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Abstract
Background: Brain and nervous system tumours are the most common solid cancers in children.
Molecular characterisation of these tumours is important for providing novel biomarkers of disease
and identifying molecular pathways which may provide putative targets for new therapies. 1H magic
angle spinning NMR spectroscopy (1H HR-MAS) is a powerful tool for determining metabolite
profiles from small pieces of intact tissue and could potentially provide important molecular
information.

Methods: Forty tissue samples from 29 children with glial and primitive neuro-ectodermal
tumours were analysed using HR-MAS (600 MHz Varian gHX nanoprobe). Tumour spectra were
fitted to a library of individual metabolite spectra to provide metabolite values. These values were
then used in a two tailed t-test and multi-variate analysis employing a principal component analysis
and a linear discriminant analysis. Classification accuracy was estimated using a leave-one-out
analysis and B632+ bootstrapping.

Results: Glial tumours had significantly (two tailed t-test p < 0.05) higher creatine and glutamine
and lower taurine, phosphoethanolamine, phosphorylcholine and choline compared with primitive
neuro-ectodermal tumours. Classification accuracy was 90%. Medulloblastomas (n = 9) had
significantly (two tailed t-test p < 0.05) higher creatine, glutamine, phosphorylcholine, glycine and
scyllo-inositol than neuroblastomas (n = 7), classification accuracy was 94%. Supratentorial
primitive neuro-ectodermal tumours had metabolite profiles in keeping with other primitive neuro-
ectodermal tumours whilst ependymomas (n = 2) had metabolite profiles intermediate between
pilocytic astrocytomas (n = 10) and primitive neuro-ectodermal tumours.

Conclusion: HR-MAS identified key differences in the metabolite profiles of childhood brain and
nervous system improving the molecular characterisation of these tumours. Further investigation
of the underlying molecular pathways is required to assess their potential as targets for new agents.
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Background
Childhood brain and nervous system tumours are the
most common solid cancers of childhood. They comprise
a diverse set of diseases from the highly malignant to the
histologically 'benign' with a corresponding variety of
treatments, prognoses and outcomes. Improvements in
outcome have not matched those in other forms of child-
hood cancer and new methods are required to understand
the biology of these tumours and develop novel
approaches to therapy.

Currently the treatment of these tumours is largely deter-
mined through categorization of the cases by histopathol-
ogy, location, stage and patient age. The most common
high grade tumours can be categorised as primitive neur-
oectodermal tumours (PNETs) based on their histopatho-
logical appearance [1]. PNETs are embryonal tumours
and have subgroups which occur in various locations of
the brain, the sympathetic nervous system and the eye.
Neuroblastoma, arises from the sympathetic nervous sys-
tem and often presents with metastases at diagnosis and is
particularly challenging to treat. Intracranial PNETs are all
WHO grade IV tumours which have metastatic potential
and follow an aggressive clinical course.

Medulloblastomas occur in the cerebellum, pineoblasto-
mas in the pineal gland and supratentorial PNETs in other
supratentorial regions. They are all poorly differentiated
tumours with closely related histopathology. Despite their
many similarities, treatment is tailored to the specific sub-
type of tumour and improved characterization is an
important objective.

Other childhood brain tumours are diverse in terms of
histopathology, grade and clinical behaviour. In addition
to PNETs, brain tumours can belong to another common
histopathological category known as glial tumours. These
tumours are thought to arise from the supportive tissue of
the brain, glia. Astrocytomas, many of which are WHO
grade I, are the most common example of these tumours
in the brain. Ependymomas are locally aggressive tumours
which are predominantly WHO grade 2 and 3.

Although histopathology is an important method of char-
acterizing tumours and is the main method currently for
providing a diagnosis, it is not always straightforward to
distinguish between different tumour types using this
method and the development of new techniques may
improve characterisation and diagnosis in difficult cases.
Furthermore histopathology is often a poor predictor of
tumour behaviour and response to treatment. The
improved characterization of these tumour types through
the discovery of novel biomarkers is an important step in
optimizing treatment for individual patients.

Tumour genetics is emerging as an important adjunct to
histopathological diagnosis and clinical indicators in
determining prognosis and stratifying treatment. Amplifi-
cation of the MYCN oncogene is already used clinically as
a prognostic marker to stratify treatment in neuroblast-
oma and cMyc has been linked to a more aggressive phe-
notype in medulloblastoma [2,3]. Furthermore, gene
expression profiling has been highly successful in subcate-
gorizing the different subtypes of PNETs and has led to the
discovery of prognostic markers [4]. Through this process,
specific molecular pathways are being identified for spe-
cific tumours leading to the discovery of potential targets
for new therapeutic agents.

With the identification of specific patterns of gene expres-
sion, there is increasing interest in probing the down-
stream molecular pathways related to these changes. One
strategy which has emerged as being of particular interest
is the broad sampling of metabolite levels as a measure of
tumour metabolism, a strategy commonly termed metab-
olomics. 1H nuclear magnetic resonance (NMR) spectros-
copy can measure the concentration of a range of
metabolites and is a particularly powerful tool for meas-
uring metabolite profiles. Several studies have used NMR
to measure metabolite profiles from chemical extracts of
excised brain tumour tissue and found that specific
metabolites differ between brain tumour and healthy
brain [5], low grade and high grade astrocytic tumours
[6,7], and glioblastoma and metastatic tumours. It has
been shown more recently that total choline correlates
with tumour progression [8]. The majority of extract stud-
ies on brain tumour tissue have focused on adult astrocy-
tomas however a study of pediatric posterior fossa
tumours [9] showed that medulloblastomas could be dis-
tinguished from astrocytomas by their metabolite profile.

A variant of the NMR technique known as high resolution
magic angle spinning NMR (HR-MAS) allows metabolite
profiling of intact tissue. The technique provides high res-
olution data on small (5–30 mg) inhomogeneous sam-
ples making it ideal for the study of tissue [10]. The
technique has had success in characterising a range of tis-
sues including diseased brain [11], breast tumour [12,13],
cervical [14], liver tumour [15,16], primary [17-19] and
metastatic [20] adult brain tumours and paediatric brain
tumours [21,22]. HR-MAS results also show a good corre-
lation with in vivo metabolite profiles measured by mag-
netic resonance spectroscopy in patients [21,23].

Recently, semi-automated methods have been developed
for accurately quantitating metabolite concentrations
from 1H HR-MAS spectra [24,25]. Multivariate tech-
niques such as principle component analysis (PCA) and
linear discriminant analysis (LDA) can be used to analyse
these metabolite concentrations with the goal of improv-
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ing tumour characterisation and classification [26,27].
The combination of minimal sample preparation, speed
of collecting HR-MAS data and automated analysis/classi-
fication, gives the potential for this strategy to provide a
rapid diagnostic aid. Current methods used for rapid diag-
nosis such as frozen section analysis have a low accuracy
and HR-MAS provides a potential method to improve
this. However, more importantly, the analysis of metabo-
lite profiles gives the opportunity to identify key molecu-
lar pathways to improve our understanding of tumour
biology and provide new targets for novel therapeutic
agents.

In this study we use 1H HR-MAS of intact tissue to explore
childhood PNETs and glial tumours. The initial aim is to
ascertain whether these tumours form distinct groups
according to their metabolite profiles and, if so, to deter-
mine the characteristic metabolite profiles of the tumour
groups. For PNETs and glial tumours there are sufficient
numbers of cases in this study to estimate the accuracy of
classification by this method. Numbers in specific tumour
groups are smaller but a preliminary analysis has been
performed on the three main tumour types grade 1 astro-
cytomas, medulloblastomas and neuroblastomas. For the
other tumour groups, the relationship of these cases to the
larger groups has been explored.

Results
Comparison of intra and inter tumour variability
An analysis of the neuroblastoma tumours showed that
10 of the 17 metabolites measured have a significantly (z-
test) smaller variability between tumour samples from the
same patient than between tumour samples taken from
different patients. No metabolites showed a significantly
greater intra-tumour than inter-tumour variability. All
subsequent analyses were performed with a dataset con-
taining the mean metabolite values for each tumour to
avoid bias due to multiple samples being available for
some tumours.

Comparison Between PNET and Glial Tumours
Mean metabolite values for all PNET and glial tumours are
shown in Table 1. Statistically significant differences (2
tailed t-test, p < 0.05) between PNET and glial samples
were found in 6 of the 17 metabolites. Higher taurine,
phosphoethanolamine, phosphorylcholine and choline
together with lower creatine and glutamine were found to
be the important discriminators of PNETs from glial
tumours. A principal component analysis performed on
all fitted metabolite quantities is shown in Figure 1. The
plot shows a good splitting between PNET and glial
tumours using the first two principal components. The
first and second principal components accounted for 20%
and 15% of the variance respectively. Linear discriminant
analysis was performed on the first 3 principle compo-

Table 1: Univariate statistics Glial vs PNET. 

Metabolite Glial PNET Two-tailed t-test
Mean SE Mean SE P value

NAA 0.80 0.20 0.90 0.27 -
Ace 0.17 0.04 0.12 0.02 -
Ala 1.54 0.23 1.42 0.17 -
Asp 0.55 0.14 0.28 0.07 -
Cho 0.51 0.05 0.74 0.08 < 0.05
Cr 2.58 0.45 1.52 0.22 < 0.05
Glu 2.40 0.34 3.29 0.43 -
Gln 5.10 0.50 2.04 0.38 < 0.0001
GPC 0.79 0.11 0.60 0.17 -
Gly 1.44 0.20 2.08 0.35 -
Lac 12.8 1.10 10.1 0.90 -
m-Ins 3.32 0.79 2.20 0.34 -
PC 0.67 0.05 1.75 0.37 < 0.05
PEth 0.17 0.41 2.25 0.30 < 0.01
s-Ins 0.08 0.19 0.33 0.05 -
Suc 0.08 0.02 0.08 0.02 -
Tau 0.95 0.21 2.38 0.35 < 0.01

Mean and standard error (SE) of metabolite levels for glial and PNET 
tissue with statistical significance levels from two-tailed students t-
tests assuming unequal variance shown for significant metabolites. All 
metabolite quantities were divided by the fitted spectral area between 
0.5 and 4.5 ppm. Tau – Taurine, Suc – Succinate, s-Ins – scyllo inositol, 
PEth – phosphorylethanolamine, PC – phosphorylcholine, m-Ins – 
myo-inositol, Lac – lactate, Gly – glycine, GPC – 
glycerophosphorylcholine, Gln – glutamine, Glu – glutamate, Cr – 
creatine, Cho – choline, Asp – aspartate, Ala – alanine, Ace – 
aspartate, NAA – N-acetylaspartate.

PCA for all tumoursFigure 1
PCA for all tumours. PCA scores of the fitted metabolite 
quantities for all tumours.
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nent (PC) scores and provides complete separation of the
two groups in the first discriminant function, Figure 2a.
The corresponding metabolite coefficients are shown in
Figure 2b and are dominated by the metabolites found to
be significantly different on the t-tests. The classification
accuracy was 90% with an error rate of 18%.

Comparison Between Medulloblastoma and 
Neuroblastoma Tumours
Mean metabolite quantities for medulloblastoma and
neuroblastoma are shown in Table 2. Significant differ-
ences (2 tailed t-test, p < 0.05) were found in 5 of the 17
metabolites with medulloblastomas having higher creat-
ine, glutamine, phosphorylcholine, glycine and scyllo-
inositol. The PCA scores plot (Figure 3) shows a near com-
plete separation between the medulloblastomas and neu-
roblatomas. LDA was performed on the first 5 principal
components and the scores plot is given in Figure 4a. The
first discriminant function gives a complete separation of
the groups and the metabolite coefficients of this function
are given in Figure 4b. Apart from the 5 metabolites which
are significantly different between the tumours, high
phosphoethanolamine is also found to be an important
discriminant of medulloblastoma. Taurine is neither sig-
nificantly different between the tumour groups nor an

important discriminator between the tumour groups. The
classifier accuracy was 94% with an error rate of 19%.

Comparison Between All Tumour Types
Mean metabolite values for the three main tumour
groups, medulloblastoma, neuroblastoma and pilocytic
astrocytoma are given in Table 2. LDA was performed on
the first 6 principal components from these tumour
groups. From the scores plot of Figure 5, each tumour
group is separable with no overlap. The classifier accuracy
was 80% with an error rate of 32%. The first two discrimi-
nant functions were used to calculate scores for the epend-
ymoma and supratentorial-PNET samples which were
plotted on Figure 4. The ependymomas lie between the
PNET and glial tumours whilst the supratentorial-PNET is
between the neuroblastomas and the medulloblastomas.
Typical spectra for the five tumour groups are shown in
Figure 6.

Discussion
In this study, metabolite profiles were measured using 1H
HR-MAS on a series of ex vivo tissue samples from child-
hood brain and nervous system tumours. Metabolite pro-
files characteristic of PNETs and glial tumours were found
and these provided a high accuracy of discrimination
between the tumour groups. Notable differences were also

LDA PNET vs glialFigure 2
LDA PNET vs glial. Linear discriminant analysis of PNET vs glial tumours performed on the first 3 principal components of 
fitted metabolite quantities showing a) Discriminant Function (DF) scores and b) coefficients of the first DF. Tau – Taurine, Suc 
– Succinate, s-Ins – scyllo inositol, PEth – phosphorylethanolamine, PC – phosphorylcholine, m-Ins – myo-inositol, Lac – lactate, 
Gly – glycine, GPC – glycerophosphorylcholine, Gln – glutamine, Glu – glutamate, Cr – creatine, Cho – choline, Asp – aspar-
tate, Ala – alanine, Ace – aspartate, NAA – N-acetylaspartate. (classifier accuracy: 90%).
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detected between the two major contributors to the PNET
group, medulloblastoma and neuroblastoma with a simi-
larly high accuracy of discrimination.

An important finding in neuroblastomas is that metabo-
lite concentrations generally vary less within a tumour
than between tumours. Tumours can be highly heteroge-
neous at both the microscopic and the macroscopic level

and it is important that a small area of tumour can be
sampled without compromising the result. Furthermore,
the small variability within the tumour is encouraging for
the interpretation of in vivo MRS where large volumes (>
1 cm3) of tumour must be sampled for technical reasons.
This finding is consistent with a report which compared in
vivo MRS and 1H HR-MAS across a range of childhood
brain tumours [23].

PCA is useful method for initial investigation of metabo-
lite profiles since it reveals the characteristics which dom-
inate the variability within the data. The separation
between the glial and PNET tumours in the PCA (Figure 1)
demonstrates that tissue morphology is a major determi-
nant of metabolite profiles and that tumours with related
histology have similar metabolite profiles. LDA finds the
maximum separation between the groups and is useful for
determining the relative contributions of individual
metabolites in discriminating between the tumours. The
LDA coefficients (Figure 2b) show that PNETs can be dis-
ciminated from glial tumours by higher taurine, phos-
phoethanolamine, phosphorylcholine and choline
together with lower creatine and glutamine. This agrees
with the findings of the 2 tailed t-test (Table 1) and con-
firms that these tumour metabolites define distinct
metabolite profiles for these tumour groups. The PCA
scores plot of Figure 3 shows that medulloblastomas have
distinct metabolite profiles from neuroblastomas. These
tumour groups can be difficult to distinguish on tissue

Table 2: Univariate statistics Astro vs MB vs NB. Mean and standard error (SE) of metabolite levels for astrocytoma G1 (Astro) (N = 
10), medulloblastoma (MB) (N = 9) and neuroblastoma (NB) (N = 7) tissue. 

Metabolite Astro MB NB Two-tailed t-test (MB vs NB)
Mean SE Mean SE Mean SE P value

NAA 0.90 0.29 0.66 0.22 1.26 0.48 -
Ace 0.19 0.06 0.09 0.03 0.17 0.06 -
Ala 1.63 0.51 1.48 0.49 1.25 0.47 -
Asp 0.54 0.17 0.22 0.07 0.32 0.12 -
Cho 0.52 0.17 0.68 0.23 0.81 0.30 -
Cr 2.45 0.77 2.05 0.68 0.96 0.36 < 0.01
Glu 2.57 0.81 2.90 0.97 3.50 1.32 -
Gln 5.36 1.69 3.15 1.05 0.61 0.23 < 0.001
GPC 0.81 0.25 0.60 0.20 0.61 0.23 -
Gly 1.57 0.50 2.83 0.94 1.29 0.49 < 0.05
Lac 13.5 4.27 9.29 3.10 11.2 4.24 -
m-Ins 2.25 0.71 1.72 0.57 2.72 1.03 -
PC 0.66 0.21 2.45 0.82 0.87 0.33 < 0.05
PEth 1.19 0.38 2.67 0.89 1.61 0.61 -
s-Ins 0.35 0.11 0.42 0.14 0.23 0.09 < 0.05
Suc 0.09 0.03 0.07 0.02 0.09 0.03 -
Tau 0.90 0.28 2.61 0.87 1.92 0.73 -

Statistically significant differences between medulloblastomas and neuroblastomas resulting from two-tailed students t-tests assuming unequal 
variances are indicated. All metabolite quantities were divided by the fitted spectral area between 0.5 and 4.5 ppm. Tau – Taurine, Suc – Succinate, 
s-Ins – scyllo inositol, PEth – phosphorylethanolamine, PC – phosphorylcholine, m-Ins – myo-inositol, Lac – lactate, Gly – glycine, GPC – 
glycerophosphorylcholine, Gln – glutamine, Glu – glutamate, Cr – creatine, Cho – choline, Asp – aspartate, Ala – alanine, Ace – aspartate, NAA – 
N-acetylaspartate.

PCA NB vs MBFigure 3
PCA NB vs MB. PCA scores plot for neuroblastoma and 
medulloblastoma cases.
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morphology alone showing that tumour biology is also
important in determining 1H HR-MAS metabolite pro-
files. Several studies have shown that medulloblastomas
and neuroblastomas possess key molecular genetic mark-
ers and it has also been established that PNETs in the
brain may be sub-categorized according to their gene
expression profiles [4]. Evidence that 1H HR-MAS can
detect subtle differences in metabolite profiles associated
with tumour biology has previously been established in
neuroblastoma cell lines [28]. It will now be important to
use both 1H HR-MAS and molecular genetics to fully
characterise a larger number of tumour samples and map
the metabolite profiles to the molecular pathways
involved. An understanding of the key pathways and their
regulatory mechanisms is an important initial step in the
discovery of novel tumour specific therapeutic targets.

The LDA performed on the three main tumour types,
grade 1 astrocytomas, medulloblastomas and neuroblast-
oms (Figure 5) showed that ependymomas have features
between those of pilocytic astrocytomas and PNETs whilst
the supratentorial-PNET lay between the neuroblastomas
and medulloblastomas. The analysis demonstrates that
tumours with related histopathological features have sim-
ilar metabolite profiles. This is to be expected for
supratentorial-PNETs since they bear a close resemblance

to other PNETs in both their morphology and behaviour
although supratentorial-PNETs generally have a worse
prognosis overall. However, ependymomas are very much
more distinct from grade 1 astrocytomas and are clinically
more aggressive. The groupings seen by the metabolite
profiles therefore reflect the known biological and clinical
behaviour of the tumours. This finding supports the
grouping of the cases into glial tumours and PNETs for the
purposes of building LDA classifiers. The combining of
tumour types to form larger groups is an important strat-
egy since paediatric tumours are rare and it is difficult to
obtain sufficient numbers to build reliable classifiers for
individual tumour types.

Rapid intra-operative diagnosis is an important clinical
investigation and is currently carried out using frozen sec-
tions or smear preparations. 1H HR-MAS requires mini-
mal sample preparation and the data can be acquired in
less than 30 mins. When combined with automated soft-
ware for spectral analysis and classification it has the
potential to provide a preliminary diagnosis during sur-
gery. Good quality data can be acquired from pieces of tis-
sue smaller than 5 mg making it possible to acquire data
on samples extracted via minimally invasive stereotactic
biopsy although data acquisition times may be longer.
Estimated diagnostic accuracies of 90% for the PNET ver-

LDA MB vs NBFigure 4
LDA MB vs NB. Linear discriminant analysis of Medulloblastoma vs Neuroblastoma performed on the first 5 principal com-
ponents of the fitted metabolite quantities, showing a) Discriminant function (DF) scores and b) DF 1 metabolite coefficients. 
Tau – Taurine, Suc – Succinate, s-Ins – scyllo inositol, PEth – phosphorylethanolamine, PC – phosphorylcholine, m-Ins – myo-
inositol, Lac – lactate, Gly – glycine, GPC – glycerophosphorylcholine, Gln – glutamine, Glu – glutamate, Cr – creatine, Cho – 
choline, Asp – aspartate, Ala – alanine, Ace – aspartate, NAA – N-acetylaspartate. (classifier accuracy: 94%).
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sus glial tumour classifier and 94% for the neuroblastoma
versus medulloblastoma classifier are encouraging. The
lower accuracy achieved by the three tumour classifier
(Figure 5) implies that the optimal strategy may be to use
clinical and radiological information to reduce the
number of diagnoses under consideration prior to the 1H
HR-MAS analysis. Discriminating PNETs from glial
tumours is clinically important for tumours in several
locations, in particular the cerebellum and cerebral hemi-
spheres. A prospective comparison with rapid histopa-
thology techniques such as frozen sections would be an
interesting extension of this work.

Biochemical changes have been noted previously in child-
hood brain and nervous system tumours but there is lim-
ited understanding of their significance. The high taurine
in medulloblastomas has been reported previously in-
vivo [29,30] and in small studies using 1H HR-MAS
[22,27]. The current study shows that taurine is also high

in neuroblastomas. Taurine is known to play an impor-
tant role in neurodevelopment [31] and may be a marker
of neural tumours, however, its role in tumourigenesis is
unclear. Choline metabolism has been related to tumour
growth in numerous studies reviewed in [32], and high
phosphocholine/glycerophosphocholine ratio is seen in
rapidly growing aggressive tumours [7]. The high phos-
phocholine and phosphocholine/glycerophosphocholine
ratio seen in medulloblastomas is therefore consistent
with their rapid growth and high grade and confirms data
obtained on these tumours in vivo and ex vivo [27]. This
pattern of metabolite values is not seen in neuroblasto-
mas, however, 5 of the 7 tumours were MYCN non-ampli-
fied and it has been established in cell lines that
phosphocholine/glycerophosphocholine is high in
MYCN amplified but not MYCN non-amplified tumours
[28]. Phosphocholine/glycerophosphocholine is low in
pilocytic astrocytomas as expected from their clinical and
biological properties. High phosphoethanolamine levels

LDA Astro vs MBFigure 5
LDA Astro vs MB. Linear discriminant analysis of Astrocytoma G1 vs Medulloblastoma vs Neuroblastoma performed on the 
first 6 principal components of the fitted metabolite quantities. (classifier accuracy: 80%).
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HR-MAS spectraFigure 6
HR-MAS spectra. High resolution magic angle spinning 1H NMR spectra for the five tumour groups studied. Spectra were 
baseline corrected [36] and then scaled to the spectral area between 0.5 ppm and 4.5 ppm. Tau – Taurine, PEth – phospho-
rylethanolamine, PC – phosphorylcholine, m-Ins – myo-inositol, Lac – lactate, Gly – glycine, GPC – glycerophosphorylcholine, 
Gln – glutamine, Glu – glutamate, Cr – creatine.
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in medulloblastomas confirm an observation made in a
prior 1H HR-MAS study [22] and may reflect the close
relationship of this metabolite to the pathways for choline
metabolism. Changes in glutamine levels may be medi-
ated through its precursor glutamate. Glutamate is a key
metabolite in the citric acid cycle and also an important
neurotransmitter. In general, the biochemical changes
found in these tumours are poorly understood and further
studies elucidating the molecular pathways and their reg-
ulation are required to improve our understanding of
these tumours.

Conclusion
1H HR-MAS combined with automated spectral analysis
is a powerful method for determining metabolite profiles
of small tumour tissue samples. Specific differences exist
between the 1H HR-MAS profiles of childhood glial and
PNET tumours indicating that tumour morphology is an
important determinant of metabolite profiles. Significant
differences also exist between the metabolite profiles of
medulloblastoma and neuroblastoma indicating that 1H
HR-MAS can detect subtle differences between tumours
which have closely related histopathology. Further eluci-
dation of the key molecular pathways regulating these
processes will improve our understanding of these
tumours and may identify targets for new drugs tailored to
specific tumours.

Methods
Patients and samples
Forty tissue samples were collected from 29 patients at Bir-
mingham Childrens Hospital. Each sample was biopsied
prior to the patient receiving treatment and a histopatho-
logical diagnosis being made. Ethical committee approval
for the study and written informed consent from the fam-
ily were obtained. The PNETs comprised 9 medulloblast-
omas, 7 neuroblastomas and 1 supratentorial PNET. Of
the neuroblastomas: 4 had stage 1 disease and 3 had stage
4 disease; 2 tumours were MYCN amplified; 2 of the pri-
mary tumours were in the thorax whilst the rest were
below the diaphragm; the patients ranged from 3 months
to 38 months at diagnosis. The medulloblastomas were
from 9 children, 1 had desmoplastic medulloblastoma
and the rest had classic histology, 4 patients had localized
tumours whilst 5 had metastatic disease (Chang stages 1
to 3). The glial tumours consisted of 10 pilocytic astrocy-
tomas (grade 1) and 2 ependymomas. The pilocytic astro-
cytomas were in the cerebellum in 5 cases and in the
supratentorial region in 5 cases. Both ependymomas arose
from the cerebellum, one was a grade 2 tumour and the
other a grade 3 tumour. The neuroblastoma cases had up
to 3 samples available. The other tumour types had one
sample available.

1H HR-MAS
Biopsy tissue was snap frozen in liquid nitrogen shortly
after resection and stored at -80°C. Just prior to HR-MAS,
tissue was thawed at room temperature and cut to approx
15 mg where appropriate. The mean sample mass was
10.2 mg with a standard deviation of 6.2 mg. The tissue
was then placed into a 40 μL wide mouth zirconia rotor
and weighed. 4 μL of 3-(trimethylsilyl)proponic-2,2,3,3-
d4 acid sodium salt (TSP) was dissolved in D2O at a con-
centration of 10 mM and was added to the rotor. The
remaining volume of the rotor was filled with D2O. 1H
HR-MAS was performed on a Varian 600 MHz vertical
bore spectrometer using a 4 mm gHX nanoprobe (Varian
NMR Inc, Palo Alto, CA, USA) with a 3 channel INOVA
console running VNMRj software. The probe temperature
was set to 0.1°C to minimize sample degradation, and the
sample was spun at 2500 Hz. This equated to a sample
temperature of 6.7°C determined by methanol calibra-
tion. A standard pulse and acquire sequence was used
which consisted of a single 90°C pulse preceded by one
second of water presaturation. This was followed by the
acquisition of 16 K complex points at a sampling fre-
quency of 7200 Hz. 512 scans were acquired with a repe-
tition time of 3.3 seconds giving a total acquisition time
of 28 mins. A 30-ms CPMG pulse sequence was also used
to aid metabolite assignment. This consisted of an xy 16
hard pulse train with a 1-s water presaturation pulse; the
rotor speed was 2500 Hz; 512 scans were acquired with a
repetition time of 3.3 seconds giving a total acquisition
time of 28 mins. The phases of the CPMG refocussing
pulses were arrayed (x, y, x, y, y, x, y, x,-x,-y,-x,-y,-y,-x,-y,-
x) as described in [33]. Tuning and matching, 90° pulse
width and the pre-saturation pulse frequency were opti-
mised for each sample.

Fitting and Multivariate Analysis
Raw data was Fourier transformed to 16 K points, phased
and referenced to the creatine peak at 3.03 ppm using in
house software. The phased data was then transformed
back to the time-domain and the TARQUIN algorithm
was used to fit the metabolite components of the signal
[24]. This algorithm was chosen as it has been shown to
be robust to the shifting of metabolite peaks caused by pH
variation, which is of particular importance in the analysis
of HR-MAS data.

The TARQUIN algorithm measures the metabolite quan-
tities by fitting a series of simulated individual metabolite
signals to the experimentally acquired data. The individ-
ual metabolite signals were simulated from chemical shift
and j-coupling values published by Govindaraju et al [34].
Since the metabolite chemical shift values can have a
minor dependence on temperature they were modified to
match our experimental conditions to ensure the best
starting point for the algorithm. Metabolite quantities
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were divided by the fitted spectral area between 0.5 and
4.5 ppm. Since multiple samples were available for some
of the neuroblastoma tumours, an analysis of the intra-
tumour versus inter-tumour metabolite variability was
performed for these tumours using a z-test. The metabo-
lite variability was defined as the ratio standard deviation/
mean. Only tumours for which 3 samples were available
were included in this analysis. All subsequent analysis
used mean metabolite values for each tumour. A t-test was
performed on all metabolite quantities to determine any
significant differences between PNETs and glial tumours
and between neuroblastoma and medulloblastoma pro-
files. Multivariate analysis was then performed following
an approach developed for small MRS datasets and previ-
ously used to classify in-vivo MRS data [27]. Firstly, prin-
cipal component analysis (PCA) was performed on the
standardized metabolite quantities to provide an unsu-
pervised analysis of the data and to reduce the effective
number of variables used in the subsequent supervised
analysis. Linear discriminant analysis (LDA) was then car-
ried out on the principal component scores using a leave-
one-out (LOO) process to estimate the classification accu-
racy. The number of principal components included in
the LDA was selected to be the smallest of: a) the number
of components required to explain 90% of the variance
present in the data, b) the number of samples in the small-
est group minus one, c) the minimum number of compo-
nents required to achieve optimum classification
accuracy. Since the classification error estimated in this
way is susceptible to bias from over-fitting, cross valida-
tion using the 632+ bootstrapping method, as described
by Davies et al [27], was used to estimate the error
eB632+.

This method was used to classify samples in two groups as
either glial type tumours or PNETs. A second classifier was
then developed to separate the PNET samples as medul-
loblastomas and neuroblastomas. To compare the pro-
files of each individual tumour type, a three group
classifier was developed to distinguish astrocytoma grade
1 tumours, medulloblastomas and neuroblastomas. The
supratentorial-PNET and ependymoma tumours were
excluded for the calculation of the disciminant coeffi-
cients in the three group classifier to prevent over – fitting
for groups with low sample numbers. Once disciminant
coefficients had been calculated, they were then used to
calculate the scores for the full data set including
supratentorial-PNET and ependymoma samples. The
MATLAB [35] Statistics Toolbox implementation of PCA
and LDA was used.
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