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Abstract
Tree planting now forms a major part of the UK climate mitigation strategy, with 
targets to increase the forest cover from the current 13% to 17%–20% by 2050. 
A tree planting strategy on this scale requires a significant amount of planning, 
bringing together expertise from a wide range of practitioners. We highlight four 
key reasons why fungi should be considered in tree planting strategies:

1. Fungi can cause severe tree disease.

2. Fungi can cause significant human health burdens.

3. Forest soil carbon and nutrient cycling is controlled by fungi.

4. Climate change is already affecting fungi.

Following from these four reasons, we explore the ways in which the negative effects of 

fungi, such as plant and human disease, can be mitigated against, whilst also protecting 

and promoting the benefits of fungi in carbon storage and biodiversity. Based on this, we 

outline seven guidelines which should be integrated into existing tree planting guidelines 

and UK policy:

A. Monitor tree fungal disease emergence and spread, including in source material 

trade (e.g. seeds and saplings).

B. Choose tree species combinations appropriate to the specific habitat and appropriate 

for biodiversity and carbon storage goals.

C. Develop and implement a widely accessible fungal spore forecast to complement ex-

isting pollen forecasts.

D. Protect existing ancient and mature woodlands.

E. Promote planting on suitable land types, avoiding grasslands and wetlands.

F. Assess proposed and existing forest sites, ideally using a combination of fungal fruit 

body surveys and eDNA techniques.

G. Develop and implement the UK Fungi Red List into UK law.
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1   |   INTRODUCTION

Climate change is the largest challenge facing the UK in 
the next 100 years. In the UK, the top 10 warmest years 
have occurred since 1990, with 2008–2017 being on av-
erage 0.8°C warmer, and having 5% more rainfall, com-
pared with the 1961–1990 baseline period (Met Office, 
2019). The longest running temperature record in the UK 
indicates that current temperatures are on average 1°C 
warmer than pre-industrialisation (Met Office, 2019). A 
number of different climate projections are available for 
the UK depending on the extent of mitigation strategies 
achieved; the high emission scenario RCP8.5 predicts that 
summer temperatures will increase by 0.9°C–5.4°C by 
2070 (Met Office, 2019).

In accordance with the 2015 Paris Agreement, and the 
target to keep global temperature increases below 2°C, 
the UK has a range of climate mitigation strategies, both 
to decrease carbon emissions by 68% by 2030 (compared 
with 1990 levels), but also to increase the UK carbon sink 
(Department for Business, Energy, & Industrial Strategy, 
2020). One of the measures set by the UK government to 
increase the carbon sink is to significantly increase for-
est cover from the current 13%, to 17%–20% by 2050 (The 
Climate Change Committee, 2020). At present, the UK 
has a low percentage forest cover, at only 13%, compared 
with the average of 38% across Europe (FAO Global Forest 
Resources Assessment, 2015). Although the primary goal 
of this large tree planting scheme is to increase the na-
tional carbon sink, variables such as location and tree spe-
cies amongst many others, will have significant impacts 
on how much carbon sequestration is achieved, in addi-
tion to the wider environmental and biodiversity impacts 
that a tree planting strategy on this scale could cause. It is 
therefore essential to consider in-depth, the wider envi-
ronmental contexts and consequences of this tree planting 
scheme.

The aim of climate mitigation tree planting initiatives, 
such as the UK strategy, is to increase the forest carbon 
sink by increasing the percentage of land under forest 
cover. The global net forest sink between 2001 and 2019 
was estimated at −7.6 ± 49 GtCO2e per year, around 47% 
of which was in temperate woodlands, including those in 
the UK (Harris et al., 2021). Although a large proportion 
of this carbon sink is made up of tree biomass, an esti-
mated 35% of this global forest carbon sink is made up of 
the deadwood, litter, soil and harvested wood (Pan et al., 
2011).

Fungi are involved in almost all of the carbon stores in 
forests, but particularly in deadwood, litter and soil, where 
saprotrophic fungi control decomposition of dead plant 
matter, and mycorrhizal fungal biomass store significant 

proportions of carbon in soil organic matter (Heilmann-
Clausen et al., 2015). Fungi can also have effects on other 
sinks, for example pathogens affecting tree health and 
growth will affect carbon stored in tree biomass (trunk, 
leaves, roots) (Hicke et al., 2012).

Although fungi, and microbes more broadly, have sig-
nificant impacts on forests, they are frequently poorly rep-
resented in forest carbon modelling, or accounted for in 
tree planting initiatives (Ouimette et al., 2020). A number 
of papers have demonstrated that including more in-depth 
specifications of soil and rhizosphere fungal processes 
could improve the current uncertainty in global climate 
modelling (Hararuk et al., 2015; Ouimette et al., 2020; 
Rinne-Garmston et al., 2019). Meanwhile, despite these 
complex roles that fungi play in forests, there is very lim-
ited policy and guidance to inform tree planting. There are 
currently no requirements to survey an area for rare fungi 
before tree planting (or completing other work), like you 
might for protected animal species in the UK such as bats 
or great crested newts. Only three fungi are listed on the 
global Red List of species at high risk of extinction (which 
comprises a total of 45,000 species), and although signif-
icant work has taken place to develop and inform it, the 
UK fungal Red List is not currently officially recognised 
(Dahlberg et al., 2010). This lack of legal protection not 
only hinders the ability to protect rare fungal species and 
minimise biodiversity loss, but also discourages develop-
ment of wider fungal ecology monitoring, and our overall 
understanding of the forest system. Without this vital data 
it is difficult to maximise the large carbon sequestration 
and biodiversity benefits of fungi in tree planting, whilst 
mitigating appropriately against the plant and human dis-
ease risks.

Considering this apparent disconnect between the 
importance of fungi, and the lack of policy surrounding 
them, in this review we highlight four key reasons why 
fungi should be included in all UK tree planting and res-
toration initiatives, identifying the current state of the 
research:

1.	 Fungi can cause severe tree disease
2.	 Fungi can cause significant human health burdens
3.	 Forest soil carbon and nutrient cycling is controlled by 

fungi
4.	 Climate change is already affecting fungi

Following these four reasons, we suggest a seven-step 
policy framework (Section 3) which aims to maximise car-
bon sequestration by fungi, mitigate against fungal threats 
and protect rare fungi. This framework could be incorpo-
rated into existing tree planting guidance (e.g. Brancalion 
& Holl, 2020; Sacco et al., 2021).
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2   |   FOUR REASONS WHY FUNGI 
ARE IMPORTANT TO CONSIDER 
WHEN PLANTING TREES AND 
RESTORING FORESTED HABITATS

2.1  |  Fungi can cause severe tree disease

Fungi cause the most plant disease of any group of or-
ganisms and are responsible for a number of severe tree 
disease outbreaks in the UK in the past 50  years, most 
notably Dutch elm disease (Ophiostoma ulmi) and Ash 
dieback (Hymenoscyphus fraxineus) (Santini et al., 2013). 
Ash (Fraxinus spp.) dieback, caused by the fungus H. frax-
ineus, was first detected in the UK in 2012 and is currently 
the largest disease threat to British trees (Broome et al., 
2019). Hymenoscyphus fraxineus causes severe tree dis-
ease, and it is estimated that it will kill around 80% of UK 
ash trees and cost £14.8 billion over the next 100  years 
(£7.6 billion of which will occur over the next 10 years) 
(Hill et al., 2019; The Woodland Trust, 2021). In addition 
to the financial implications of losing trees, ash trees ac-
count for 12% of broadleaved trees in Great Britain, and 
form ecological associations with almost 1000 other spe-
cies, including 68 free-living fungi and 548 lichens; dem-
onstrating that their loss will result in a significant loss 
of carbon storage and biodiversity (Forest Research, 2020; 
Mitchell et al., 2014). Other major tree disease outbreaks 
in the UK include Dutch elm disease (Ophiostoma ulmi), 
which resulted in the loss of 30 million elm trees in the 
UK (Potter et al., 2011). In addition, the fungal-like oomy-
cete Phytopthora ramorum, which is known to infect 
109 host species (including oak trees), has been respon-
sible for the loss of the majority of the UK’s 154,000 acres 
of larch trees, and the fungus Dothistroma septosporum, 
which causes needle blight in conifers, predominantly 
affecting pine plantations in the UK (Fisher et al., 2012; 
Forest Research, 2021; Potter et al., 2011; The Woodland 
Trust, 2021). Tree disease is one of the largest threats to 
the health and survival of trees, with clear implications on 
the carbon sequestration outcomes of tree planting. It is 
therefore essential to consider the disease risk of the tree 
and wood products, the established disease in a location, 
and the individual tree species at risk when establishing a 
plantation.

Climate change is also expected to impact the tree dis-
ease burden, and therefore affect any tree planting strat-
egies currently being planned in the UK. La Porta et al. 
(2008) identify the key factors which could alter fungal dis-
ease risks as: a) abiotic stresses (e.g. drought), b) tempera-
ture and moisture changes altering sporulation and spore 
dispersal, c) migration of pathogens to a new geographical 
range and finally d) new threats appearing because of a 
change in tree species composition. These four factors are 

all applicable to the UK treescapes. Significant tempera-
ture and rainfall changes are already being measured in 
the UK, global trade and travel are increasing pathogen 
migration, and the new national tree planting initiative, 
all of which could be expected to affect overall UK tree 
species composition. There is currently a lack of experi-
mental studies testing these four effects of climate change 
in the UK on fungal pathogens, but non-UK studies sug-
gest that changing conditions caused by climate change 
are likely to affect pathogens also present in the UK. For 
example, in their review, Woods et al. (2016) demonstrated 
that weather conditions strongly affect the life cycle of 
the fungal pathogen D.  septosporum, suggesting that fu-
ture climates are likely to promote disease growth. Model 
simulation and review have also demonstrated the likely 
expansion of P. cinnamomi under climate change (Bergot 
et al., 2004; Brasier & Scott, 1994).

2.2  |  Fungi cause significant human 
health burdens

Due to their high concentrations of fungi, forests are a 
source of airborne fungal spores, which can spread over 
significant distances, causing high concentrations of fun-
gal aerosols, not only close to forests, but also in nearby 
towns and cities (Sadyś et al., 2014). As forests are a large 
and significant source of fungal bioaerosols, the UK gov-
ernment initiative to increase the forest land area by 
5%–6% could also significantly increase the population-
weighted aerosol exposure. Despite the numerous positive 
mental and physical health benefits of forests, a possible 
change in bioaerosol concentrations of this magnitude 
should also be taken seriously due to the negative human 
health implications of bioaerosols.

The most widely studied, and some of the most com-
mon, UK aeroallergens are Alternaria and Cladosporium 
species, however, many other fungal spores are prevalent 
in the atmosphere (e.g. basidiomycetes), and more re-
search is needed to understand the impacts of other fungi 
(Caillaud et al., 2018; Gabriel et al., 2016; Grinn-Gofroń 
et al., 2019; Skjøth et al., 2016). Despite these gaps in our 
knowledge of airborne fungal spores, it is clear that they 
can cause a range of human diseases, with allergenic 
diseases such as childhood asthma being the most com-
mon (Caillaud et al., 2018; Harley et al., 2009; Rodrigues 
et al., 2016; Welsh et al., 2020). The global occurrence of 
allergic rhinitis (caused by pollen, in addition to other 
bioaerosols including fungal spores, pet dander, etc.) has 
been increasing for decades; however, the reasons for this 
remain unclear (Cox & Calderon, 2010). Symptoms re-
duce life quality and can be associated with an increased 
risk of asthma exacerbation, leading to hospitalisation 



4 of 15  |      BAIRD and POPE

(Compalati et al., 2010). Significant reductions in mental 
and physical health, and working and learning capabilities 
are commonplace in adults and children, which has impli-
cations for quality of life, as well as financial and health-
care system burdens (Wright, 2020). A number of studies, 
both in the UK and in other countries have demonstrated 
links between increased airborne fungal spore counts and 
hospital asthma admissions (D’Amato et al., 2020; Dales 
et al., 2003; Pulimood et al., 2007). As yet, there is limited 
research connecting forest bioaerosol concentrations or 
composition and human health outcomes.

In addition to potential increases in population-
weighted fungal spore concentrations due to increased 
tree numbers, climate change is also likely to influence 
fungal spore concentrations and seasonal patterns. There 
have been well-documented extensions to the length of 
the fungal fruiting season in the UK, both in the autumn 
and spring, which could in turn alter the seasonality of 
airborne fungal spore concentrations (Andrew, Heegaard, 
Høiland, et al., 2018; Gange et al., 2007). Altered seasonal-
ity of airborne fungal spores could increase occurrences of 
combined allergenic reactions to pollen and fungal spores, 
as well as increasing the likelihood of seasonal cold/flu vi-
ruses being combined with the start or end of the airborne 
fungal spore season (D’Amato et al., 2015). Meteorological 
variables (e.g. rainfall, temperature, relative humidity, 
storms) have all been demonstrated to affect airborne 
concentrations of fungal spores, all of which will be al-
tered under a changing climate (Grinn-Gofroń et al., 2019; 
Sadyś et al., 2016; Sadyś et al., 2016). There is not an equiv-
alently large body of research investigating the impact of 
elevated atmospheric CO2 concentrations on fungal spore 
concentrations; however, the existing studies suggest that 
there are species-specific responses to CO2. For example, 
Wolf et al. (2003) tested the response of 11 arbuscular 
mycorrhizal fungi to elevated CO2 (eCO2) at the BioCON 
FACE grassland experiment, but only a single Glomus spe-
cies produced additional spores in the soil. Similarly, in 
a Populus tremuloides open-topped chamber CO2 fumiga-
tion experiment, Klironomos et al. (1997) found that air-
borne fungal spore concentrations increased, which they 
suggested was due to corresponding increases in spore 
concentrations in the leaf litter.

2.3  |  Forest soil carbon and nutrient 
cycling is controlled by fungi

Over 50  years of research have demonstrated that fungi 
hugely influence carbon and nutrient cycling in forest 
soils (Gadgil & Gadgil, 1971). It is, therefore, essential to 
consider these fungi, and the implications (positive and 
negative) that they could have in a tree planting initiative 

which has a primary goal of increasing carbon seques-
tration (Gadgil & Gadgil, 1971; Rygiewicz & Andersen, 
1994). A significant proportion of forest carbon is stored 
as fungal biomass, with some studies reporting up to 21% 
of net primary productivity (NPP) being allocated to ecto-
mycorrhizal fungi (Hobbie, 2006; López-Mondéjar et al., 
2018). Cheeke et al. (2017) found that forests dominated 
by ectomycorrhizal fungi (ECM) (as opposed to arbuscu-
lar mycorrhizal [AM] fungi) had three times more fungal 
biomass, representing a significant carbon sink. Trees 
predominantly associate with either AM or ECM fungi, so 
climate, disease, or planting-triggered shifts in tree species 
could have significant implications for mycorrhizal type 
and therefore belowground carbon storage.

In addition to carbon stored as fungal biomass, fungal 
saprotrophs also release significant quantities of carbon 
during decomposition of deadwood and leaf litter (Tláskal 
et al., 2021). The potentially ‘competing’ interactions be-
tween saprotrophic and mycorrhizal fungi have long been 
debated with numerous papers investigating ‘Gadgil’ and 
‘priming’ effects, but there still is not a consensus within 
the scientific community on a mechanism by which sap-
rotrophs (decomposing and releasing CO2) may interact 
with mycorrhizal fungi (harvesting nutrients and stor-
ing carbon as fungal biomass), and the combined effects 
that this may have on the total carbon balance of forests 
(Fernandez & Kennedy, 2016; Frey, 2019). It seems likely 
that soil nutrient availability, primarily nitrogen, is at least 
partly responsible for the current variability (and therefore 
uncertainty) in the mycorrhizal/saprotroph interactions, 
and potentially causes shifts in the type of mycorrhi-
zal fungi seen-  which may explain results such as those 
seen by Cheeke et al. (2017) (Averill et al., 2018; Hobbie, 
2006; Kicklighter et al., 2019; Parihar et al., 2020; Schulte-
Uebbing & de Vries, 2018; Treseder & Allen, 2000). We 
also have a limited understanding of the early stages of 
tree establishment in-situ, and how seeds and saplings 
interact with mycorrhizal, saprotrophic, and pathogenic 
fungi during this time.

Despite these current uncertainties, it is clear that the 
significant shifts in fungal communities currently hap-
pening with climate change (as discussed in section 4.4) 
are concerning for the overall carbon cycling in forests. 
Several studies have reported that ECM fungi are more 
susceptible to climatic changes than other fungal groups, 
and could consequently decrease in richness, poten-
tially causing decreases in soil fungal biomass (Bennett 
& Classen, 2020; Miyamoto et al., 2018; Steidinger et al., 
2020; Větrovský et al., 2019). Sapsford et al. (2017) dis-
cussed a ‘chicken and egg’ theory about tree decline and 
mycorrhizal fungi, whereby it is unclear whether global 
stressors are causing tree loss due to lack of mycorrhizae 
or vice versa.
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2.4  |  Climate change is already 
affecting fungi

There is strong evidence from the UK, and wider stud-
ies in similar temperate climates, that fungal fruiting 
seasonal patterns and community structures are al-
ready significantly affected by climate change. Fungal 
fruiting seasons have been lengthening, both starting 
earlier, and ending later (Ágreda et al., 2016; Andrew, 
Heegaard, Gange, et al., 2018; Andrew et al., 2016; 
Andrew, Heegaard, Høiland, et al., 2018; Boddy et al., 
2014; Gange et al., 2007; Kauserud et al., 2012). At the 
BangorFACE experiment, researchers found that ECM 
sporocarp (fungal fruit body) biomass increased under 
elevated CO2 treatments, with similar increases in ECM 
fruit body production shown at Aspen FACE experi-
ment (Andrew & Lilleskov, 2009; Godbold et al., 2015). 
Whilst in investigations of temperate forest data, Ágreda 
et al. (2016) found that fungal fruit body yields were 
strongly positively correlated with temperature, and 
that although effects were species-specific, more fungal 
species decreased fruiting under climate change than 
fungi which increased fruiting.

In addition to changes in fungal fruiting phenology, the 
spatial and host distributions of fungi are likely to change 
in response to climate change. For example in 2017, the 
first Périgord black truffle (Tuber melanosporum) was har-
vested in the UK, which is the northernmost record of this 
fungus (Thomas & Büntgen, 2017). Gange et al. (2018) 
showed that in the north of the UK ECM fungal fruiting 
has increased and saprotrophic fruiting decreased, with 
the opposite trends seen in the south, which they link 
with increasing autumnal mean daily temperatures and 
rainfall, as well as concurrent phenological changes in the 
fungal host trees due to elevated CO2 and other climatic 
changes. The Wood Ear fungus, Auricularia auricula, 
was originally only found growing on a single host tree 
(Sambucus nigra, Elder), but over the last 50 years has ex-
tended its host range to 16 tree species (Gange et al., 2011).

These changes in fruiting, spatial distributions and tree 
hosts demonstrate the effect that climate is already hav-
ing on fungal populations, which has clear implications 
for forest tree planting. To the best of our knowledge, 
there have been no studies investigating the impact of 
fungal community composition on tree establishment or 
tree community composition, however, there have been 
multiple studies investigating the impact of trees (and 
plantations in particular) on fungal communities. There 
is evidence to suggest that tree species composition and 
biodiversity-promoting forest management strategies do 
affect the species composition of fungal communities in 
forests (Asplund et al., 2019; Brazee et al., 2014; Gunina 
et al., 2017; Jönsson et al., 2017; Kutszegi et al., 2015, 2020; 

Müller et al., 2007; O’Hanlon & Harrington, 2012a, 2012b; 
Purahong et al., 2018; Rodriguez-Ramos et al., 2021; 
Tomao et al., 2020; Varenius et al., 2016). However, the 
overall fungal richness is often not affected by tree species 
composition, and a number of studies have demonstrated 
the potential of plantation forests (including non-native 
tree species) to support and maintain fungal populations 
(Humphrey, 2005; Humphrey et al., 2000; Komonen et al., 
2016; Leski et al., 2019; Newton et al., 2002; O’Hanlon & 
Harrington, 2012a; Quine & Humphrey, 2010). In a com-
parison of ECM fungal richness and community compo-
sition in ancient (>1000  years) vs. over-mature planted 
forest (~180 years), fungal richness and community com-
position were strongly correlated with tree diversity, and 
were similar across both ancient and mature planted for-
ests (Spake et al., 2016). This shows that plantation for-
ests can have good fungal biodiversity outcomes, with 
the authors also suggesting that older plantation stands 
could act as ‘ecological corridors’, allowing fungi (partic-
ularly dispersal limited and rare fungi) to travel between 
the sparsely situated ancient woodlands in the UK (Spake 
et al., 2016). These data demonstrate that good biodiversity 
outcomes can be achieved with plantations, particularly 
older plantations. However, it is important to remember 
that changes in community composition are still likely, 
particularly in young plantations, and this may result in 
the loss of more rare fungi, which are also more suscep-
tible to climate change (Lonsdale et al., 2008; Zhou et al., 
2020).

3   |   MAXIMISING THE BENEFITS 
OF FOREST FUNGI WHILST 
MITIGATING AGAINST NEGATIVE 
OUTCOMES: SEVEN POLICY 
GUIDELINES

Tree planting is an important component of the UK’s cli-
mate mitigation strategy, and has the potential to result 
in significant carbon sequestration, as well as numerous 
other benefits. It is also clear that fungi have significant 
positive and negative outcomes on tree planting out-
comes, and it is therefore essential to consider fungi in any 
well-planned tree planting strategy.

Fungi remain the largest cause of plant diseases 
(Section 2.1), with threats such as Dutch Elm disease, 
and the newly spread Ash dieback continuing to cause 
problems for both established forests and new planta-
tions (Santini et al., 2013). The increase in global trade of 
plants, seeds, and wood products, combined with climate 
change has significantly increased the rate of fungal dis-
ease spread, both of which are factors that will continue to 
affect forests over the next 30 years and beyond.
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A dramatic and sudden increase in tree numbers in the 
UK could significantly increase allergic bioaerosols (fun-
gal spores and pollen) (Section 2.2), which already cause 
a significant number of respiratory illnesses. Climate 
change is likely to affect the seasonality and quantity of 
bioaerosols produced, which in combination with the 
increased forest coverage could further increase the inci-
dence of allergenic disease.

Fungi are an essential group of organisms for carbon 
storage in forest soil (Section 2.3), with key processes such 
as nutrient delivery to trees completed by mycorrhizal 
fungi, mycorrhizal fungi storing significant carbon in their 
biomass, and saprotrophic fungi essential in the decompo-
sition of dead wood and leaf litter. However, we still have 
gaps in our knowledge regarding the interactions between 
mycorrhizal fungi and saprotrophs, and what impact these 
interactions have on the overall carbon balance of the 
forest.

Fungal fruit body phenology, hosts, and geographical 
distributions are being significantly affected by climate 
change (Section 2.4); however, it remains unclear what ef-
fects these phenological changes may have on carbon stor-
age and the overall ecology of the system. Previous studies 
in plantation and more mature forests suggest that planta-
tions can support a diverse community of fungi, however, 
it is likely that a plantation fungal community composi-
tion would be different from an ancient woodland fungal 
community composition- and we do not know if this will 
affect carbon storage or the overall survival of rare fungal 
species.

Given the research gaps that remain, we promote a 
‘precautionary principle’ approach, as a strategy to protect 
the fungal biodiversity and highest carbon sequestration 
outcomes as far as possible despite our knowledge gaps 
of the system (Kriebel et al., 2001). Based on this princi-
ple and the current state of the knowledge, we have out-
lined seven policy recommendations (Figure 1) that can 
either be immediately started or implemented on a short 
(five  year) timescale, that would mitigate some of the 
potential negative consequences of forest fungi, protect 
existing biodiversity, and promote increased carbon se-
questration; and would complement ongoing and future 
forest research.

A summary of these policy recommendations is listed 
below:

A	 Monitor tree fungal disease emergence and spread, 
including in source material trade (e.g. seeds and 
saplings)

B	 Choose tree species combinations appropriate to the 
specific habitat, and appropriate for biodiversity and 
carbon storage goals

C	 Develop and implement a widely accessible fungal 
spore forecast to complement existing pollen forecasts

D	 Protect existing ancient and mature woodlands
E	 Promote planting on suitable land types, avoiding 

grasslands and wetlands
F	 Assess proposed and existing forest sites, ideally using 

a combination of fungal fruit body surveys and eDNA 
techniques

G	 Develop and implement the UK Fungi Red List into UK 
law

3.1  |  Monitor tree fungal disease 
emergence and spread, including in source 
material trade (e.g. seeds and saplings)

Monitoring the progression, and effects, of fungal dis-
ease on UK forest health requires early detection sys-
tems so that disease spread can be managed. The UK 
Plant Health Risk Register is a tool currently being de-
veloped to improve the information on plant diseases 
available to government, industry and stakeholders. The 
Register currently lists 1215 pests, 173 of which are fungi 
(Department for Environment, Food, & Rural Affairs, 
2021). Other initiatives include the community science 
project ‘Observatree’, which trains volunteers to identify 
and report tree pests and diseases (Observatree & Forest 
Research, 2018). Continuing to gather field data on fungal 
pathogens as climate change progresses is important, as 
risks may be altered significantly depending on tempera-
ture and meteorological conditions.

Finally, genetic approaches to studying disease suscep-
tibility are developing further, with a significant number 
of projects currently investigating why some ash tree indi-
viduals are resistant to ash dieback. There is the potential 
of developing genetically modified trees which are more 
disease or climate resistant, but in these cases it is import-
ant to consider public and forest manager responses, as 
there is often reluctance towards any type of genetic mod-
ification initiative (Jepson & Arakelyan, 2017; Marzano 
et al., 2019).

3.2  |  Choose tree species combinations 
appropriate to the specific habitat, and 
appropriate for biodiversity and carbon 
storage goals

In addition to the managing the spread of emerging dis-
eases, it is also important to deal with the consequences 
of diseases: tree death. Where severe tree diseases cause 
death, replacement trees will be needed in existing 
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forests, as well as carefully choosing alternative trees 
for new plantations. In a series of studies, Mitchell et al. 
(2016) studied the suitability of replacement trees for 
ash (in the context of replicating biodiversity), advocat-
ing for an approach that considers the wider function-
ing of the ecosystem in addition to the species-specific 
biodiversity implications (e.g. plant, fungus, animal 
species that form associations with ash that may be lost 
if ash is lost). They suggest that oak (Quercus spp.) and 
beech (Fagus sylvatica) are the most likely species to re-
place ash by natural regeneration, with sycamore (Acer 
pseudoplanatus) identified as a good non-native planta-
tion candidate (Broome et al., 2019; Mitchell, Hewison, 
et al., 2016; Mitchell, Pakeman, et al., 2016). Most im-
portantly, these works show that there is not a single 
tree species that is an appropriate replacement for ash 
in all habitats, with different replacement trees suiting 
different habitats, as well as considering combinations 
of trees.

In addition to highlighting that replacement tree spe-
cies choices are often habitat-specific, this type of study 
has not been completed for all the major UK tree species 
that are currently under threat from fungal pathogens and 
so the information is not universally available. The best 
recommendations for choosing replacement trees can be 
to look to the best available research at the time, as well 
as drawing on expert and local knowledge of the habitat, 
and choosing site-specific trees, remembering that natu-
ral regeneration is often an excellent option, particularly 
for already existing mixed forests (Mitchell et al., 2019; 
Mitchell, Pakeman, et al., 2016; Sacco et al., 2021).

Finally, although we are lacking in data from large 
scale mixed species plantation experiments, it seems 
highly likely from current research that monoculture for-
ests should be avoided entirely, as they are poor for biodi-
versity, and are likely more susceptible to disease, as well 
the risk of the death of an entire forest in the case of a new 
invasive disease (Verheyen et al., 2016).

F I G U R E  1   Conceptual diagram showing the seven guidelines to consider in the large UK tree planting initiative. The seven guidelines 
have different, but overlapping goals, which refer to the four main areas in which fungi are important in forests. Guideline A and B aim 
to minimise harm from fungal tree pathogens. Guideline C aims to minimise harm from human lung allergic reactions and disease from 
airborne fungal spores. Guidelines A, C, D and E are designed to maximise carbon sequestration. Finally, guidelines F and G aim to protect 
fungal biodiversity, both in existing and new forests
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forest cover
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17-20 % 
forest cover
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3.3  |  Develop and implement a widely 
accessible fungal spore forecast to 
complement existing pollen forecasts

Airborne forest fungal spores pose a risk to human 
health, and the population-weighted concentration of 
fungal bioaerosols is likely to increase as the number of 
trees also increases. Changes in frequency of extreme 
weather events and overall meteorological trends (e.g. 
increases in temperature) are also likely to affect fun-
gal bioaerosols, although there is likely to be species-
specific differences between fungi, so an overall effect 
of climate change on bioaerosol concentrations is cur-
rently hard to predict.

Despite these uncertainties, the consequences of 
fungal-induced asthma attacks or other allergenic lung 
diseases can be severe, particularly in children, and so 
the precautionary principle should be applied. Pollen 
forecasting is already widespread and well used by the 
British public, appearing on most UK weather forecasts. 
Annual fungal spore data and forecasting is becoming 
available online, but is not currently broadcast to the 
public at the same level as pollen forecasting (Midlands 
Asthma & Allergy Research Association, 2021; University 
of Worcester, 2021). Integrating fungal spore forecasting 
into the current pollen forecasting approach would make 
information more widely accessible to the public, would 
allow at-risk persons to manage the personal risk of high 
concentration fungal spore events, and allow health sys-
tems to plan for high demand periods. These systems 
would easily integrate into existing systems, and minimise 
individual risk, whilst continuing with large-scale forest 
establishment and the numerous other benefits it offers.

3.4  |  Protect existing ancient and 
mature woodlands

There are many benefits of establishing new forests, and 
the evidence does show that plantations can support di-
verse fungal communities. However, it is still unclear how 
quickly fungal communities and carbon storage estab-
lishes in a new plantation, how climate change will affect 
forest fungi, and what effect the differing fungal commu-
nities between plantations and mature woodlands has 
on forest functioning. It is clear that a plantation cannot 
exactly replicate an existing forest. It is therefore essen-
tial to protect our existing forests, as well as establishing 
new wooded areas (Abrego, Oivanen, et al., 2016; Pasanen 
et al., 2014; Sacco et al., 2021). These existing forests al-
ready have significant carbon stocks, and are essential 
habitats for fungi, particularly rare fungi which exist in 
smaller ecological niches.

Some experiments have investigated the possibility of 
translocating soil or individual rare fungi in order to rep-
licate existing ancient woodlands and protect rare species 
(Abrego, Oivanen, et al., 2016). There is a lack of evidence 
for the impact of soil translocations on fungal commu-
nities in the donor or recipient woodland as the limited 
number of studies have focussed on plant communities, 
and the practice of individual fungal translocations is also 
very new. Existing studies have demonstrated that trans-
locations do not replicate the donor site entirely, and the 
phenological timing and gentle soil handling is important 
to maintain as much biodiversity as possible (Craig et al., 
2015). Rare and infrequently occurring plant species were 
also shown to not survive translocation (Buckley et al., 
2017). Translocation should not replace the protection 
and conservation of ancient habitats, and may also not 
provide a solution if a species is being excluded by cli-
matic changes (Nordén et al., 2020; Pérez et al., 2012).

3.5  |  Choose tree-planting sites carefully, 
avoiding grasslands and wetlands

In addition to the protection of existing forest sites, sites for 
new forest plantations should be chosen carefully to pro-
mote carbon storage, and avoid new carbon loss. Suitable 
target sites include previously forested areas, rather than 
grasslands, moorlands and peatlands which have all been 
shown to result in no net carbon sequestration or even sig-
nificant carbon losses when trees are planted (Sacco et al., 
2021; Veldman et al., 2015). For example a recent study by 
Friggens et al. (2020) in Scotland, showed that net carbon 
sequestration was not achieved when planting native tree 
species into heather moorland. A number of studies also 
suggest that natural regeneration of previously forested 
areas may have the greatest benefits for carbon sequestra-
tion and biodiversity, with significantly less requirements 
for expertise, time, and money than large tree planting 
strategies (Lewis et al., 2019; Sacco et al., 2021).

3.6  |  Develop and implement the UK 
fungi red list into UK law

Tree planting is likely to have large impacts on the fungal 
ecology of the site, particularly for rare species, however, 
without a good understanding of the species at risk, or 
laws that protect them, it is difficult to make lasting con-
servation changes.

The primary target for conserving fungal diversity 
must be to continue the development and implementa-
tion of the UK fungal Red List (Dahlberg & Mueller, 2011). 
Fungal conservation is still limited in the UK by the lack 
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of policy, with only four fungal species currently protected 
in UK law (Dahlberg et al., 2010). Without the legal re-
quirements to protect fungi by surveying sites, choosing 
tree species carefully, etc., it is difficult to enforce these 
biodiversity promoting initiatives, when the primary goals 
of tree planting projects are not biodiversity focussed (e.g. 
carbon sequestration, timber production). However, as 
numerous studies have shown (e.g. Section 2.3), changes 
in fungal speciation can also affect the carbon storage in a 
system, and the lack of understanding of the fungal king-
dom also hinders progression for the other tree planting 
goals.

The development of the Fungi Red List is dependent 
on data, which can be challenging given the lack of fi-
nancial and infrastructure support for mycology. Recent 
initiatives to improve the data on UK threatened fungal 
species include the successful ‘Lost and Found Fungi 
Project’ (LAFF Project) which called on community 
mycologists to submit field records of 100 potentially 
threatened UK fungi (Royal Botanic Gardens & Kew, 
2019; The British Mycological Society, 2015). The LAFF 
Project also ran a series of DNA sequencing workshops 
using Bento Lab devices to improve community access, 
and improve fungal identification for people without ac-
cess to laboratories (Bento Lab, 2021; Ellingham, 2019). 
In addition, the new ‘Darwin Tree of Life’ fungal launch 
is an ambitious project, aimed at collecting and barcod-
ing all (~17,000) known fungal species in the UK, involv-
ing close collaboration between community mycologists 
and academics (Darwin Tree of Life, 2020). Finally, the 
UK is home to the largest fungarium in the world, host 
to 1.25 million fungal specimens, and is a wealth of data. 
Exploiting these already existing collections is an im-
portant source of data, as well as being a useful histori-
cal dataset to investigate the effects of climate change on 
fungal communities (Andrew et al., 2019; Royal Botanic 
Gardens & Kew, 2021).

3.7  |  Assess proposed and existing forest 
sites, ideally using a combination of fungal 
fruit body surveys and eDNA techniques

Climate change is already affecting fungal fruiting pat-
terns, as well as altering the host ranges of a number of 
fungi, and changing the geographical range where fungi 
can exist. However, it remains unclear exactly how these 
changes to fungal phenology affect the reproductive suc-
cess of fungi, their functioning in forest systems, and car-
bon sequestration.

Without understanding of the effects of fungal biodi-
versity loss or change on forest ecosystems, the approach 
must be to preserve fungal communities to preserve the 

functioning of forest ecosystems, as well as for the inher-
ent value of the fungi (Heilmann-Clausen et al., 2015). It 
seems likely that plantations can support diverse fungal 
communities, despite these communities probably being 
different in their composition from existing mature and 
ancient woodlands.

To more fully understand the effects that tree planting 
has on fungal communities, a site surveying approach 
combining both fungal fruiting body surveys and eDNA 
techniques both allows the identification of rare fungi that 
may be extirpated by tree planting, but also to assess the 
changes in fungal communities over time (Runnel et al., 
2015). Potential planting sites should be surveyed for rare 
fungi before planting (as you would for other ecological 
surveys for rare species, e.g. great crested newts). In ad-
dition to surveys pre-planting, surveys at regular inter-
vals after planting would assess the fungal populations 
over time, and provide further information of how young 
plantation forests can support or alter fungal communi-
ties (Abrego et al., 2016). These surveys should also be 
completed on established forests of a variety of ages and 
management styles, to allow comparison between new 
plantations and other forest types. These measurements 
could then be integrated into a wider network of forest 
monitoring measurements, improving our understanding 
of the wider system as well as the fungal communities.

Site surveys can be challenging, particularly due to 
the time and expertise required. Field taxonomy skills are 
becoming increasingly rare, with most field mycology ex-
perts being amateurs, and often remaining separate from 
academic researchers (British Mycological Society, 2008; 
Buyck, 1999; Wilson, 2017). Even with the sudden rise in 
popularity (and concurrent decrease in price) of molecu-
lar tools such as high throughput DNA sequencing, these 
technologies are still unavailable to the vast majority of 
people due to lack of expertise and funding. One solution 
to the lack of mycology expertise is to identify suitable 
indicator species of fungi, which are both relatively eas-
ily identified, in addition to being good indicators for the 
state of the rest of the habitat. These type of indicator spe-
cies have been used before, but are often chosen without 
much consideration, therefore the development of a suit-
able list of species by UK forest mycology experts would 
be a useful and important tool (Halme et al., 2017).

4   |   CONCLUSION

In summary, the new UK tree planting strategy whereby 
forests are increased from 13% to 17%–20% has the poten-
tial to result in large climate mitigation benefits; however, 
it is likely to significantly affect UK ecology, and requires 
careful planning to result in success.



10 of 15  |      BAIRD and POPE

We have highlighted four key reasons (sections 2.1 
– 2.4.) why fungi are essential to consider in tree plant-
ing initiatives, identifying both the benefits of fungi 
for carbon sequestration and biodiversity, and the dis-
advantages of fungi for plant and human health. We 
have identified the current state of UK forest mycology 
research, and identified seven policy recommendations 
(Figure 1 and Section 3.1 –  3.7) that should be imple-
mented during the planning stage of this tree planting 
strategy. These recommendations aim to maximise the 
benefits of fungi for carbon sequestration, minimise the 
harm to plants and humans from fungal risks, and to 
protect fungal biodiversity from the potential large eco-
logical changes that tree planting on this level will result 
in.
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