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School of Mathematics, the University of Birmingham, Birmingham B15 2TT, UK

(Received 26 April 2010; revised 25 February 2011; accepted 21 March 2011;
first published online 24 May 2011)

This paper investigates the behaviour of a non-spherical cavitation bubble in an
acoustic standing wave. The study has important applications to sonochemistry and
in understanding features of therapeutic ultrasound in the megahertz range, extending
our understanding of bubble behaviour in the highly nonlinear regime where jet and
toroidal bubble formation may be important. The theory developed herein represents
a further development of the material presented in Part 1 of this paper (Wang & Blake,
J. Fluid Mech. vol. 659, 2010, pp. 191-224) to a standing wave, including repeated
topological changes from a singly to a multiply connected bubble. The fluid mechanics
is assumed to be compressible potential flow. Matched asymptotic expansions for an
inner and outer flow are performed to second order in terms of a small parameter,
the bubble-wall Mach number, leading to weakly compressible flow formulation of
the problem. The method allows the development of a computational model for non-
spherical bubbles by using a modified boundary-integral method. The computations
show that the bubble remains approximately of a spherical shape when the acoustic
pressure is small or is initiated at the node or antinode of the acoustic pressure
field. When initiated between the node and antinode at higher acoustic pressures, the
bubble loses its spherical shape at the end of the collapse phase after only a few
oscillations. A high-speed liquid bubble jet forms and is directed towards the node,
impacting the opposite bubble surface and penetrating through the bubble to form a
toroidal bubble. The bubble first rebounds in a toroidal form but re-combines to a
singly connected bubble, expanding continuously and gradually returning to a near
spherical shape. These processes are repeated in the next oscillation.

Key words: bubble dynamics, cavitation, sonoluminescence

1. Introduction

In Wang & Blake (2010, hereafter referred to as Part 1), we developed a weakly
compressible theory for non-spherical bubble dynamics when subjected to a harmonic
acoustic travelling wave. In this paper, we carry out a similar study using matched
asymptotic perturbations for non-spherical bubble dynamics in a standing wave but
include new developments by (i) considering a general plane wave and (ii) modelling
multiple topological changes of the bubble. A standing wave often occurs in a
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cavitation environment due to the superposition of a plane wave and the reflected
wave from a rigid wall.

The study has important applications to sonochemistry and in understanding
features of therapeutic ultrasound in the megahertz range, where jet and toroidal
bubble formation may be important (Lauterborn & Kurz 2010). In sonochemistry,
acoustically driven cavitation is used to promote mixing and reactions (Dahnke,
Swamy & Keil 1999). Reaction sites can often be observed as luminescing bubbles line
up across the antinode of a standing wave (Crum & Cordry 1994) with the internal gas
temperatures and chemical composition of importance in determining the reactions
that can take place. In aqueous systems, acoustic cavitation is used in ultrasonic
cleaners and processors, environmental remediation or enhanced crystallization
(Leighton 1994; Brennen 1995; Blake et al. 1999). Acoustic cavitation plays a key role
in numerous medical procedures, including sonoporation and ultrasound lithotripsy
(Goldberg et al. 1994; Putterman & Weninger 2000; Day 2005; Klaseboer et al. 2007;
Calvisi, Iloreta & Szeri 2008).

This paper concerns the behaviour of a micro-bubble (5-100 pm) in an acoustic
standing wave. As noted in Part 1, the behaviour is controlled by a range of physical
phenomena: the amplitude of the acoustic pressure, bubble size, bubble concentration
(distance to nearest neighbour), gas solubility, heat transfer, surface tension and,
for micro-bubbles, viscosity, may have an influence over part of the cycle, but is
typically dominated by inertial effects, with Reynolds number of (10°>-10%). The weak
compressibility of the liquid should be considered for describing the acoustic wave
and to facilitate the dispersive radiation of energy (Prosperetti & Lezzi 1986; Wang &
Blake 2010). Acoustic bubbles may also be associated with a violent collapse, where
compressibility needs to be incorporated to yield a more realistic and practical model
(Brenner, Hilgenfeldt & Lohse 2002).

A spherical bubble in a compressible fluid was first considered in connection with
an underwater explosion (Herring 1941; Cole 1948). The acoustic radiation into the
liquid from the oscillating bubble has been integrated into the Rayleigh model for
spherical bubbles by Gilmore (1952) and Keller and his collaborators (Keller &
Kolodner 1956; Epstein & Keller 1971; Keller & Miksis 1980). It has been widely
used in the study of acoustic bubbles in a plane standing wave and sonoluminescence
(Prosperetti, Crum & Commander 1988; Kamath, Prosperetti & Egolfopoulos 1993;
Brenner, Lohse & Dupont 1995; Matula et al. 1997; Hilgenfeldt et al. 1998 ; Brenner
et al. 2002). Prosperetti & Lezzi (1986) and Lezzi & Prosperetti (1987) studied the
radial dynamics of spherical bubbles in compressible fluids using matched asymptotic
expansions in terms of the bubble-wall Mach number. The theoretical studies of
a bubble in a standing wave have been largely based on the assumption that the
bubble is approximately spherical (Feng & Leal 1997). The translation of a bubble
is driven by a ‘Bjerknes force’ generated by a pressure gradient (Eller 1968; Brennen
1995).

Earlier studies considered the heat and mass transfer during the violent collapse
of non-spherical bubbles, showing in particular how the non-sphericity, including the
high-speed liquid jet and toroidal bubble formulation, can lead to significantly lower
gas temperatures (Calvisi et al. 2007). These collapse characteristics and resulting flow
field are important to sonochemistry as peak temperatures, strain rates, pressures,
mixing and radical production are affected. Modelling the internal chemistry and
thermodynamics is complicated depending on a range of parameters (e.g. evaporation,
condensation, molar fraction of species in mixture, water density, mass density and gas
constant of mixture). The physics will involve thermal and compositional boundary
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layers in both liquid and gas. A major theoretical approximation is to regard the
thermodynamics as slow or rapid. In the slow mode, temperature and chemical
composition within the bubble are assumed uniform, with water vapour freely entering
the bubble with minimal change in surface temperature. In the fast mode, the bubble
motion is much faster so that mass and thermal transfer may be neglected. Models
that have incorporated the concept of both slow and rapid thermodynamics have used
a changeover time as the equilibrium bubble radius in some therapeutic ultrasound
studies (Coussis & Roy 2008), while others have used a more detailed thermodynamics
behaviour to obtain the changeover time (see e.g. Szeri et al. 2003). However, in this
paper, we will consider just two cases, solely adiabatic and solely isothermal with the
algorithmic approximations mentioned above lying between the two extremes.

Viscous effects may be important for very small bubbles, especially during ‘after-
bounce’ behaviour associated with the natural frequency of a bubble which is most
noticeable when the driving frequency is much lower than the natural frequency, as
might occur in single-bubble sonoluminescence (SBSL), see also figure 2. In the case
of spherical bubbles, viscosity only enters the analysis through the normal stress on
the surface of the bubble but plays no role in the fluid body, apart from viscous
dissipation. Physically, this is realized in the extra work required to expand the bubble
against this additional normal viscous force on the bubble surface (see e.g. Gilmore
1952). If two modes of motion were included for the bubble (i.e. radial motion and
translational motion), a further viscous drag term would enter the global momentum
equation for the translational mode, thus dissipating energy associated with the
Kelvin impulse or Bjerknes force due to the spatially dependent wave form (as in a
travelling or a standing wave). Some authors include the normal viscous force in non-
spherical bubble models (through the 2u4(8%/¢dn?) term in Miksis, Vanden-Broeck
& Keller 1982) but note the failure of this method to incorporate the pressure drop
associated with the boundary layers, particularly at the poles of the bubble (Moore
1963). Boulton-Stone & Blake (1993) developed a viscous boundary layer approach
around a bursting bubble by exploiting the properties for a normal filament remaining
perpendicular to a stress-free surface (Batchelor 1968). Their analysis showed that the
addition of a boundary layer to this inertially dominant flow only marginally slowed
the liquid jet. Higher-order modes, often associated with parametric excitation, are
also damped by viscous effects and will generate heat in a thin layer of the surrounding
liquid (Prosperetti 1977; Popinet & Zaleski 2002; Versluis et al. 2010). The principal
objective of this paper though is to show the effects of compressibility on bubble
motion so we will not include viscous effects in our analysis but instead note that
viscous effects will lead to greater work done during volume change as well as slowing
the translational motion which may even completely impede jet formation for low
enough Reynolds numbers (R, < 25) (Popinet & Zaleski 2002).

Bubble dynamics in a compressible liquid may also be simulated using domain
approaches coupled with various interface-capturing schemes (Hua & Lou 2007;
Yue et al. 2007; Johnsen & Colonius 2008, 2009; Turangan et al. 2008). Johnsen &
Colonius (2008, 2009) analysed the dynamics of the shock-induced and Rayleigh
collapse of a bubble near a planar rigid surface and in a free field using the
unsteady Euler equations based on an inviscid and compressible flow model. Domain
simulation of this multi-scaled problem of multiple oscillations (as many as 20 cycles
or more) is computationally demanding, even if feasible on multiprocessor machines.
The theoretical developments in this paper however provide greater insight into the
physical process, (e.g. input wave, acoustic radiation, Bjerknes’ force and the Kelvin
impulse), as well as reducing the computational complexity.
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This paper is organized as follows. In §2, the flow problem is formulated based on
compressible potential flow theory. The asymptotic analyses of the inner and outer
flows is briefly described in § 3 and are summarized in §4. In § 5, the numerical model
using the mixed-Eulerian—Lagrangian (MEL) modelling is formulated and developed
for a bubble in a standing wave to include repeated topological change from singly
to multiply connected. In §§6 and 7, the calculation is performed for the case with
low and high acoustic pressures, respectively. The summary and conclusions are
presented in § 8.

2. Mathematical formulation

Consider a cavitation bubble with typical radius of O(um—mm) in an acoustic
wave due to high frequency ultrasound O(10>-10%)kHz at differing intensities in
the range O(10'-10%) wem™ (cf. Young 1989; Leighton 1994; Brennen 1995; Blake
et al. 1999). In this situation, the bubble dynamics can be modelled approximately
based on potential flow theory. We assume that the bubble radius is small compared
to the wavelength of the acoustic wave. The wavelength A of an acoustic wave is
A=c/f =210mm, when the acoustic frequency f <150kHz, where ¢ is the sound
speed in water (c =1500ms™").

The reference length R, is chosen as the equilibrium radius of the bubble, the
reference density p., is the density in the undisturbed liquid, and the reference
pressure p., is the pressure in the undisturbed liquid, often taken to be atmospheric
pressure. We use the reference velocity U = ./p../p., as the driving pressure is
normally measured as fractions or multiplies of atmospheric pressure. For reference
purpose, U takes the value of 10ms~' in water at atmospheric pressure. We thus
introduce the following non-dimensional quantities, indicated by asterisks:

r=Ryr. = Ust*, ¢ =RU@., c=cpce, p=py(l+p.). (2.1a—e)

Here ¢ is the velocity potential. The sound speed c is normalized by its value at the
undisturbed liquid c.. In the following discussion we refer to dimensionless quantities
unless specified otherwise.

A Cartesian coordinate system is chosen, with the origin at the centre of the bubble
at 1. =0, and the z.-axis is along the direction of the acoustic wave. The liquid flow
is governed by the equation of mass conservation

2 (0h.
cz \ 0t
and the Bernoulli equation,
a(p* 1 2
= V.. h. =0. 2.2b
o T IVeeel (2.2b)
Here the parameter
&= v (2.3)
Cpo

is the bubble-wall Mach number, which is assumed to be small in the present study.
This theory is thus valid for weakly compressible fluids, where the nonlinear shock-
wave formulation has a negligible effect on the flow. The small parameter ¢ can
also be interpreted as the ratio of the typical scale of the bubble radius R, over the
wavelength A of the acoustic wave (Wang & Blake 2010).
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We assume that thermal effects in the liquid itself are insignificant. The liquid state
is thus completely defined by a single thermodynamic variable. The sound speed c.
and enthalpy 4. of the liquid can be given approximately as follows (Wang & Blake
2010, (2.8a,b) therein):

cl=1+¢&n—1)h., (2.4a)
he = p. — Le?pl +o(&?). (2.4b)
Substituting (2.4) into (2.2) yields

2 a *®
Vi + = ( P V. 'V*p*> — 0(s%), (2.5a)

c; \ 0t

dp. 1 ) _ )

. + 2\V*<p*\ + p. = 0(&%). (2.5b)

The present modelling is formulated directly in terms of pressure of the liquid
rather than on enthalpy as in Part 1.
The kinematic material boundary condition on the bubble surface S is

dr.
dz.

Assuming that the expansion and contraction of the bubble gas is adiabatic, the
liquid pressure p; on the bubble surface is given by,

Vo \” 1 1
x — Py= * — — O« ) 2.
PrLe = Pur + Pgo <V> o (Rl* +R2*> (2.7)

where p,. is the partial pressure of vapour of the bubble, p.o. = peo/ps is the
equilibrium partial pressure of the non-condensable gas content of the bubble, V. is
the bubble volume and Vj. is its initial value, and y is the ratio of the specific heats
of the gas content, R;. and R,. are the principal radii of curvature and 0. =0 /(R Py)
is the surface tension coefficient.

Assuming the acoustic wave to be a plane propagating wave along the z.-axis yields
the condition at infinity of

= V... (2.6)

§0|r*4>00 = Qg+ = f*(a)*t* - k*Z*) + g*(w*t* + k*Z*), (2.8)

where the wavenumber k. and frequency w. of the acoustic wave can be
obtained from their corresponding dimensional values k and w, respectively,
k.= R;k and w. = R,w/U.

3. Matched asymptotic expansion

In Part 1, we developed a matched asymptotic expansions approach for a singly
connected bubble subjected to a harmonic plane wave. This approach will be
generalized for a doubly connected bubble subjected to a general plane wave. We will
mainly focus on the differences between this paper and the earlier paper in the series
(Wang & Blake 2010).

The inner region near the bubble where (x, y, z) = O(R,) and the outer region far
away from the bubble where (x, y, z)= O(4), are illustrated in figure 1. The inner
expansions for the potential ¢. and pressure p. are as follows:

Ou(Fey 1) = @o(Fs, 1) + €@ (P t) + 7+ -, (3.1a)
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FIGURE 1. A representation of the weakly compressible model for a micro-cavitation bubble
subjected to a plane standing wave, with the wavelength 4 being much larger than the
equilibrium radius of the bubble R;.

px(rs, t) = po(rs, t.) + epi(re, t) + - - (3.1b)
Substitution of (3.1) into (2.5a,b) yields the inner field equations,

Vigi =0 fori=0,1. (3.2)

The general solutions of Laplace’s equation (3.2) are given as follows:

d0¢i(q,t) aG(r., q)
pilre 1) = fi(t) + gt )z + / W) G g)— gilg. 1) 290D as(q)
s 371 8n
- [ota. ) Dasiq) fori=o.1. (33)
c on

where the unknown functions f;(z.), gi(t.) for i =0, 1 are to be determined by the
matching between the inner and outer expansions, S is the bubble surface, n is the unit
outward normal on the surface, ¢ is the integration variable on the bubble surface S,
and the free-space Green’s function is

1

—anir—al (3.4)

G(r.,q)

The integral on the cut C in (3.3) is added only for a toroidal bubble, when the
liquid field is doubly connected. The branch cut C across the jet is used to render the
fluid domain singly connected (Best 1993).

The outer limit of the two lowest-order inner solutions is as follows:

1 mo(t.

(0 = (@) +e(00)" = flt) + otz + 3= "2 (e 4 egifr)z. + O,

(3.5)
where
0 s b
mo(t.) = / %) ds(q). (3.6)
s n

Denoting the outer expansions in terms of the outer variable 7 =e¢r. as follows:

(p* :¢O(F7t*)+8¢1(F7 t*)—l_v (3761)

pe = Po(Fo ) + e P(F, t) + - (3.7h)
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Substituting (3.7) into (2.5a,b) yields the equations for the two lowest-order outer
solutions

3¢
or?
where the operator V is defined in terms of 7.
The leading outer solution is the incident acoustic wave
@0 = fe(w:(ts —2)) + ge(w:(t. + 2)). (3.9)

The general solution of the second-order outer solution ¢; can be obtained as
follows:

Vi — =0 fori=0,1, (3.8)

F t* -7
gy = [l 1) e N, (3.10)
where F; is an arbitrary function having a second-order derivative.
The inner limits of the two lowest-order outer expansions (3.9) and (3.10) can be

obtained as follows:

) Fi(z.
(@) = fi(wets) + ge(wite) + eweza(— fl(wste) + gulwsts)) + i) _ eF{(t.) + O(&?).

(3.11)
Using Van Dyke’s matching principle (Van Dyke 1975) with (3.5) and (3.11) yields
fo(te) = fulwsts) + ge(wt.), go(t:) =0, (3.12a)
Fy(t.) = mz(;*), (3.12b)

, mg(ts , ,
filts) = —F{(t.) = —%, gi(te) = w(—fl(wst.) + gu(wsts)). (3.12¢)

Combining (3.9), (3.10), (3.12¢) yields the first two outer solution terms,
t* -7

6= fnlt—2) + goln(te +2) + ™D | o2, (3.13)

4nti

The outer flow becomes a direct problem to second order. The first-order outer
solution is the incident acoustic wave, and the second-order outer solution is due to
a point source whose strength is equal to the rate of change of the bubble volume.

4. The theoretical basis for the computational model: second-order theory

The combined two lowest-order inner solutions, @.(r«,t.)=@o(r«,t.) + €@((r«, t.),
yield the following set of equations for the potential,

Vip. = 0(e?), (4.1a)
d *
d; —V.p. + 0(s%) on S, (4.1b)
dg. 1
O Vel + pr. = O(e?) on S, @4.1¢)
0t 2
1 mo(l*)

+ 0(&?). (4.1d)

Pelrne = Jolt) + ef1(ta) + £81(12)20 +
T 7

One can draw the following conclusion from (4.1): to second order (first order in
¢) the problem reduces to Laplace’s equation with the compressible effects appearing
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only in the far-field condition (4.1d). We know from (4.1d) that the fluid velocity in
the far field is V.¢.|, =&egi(t.)k, where k is the unit vector along the z.-axis.

Assuming that the bubble is in an equilibrium state before the arrival of the acoustic
wave, the initial condition on the bubble surface is given by

@nel,_o =€81(0)n-k on r. = Ry.. (4.2)

We choose the coordinates r, moving with a (time-dependent) uniform stream at
infinity, in which the flow velocity vanishes at infinity

Iy =te, Iy ="s~+ (fu(wels) — gu(w:ts))k. (4.3)
In addition, we make the following decomposition:
@ = folty) + efi(ty) + eg1(ty)zp + D. (4.4)
Substituting (4.3), (4.4) into (4.1) yields
Vid = 0(s?), (4.5q)
(312’ =V,® + 0(¢?) on S, (4.5b)

do | Voo \” 11
721 = @2_ v * I— — O«
d, ~ ' TaIV®l <p  Peo <V) 7 <R1*+R2*>>

—w.(fl(wsty) + g(wty)) + €— ! my(ty) + ewl(fl (wity) — gl(wity))zp + O(e?),  (4.5¢)

4T
1 mo(tp)
D, ., = e + 0(&?), (4.5d)
Pyslyeg =0 on r. = Ro.. (4.5¢)

Note (3.12) has been used in deriving (4.5¢).
Using the definition m,(z.) in (3.6) and (4.4) leads to

mo(ty) = / ZdS + 0(e). (4.6)

Like in the special case of a harmonic progressive wave (Wang & Blake 2010),
there are three additional terms associated with the acoustic wave contribution
in the dynamic condition on the bubble surface (4.5¢). The first term of O(1),
—w.(fl(wtp) + g.(w.ty)), represents the local acoustic pressure at the bubble centre:

0@y«

” = —w.(fl(w.p) + gu(wtp)). (4.7)
b

2+=0

pa*(tb) = -

The second term, e(1/4m)myg(t,), is associated with an outward-propagating acoustic
wave due to the bubble’s oscillations. The first two terms yield only spherical wave
field effects.

However, the third term, sw?(f/(w.ty) — g/ (w-1,))2s, is associated with the inertial
force effect due to the acoustic wave and breaks the spherical symmetry. Using (4.3),
the acceleration of the system r, can be calculated as

Ay = e (— f(w.ty) + gl (waty))k. (4.8a)
The inertial force on the bubble is given by
Fi. = Ve (fl(w.1y) — gl (w.tp))k. (4.8b)
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The inertial force is equivalent to the more well-known Bjerknes force acting on
the bubble, which is the resultant force due to the pressure gradient acting over the
bubble surface. To calculate the Bjerknes force using the Gauss’s divergence theorem,
we extend p,.(r., t,) into the inner region continuously using the same expression of
the function. The Bjerknes force may be obtained as follows:

Fp. = — % Paxtty dS = —w. f(f,f(w*tb —ew.7p) + gi(waty + ewszp))n, dS,  (4.9)
s s

where n,;, is the outer normal to the inner region of the bubble. The force can be
simplified by using a Taylor expansion and the Gauss’s divergence theorem to the
inner region of the bubble as follows:

Fp. = —o. ]{ [fl(wsty) + gul@sty) + (— L (sty) + gl (wsty))ewszy, + O(e)In dS
s

= —cw? / (fl(w.ty) — gl(wety)) AV = —View?(fL(wety) — gl (wat))k. (4.10)
\%4

The Bjerknes force is equal in magnitude but opposite in direction to the inertial
force (4.8b) acting on the bubble. The Bjerknes force is therefore proportional to the
square of the frequency of the acoustic wave. In the case of a standing wave,

feo=1b.cos(wits —keze — 0p), g = 1b.cOS(wets + koza + 6), (4.11)

where b. and 6, are respectively the amplitude and initial phase of the acoustic
standing wave, given the initial location of the bubble is at z. =0. Substituting into
(4.5¢) yields

do 1 ) Vo \” 1 1 .
@ =3 \V,®@|" — (pv* + Pgo- <V> — O« Re + R ~+ b.w. cos(8y) sin(ws1,)
1
+e—m"y(ty) — eb.w? sin(6y) sin(w.1,)z, + O(?). (4.12)

4n

The first-order local acoustic pressure at the centre of the bubble given by (4.7) is
Pas (t:) = a« cos (6p) sin (wstx) , (4.13)

where p, (t,) = pepas (t), ax = b.w.. Note that 6y =0 corresponds to an antinode, and
6o =m/2 a node, in the standing wave.

There is an antisymmetric property for a bubble motion in a standing wave. By
examining the governing equations of (4.5a,b,d,e) and (4.12) for &, we note that
if @ (xp, yu, 25, t, 0p) satisfies the governing equations then @ (x,, y5, —2p, 1, —0p) also
satisfies the governing equations. Thus, the motion of the bubble is antisymmetric in
the region 6, € [—m, ] so our calculations will be carried out only for 6, € [0, rt].

5. Numerical modelling using the mixed-Eulerian-Lagrangian method

The initial boundary-value problem defined by (4.5a, b, d, e) and (4.12) can be solved
numerically using a boundary-integral method coupled with an MEL method. The
numerical model for a singly connected bubble can be found in Blake, Taib &
Doherty (1986), Wang et al. (1996a) and Part 1. However, this section will focus on
the modelling of toroidal bubbles.
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5.1. Vortex ring model for toroidal bubbles

Under an asymmetric environment, a high-speed liquid jet often forms during bubble
collapse and subsequently impacts the opposite bubble surface. Once jet impact
has occurred, the liquid domain is transformed from a singly connected to a doubly
connected form. A circulation is generated around the toroidal bubble since a potential
jump occurs at the impact point. Several approaches have been developed to model
the transition from a singly to a doubly connected domain. Best (1993) modelled
this transition to a toroidal bubble, by introducing a domain cut to render the liquid
domain singly connected. Zhang, Duncan & Chahine (1993) and Zhang & Duncan
(1994) have modelled this circulation by introducing a vortex sheet that moves with
the fluid.

Pedley (1968) developed a theoretical model for a toroidal bubble with a vortex ring
inside the bubble to account for the circulation. Later, Lundgren & Mansour (1991)
modelled a toroidal bubble initiated as a bubble ring with circular cross-section with
a vortex ring inside the bubble and a dipole distribution to the bubble surface. Wang
et al. (1996b, 2005) developed these earlier ideas to model the topological transition
of a bubble and the subsequent toroidal bubble, by placing a vortex ring inside the
toroidal bubble.

The strength of the vortex ring is the circulation I" of the flow along a closed path
that threads through the torus, which is equal to the jump of the potential ¢ across
the contact points at the time of impact. Thus,

r= j{ Vi -dr = @uyi1 — @s1, (5.1)
c

where ¢.; and ¢.y; are potentials at the impact point. For an incompressible potential
flow, the circulation I' is invariant in time.

The potential is now decomposed into two parts: the potential of the vortex ring
¢, and a remnant potential ¢ as follows:

@« (re, ) = fo(tp) +ef1 (ty) + g1 (tp) 25 + Pur (1) + & (1, 1) (52)

Here we have also included the term f; (t,) + & f; (¢,) + g1 (t,) z,, as we did for (4.4).
With the potential jump being accounted by the vortex ring using (5.1), the remnant
potential ¢. is continuous in the flow field.

The velocity of the vortex ring v,, can be obtained analytically using the Biot—
Savart law (Wang et al. 1996b). The velocity potential due to the vortex ring is further
obtained by the line integral of the velocity from the far field, to let the potential
of the vortex ring vanish at infinity. The potential of the vortex ring thus satisfies
Laplace’s equation in the fluid domain and vanishes at infinity.

Substituting (4.3) and (5.2) into (4.1a,b,d) and (4.12) yields the boundary-value
problem for the remnant potential ¢ as follows:

Vig = O(&?), (5.3a)

% = v, + Vo + O(c?) on S, (5.3h)
b

d 1, 1 5 Voo \ 7
a1, ¢ - 8ﬁm0(tb) =1— Vyr (vvr + Vb¢) + E‘vvr + Vb¢| — Dg0+ V.

+ b.w. cos(By) sin(w.1,) — eb.w? sin(By) sin(w.1,)z, + O(e?), (5.3¢)
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+0(?), (5.3d)
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where v,, =V,¢,, is the induced velocity due to the vortex ring.

The above governing equations for the remnant potential ¢ are in the same form as
those for @ given in (4.1a,b,d) and (4.12). Therefore, the remnant potential ¢ can be
solved using the boundary-integral method and updated in time in the same manner
as that for @ of the simply connected pre-toroidal bubble.

For an axisymmetric case, the vortex ring is a circle with centre at the symmetry
axis. In theory, the precise placement or location of the vortex ring (or loop) is
immaterial so long as it lies completely within the toroidal bubble. In practice, to
avoid possible numerical instability, the vortex ring should not be too close to the
bubble surface. The location of the vortex ring, in the coordinate plane 6 =0, (r,,, Z.,),
is chosen as follows:

T = Zmin _; Zmax ’ Fop = rel —; re2 ’ (54)
where z,;, and z,.. are the minimum and maximum values of the z-coordinates
of all the grids on the bubble surface; r.; and r., are the r-coordinates of the two
intersections of the horizontal line z =z, and the curve C (the intersection of the
coordinate plane # =0 and the bubble surface).

This choice of the vortex ring location is more robust than the geometrical centroid
used in the previous work (Wang et al. 1996b). However, as the bubble evolves and
translates, the bubble surface may become too close to the vortex ring, resulting in
numerical instability. To avoid this instability, the vortex ring is relocated using (5.4)
when its minimum distance to the bubble surface is less than 0.05R,,., where R, is
the equivalent bubble radius R, = (3 /4m)V.M3 . When the relocation is performed, we
first use (5.2) to find the total potential

@ (re 1) = fo(tp) + &fi () + 881 (1) 2p + P (re) + ¢ (re, 1), (5.5)
old

where ¢%4(r.) and ¢°“(r.,t.) are the potentials due to the vortex ring and the
remnant potential before relocation. Since the total potential remains unchanged
after the relocation of the vortex ring, the following equation can be used to find the
remnant potential ¢"*" (r., t.) after the relocation:

@ (re, 1) = fo () +ef1 (1) +eg1 () 26 + @) () + Q" (e, 1), (5.6)

where ¢!¢" (r.) is the potential due to the vortex ring after the relocation.

5.2. Modification for toroidal geometry and rejoining

The numerical transformation of a singly connected bubble to a toroidal one is
carried out by removing nodes 1 and N + 1, corresponding to the impact point.
This transform is performed when the distance between two nodes is less than about
0.02 times the equivalent radius of the bubble. The bubble surface and the remnant
potential are re-interpolated into its doubly connected shape and re-discretized.

As 