus the above is also true for the last graph Gn = G′′, all of whose
connected components are r-locally 3-connected or cycles of size at most r
by assumption. Such graphs do not have an r-local 2-separator that is not
crossed. Hence {v, w} cannot exist. This is a contraction. So for any local
separator of N , it or one of its lifts has to appear in the construction of
G′′.

Proof of Theorem 2.1. This theorem is a direct consequence of Theorem 8.12.

9 Graph-Decompositions

The purpose of this section is to define graph-decompositions and explain
why they can be understood as a generalisation of tree-decompositions with
the decomposition-tree replaced by a general graph. See also [14].

Definition 9.1. First we need some preparation. Given a graph G, a graph
F and a family F of subgraph-embeddings of the graph F in G, the graph
obtained from G by identifying along F is the graph obtained from G by
identifying all elements of F . In this paper, all embeddings of the graph F
will be vertex-disjoint, although we do not make this part of the definition.
Formally, the vertex set of this new graph is the vertex set of G modulo the
equivalence relation generated by the relation where two vertices v1 and v2
are related if there are graphs F1, F2 ∈ F with vi ∈ Fi (for i = 1, 2) such
that after applying the isomorphisms to F the vertices v1 and v2 are equal
to the same vertex of F . The edges of the quotient-graph are the edges of G,
where the endvertices are the equivalence classes of the original endvertices
of G – with the following exception: if two vertices v and w in F are joined
by edge, then in the quotient-graph we keep only one copy of all the edges of
G between the copies of v and w in the graphs F ′ ∈ F . This completes the
definition of gluing. Examples of gluing are given in Figure 8 and Figure 9.

Remark 9.2. Even if the graph G has no loops or parallel edges, graphs
obtained from G by identifying along a family may have loops or parallel
edges, see Figure 9.
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Figure 8: An example of a gluing. Here the graph F consists of a single
vertex and the family F has three members, which are marked in blue. The
graph G before the gluing is depicted on the left. The graph after the gluing
is depicted on the right.

Figure 9: An example of a gluing. Here the graph F consists of two vertices
joined by an edge and the family F has two members, which are marked
in blue. The graph G before the gluing is depicted on the left. The graph
after the gluing is depicted on the right. If the graph F consisted just of the
two vertices without the edge, the gluing would be the graph obtained by
the graph on the right by adding an edge in parallel to the blue edge. (This
figure is the same as Figure 4.)
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Definition 9.3 (Graph-decomposition). A graph-decomposition consists of
a bipartite graph (B,S) with bipartition classes B and S, where the elements
of B are referred to as ‘bags-nodes’ and the elements of S are referred to as
‘separating-nodes’. This bipartite graph is referred to as the ‘decomposition
graph’. For each node x of the decomposition graph, there is a graph Gx

associated to x. Moreover for every edge e of the decomposition graph
from a separating-node s to a bag-node b, there is a map ιe that maps the
associated graph Gs to a subgraph of the associated graph Gb. We refer to
Gs with s ∈ S as a local separator and to Gb with b ∈ B as a bag.

The underlying graph of a graph-decomposition (Gx|x ∈ V (B,S)) is con-
structed from the disjoint union of the bags Gb with b ∈ B by identifying
along all the families given by the copies of the graphs Gs for s ∈ S. For-
mally, for each separating-node s ∈ S, its family is (ιe(Gs))), where the
index ranges over the edges of (B,S) incident with s.

Remark 9.4. For some applications, it may be attractive to not construct
the underlying graph all at once, as we do here, but rather ‘step by step’ by
doing the gluing in a certain order. We expect that one essentially gets the
same graph in the natural cases, independently of the ordering. As gluing is
the reverse operation to local splitting and for local splitting we have proved
commutativity (compare Lemma 8.11), for the graph-decompositions related
to Theorem 1.2 this is indeed the case. However, we require the technical
tool of contacts to formalise this. We shall not use this in this paper.

Now we perform the identification for all these families separately. We
remark that different orderings in which we perform these identification
result in the same graph.

The width of a graph-decomposition (Gx|x ∈ V (B,S)) is the maximal
vertex number of a bag Gb with b ∈ B take away one14. The adhesion of
a graph-decomposition (Gx|x ∈ V (B,S)) is the maximum vertex number of
a local separator Gs with s ∈ S. This completes the definition of graph-
decompositions and related concepts.

Example 9.5. Essentially, tree-decompositions are examples of graph-decompositions.
Indeed, given a tree-decomposition, one obtains a new tree-decomposition by
subdividing every edge once and associating to each new vertex the separa-
tor associated to that edge (this separator is given by taking the intersection
of the two bags at the endvertices of that edge).

14This convention to take away one is common in the literature. Consequently, trees
have tree-width one.
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This defines a graph-decomposition whose decomposition-graph is the
decomposition-tree of this newly constructed tree-decomposition. Its bags
are the original bags of that tree-decomposition and its local separators are
separators of the old tree-decomposition; that is, the bags associated to the
new vertices of the new tree-decomposition.

The notions of width and adhesion as defined above for graph-decompositions
whose decomposition graphs are trees coincide with the standard notions for
tree-decompositions when interpreted as graph-decompositions in the way
explained above.

Example 9.6. The graph on the right of Figure 8 has a graph-decomposition
with only one bag which is given by the graph on the left, and only one local
separator, which is given by the blue vertex. Its decomposition-graph is the
bipartite graph consisting of three edges in parallel.

Example 9.7. The graph on the right of Figure 9 has a graph-decomposition
with only one bag which is given by the graph on the left, and only one lo-
cal separator, which consists of an edge. Its decomposition-graph is the
bipartite graph consisting of two edges in parallel.

Definition 9.8. This definition is slightly technical. For this definition
consider graph-decompositions such that for every separating-node s there
are no two distinct embedding maps ιf that map vertices of s to the same
vertex or endvertices of the same edge (informally, this means that the
images of s under the maps ιf are sufficiently far away from each other. For
sets s we are interested in here – those that come from r-local 2-separators
– this will always be the case).

Given a graph-decomposition of a graphG and an edge f of the decomposition-
graph incident with a separating-node s and a bag-node b, the local cut as-
sociated to f consists of those edges of G that have precisely one endvertex
in ιf (Gs) and the other endvertex in the bag ιf (Gb). We say that a cycle
traverses the local cut associated to the edge f oddly if it contains an odd
number of edges from that local cut.

Definition 9.9. A graph-decomposition has locality r if every cycle travers-
ing a local cut corresponding to an edge of the decomposition-graph oddly15

has length larger than r.

15An alternative definition would be to replace ‘traversing oddly’ by ‘traversing effec-
tively zero’, taking additionally orientations of traversals into account. For simplicity we
just make the definition with ‘oddly’.
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Example 9.10. In graph-decompositions whose decomposition graph is a
tree all cycles traverse evenly and hence their locality is infinite.

Example 9.11. The locality of the graph-decomposition described in Fig-
ure 9 is 11, as the shortest cycle traversing oddly has length 12. The locality
of the graph-decomposition described in Figure 8 is 9.

There is a correspondence between nested sets of separations and tree-
decompositions. A corresponding fact for graph-decompositions is also true.
Here we only need the following special case of this correspondence.

Lemma 9.12. Let G be a graph with a set S of non-crossing r-local 2-
separators. Let B be the set of connected components of the graph obtained
from G by r-locally cutting along S.

Then there is a decomposition graph with bipartition (B,S) of a graph-
decomposition of G of adhesion two and locality r.

Proof. For every local component of a local separator GS with s ∈ S we
have an edge e in the graph (B,S) from s to the unique bag-node b ∈ B
such that Gb contains the slices of ιe(Gs) for that local component. The
map ιe maps Gs to this copy of Gs in Gb. So (B,S) is the decomposition
graph of a graph-decomposition of G. It has adhesion two as all elements
Gs with s ∈ S have size two. It has locality r as all local separators Gs with
s ∈ S are r-local.

A torso of a bag Gb of a graph-decomposition is obtained from Gb by
joining for every map ι from a local separator Gs any two vertices in the
image of ι by an edge whenever sb is an edge of the decomposition graph.

Proof of Theorem 1.2. Combine Lemma 9.12 and Theorem 8.12.

10 Outlook

Having finished the proof of the local 2-separator theorem, we outline pos-
sible ways in which this theorem could be extended. We continue our inves-
tigation of local separators in [11] by proving a local version of the tangle
tree theorem. Another direction, might be to prove a matroidal analogue of
our local 2-separator theorem.

Question 10.1. Can you prove a local 2-separator theorem for (repre-
sentable) matroids that is reminiscent of Theorem 1.2?
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A natural next step would be to prove a local version of the Grohe-
Decomposition-Theorem, which gives a decomposition of a 3-connected graph
into ‘quasi 4-connected components’ [19]. We hope that with the methods
of this paper one should be able to prove the following.

It is natural to try to extend the notion of local 2-separators to local 3-
separators using explorer-neighbourhoods around three vertices; this is work
in progress [11]. As for local 2-separators the intuition for this comes from
separators of the r-local cover. I think that understanding local separators
through separators of the r-local cover is an exciting area for future research.
Given a parameter s ∈ N ∪ {∞}, we say that a graph is s-locally quasi 4-
connected if for every s-local 3-separator all but one of its components (that
is, components of the punctured explorer-neighbourhood) contain at most
one vertex.

Conjecture 10.2. For every parameter r ∈ N∪{∞} there is a parameter s
such that every s-locally 3-connected graph G has a graph-decomposition of
locality at least r and adhesion at most 3 such that all its torsos are minors
of G that are either r-locally quasi-4-connected or a complete graph of order
at most 4.

Remark 10.3. We do not conjecture any relationship between r and s, and
even r = s may be possible.
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