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We show that several Morita equivalence classes of tame 
algebras do not occur as blocks of finite groups. This refines 
classifications by Erdmann of classes of blocks with dihedral, 
semidihedral, and generalised quaternion defect groups. In 
particular we now have a complete classification of the Morita 
equivalence classes of blocks of finite groups with dihedral 
defect groups.

© 2022 The Author. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A finite-dimensional algebra over an algebraically closed field k has representation 
type finite, tame, or wild, depending on its indecomposable modules. It is called tame if 
it has infinitely many but, for each n ∈ N, all but finitely many of the indecomposable 
modules of dimension n fall into finitely many one-parameter families. A block of a 
finite group has tame representation type if and only if its defect groups are dihedral, 
semidihedral, or generalised quaternion [3]. Two algebras are called Morita equivalent if 
their module categories are equivalent as k-linear categories (see [50]).
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We show that several classes of tame algebras do not occur as blocks of finite groups, 
improving existing classifications of tame blocks up to Morita equivalence by Erdmann 
[26]:

Theorem 1.1. There are no blocks of finite groups with the following defect groups of 
order 2n in the following Morita equivalence classes (according to the labellings in [26]):

• Dihedral: D(3B)1 for n ≥ 4;
• Generalised quaternion: Q(3B) for n ≥ 5;
• Semidihedral: SD(2B)3 and SD(3H) for any n; and SD(2B)1, SD(3B)2, and 

SD(3C)2,1 for n ≥ 5.

In particular, the Morita equivalence classes that occur as blocks of finite groups with 
dihedral defect groups are known.

In a series of papers, the details of which are collected in [26], Erdmann gave a list 
of families of basic algebras – of so-called dihedral, semidihedral, and quaternion type – 
explicitly defined by quivers and relations such that any tame block of a finite group is 
Morita equivalent to one of these algebras. These algebras are labelled as in Theorem 1.1, 
for example D(3B)1 denotes a particular algebra of dihedral type with three simple mod-
ules, and subscripts denote algebras with the same quiver that are defined by different 
relations; we instead use each label to denote the corresponding algebra’s Morita equiv-
alence class. Using necessary properties of blocks she deduced which of these algebras 
could possibly be Morita equivalent to blocks, however she was not able to say in each 
case whether such a block definitely exists. For each possible class she also determined 
the decomposition matrix that a block in that class must have, which is the information 
we use to identify the Morita equivalence classes of our blocks.

Holm later (almost completely) classified these families of algebras up to derived 
equivalence ([32] and [33]), finding many algebras that are not Morita equivalent but are 
derived equivalent. In doing so he was additionally able to show that all of the algebras 
in these families do indeed have tame representation type, something that was previously 
not known in all cases.

We improve Erdmann’s classifications of tame blocks up to Morita equivalence by 
using the Classification of Finite Simple Groups to show that several classes do not 
occur as blocks of any quasi-simple groups, and hence, via a reduction to quasi-simple 
groups, do not occur as blocks of any finite groups.

Donovan’s conjecture states that for any �-group D there are, up to Morita equiva-
lence, only finitely many blocks of finite groups with D as a defect group; this is known 
to be true for many families of groups. Erdmann’s classifications already proved this 
for dihedral and semidihedral groups, however the Morita equivalence classes were not 
fully and precisely classified (other than for D8), as we now have for all dihedral groups. 
This is perhaps the first ‘interesting’ family of non-abelian groups for which this has 
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been done; interesting in that there are multiple classes and they include blocks of finite 
simple groups.

We give updated classifications of the remaining classes of blocks that may occur in 
Section 2, together with their decomposition matrices and those of the eliminated classes. 
Then, after recalling various background results in Section 3, we prove Theorem 1.1
by first proving reductions to quasi-simple groups in Section 4 (in fact we see it is 
sufficient to consider only odd central extensions of simple groups), then in Section 5
we work through the blocks of all these groups case by case, describing the blocks with 
dihedral or semidihedral defect groups and showing that the Morita equivalence classes 
in question do not appear and thus do not occur as blocks of any finite group. This 
is done primarily by deducing the decomposition matrices from the ordinary character 
degrees, using descriptions of blocks from various papers. The generalised quaternion 
class is eliminated as a corollary of the dihedral case. For the semidihedral class SD(2B)1, 
however, quasi-simple groups are not quite sufficient, and this case is considered finally 
in Section 6.

1.1. Notation

Throughout, unless otherwise stated, we work over an algebraically closed field k of 
characteristic � > 0; usually we will have � = 2. Algebraic groups and finite groups of 
Lie type will be defined over an algebraically closed field F of characteristic p > 0.

The number of irreducible ordinary and Brauer characters in a block B are denoted 
k(B) and l(B) respectively. For an integer m ≥ 1 and a prime p, the largest power of p
dividing m is denoted by |m|p, and we write |m|p′ = m/ |m|p.

2. The classifications

We refine Erdmann’s classifications of blocks with dihedral, semidihedral, and gener-
alised quaternion defect groups, each of which can be found together in her book [26]; 
additionally see [16, Section 6.2] for a succinct description of the previously most up-to-
date versions and example blocks. We obtain the following now complete classification 
of Morita equivalence classes of blocks with dihedral defect groups:

Theorem 2.1. If B is a block of a finite group with dihedral defect groups of order 2n for 
n ≥ 3, then exactly one of the following holds:

D(1): B is Morita equivalent to kD2n ;
D(2A): B is Morita equivalent to the principal block of PGL2(q), for q ≡ 1 mod 4 where 

|q − 1|2 = 2n−1;
D(2B): B is Morita equivalent to the principal block of PGL2(q), for q ≡ −1 mod 4

where |q + 1|2 = 2n−1;
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D(3A)1: B is Morita equivalent to the principal block of PSL2(q), for q ≡ 1 mod 4 where 
|q − 1|2 = 2n;

D(3K): B is Morita equivalent to the principal block of PSL2(q), for q ≡ −1 mod 4
where |q + 1|2 = 2n;

D(3B)1: n = 3 and B is Morita equivalent to the principal block of Alt(7).

The decomposition matrix of B is then accordingly one of the following, in order; in each 
case the last row is repeated 2n−2 − 1 times:

⎛
⎜⎜⎜⎝

1
1
1
1
2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 .
1 .
1 1
1 1
2 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 .
1 .
1 1
1 1
. 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
2 1 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 . .
. 1 .
. . 1
1 1 1
. 1 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
. 1 .

⎞
⎟⎟⎟⎠ .

Note that ‘.’ denote zero entries. The class we eliminate is D(3B)1 for n ≥ 4. In 
Erdmann’s original classification there was also a parameter resulting in two possible 
classes for each decomposition matrix with two simple modules, but these additional 
classes were eliminated by Eisele in [20]. Now there is an example of a block occurring 
in each possible class and for each possible n, so we have a complete classification.

Throughout when we say dihedral we usually refer to groups of order at least 8, 
though blocks with Klein four defect groups are also tame. In that case only classes 
D(1), D(3A)1, and D(3K) in Theorem 2.1 occur, as the principal blocks of V4, Alt(5) ∼=
PSL2(5), and Alt(4) ∼= PSL2(3) respectively [26]; note that since n = 2 the decomposition 
matrices have only four rows.

We rule out several possible Morita equivalence classes of blocks with semidihedral 
defect groups, though in this case we have a less complete result.

Theorem 2.2. If B is a block of a finite group with semidihedral defect groups of order 
2n for n ≥ 4 and l(B) = 3, then exactly one of the following holds:

SD(3D): B is Morita equivalent to the principal block of PSL3(q), for q ≡ −1 mod 4
where |q + 1|2 = 2n−2;

SD(3B)1: B has the same decomposition matrix as in SD(3D), but with a different 
Ext-quiver; no example of such a block is known;

SD(3A)1: B is Morita equivalent to the principal block of PSU3(q), for q ≡ 1 mod 4
where |q − 1|2 = 2n−2;

SD(3C)2,2: no example of a block in the Morita equivalence class of B is known;
(∗): n = 4 and B is Morita equivalent to a certain non-principal block of the 

Monster group.

The block (∗) of the Monster is either in SD(3B)2 or SD(3C)2,1, and thus for n = 4
there are blocks in one of these classes but not both, and there are no blocks in either 
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class for n ≥ 5. The decomposition matrix of B is then one of the following, with the 
last row repeated 2n−2 − 1 times; from left to right: SD(3D) or SD(3B)1, SD(3A)1, 
SD(3C)2,2, SD(3B)2, SD(3C)2,1:

⎛
⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
. . 1
. 1 .

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
. . 1
2 1 1

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 . .
. 1 .
1 . 1
. 1 1
. . 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
2 1 1
. 1 .

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 . .
. 1 .
1 . 1
. 1 1
1 1 1
. . 1

⎞
⎟⎟⎟⎟⎟⎠

.

Note that [26] incorrectly lists the principal block of PSL3(q) in SD(3B)1 instead of 
SD(3D). The classes we eliminate are SD(3B)2 and SD(3C)2,1 for n ≥ 5, and SD(3H)
for all n which has the following decomposition matrix with the last row repeated 2n−2−1
times:

⎛
⎜⎜⎜⎜⎜⎝

1 . .
. 1 .
. . 1
1 1 1
. 1 1
1 1 .

⎞
⎟⎟⎟⎟⎟⎠

.

Here, unlike the dihedral case, the Morita equivalence class cannot always be identified 
based only on the degrees of the ordinary characters in the block. The same list of 
ordinary degrees could give rise to the decomposition matrices of both SD(3A)1 and 
SD(3C)2,2, and similarly for SD(3B)2 and SD(3C)2,1, while SD(3D) and SD(3B)1 even 
have identical decomposition matrices.

Theorem 2.3. If B is a block of a finite group with semidihedral defect groups of order 
2n for n ≥ 4 and l(B) ≤ 2, then exactly one of the following holds:

SD(1): B is Morita equivalent to kSD2n ;
SD(2A)1: B is Morita equivalent to the principal block of GU2(q), for q ≡ 1 mod 4

where |q − 1|2 = 2n−2;
SD(2B)2: B is Morita equivalent to the principal block of GL2(q), for q ≡ −1 mod 4

where |q + 1|2 = 2n−2;
SD(2A)2: B is Morita equivalent to the principal block of PSL2(q2).2, for q odd where ∣∣q2 − 1

∣∣
2 = 2n−1;

SD(2B)1: n = 4 and B is Morita equivalent to a non-principal block of 3 ·M10;
(∗): B is Morita equivalent to an algebra with the same decomposition matrix and 

Ext-quiver as one of the four previous two-module classes, but with a different 
parameter in the relations for the path algebra; no example of such a block is 
known.
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The decomposition matrix of B is then accordingly one of the following, with the last row 
repeated 2n−2 − 1 times:

⎛
⎜⎜⎜⎝

1
1
1
1
2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

1 .
1 .
1 1
1 1
. 1
2 1

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 .
1 .
1 1
1 1
2 1
. 1

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎝

1 .
1 .
1 1
1 1
2 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 .
1 .
1 1
1 1
. 1

⎞
⎟⎟⎟⎠ .

Note that [26] has the decomposition matrices of SD(2B)1 and SD(2B)2 the wrong 
way round. The group PSL2(q2).2 above is the extension of PSL2(q2) by a field au-
tomorphism. For each possible quiver (hence decomposition matrix) with two simple 
modules we have an example of a block, but there is a parameter c that can possibly 
take the value 0 or 1, giving two possible Morita equivalence classes [26, Sect. VIII.4]. 
The classes we eliminate are (both families of) SD(2B)1 for n ≥ 5, and SD(2B)3 for 
all n which has the following decomposition matrix with the last row repeated 2n−2 − 1
times:

⎛
⎜⎜⎜⎝

1 .
1 .
. 1
. 1
1 1

⎞
⎟⎟⎟⎠ .

Note that SD(2B)3 is the same Morita equivalence class as that of SD(2B)4 elsewhere 
in the literature (see [33, Prop. 4.2] for example).

Theorem 2.1 implies a similar improvement on Erdmann’s classification of blocks 
with generalised quaternion defect groups, completely classifying those with three simple 
modules by eliminating the corresponding class Q(3B) for n ≥ 5 (this class was known 
not to occur for n = 3):

Corollary 2.4. If B is a block of a finite group with generalised quaternion defect groups 
of order 2n for n ≥ 3 and l(B) = 3, then exactly one of the following holds:

Q(3A)2: B is Morita equivalent to the principal block of SL2(q), for q ≡ 1 mod 4 where 
|q − 1|2 = 2n−1;

Q(3K): B is Morita equivalent to the principal block of SL2(q), for q ≡ −1 mod 4 where 
|q + 1|2 = 2n−1;

Q(3B): n = 4 and B is Morita equivalent to the principal block of 2 · Alt(7).

The decomposition matrix of B is then accordingly one of the following; in each case the 
last row is repeated 2n−2 − 1 times:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
. 1 .
. . 1
2 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 . .
. 1 .
. . 1
1 1 1
1 1 .
1 . 1
. 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
2 1 1
. . 1
. 1 .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This follows from a result of Kessar and Linckelmann [39]: a block B of a finite group 
G with generalised quaternion defect group D and l(B) = 3 must be Morita equivalent 
to its Brauer correspondent B′ in CG(Z(D)). This implies that CG(Z(D))/Z(D) has a 
block b contained in B′ with defect group D/Z(D), which is dihedral. Thus if B were 
in Q(3B) with defect n ≥ 5, then b would have to be in D(3B)1 with defect n − 1 ≥ 4, 
which is impossible by Theorem 2.1.

For completeness, the possible decomposition matrices of blocks with generalised 
quaternion defect groups and l(B) ≤ 2 are as follows, each with the last row repeated 
2n−2 − 1 times:

⎛
⎜⎜⎜⎝

1
1
1
1
2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

1 .
1 .
1 1
1 1
. 1
2 1

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 .
1 .
1 1
1 1
2 1
. 1

⎞
⎟⎟⎟⎟⎟⎠

.

The classes for these are labelled Q(1), Q(2A), and Q(2B)1, and occur as kQ2n and, 
only for n ≥ 4, as the principal blocks of SL2(q).2 for q ≡ 1 or −1 mod 4 respectively; 
note that these were originally listed as SL2(q2).2 in [16] but were later corrected. There 
is another possible class, Q(2B)2, listed in [26] with decomposition matrix

⎛
⎜⎜⎜⎝

1 .
1 .
. 1
. 1
1 1

⎞
⎟⎟⎟⎠ ,

with the last row repeated 2n−2 − 1 times, but this cannot occur as a block, since all 
blocks with generalised quaternion defect groups have k(B) − l(B) = 2n−2 + 2 by [52]; 
this was already known, noted in [32, (4.1)] for example. While we have an example of 
a block with each possible decomposition matrix, for each matrix with l(B) = 2 there 
is a parameter c which can take infinitely many possible values, giving infinitely many 
possible Morita equivalence classes, so we do not have a complete classification and even 
Donovan’s conjecture is unknown.

Remark 2.5. We gather together here some discrepancies in [26] and its related papers, 
some of which were noted above. It has the decomposition matrices (and a given value 



726 N. Macgregor / Journal of Algebra 608 (2022) 719–754
of some integer k) of SD(2B)1 and SD(2B)2 the wrong way round; this can be seen 
from [24, Table 1]. It also lists the principal block of PSL3(q) in SD(3B)1, but it is in 
SD(3D) as was originally calculated (see [22, Table II] and [25, Table 1]). This mistake 
was carried into [16], though it was noted that the principal block of M11 can be checked 
to be Morita equivalent to that of PSL3(q); this block of M11 was in fact correctly given 
as SD(3D) in [26], but originally as SD(3B)1 in [25, (11.5)].

Additionally [23, Prop. 7.5.1] claimed that D(3B) can only occur with defect groups 
of order 8, though the proof of this was later noted to be false in [26, (X.4)]; the same 
therefore applies to the proof of [24, Lemma 8.14] claiming that SD(2B)1 can only occur 
with defect groups of order 16. Finally [24, Lemma 8.16] claimed that SD(2B)3 cannot 
occur as a block, however the proof of this is incorrect; there are only two non-zero di
and the necessary relations are in fact satisfied. The correct decomposition matrix is 
calculated in [26] and the family is reinstated as a possible block, but [32, (3.1)] uses the 
claim. Nonetheless we have now shown that each of these three claims is in fact true.

3. Preliminaries

3.1. Lusztig series

We assume basic knowledge of algebraic groups and finite groups of Lie type; see [49]
for details. Throughout this section let G be a connected reductive algebraic group in 
characteristic p > 0, where p �= �, with a Steinberg endomorphism F : G → G so that 
GF is a finite group of Lie type.

For L an F -stable Levi subgroup of G, Deligne-Lusztig induction is a functor from 
virtual characters of LF to those of GF generalising Harish-Chandra induction (the 
details are not so important here but can be found in [18] for example). For ease of 
notation we will denote this functor by RG

L , instead of RGF

LF . Note that this functor is 
defined via a parabolic subgroup P of G containing L, but is independent of the choice 
of P whenever the Mackey formula holds, which is always the case unless possibly GF

contains a component 2E6(2) or E8(2) (see [5] and [57]); we will not be concerned with 
q = 2, so will omit any mention of P. If (L, λ) is a cuspidal pair (as in Theorem 3.10
below) then the set of constituents of RG

L (λ) will be called a Harish-Chandra series.
Let T be an F -stable maximal torus of G, and let G∗ be a group dual to G around 

T and T∗, with Steinberg endomorphism also denoted by F . The duality defines a 
correspondence between classes of F -stable Levi subgroups L of G and those L∗ of G∗, 
as well as a canonical isomorphism between Irr(TF ) and (T∗)F (see [13, Section 8.2]).

Definition 3.1. Let T, S be F -stable maximal tori of G, and let θ ∈ Irr(TF ) and ψ ∈
Irr(SF ) correspond to t ∈ (T∗)F and s ∈ (S∗)F as above. Then the pairs (T, θ) and 
(S, ψ) are said to be rationally conjugate whenever t and s are (G∗)F -conjugate.
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Thus rational conjugacy classes of pairs (T, θ) correspond to conjugacy classes of 
semisimple elements in (G∗)F .

Definition 3.2. Let s ∈ (G∗)F be semisimple. The rational Lusztig series E(GF , s) asso-
ciated to (the (G∗)F -conjugacy class of) s is the set of irreducible characters of GF that 
occur as a constituent in some RG

T (θ), where (T, θ) is in the rational conjugacy class 
associated to s.

If s is a semisimple �′-element of (G∗)F define

E�(GF , s) =
⋃

t∈(CG∗ (s)F )�

E(GF , st),

so t runs over all �-elements of (G∗)F that commute with s.

These series describe the blocks of GF in the following way, where here a block B is 
thought of as the set Irr(B):

Theorem 3.3 ([13, Thms 8.24 & 9.12]). The sets E(GF , s) for semisimple s ∈ (G∗)F
form a partition of Irr(GF ). If s ∈ (G∗)F is a semisimple �′-element then:

(i) E�(GF , s) is a union of �-blocks of GF ;
(ii) each �-block contained in E�(GF , s) contains an element of E(GF , s).

Hence to parameterise the �-blocks of GF it suffices to decompose E(GF , s) into �-
blocks for each semisimple �′-element s ∈ (G∗)F .

Definition 3.4. An irreducible character of GF is called unipotent if it is a constituent of 
RG

T (1) for some F -stable maximal torus T of G. Additionally if G is disconnected the 

unipotent characters of G are the constituents of 
(
RG◦

T (1)
)
↑G

F

for F -stable maximal 
tori T of G◦. A block is called unipotent if it contains a unipotent character.

Hence E(GF , 1) is the set of unipotent characters of GF . Enguehard [21] classified all 
unipotent blocks of finite simple groups of Lie type for bad primes, as 2 is unless G is of 
type A. The following so-called Jordan correspondence relates characters to unipotent 
characters of a usually smaller group:

Theorem 3.5 ([18, Thm 11.5.1, Prop. 11.5.6]). If s ∈ (G∗)F is semisimple then there is 
a bijection between E(GF , s) and E

(
CG∗(s)F , 1

)
such that if χ ∈ Irr(GF ) corresponds 

to χu ∈ Irr
(
CG∗(s)F

)
then

χ(1) = χu(1) ·
∣∣∣(G∗)F : CG∗(s)F

∣∣∣ .

p′
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This was originally proved by Lusztig [48, (4.23)] when G has connected centre; in 
this case CG∗(s) is always connected [15, Thm 4.5.9].

Remark 3.6. Since any s ∈ (G∗)F�′ and t ∈ CG∗(s)F� have coprime orders and com-
mute, CG∗(st)F = CCG∗ (s)(t)F ≤ CG∗(s)F , so each character in E�(GF , s) has a 
factor of |(G∗)F : CG∗(s)F |p′ in its degree. In particular (provided that CG∗(s)∗ is 
connected) there are bijections as above between E(GF , st) and E

(
CG∗(st)F , 1

)
=

E
(
CCG∗ (s)(t)F , 1

)
and E

(
(CG∗(s)∗)F , t

)
; it follows that there is also a bijection be-

tween E�(GF , s) and E�
(
(CG∗(s)∗)F , 1

)
.

Bonnafé and Rouquier gave an important reduction showing that if the centraliser is 
contained in a proper F -stable Levi subgroup then there is a Morita equivalence between 
the related blocks:

Theorem 3.7 ([6]). Let s ∈ (G∗)F be a semisimple �′-element and suppose that CG∗(s)
is contained in an F -stable Levi subgroup L∗ of G∗. The �-blocks of GF in E(GF , s)
are in bijection via Jordan correspondence with the �-blocks of LF in E(LF , s), and the 
corresponding blocks are Morita equivalent.

This Morita equivalence preserves decomposition matrices and, as shown further with 
Dat in [7], also defect groups. The result motivates the following definition:

Definition 3.8. A semisimple element s ∈ G is quasi-isolated if its centraliser CG(s) is 
not contained in any proper Levi subgroup of G; further, it is isolated if the identity 
component CG(s)◦ is not contained in a proper Levi subgroup. A block is then (quasi)-
isolated if its semisimple label is (quasi)-isolated.

Unipotent blocks are isolated, since CG∗(1) = G∗, and if G has connected centre then 
CG∗(s) is always connected so the terms isolated and quasi-isolated coincide. Note that 
if s ∈ GF and CG(s) is contained in a Levi subgroup L of G, then CG(s) is F -stable and 
contained in each element in the F -orbit of L, so is also contained in the intersection of 
this orbit, which is an F-stable Levi subgroup of G.

Additionally, the above equivalence is preserved taking quotients by central �-
subgroups:

Theorem 3.9 ([19, Prop. 4.1]). If B and C are �-blocks of GF and LF in correspondence 
by Theorem 3.7, and Z is a central �-subgroup of GF , then the �-blocks B and C of 
GF /Z and LF /Z contained in B and C respectively are Morita equivalent.

In light of the above, if a block B of GF is (quasi)-isolated, then we will also say that 
the block B of GF /Z contained in B is (quasi)-isolated. Quasi-isolated blocks of finite 
groups of Lie type have been well studied; in particular, Kessar and Malle describe the 
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quasi-isolated �-blocks of exceptional groups of Lie type when � is a bad prime (see [49, 
Table 14.1]) for G, obtaining the following description:

Theorem 3.10 ([40, Thm 1.2]). Let G be a simply connected simple exceptional algebraic 
group, � �= p be a bad prime for G, and 1 �= s ∈ (G∗)F be a quasi-isolated �′-element.

(i) There is a bijection between �-blocks of GF in E�(GF , s) and pairs (L, λ) where L is 
an e-split Levi subgroup of G and λ ∈ E(LF , s) is e-cuspidal of quasi-central �-defect.

(ii) If a block corresponds to (L, λ) then it has a defect group D such that Z(L)F� =
Z � P � D, where D/P is isomorphic to a Sylow �-subgroup of the Weyl group 
WGF (L, λ) and P/Z is isomorphic to a Sylow �-subgroup of LF /Z[L, L]F .

See [40] for definitions of the terminology used in (i); we will not use them further. 
For each exceptional group they list all (L, λ) that occur, and give further information.

Ennola duality, formally swapping q with −q (see [12, (3A)]), is used in [40] and will 
be used later to translate arguments to different values of q mod 4 (which correspond to 
different values of e in the above theorem); all groups in question are exchanged with 
their Ennola duals, so for example E6(q) becomes 2E6(q) and q− 1 becomes q + 1, while 
G2(q) is its own Ennola dual.

3.2. Normal subgroups

Let N be a normal subgroup of a finite group G. We collect some facts relating the 
characters and blocks of N to those of G that will be used throughout.

Of particular note, if |G : N | = 2 then, from Clifford’s Theorem [37, Thm 20.8], for 
any ϕ ∈ Irr(N): either ϕ↑G = χ1 + χ2 and χ1↓N = χ2↓N = ϕ for some distinct 
χ1, χ2 ∈ Irr(G) of equal degree; or ϕ↑G = ψ↑G = χ and χ↓N = ϕ +ψ for some χ ∈ Irr(G)
and ϕ �= ψ ∈ Irr(N) with ϕ, ψ of equal degree. We will say these characters either split 
or fuse on induction or restriction accordingly.

Lemma 3.11 ([45, Thm 2.4.7]). Let φ ∈ Irr(N). Then φ↑G ∈ Irr(G) if and only if φg �= φ

for all g ∈ G \N .

Lemma 3.12 ([51, Thm 9.4]). Let B be a block of G covering a block b of N and ϕ ∈
Irr(b) ∪ IBr(b). Then ϕ is a constituent of χ↓N for some χ ∈ Irr(B) ∪ IBr(B).

Lemma 3.13 ([51, Thm 8.11, Cor. 9.6, Thm 9.17]). Let |G : N | be a power of �.

(i) If ϕ ∈ IBr(N) then there is a unique χ ∈ IBr(G) covering ϕ and χ↓N is the sum of 
the distinct G-conjugates of ϕ.

(ii) If b is an �-block of N then there is a unique �-block B of G covering b.
(iii) Furthermore, if b is G-invariant with defect group D, then the defect groups of B

have order |D| ·|G : N |.
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Now let G = G/N . The characters of G inflate to characters of G, so Irr(G) and 
IBr(G) are viewed as subsets of Irr(G) and IBr(G), and similarly for their blocks; each 
block of G is contained in a unique block of G.

Lemma 3.14 ([51, Thm 9.9]).

(i) If N is an �-group, then each �-block B of G contains an �-block of G whose defect 
groups are D/N for defect groups D of B.

(ii) If N is an �′-group and B is an �-block of G contained in an �-block B of G, then 
Irr(B) = Irr(B) and IBr(B) = IBr(B).

Lemma 3.15 ([41]). Let B be a block of G covering a block b of N . If P is a defect group 
of b then there is a defect group D of B such that P = D ∩ N . Conversely, if D is a 
defect group of B then D ∩N is a defect group of a block bg for some g ∈ G.

Lemma 3.16 (Fong’s first reduction [16, Thm 7.4.2]). Let b be a block of N and define 
the inertia subgroup of b in G as T = {g ∈ G | bg = b}. There is a bijection between 
blocks of G covering b and blocks of T covering b, with corresponding blocks being Morita 
equivalent and having isomorphic defect groups.

Note that N ≤ T and, since covered blocks are conjugate, b is the unique block of N
covered by these blocks of T .

Lemma 3.17 (Fong’s second reduction [16, Thm 7.4.4]). Let B be a block of G with a 
defect group D, such that D ∩N = 1. Then there is a block B̂ of some central extension 
of G/N such that B and B̂ are Morita equivalent.

3.3. Tame blocks

As described in [52], for any block B with dihedral, semidihedral, or generalised quater-
nion defect groups of order 2n the numbers of irreducible ordinary and Brauer characters 
are 2n−2 + 3 ≤ k(B) ≤ 2n−2 + 5 and 1 ≤ l(B) ≤ 3 respectively. There are four ordinary 
characters of height zero (the first four rows in each of the decomposition matrices in 
Section 2) and 2n−2 − 1 height one characters (the repeated row), and any additional 
characters have height n −2; blocks with dihedral defect groups have none of these ‘large 
height’ characters, semidihedral blocks have at most one, and generalised quaternion 
blocks have at most two. Semidihedral defect groups are of order at least 24, so the 
‘large height’ is in particular greater than one.

If B has dihedral defect groups then its decomposition matrix, hence Morita equiva-
lence class, can be determined – out of those in Theorem 2.1 and including D(3B)1 as 
a possibility for any n – using only its ordinary character degrees, such as by checking 
the following properties: if the degree of the height one character is the largest, then 
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B is in one of D(1), D(2A), or D(3A)1, depending on whether it has one, two, or at 
least three distinct height zero degrees respectively; otherwise, if the largest degree is 
repeated then B is in D(2B); if the largest degree is the sum of the other three height 
zero degrees then B is in D(3K); otherwise B is in D(3B)1. Therefore given a block of 
a finite group G with dihedral defect groups, provided that |G| is sufficiently small, its 
ordinary character degrees can be obtained using GAP [29] or Magma [8] and its Morita 
equivalence class can always be deduced. This is sometimes, but not always, possible for 
a block with semidihedral defect groups.

4. Reduction to quasi-simple groups

A quasi-simple group is a perfect central extension of a simple group, i.e., a group G
such that G = [G, G] and G/Z(G) is simple. For every non-abelian finite simple group 
S, the largest quasi-simple group G such that G/Z(G) ∼= S is called the Schur cover of 
S and is unique up to isomorphism. If G is a finite group of Lie type then in all but 
finitely many cases its Schur cover is the corresponding finite group of simply connected 
type (see Section 5.5).

In order to reduce our problem from all groups to quasi-simple groups, we first show a 
Morita equivalence for odd-index normal subgroups. Note that this is not true for Klein 
four defect groups, as we require at least one height one character.

Lemma 4.1. Let N � G be finite groups with |G : N | odd, and let b be a block of N with 
dihedral or semidihedral defect groups (of order at least 8). Then each block of G covering 
b is Morita equivalent to b.

Proof. Let B be a block of G covering b; note that these blocks have the same defect 
groups. By Lemma 3.16 we may assume without loss of generality that b is G-invariant. 
We can also assume by the Feit-Thompson theorem [28] that |G : N | = p, an odd prime.

For each χ ∈ Irr(B), by Clifford’s Theorem either χ restricts irreducibly to N or 
χ↓N = φ1 + · · ·+φp for some φ1, . . . , φp ∈ Irr(b) that are conjugate in G; note that each 
constituent of χ↓N has the same height as χ. Since the height one characters of b have 
the same degrees, as do those of B, if any one of them is G-invariant then they all are. 
By Lemma 3.11 there is a unique χ ∈ Irr(G) covering φ ∈ Irr(b) if and only if φ is not 
G-invariant; in this case χ covers several characters of b. But b and B have the same 
number of height one characters, so all those of b must be G-invariant and in bijection 
with those of B. Since each height one character of b has more than one character of 
G above it, there must be multiple blocks of G covering b. Then by Lemma 3.12 each 
height zero character of b also has multiple characters of G above it, so must also be 
G-invariant.

Therefore restriction induces a bijection between Irr(B) and Irr(b), so B and b are 
Morita equivalent by [54, Cor.]. �
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Now we give a reduction to quasi-simple groups for any of the classes with three simple 
modules, based on Brauer’s [9] and Olsson’s [52] analyses of blocks with dihedral and 
semidihedral defect groups respectively.

Proposition 4.2. If B is a block of a finite group G with dihedral or semidihedral defect 
groups (of order at least 8) and l(B) = 3, then B is Morita equivalent to a block of a 
finite quasi-simple group.

Proof. Let N � G be a maximal normal subgroup and b be a block of N covered by B. 
If P is a defect group of b then by Lemma 3.15 there is a defect group D of B such that 
P = D ∩N . Since N is a normal subgroup, P is strongly closed in D with respect to G
(that is, if x ∈ P and g ∈ G such that xg ∈ D, then xg ∈ P ).

First, if B has dihedral defect groups, let X1, X2 be representatives of the two con-
jugacy classes of Klein four-groups in D. Since l(B) = 3, as in [9, Section 4] case (aa), 
there are elements of order 3 in G that permute the non-trivial elements of X1 and X2
respectively. This means that the involution in X1 ∩X2 = Z(D) is G-conjugate to ele-
ments in both non-central conjugacy classes of involutions in D; hence all involutions in 
D – of which there are more than |D| /2 – are G-conjugate. Therefore, since P is strongly 
closed in D with respect to G, either P = 1 or P = D.

If B has semidihedral defect groups, then there are three conjugacy classes of sub-
groups of order 4 in D: one of Klein four-groups, one of cyclic groups, and another single 
cyclic group C contained in the index-2 cyclic subgroup of D. Since l(B) = 3, as in case 
(aa) of [52], again there is an element of order 3 in G permuting the non-trivial elements 
of a Klein four-group. Hence if |P | > 1 then P contains all the involutions in D, and so 
contains the index-2 dihedral subgroup of D; in particular C ≤ P . Also, by [52, Lemma 
2.4] we see that C is G-conjugate to all of the cyclic groups of order 4 in D, which are 
therefore also in P ; this is then enough to generate D.

So for both dihedral and semidihedral defect groups we have that either P = 1 or 
P = D. If P = 1 then by Lemma 3.17 there is a block of a central extension of G/N

Morita equivalent to B.
If P = D, first we can assume by Lemma 3.16 that b is G-invariant. By Lemma 3.13, 

since the defects are the same, |G : N | �= 2, and if |G : N | is odd then B and b are Morita 
equivalent by Lemma 4.1.

If G/N is non-abelian simple, then define G[b] as in [42] as the set of g ∈ G such 
that the algebra automorphism b → b, x �→ g−1xg is an inner automorphism of b; this 
is a normal subgroup of G containing N . As in [46, Ex. 1.2] automorphisms of b can be 
considered as b-b-bimodules, so (their images in Out(b)) are elements of the Picard group 
of b, and those induced by group automorphisms are elements of T (b), the subgroup of 
the Picard group consisting of bimodules with trivial source. By [2, Thm 1.1] if Aut(P ) is 
solvable – as is the case when P is dihedral or semidihedral – then T (b) is also solvable, 
and hence so is its subgroup G/G[b]. Then since G/N is non-abelian simple, G[b] = G. 
Therefore B and b are Morita equivalent by [42, Thm 7].
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Repeatedly taking maximal (non-central when possible) normal subgroups in this way 
gives a group whose only proper normal subgroups are central – which is non-abelian 
and therefore quasi-simple – with a block Morita equivalent to B. �

We now give two less general reductions, each for a specific semidihedral class with 
two simple modules. Note that each proof essentially builds on the previous ones.

Proposition 4.3. If B is a block of a finite group G with semidihedral defect groups in 
either of the SD(2B)3 Morita equivalence classes, then B is Morita equivalent to a block 
of a finite quasi-simple group.

Proof. Again let N � G be a maximal normal subgroup, let b be a block of N covered 
by B, with defect group P = D ∩ N for a defect group D of B, and again assume by 
Lemma 3.16 that b is G-invariant. Since k(B) = 2n−2+3 and l(B) = 2 we are in case (ab) 
of [52], and there is again an element of order 3 in G permuting the non-trivial elements 
of a Klein four-group. So if |P | > 1 then P contains the index-2 dihedral subgroup of D. 
The cases P = 1 and P = D are the same as in the previous proof.

Suppose that 1 < P < D, so P is dihedral of index 2 in D. Since the blocks have 
different defects, |G : N | cannot be odd. If |G : N | = 2, then as B has an odd number of 
height one characters, one must split on restriction to N . As it is the sum of two distinct 
Brauer characters this would force both of them to split; but l(b) ≤ 3, a contradiction.

Suppose that G/N is non-abelian simple. Any odd-order element g ∈ G \ N does 
not permute the ordinary characters of b, by Lemma 4.1 considering N � 〈g〉N . Then 
since any non-abelian simple group G/N can be generated by odd-order elements, each 
φ ∈ Irr(b) is G-invariant. The unique block BDN of DN covering b has, by [38, Ch. 10 
Thm 5.10] (see also [51, Ex. 9.4]), semidihedral defect group D. But |DN : N | = 2 and 
each character of b is DN -invariant, so must split on induction to DN giving eight height 
zero characters of BDN , which is impossible. Hence P cannot have index 2 in D. �

The following case is more complicated:

Proposition 4.4. If B is a block of a finite group G with semidihedral defect groups of 
order 2n in either of the SD(2B)1 Morita equivalence classes, then there is a quasi-simple 
group S with a block bS such that either B is Morita equivalent to bS, or bS has dihedral 
defect groups in D(3K) and is covered by a block of a group S.2 with semidihedral defect 
groups of order 2n also in one of the SD(2B)1 classes.

Proof. Again let N � G be a maximal normal subgroup, let b be a block of N covered by 
B, with defect group P = D∩N for a defect group D of B, and assume by Lemma 3.16
that b is G-invariant. As in the previous proof, P is either 1, D, or dihedral of index 2
in D, and the first two cases are as in the proof of Proposition 4.2.

Suppose then that P is dihedral of index 2 in D. By the same arguments as in the 
previous proof, G/N cannot be non-abelian simple or of odd order, so |G : N | = 2 and 
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G = DN . Then one of the height one characters of B, and hence also the second Brauer 
character, must split on restriction to N , giving that b is in D(3K).

Now let H � N , and first suppose in addition that H � G. Let bH be a block of H
covered by b with defect group P ∩H; as in the proof of Proposition 4.2 this is either 1
or P . If P ∩H = 1 then D ∩H = 1 or 2. But D ∩H must also be 1, D, or index 2 in 
D, so D ∩H = 1, and thus B is Morita equivalent to a block of a central extension of 
G/H by Lemma 3.17. If P ∩H = P then bH is Morita equivalent to b, as in the proof 
of Proposition 4.2. Then the unique block BDH of DH covering bH has defect group D
and, as with b, the second and third Brauer characters of bH must fuse on induction to 
DH, so BDH is also in one of the SD(2B)1 classes.

Using the above we now assume that the only normal subgroups H � N that are 
also normal in G are N and those contained in Z(G); then N/Z(G) must be a direct 
product of simple groups. Let H � N be such that H/Z(G) is simple, and suppose that 
H �= N . Then N is a central product of the G-conjugates of H, which are H and Hx, 
where x ∈ D \N .

Let bH again be the block of H covered by b. The block (bH)x of Hx conjugate to bH
is covered by B, and b is the unique block of N covered by B, so (bH)x is the unique 
block of Hx covered by b, and b is a central product of bH and (bH)x. Since the centre 
of G must have odd order, the defect groups of b are a direct product of the defect 
groups of bH and (bH)x; they are dihedral, so must be a product of a dihedral and trivial 
group. But bH and (bH)x are conjugate in G, so must have isomorphic defect groups, a 
contradiction. Therefore no such H �= N exists and N is quasi-simple. �

In Section 6 we show that there are no blocks in the SD(2B)1 classes with defect 
at least 5 for groups with quasi-simple subgroups of index 2, as in the latter half of 
Proposition 4.4. Hence if |D| ≥ 32 then P cannot have index 2 in D.

Other than for SD(2B)1, it is sufficient to show that there are no blocks of quasi-
simple groups in the previously mentioned Morita equivalence classes to show that there 
are no blocks of any finite groups in those classes. In fact, since for any of these classes 
the non-trivial central element of D is G-conjugate to non-central elements, the centre 
of G must have odd order; hence we need only consider odd covers of the finite simple 
groups.

We highlight several facts from the previous proofs for future reference:

Remark 4.5. Let B be a block of a finite group G with dihedral or semidihedral defect 
groups and three simple modules, or semidihedral defect groups in one of the SD(2B)3
or SD(2B)1 classes. Then:

(i)
∣∣Z(G)

∣∣ is odd;
(ii) G is unsolvable.
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Let b be a block of a normal subgroup N � G covered by B, and let P and D be 
defect groups of b and B respectively such that P = D ∩N .

(iii) Unless B is in SD(2B)1 with |D| = 16, either P = 1 or P = D;
(iv) If P = D then b and B are Morita equivalent.

4.1. Reduction to quasi-isolated blocks

Let G be a simple algebraic group, with Steinberg endomorphism F : G → G. We 
describe in part the form the defect groups of blocks of Levi subgroups of GF take:

Lemma 4.6. Let L be a Levi subgroup of G with L = LF /Z for some Z ≤ Z(LF ), and 
let B be a block of L with defect group D. Then D has a subgroup P such that:

• P is strongly closed in D with respect to L (that is, if x ∈ P and g ∈ L such that 
xg ∈ D, then xg ∈ P );

• D/P is abelian;
• P is a central product of defect groups of blocks of the quasi-simple normal subgroups 

of L (or some of the finitely many solvable exceptions in [49, Thm 24.17]) covered 
by B.

Proof. Take P = D ∩ [L, L] to be a defect group of a block B′ of [L, L] covered by B. 
Then P is strongly closed since [L, L] � L, and D/P is abelian since L/[L, L] is. Also 
[L, L] is a central product of quasi-simple groups of Lie type (or solvable exceptions), so 
B′ is a central product of blocks with defect groups central products of the defect groups 
of these blocks. �

The above conditions are particularly strong for the blocks we consider. Let G have 
characteristic p �= 2, and let G = GF /Z, for some Z ≤ Z(GF ); we can assume that |Z|
is a power of 2.

Corollary 4.7. Let B be a block of G with dihedral or semidihedral defect group D (of 
order at least 8) such that: l(B) = 3, B is in SD(2B)3, or B is in SD(2B)1 and |D| ≥ 32. 
Then B is Morita equivalent to a quasi-isolated block of a quasi-simple group.

Proof. If B is itself quasi-isolated then we are done. Otherwise by Theorem 3.9 it is 
Morita equivalent to a block BL of some L = LF /Z, where L is a proper F -stable Levi 
subgroup of G, also with defect group D. Consider a block B′

L of [L, L] covered by BL

and let P = D ∩ [L, L] be a defect group of B′
L as in Lemma 4.6. Then P is strongly 

closed in D with respect to L.
Remark 4.5(iii) implies that P = 1 or P = D (note for SD(2B)1 that while Section 6

relies on Section 5 and Lemma 4.6, it does not rely on this result). But D/P is abelian, 
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so P = D. Since P cannot be expressed as a non-trivial central product, the block BS

of some quasi-simple normal subgroup S of [L, L] covered by B′
L has defect group P , so 

is therefore Morita equivalent to BL, and hence to B, by Remark 4.5(iv); note that S
cannot be solvable by Remark 4.5(ii).

The rank of S as a group of Lie type is at least 1 but strictly less than the rank of G. 
Therefore, repeating the above now with S and BS in place of G and B, this process must 
terminate at some quasi-isolated block of a quasi-simple group that is Morita equivalent 
to B. �

Hence to identify which of the Morita equivalence classes in question occur among 
finite groups of Lie type in cross characteristic it is sufficient to consider only the quasi-
isolated blocks of quasi-simple groups.

5. Blocks of quasi-simple groups

We go through the finite simple groups and their odd covers case by case, and study 
the blocks with dihedral or semidihedral defect groups.

5.1. Defining characteristic

First consider the defining characteristic case, that is where G is a finite group of Lie 
type of characteristic p = � = 2. Humphreys [34] proved that every p-block of G has defect 
groups either trivial or the Sylow p-subgroups of G. The groups with dihedral Sylow 
2-subgroups were classified by Gorenstein and Walter [30]; in particular any finite quasi-
simple group with dihedral Sylow 2-subgroups is isomorphic to an odd cover of either 
Alt(7) or PSL2(q) for q odd. Similarly, by a result of Alperin, Brauer, and Gorenstein [1]
any quasi-simple group with semidihedral Sylow 2-subgroups is isomorphic to M11 or an 
odd cover of PSL3(q) for q ≡ −1 mod 4 or PSU3(q) for q ≡ 1 mod 4. Hence we need not 
further consider blocks in defining characteristic; note that while PSL3(2) has dihedral 
Sylow 2-subgroups it is isomorphic to PSL2(7), which will be considered later.

5.2. Types B, C, D

Now let G be a simple simply connected group of Lie type of characteristic p �= � = 2, 
with F a Steinberg endomorphism so that GF is a finite group of Lie type, and let 
G = GF /Z, where Z is a central subgroup of GF . First let G be of type Bn, Cn, or Dn

for n > 1. Then G has no non-trivial quasi-isolated 2′-elements [4, Table II], and the only 
unipotent 2-blocks of GF are the principal blocks [21, Prop. 6]. Hence the only quasi-
isolated block of G is the principal block, which has defect groups the Sylow 2-subgroups 
of G, which are neither dihedral nor semidihedral for any such G. Note that this includes 
the twisted groups 2Dn(q) and 3D4(q), while 2B2(q) only exists in characteristic 2.
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5.3. Exceptional groups

5.3.1. Unipotent blocks
Enguehard [21] classified all unipotent blocks of finite groups of Lie type for bad 

primes, as 2 is other than for type A. There are none with semidihedral defect groups, 
and only E7(q) has unipotent blocks with dihedral defect groups.

Theorem 5.1. The simple group E7(q) for q ≡ 1 mod 4 (resp. −1 mod 4) has two unipo-
tent blocks with dihedral defect groups of order |q − 1|2 (resp. |q + 1|2) in D(3A)1 (resp. 
D(3K)).

Proof. Let G = E7(q)ad, so [G, G] = E7(q) and 
∣∣G : [G,G]

∣∣ = 2. By [21, Section 3.2]
there are two non-principal unipotent blocks of G with dihedral defect groups of order 
2 |q ± 1|2, corresponding to unipotent characters labelled E6[θ] and E6[θ2] of a Levi sub-
group E6(q).(q − 1) of G. Let B be one of these blocks, which contains the unipotent 
characters denoted in [15, Section 13.9] by E6[θi], 1 and E6[θi], ε, for i = 1 or 2.

For an algebraic group G, restriction via the natural isogeny Gsc → Gad induces 
a bijection between unipotent characters E(GF

ad, 1) → E(GF
sc, 1) by [13, Prop. 15.9], 

meaning that unipotent characters of G must restrict irreducibly to [G, G]. Hence B
covers a unique block b of [G, G] containing these two labelled unipotent characters, 
which each split on induction up to G into pairs of irreducible characters χ1, χ′

1 and 
χε, χ′

ε respectively in B.
From [15, Section 13.9] the degrees of these characters are related by χε(1) = q9χ1(1). 

Since χ1, χε have the same height but different degrees, and B has dihedral defect groups, 
they both have height zero, as do χ′

1 and χ′
ε. Then, since among these four height zero 

characters there are exactly two distinct degrees, B must be in D(2A) or D(2B). Since 
B has defect at least 3, it contains at least one height one character, whose degree is 
χε(1) +χ1(1) = (q9+1)χ1(1) for D(2A), which must therefore be the case if q ≡ 1 mod 4, 
and χε(1) − χ1(1) = (q9 − 1)χ1(1) for D(2B) if q ≡ −1 mod 4.

Note that the defect groups of b are also dihedral (or Klein four), of order |q ± 1|2. 
Indeed by Lemma 3.13 they are index-2 subgroups of defect groups of B, so supposing 
they are not dihedral they must be cyclic, so have only height zero characters by [40, 
Thm 1.1]. So then all of the height one characters of B must split on restriction to [G, G], 
which would lead to either none of the rows or two distinct rows of the decomposition 
matrix of b being repeated. But since the defect groups are of order at least 4, there 
must be exactly one repeated row as in [16, Thm 5.1.2].

There are an odd number of them, so one of the height one characters of B must 
split on restriction to [G, G], and thus so must the second Brauer character. Then all the 
other ordinary characters must fuse, and thus from the resulting decomposition matrix 
b must be in D(3A)1 if q ≡ 1 mod 4, and D(3K) if q ≡ −1 mod 4. �

Note from the proof that E7(q)ad has unipotent blocks with dihedral defect groups in 
D(2A) or D(2B) for q ≡ 1 or −1 mod 4 respectively.
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5.3.2. Quasi-isolated blocks
Kessar and Malle [40] described the non-unipotent quasi-isolated blocks of exceptional 

groups of Lie type for bad primes � �= p. Let G be a simply connected simple exceptional 
algebraic group, with F a Steinberg endomorphism so that GF is a finite group of Lie 
type, and G∗ is a group dual to G. They list all quasi-isolated �′-elements s ∈ G∗ and 
describe the quasi-isolated �-blocks in each Lusztig series E(GF , s), in particular proving 
Theorem 3.10. For � = 2 in most cases the corresponding Z(L)F2 , so also the defect groups 
of the block, contains a 4 × 4 subgroup, so they are neither dihedral nor semidihedral; 
nor are the defect groups for E7(q) after quotienting by the simply connected group’s 
centre of order 2 (see [49, Table 24.2] for the possible centres of GF ). The exceptions are 
the blocks of E6(q) and 2E6(q) in line 8 of [40, Table 3], the block of E8(q) in line 6 of 
[40, Table 5], and the block of G2(q) in line 2 of [40, Table 9]. We show that the defect 
groups of these blocks cannot be dihedral, and deduce the possible classes of the block 
if they are semidihedral. Note that for each of these exceptions the blocks are isolated 
and the centraliser CG∗(s)F has a unipotent block with semidihedral defect groups.

Hiss and Shamash [31] described the 2-blocks of G2(q) for q odd, including character 
degrees, defect groups, and decomposition matrices. The case in question only occurs 
when q ≡ ±5 mod 12. By [31, (2.2.3)], if q ≡ 5 mod 12 then G2(q) has a block with 
semidihedral defect groups of order 4 |q − 1|2 and decomposition matrix that of SD(3A)1. 
This is the block corresponding to line 2 in [40, Table 9], since we know that block contains 
the character corresponding to the trivial character of CG∗(s)F = 2A2(q), whose degree 
is 
∣∣G2(q) : 2A2(q)ad

∣∣
p′ = q3 − 1. Similarly by [31, (2.3.2)], replacing 2A2(q) with A2(q), 

if q ≡ −5 mod 12 then G2(q) has an isolated block with semidihedral defect groups of 
order 4 |q + 1|2 and decomposition matrix that of SD(3D) or SD(3B)1.

Theorem 5.2. If B is a quasi-isolated block of E6(q)sc with semidihedral defect groups, 
then q ≡ −1 mod 4, the defect groups are of order 4 |q + 1|2, and B is in SD(3D) or 
SD(3B)1. If B is a quasi-isolated block of 2E6(q)sc with semidihedral defect groups, then 
q ≡ 1 mod 4, the defect groups are of order 4 |q − 1|2, and B is in SD(3A)1 or SD(3C)2,2.

Proof. First let GF = E6(q)sc. Block 8 in [40, Table 3] for q ≡ −1 mod 4 has CG∗(s)F =
A2(q3).3 and defect groups of the form |q + 1|2 .2.2. Since CG∗(s) is disconnected its 
unipotent characters are those of (CG∗(s)◦)F = A2(q3) induced up to CG∗(s)F . Since ∣∣CG∗(s) : CG∗(s)◦

∣∣ = 3, it follows that E(GF , s) consists of three blocks, each containing 
Jordan correspondents of the unipotent characters of A2(q3), denoted φ3, φ21, and φ13

according to the partitions of 3.
Consider one of these blocks B; the degrees of the three known characters are 

φ3(1) = 1, φ21(1) = q3(q3 + 1), and φ13(1) = q9 each multiplied by a factor of 
m =

∣∣(G∗)F : CG∗(s)F
∣∣
p′ . Each character of B has this factor in its degree by Re-

mark 3.6, so the φ3 character has height zero. Then the φ21 character has height at least 
2, so the defect groups of B are not dihedral. Suppose they are semidihedral.
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The two known height zero character degrees are distinct and neither their sum nor 
difference is equal to the large height character degree, which, observing the possible 
decomposition matrices, implies that l(B) = 3. We can then rule out the decomposition 
matrices of SD(3B)2 and SD(3C)2,1 since the large height character does not have the 
largest degree. For the decomposition matrices of SD(3A)1 and SD(3C)2,2 we exhaus-
tively consider each pair of height zero characters and suppose their degrees are m and 
mq9; each case implies a contradiction that the large height degree q3(q3 + 1) is q9 − 1
or q9 + 1, or that the repeated degree has height greater than one. We do the same for 
the decomposition matrix of SD(3H), and the only pair not giving either of the previous 
contradictions has φ3 as the third row, giving the second row degree m 

(
q3(q3 + 1) − 1

)
, 

which is notably not a cyclotomic polynomial. Using GAP and [47], we see that there are 
no ordinary character degrees of E6(q)sc which coincide with this degree for any q. (This 
was done by listing all character degrees as polynomials in q, subtracting the polynomial 
degree m(q6+q3−1), and checking for any positive integer roots up to a sufficiently high 
q; a polynomial’s roots are bounded by twice the absolute value of the largest coefficient 
divided by its leading coefficient.) Therefore B is in SD(3D) or SD(3B)1; these classes 
have the same decomposition matrix.

Similarly, by Ennola duality and using the same arguments, GF = 2E6(q)sc with 
q ≡ 1 mod 4 has three blocks with CG∗(s)F = 2A2(q3).3 that may have semidihedral 
defect groups, and if so are in SD(3A)1 or SD(3C)2,2, whose decomposition matrices are 
indistinguishable based only on ordinary character degrees. �
Theorem 5.3. If B is an isolated block of E8(q) with semidihedral defect groups, then 
either q ≡ 5 mod 12, the defect groups are of order 4 |q − 1|2, and B is in SD(3A)1
or SD(3C)2,2; or q ≡ 7 mod 12, the defect groups are of order 4 |q + 1|2, and B is in 
SD(3D) or SD(3B)1.

Proof. Let GF = E8(q); note that G∗ ∼= G. When q ≡ 1 mod 4, block 6 of [40, Table 
5] occurs when also q ≡ −1 mod 3, and has CG(s)F = 2E6(q).2A2(q); here E2(GF , s)
is a union of three blocks. Two of these blocks have defect groups of the form P with 
subgroups A ≤ D ≤ P such that D ∼= 2 |q − 1|2 is the unique cyclic subgroup of index 2 in 
P , and any σ ∈ P \D inverts A ∼= |q − 1|2; this means that P is dihedral, semidihedral, or 
generalised quaternion, of order 4 |q − 1|2. These two blocks, corresponding to i = 1 and 
2, each contain two Harish-Chandra series: one series has LF = Φ1.E7(q), λ = 2E6[θi], 
and WGF (L, λ) = A1 = 2; and the other has LF = E8(q), λ = 2E6[θi] ⊗ φ21, and 
WGF (L, λ) = 1 (here λ is labelled by the Jordan corresponding unipotent character in 
CG(s)F ). The latter series consists only of the character 2E6[θi] ⊗ φ21, since LF = GF , 
and the former contains 2E6[θi] and one other character, since WGF (L, λ) has order 2
and hence RG

L (λ) has norm 2. Assume i = 1 (all degrees are identical for i = 2) and let 
B be the corresponding block of GF .

By Remark 3.6 each character of Irr(B) corresponds to an ordinary character of 
2E6(q).2A2(q) and has m =

∣∣GF : CG(s)F
∣∣

′ =
∣∣E8(q) : 2E6(q).2A2(q)

∣∣
′ as a common 
p p
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factor in its degree; in particular, the 2-part of this is 23
∣∣(q − 1)3

∣∣
2. The 2-part of 

∣∣E8(q)
∣∣ is 

214
∣∣(q − 1)8

∣∣
2 and the defect groups of B have order 22|q − 1|2. Then since 

∣∣2E6[θ](1)
∣∣
2 =

29
∣∣(q − 1)4

∣∣
2, the correspondent of 2E6[θ] has height zero and that of 2E6[θ] ⊗ φ21 has 

height at least 2, since φ21(1) = q(q − 1); therefore the defect groups are not dihedral.
Of all the other unipotent characters of CG(s)F , found in [15, Section 13.9], only 

2E6[θ] ⊗ φ13 has a large enough 2-part given the defect of B – except also perhaps 
2E6[1] ⊗φ21, but [40, Table 5] lists this character in a Harish-Chandra series of the other 
of the three blocks contained in E2(GF , s) – and it has height zero since φ13(1) = q3.

Suppose B has semidihedral defect groups. In the same way as in the previous proof, 
the three known character degrees imply that l(B) = 3, and that B cannot have decom-
position matrix that of SD(3C)2,1 or SD(3B)2 since the large height character does not 
have largest degree, or that of SD(3D) or SD(3B)1 checking the possible combinations 
of height zero characters. Similarly for SD(3H), the third row is forced to have degree 
m ·2E6[θ](1) ·(q2−q−1), again not a cyclotomic polynomial, which does not coincide with 
any ordinary character degree of 2E6(q).2A2(q) for any q (checking all products of degrees 
of 2E6(q) with those of 2A2(q) up to sufficiently large q). Therefore B is in SD(3A)1 or 
SD(3C)2,2.

If q ≡ −1 mod 4 then by Ennola duality and using the same arguments, with 
CG(s)F = E6(q).A2(q), we get that B is in SD(3D) or SD(3B)1. �

Note that 2F4(q) only exists in characteristic 2, and 2G2(q) has elementary abelian 
Sylow 2-subgroups.

5.4. Type A

Now consider the groups of type A, that is the linear and unitary groups. The gen-
eral unitary group will be denoted GLn(−q) or GUn(q) (as opposed to GUn(q2)), and 
similarly for the special and projective unitary groups. Let b be a 2-block of an odd 
cover of PSLn(εq), where ε = ±1, contained in a block bSL of SLn(εq), with semisimple 
label s ∈ PGLn(εq) according to Lusztig series, and let B be a block of G = GLn(εq)
covering bSL. The defect groups of the blocks of the general linear and unitary groups 
were described by Broué in [11, (3.7)], and those of B are the Sylow 2-subgroups of 
CG(s̃) ∼=

∏
i∈I GLni

(
(εq)ai

)
for some suitable ni and ai, where s̃ is a representative of s

in G.
Suppose that b is quasi-isolated and has dihedral or semidihedral defect groups. By [4, 

Table II] quasi-isolated semisimple elements s ∈ PGLn(Fq) have connected centraliser 
of the form (PGLn/d(Fq))d, where d is the order of s which is therefore odd. Therefore 
CG(s̃) ∼=

∏
i∈I GLn/d

(
(εq)ai

)
.

We must have n/d > 1, otherwise the defect groups of B would be abelian. Ad-
ditionally if |I| > 1 then CG(s̃) would at least contain GL2

(
(εq)a1

)
× GL2

(
(εq)a2

)
as a subgroup, so the defect groups of bSL would contain the Sylow 2-subgroups of 
SL2

(
(εq)a1

)
× SL2

(
(εq)a2

)
– a product of two generalised quaternion groups – which 

after quotienting by a cyclic subgroup cannot be dihedral or semidihedral.
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Therefore CG(s̃) ∼= GLn/d

(
(εq)d

)
= GLn/d(εqd); let σ : GLn/d(εqd) → GLn(εq)

denote an embedding. For any x we have detn(xσ) =
(
detn/d(x)

)m

, where m = (qd−ε)/
(q − ε) which is odd since d is, so if x is a 2-element then detn(xσ) = 1 precisely 
when detn/d(x) = 1. Hence, with the following subscript-2 notation denoting a Sylow 2-
subgroup, 

(
GLn/d(εqd)2

)
σ∩SLn(εq) =

(
SLn/d(εqd)2

)
σ, so the defect groups of bSL are 

isomorphic to SLn/d(εqd)2, and those of b are isomorphic to PSLn/d(εqd)2. In particular 
the defect groups of b are dihedral (or Klein four) if and only if n/d = 2, and semidihedral 
if and only if n/d = 3 and q ≡ −ε mod 4.

Remark 5.4. Note for reference in Section 6 that if P ≤ D are defect groups of bSL and 
B respectively then |D : P |2 =

∣∣G : SLn(εq)
∣∣
2.

We first look at the semidihedral case, as it is more straightforward. By non-
exceptional cover we mean that the group is a quotient of SLn(εq); see Section 5.5
for the exceptional covers.

Theorem 5.5. Let b be a quasi-isolated block of (a non-exceptional odd cover of) PSLn(εq)
with semidihedral defect groups. Then q ≡ −ε mod 4, the defect groups of b are of order 
4 |q + ε|2, and b is in SD(3D) or SD(3B)1 if ε = 1 and SD(3A)1 if ε = −1.

Proof. Using the previous notation of this section, we have that CG(s̃) = GL3(εqn/3), 
with n/3 odd and qn/3 ≡ q ≡ −ε mod 4. By [26] (and as in Theorem 2.2) the prin-
cipal blocks of PSL3(qn/3) for q ≡ −1 mod 4 and PSU3(qn/3) for q ≡ 1 mod 4 have 
decomposition matrices

⎛
⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
. . 1
. 1 .

⎞
⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎝

1 . .
1 1 .
1 . 1
1 1 1
. . 1
2 1 1

⎞
⎟⎟⎟⎟⎟⎠

respectively, with the last rows repeated |q + ε|2 − 1 times. Since 
∣∣∣Z(SL3(εqn/3))

∣∣∣ is odd, 
the principal block of SL3(εqn/3) is isomorphic to that of PSL3(εqn/3). Define H ′ to be the 
subgroup of GL3(εqn/3) consisting of elements whose determinant has odd order in F×

qn/3. 

Then since 
∣∣∣qn/3 − ε

∣∣∣
2

= 2 we have that 
∣∣∣H ′ : SL3(εqn/3)

∣∣∣ is odd, so by Lemma 4.1 the 

principal block of H ′ is Morita equivalent to that of SL3(εqn/3), and GL3(εqn/3) = H ′×2, 
so the principal block of GL3(εqn/3) has the corresponding decomposition matrix above 
with each row occurring twice.

Similarly, since n is odd and |q − ε|2 = 2, if H is the subgroup of G = GLn(εq) of 
elements with determinant of odd order then G = H × 2 and b is Morita equivalent to 
the block BH of H covered by the block B of G.
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Since CG(s̃) must be a Levi subgroup of G = GLn(Fq), Theorem 3.7 implies that B
is Morita equivalent to the principal block of CG(s̃) = GL3(εqn/3) with decomposition 
matrix as described above. Then since G = H × 2, the ordinary characters of B restrict 
irreducibly in pairs to those of BH , so BH , and hence also b, has decomposition matrix 
that of the principal block of PSL3(εqn/3). Therefore b is in SD(3D) or SD(3B)1 if ε = 1, 
and is in SD(3A)1 if ε = −1. �

For the dihedral case we first calculate a decomposition matrix we will use in the 
proof. Throughout the rest of this section set a = |q + 1|2 and c = |q − 1|2.

Proposition 5.6. The decomposition matrix of the principal block B of GU2(q) is

⎛
⎜⎜⎝

⎞
⎟⎟⎠

1 1 . a times
q 1 1 a times

q − 1 . 1 1
2a (a− 1) times

q + 1 2 1 1
2a (c− 1) times

;

the character degrees are shown on the left, and each row is repeated the number of times 
shown on the right.

Proof. Note that SL2(q) ∼= SU2(q). First let q ≡ −1 mod 4. By [26] (and as in Corol-
lary 2.4) the decomposition matrix of the principal block b of SU2(q) is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 . .

. 1 .

. . 1
1 1 1
1 1 .

1 . 1
. 1 1

with the final row repeated a − 1 times. The central product A = SU2(q) ∗ (q + 1) is an 
index-2 subgroup of GU2(q), and the decomposition matrix of the principal block BA of 
A is that of b with each row occurring a/2 times.

By [27, (4.3)] l(B) = 2 and k(B) = a2/2 +2a. Therefore, on induction to GU2(q), the 
second and third Brauer characters of BA must fuse, which forces the ordinary characters 
relating to the second and third rows and also the fifth and sixth rows above to fuse in 
pairs, while all the other ordinary characters must split to give the correct value for 
k(B). Hence the decomposition matrix of B is as claimed.

If q ≡ 1 mod 4 then the argument is identical with a slightly different matrix for 
SU2(q); note also that then B is as in Theorem 2.3. �
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Theorem 5.7. Let b be a quasi-isolated block of (a non-exceptional odd cover of) PSLn(εq), 
where ε = pm1, with dihedral defect groups (of order at least 8). Then n/2 is odd and 
either: q ≡ 1 mod 4, the defect groups are of order |q − 1|2, and b is in D(3A)1; or 
q ≡ −1 mod 4, the defect groups are of order |q + 1|2, and b is in D(3K).

Proof. Using the previous notation of this section, by those considerations, CG(s̃) =
GL2(εqn/2) with n/2 odd. Without loss of generality, consider b as a block of SLn(εq)/2, 
an odd cover of PSLn(εq) since 

∣∣(q, n)
∣∣
2 = 2. Set H as the subgroup of G = GLn(εq)

consisting of elements with odd-order determinant, let BH/2 be a block of H/2 covering b, 
which by Lemma 4.1 is Morita equivalent to b, and let BH be the block of H containing 
BH/2 (choose BH/2 so that the block B of G covers BH). The central product A =
H ∗ (q − ε) is an index-2 subgroup of G, and |A : H| = |q − ε|2 /2. Let BA be the unique 
block of A covering BH , so B is the unique block of G covering BA.

Since CG(s̃) must be a Levi subgroup of G = GLn(Fq), Theorem 3.7 implies that B
is Morita equivalent to the principal block of CG(s̃) = GL2(εqn/2) with the same decom-
position matrix. The decomposition matrix of the principal block of GU2(qn/2) is as in 
Proposition 5.6, replacing q with t = qn/2, and that of GL2(qn/2), calculated using [35], is

⎛
⎜⎜⎝

⎞
⎟⎟⎠

1 1 . c times
t 1 1 c times

t− 1 . 1 1
2c (a− 1) times

t + 1 2 1 1
2c (c− 1) times

;

note that since n/2 is odd, |t± 1|2 = |q ± 1|2.
The decomposition matrix of BA is that of BH with each row repeated c/2 or a/2

times, depending on ε; the characters of BH/2 are then a subset of those of BH , and BH/2
has dihedral defect groups. Since the defects of B and BA are different, all the height zero 
characters of B must fuse on restriction to BA, giving two possible height zero characters 
of BH/2. Then one of the height one characters, and hence the second Brauer character, 
of B must split on restriction to A. It follows that the decomposition matrix of BH/2, 
hence that of b, must be that of D(3A)1 if q ≡ 1 mod 4 or D(3K) if q ≡ −1 mod 4. �
5.5. Exceptional Schur covers

The following are the maximal odd covers of finite simple groups of Lie type that are 
not quotients of the corresponding simply connected group: 3 · PSL2(9), 32 · PSU4(3), 
3 ·B3(3), and 3 ·G2(3) (see [49, Table 24.3]). The decomposition matrices of these groups 
are all in the Modular Atlas [10]. The new 2-blocks occurring – that is those that are 
not blocks of the simple group – for 32 · PSU4(3) and 3 ·G2(3) all have either maximal 
or zero defect, while 3 · B3(3) = 3 ·O7(3) has two blocks with dihedral defect groups of 
order 8 in D(2A). Finally, 3 ·PSL2(9) ∼= 3 ·Alt(6) is considered in the following section.
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5.6. Alternating groups

The alternating groups are investigated via the representation theory of the symmetric 
groups, which is well understood (see [36] for example). The ordinary characters of 
Sym(n) correspond to the partitions of n, and the result of repeatedly removing �-hooks 
– partitions of the form (� −m, 1m) for some m – from a partition is called the �-core, 
which is uniquely defined. Two characters are in the same �-block if and only if the �-
cores of their partitions are the same [36, (6.1.21)], so the blocks are labelled by �-cores. 
The weight of a character, and thus the weight of its block, is the number of �-hooks 
removed to get to its �-core. The defect groups of a block of weight w are then conjugate 
to Sylow p-subgroups of Sym(�w) by [36, (6.2.45)].

Theorem 5.8. If b is a block of an alternating group Alt(n) with dihedral defect groups 
(of order at least 8), then they must be of order 8 and either:

(i) n = 6 and b is in D(3A)1, or;
(ii) n = t + 6 where t ≥ 1 is a triangular number and b is in D(3B)1.

Proof. There is a unique block B of Sym(n) covering b. If B has weight w then its defect 
groups are conjugate to the Sylow 2-subgroups of Sym(2w), so the defect groups of b are 
isomorphic to the Sylow 2-subgroups of Alt(2w). Therefore we must have w = 3 and the 
defect groups are of order 8.

The 2-blocks of Sym(n) are labelled by 2-cores, which are precisely the triangular 
partitions. In [55, Lem. 2.4, Thm 4.2] Scopes gives a method of showing that certain 
blocks of Sym(n) and Sym(n +m) of equal weight w with m ≥ w are Morita equivalent 
with the same decomposition matrices. From this we get that all 2-blocks of symmetric 
groups of weight 3, other than perhaps the blocks labelled ∅ of Sym(6) and (1) of Sym(7), 
are Morita equivalent to the block (2, 1) of Sym(9).

The (principal) blocks of Alt(6) and Alt(7) covered by these blocks ∅ and (1) can 
be checked individually and found to be as stated; note also that Alt(6) ∼= PSL2(9). 
Suppose then that B is Morita equivalent to the block (2, 1) of Sym(9), so as in [10] has 
the following decomposition matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . .
1 . .
1 1 .
1 1 .
1 . 1
1 . 1
1 1 1
1 1 1
. 1 .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

. 1 .
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Since b has dihedral defect groups and defect 3 it has exactly four height zero and one 
height one character, so the ten ordinary characters of B must fuse in the obvious way, 
giving that b has decomposition matrix that of D(3B)1. �

Additionally, the only odd covers of alternating groups are the exceptional covers 
3 ·Alt(6) and 3 ·Alt(7), whose Sylow 2-subgroups are also dihedral of order 8. Checking 
these in GAP or the Modular Atlas shows that 3 · Alt(6) has two additional blocks of 
defect 3 in D(3K), while 3 · Alt(7) has two in D(2B).

The Sylow 2-subgroups of Alt(2w) are not semidihedral for any w, so there are no 
blocks of alternating groups with semidihedral defect groups.

5.7. Sporadic groups

None of the sporadic groups has dihedral Sylow 2-subgroups, so only non-principal 
blocks may have dihedral defect groups, and only the Mathieu group M11 has semidihe-
dral Sylow 2-subgroups. Landrock [43] described the non-principal 2-blocks of all sporadic 
groups, and their defect groups. There are several blocks with dihedral defect groups – 
they are all of order only 8, but we give their decomposition matrices anyway – and there 
are two blocks with semidihedral defect groups, of order 16. The ordinary character de-
grees can be found using GAP and its Atlas database of ordinary character tables, and, 
in most cases this is sufficient to deduce the decomposition matrix and Morita equiva-
lence class. We also check any additional 2-blocks of odd covers of the sporadic groups 
with defect at least 3 but not maximal; these only occur for 3 · Fi′24, and it can be seen 
from the number of characters and heights that the defect groups of these blocks are 
indeed dihedral.

Theorem 5.9. The blocks of sporadic groups with dihedral defect groups (of order at least 
8), with their decomposition matrices and character degrees, are as follows.

Fi23 D(2B) 97 976 320 166 559 744
97 976 320 1 .
166 559 744 . 1
166 559 744 . 1
264 536 064 1 1
264 536 064 1 1

B D(2B) 2 642 676 197 359 616 9 211 433 539 600 384
2 642 676 197 359 616 1 .
9 211 433 539 600 384 . 1
9 211 433 539 600 384 . 1
11 854 109 736 960 000 1 1
11 854 109 736 960 000 1 1
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Fi′24 D(3A)1 38 467 010 560 38 641 860 608 107 008 229 376
38 641 860 608 . 1 .
77 108 871 168 1 1 .
145 650 089 984 . 1 1
184 117 100 544 1 1 1
222 758 961 152 1 2 1

O′N D(3K) 10 944 13 376 13 376
10 944 1 . .
13 376 . 1 .
13 376 . . 1
26 752 . 1 1
37 696 1 1 1

He D(3B)1 1920 4352 4608
1920 1 . .
4352 . 1 .
6272 1 1 .
6528 1 . 1
10 880 1 1 1

Suz D(3B)1 66 560 79 872 102 400
66 560 1 . .
79 872 . 1 .
146 432 1 1 .
168 960 1 . 1
248 832 1 1 1

Co1 D(3B)1 40 370 176 150 732 800 313 524 224
40 370 176 1 . .
150 732 800 . 1 .
191 102 976 1 1 .
464 257 024 . 1 1
504 627 200 1 1 1

Additionally, 3 · Fi′24 has two blocks with dihedral defect groups and the following 
decomposition matrix.

3 · Fi′24 D(2A) 55 349 084 160 80 256 172 032
80 256 172 032 . 1
80 256 172 032 . 1
135 605 256 192 1 1
135 605 256 192 1 1
215 861 428 224 1 2

Theorem 5.10. The blocks of sporadic groups with semidihedral defect groups, with their 
decomposition matrices and character degrees, are as follows.

M11 SD(3D) 1 10 44
1 1 . .
10 . 1 .
10 . 1 .
10 . 1 .
11 1 1 .
44 . . 1
45 1 . 1
55 1 1 1
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HN SD(3D) or SD(3B)1 214 016 1 361 920 2 985 984
214 016 1 . .
1 361 920 . 1 .
1 361 920 . 1 .
1 361 920 . 1 .
1 575 936 1 1 .
2 985 984 . . 1
3 200 000 1 . 1
4 561 920 1 1 1

The Monster group has a block with one of the following decomposition matrices:

M SD(3B)2 or SD(3C)2,1 ϕ1 ϕ2 ϕ3 ϕ1 ϕ2 ϕ4
5 514 132 424 881 463 208 443 904 1 . . 1 . .
5 514 132 424 881 463 208 443 904 1 . . 1 . .
5 514 132 424 881 463 208 443 904 1 . . 1 . .
9 416 031 858 681 585 751 556 096 . 1 . . 1 .
14 930 164 283 563 048 960 000 000 1 1 . 1 1 .
124 058 385 593 021 471 188 320 256 . 1 1 . . 1
129 572 518 017 902 934 396 764 160 1 1 1 1 . 1
138 988 549 876 584 520 148 320 256 1 2 1 1 1 1

where ϕ1 = 5 514 132 424 881 463 208 443 904, ϕ2 = 9 416 031 858 681 585 751 556 096, 
ϕ3 = 114 642 353 734 339 885 436 764 160, ϕ4 = 124 058 385 593 021 471 188 320 256.

The block of HN is in one of the two Morita equivalence classes with its decomposition 
matrix, while the principal block of M11 is known to be Morita equivalent to that of 
PSL3(3) (a calculation in Magma). As seen above, the decomposition matrix of the 
block of M cannot be identified from just the ordinary character degrees; neither can it 
be identified by tensoring any of the possible projective indecomposable characters of 
this block or those of the defect zero blocks of M with irreducible characters (this was 
checked in GAP; see [51, 25]).

6. Semidihedral class SD(2B)1

As according to the latter half of Proposition 4.4, we consider the blocks of quasi-
simple groups with dihedral defect groups in D(3K), as have been described throughout 
Section 5, and show that those with defect at least 4 are not covered by blocks with 
semidihedral defect groups in SD(2B)1. There are such blocks in D(3K) with defect only 
3 in 3 ·Alt(6) and O′N , and SD(2B)1 for defect 4 does occur as a block of 3 ·M10 covering 
this block of 3 · Alt(6), while the covering block of O′N.2 has dihedral defect groups (a 
simple calculation in Magma). Other than these there are the quasi-isolated blocks of 
odd covers of PSLn(εq) and the unipotent blocks of E7(q), both for q ≡ −1 mod 4; we 
must also consider the non-quasi-isolated blocks of quasi-simple groups of Lie type that 
are Morita equivalent to these blocks via Theorem 3.7.
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Proposition 6.1. Let b be a block of a finite quasi-simple group of Lie type G with dihedral 
defect groups in D(3K). If B is the block of a group G.2 covering b, then B does not 
have semidihedral defect groups in SD(2B)1.

Proof. Suppose that B is in SD(2B)1. Then G.2 must stabilise b, otherwise B and b
would be Morita equivalent by Theorem 3.16. Each of B and b has four height zero 
characters, so two of these characters of b are conjugate and fuse on induction to G.2. 
Therefore G.2 defines some σ ∈ Aut(G) that stabilises b such that the corresponding 
σ ∈ Out(G) has order 2. We also consider σ as an automorphism of the simple group 
G/Z(G), and recall that any such automorphism is a product of an inner, diagonal, field, 
and graph automorphism.

Let G be defined over Fq, a power of a prime p �= 2, and let G be the corresponding 
simply connected simple algebraic group, with Steinberg endomorphism F : G → G so 
that G = GF /Z, where Z is a central subgroup; we may assume that |Z| is a power of 
2. Let bGF be the block of GF containing b, with semisimple label s ∈ (G∗)F according 
to Lusztig series. Theorem 3.7 implies that bGF is Morita equivalent to a quasi-isolated 
block bLF of LF for some F -stable Levi subgroup L of GF , so b is Morita equivalent to 
the quasi-isolated block bL of L = LF /Z contained in bLF by Theorem 3.9.

Considering [L, L], as in Lemma 4.6, as a central product of quasi-simple groups of Lie 
type, the blocks of [L, L] are a central product of quasi-isolated blocks; since 

∣∣Z(G)
∣∣ must 

be odd, their defect groups are a direct product. Then one of these quasi-isolated blocks 
bX of some quasi-simple normal subgroup X of L is Morita equivalent to bL. Hence bX
must be a block appearing in Section 5, so X is either X = SLm(εqa)/Z for some m, a, 
and ε = ±1 or X = E7(q). Since G is simply connected, so is [L, L]; hence Z must be 
non-trivial, so G is of type A, B, C, D, or E7.

If X = E7(q) then, since G �= E8, we have GF = E7(q)sc and X = G. Then, b
is unipotent as in Theorem 5.1 and q ≡ −1 mod 4, so q is an odd power of p. Hence 
σ is not a field automorphism and must be the diagonal automorphism, giving that 
G.2 = E7(q)ad and B has dihedral defect groups as described in Section 5.3.1.

If X = SLm(εqa)/Z then Theorem 5.7 implies that m/2 is odd and qa ≡ −1 mod 4, 
so a is odd and q is an odd power of p. Hence we need not consider field automorphisms; 
note that if F is twisted then the field automorphism (x) �→ (xq) = (x)−T on GF can 
be considered as a graph automorphism. Note that by [49, Prop. 14.20], the exponent of 
A(s) = CG∗(s)/CG∗(s)◦ must divide the orders of both s and Z(G). The order of s is 
odd, so if 

∣∣Z(G)
∣∣ was even then CG∗(s) must be connected; in this case bX is an isolated 

block and it follows that it must be the principal block of X = SL2(qa)/Z.
In case [L, L] is not itself quasi-simple, consider the quasi-isolated 2-blocks of quasi-

simple groups of Lie type with trivial defect groups, described in [19, Lemma 5.2]: there 
are such blocks of G2(q), F4(q), E6(q), and E8(q). But G2, F4, and E8 cannot be a 
component of any proper Levi subgroup of a simple algebraic group, and if E6 is a 
component of L then since G �= E8 we would have [L, L] = E6(q), which is not possible. 
Additionally in [19, Lemma 5.2] there are quasi-isolated blocks of SLn(εq) for ε = ±1
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and n odd with abelian defect groups that could contain blocks of SLn(εq)/Z with trivial 
defect groups; these blocks are not isolated, so cannot occur if 

∣∣Z(G)
∣∣ is even.

Take T to be the torus part of LF , so 
∣∣LF

∣∣ =
∣∣[LF ,LF ]

∣∣ ·|T |. The simple components 
of [LF , LF ] (in the algebraic group sense of the simple components of [L, L]) are all of 
type A, including SLm(εqa) as above with m/2 and a odd. Since b and bL have the same 
defect groups, |Z| = |Z(LF )|. It follows from Remark 5.4, since bL and bX also have the 
same defect groups, that 

∣∣L/[L,L]
∣∣ must be odd, so

|Z| =
∣∣∣∣Z

(
[LF ,LF ]

)∣∣∣∣
2
· |T |2 ≥ 2|T |2 .

We consider the different possible G:
(i) G of Type B or C : Carter [14] describes the maximal-rank subgroups of GF for 

G classical. If G is of type B or C then |T |2 ≥ 2 by [14, Props 9 & 11]; but |Z| = 2, so 
this is not possible.

(ii) G of Type A: If GF = SLn(εq), then by [14, Props 7 & 8] we must have [LF , LF ] =
SLm(εqn/m) and |T | = (qn/m − ε)/(q − ε) with n/2 and m/2 odd.

Set GL = GLn(Fq) and let BGL be a block of GLF covering bGF . Since bLF

is quasi-isolated, as described in Section 5.4 the semisimple part of 
(
CG∗(s)◦

)F is 
PGL2(εqn/2). Then CGL(s̃)F = GL2(εqn/2), where s̃ is a pre-image of s, and the defect 
groups of BGL are the Sylow 2-subgroups of GL2(εqn/2). Consider the block BGL/Z of 
GLn(εq)/Z

(
GLn(εq)

)
2 contained in BGL. This group is an odd cover of PGLn(εq), and 

|qn/2−ε|2 = |q−ε|2, so BGL/Z has defect groups the Sylow 2-subgroups of PGL2(εqn/2), 
which are dihedral. Supposing that σ is a diagonal automorphism, G.2 is (isomorphic 
to) an odd-index subgroup of GLn(εq)/Z

(
GLn(εq)

)
2, and BGL can be chosen so that 

BGL/Z covers B; hence B would also have dihedral defect groups by Lemma 4.1.
We now show that σ cannot be a graph automorphism. The graph automorphism τ

of GLF , defined by (a) �→ (a)−T , maps each conjugacy class to its inverse, so sends any 
χ ∈ Irr(GLF ) to its complex conjugate χ. By [56, Lemma 4.2], if χ ∈ E(GLF , ̃s) then 
χ ∈ E(GLF , ̃s−1); in particular if s̃ and s̃−1 are not conjugate in (GL∗)F then χ and 
χ are in different blocks. Note that GL ∼= GL∗ and [GL, GL] is simply connected, so 
s̃ ∈ GLF is conjugate to s̃−1 in GLF if and only if they are conjugate in GL.

First suppose F is the standard Frobenius endomorphism, so CGL(s̃)F = GL2(qn/2). 
Then s̃ is GL-conjugate to a diagonal matrix of the form

x = diag(x1, x1, x2, x2, . . . , xn/2, xn/2) ∈ GL,

where xq
1 = x2, . . . , x

q
n/2 = x1, so xqn/2−1

1 = 1. Suppose that x is conjugate to x−1, which 

is equivalent to s̃ and s̃−1 being conjugate in GLF . Conjugate elements have the same 
eigenvalues, so the entries of x−1 must be those of x permuted; hence x1 ·xqd

1 = xqd+1
1 = 1

for some d ≤ n/2. Let r be a prime dividing the order of x1, hence also dividing both 
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qd + 1 and qn/2 − 1; note that r �= 2 since the order of s̃ is odd. Then qd ≡ −1 mod r, so 
the order of q mod r is even. But qn/2 ≡ 1 mod r and n/2 is odd, a contradiction.

Now suppose F is the twisted Steinberg endomorphism sending (aij) to (aqij)−T , so 
GLF = GUn(q) and CGL(s̃)F = GU2(qn/2). Then similarly s̃ is conjugate to

x = diag(x1, x1, x2, x2, . . . , xn/2, xn/2) ∈ GL,

and x−q
1 = x2, . . . , x

−q
n/2 = x1, so, since n/2 is odd, xqn/2+1 = 1. Supposing x is conjugate 

to x−1 implies that x(−q)d+1
1 = 1 for some d ≤ n/2. Then for a prime r �= 2 dividing the 

order of x1 we have that qn/2 ≡ −1 mod r, so the order of q mod r is divisible by 2 but 
not 4. But also (−q)d ≡ −1 mod r, so if d is odd then the order of q mod r is odd, and 
if d is even then the order is divisible by 4, a contradiction in either case.

Therefore s̃ is not conjugate to s̃−1, so χ and χ are in different blocks; hence τ
does not stabilise BGL, so restricted to GF does not stabilise bGF . Therefore the graph 
automorphisms of G do not stabilise b, so σ is not a graph automorphism. Additionally 
Remark 5.4 implies that the diagonal autmorphisms of order 2 stabilise b, so neither is 
σ the product of a diagonal and graph automorphism, and finally G cannot be of type 
A.

(iii) G of Type D: Since |Z| ≤ 4 we have |T |2 ≤ 2, so by [14, Prop. 10] we must have 
[LF , LF ] = SLm(qn/m) and |T | = qn/m − 1 where n/m is odd. Note that |Z(G)| is even, 
so bX must be isolated, and the only component of L is X = SL2(qn/2)/Z. Additionally 
[14, Prop. 10] states that the total number of components of type 2Am with m even and 
2Dm for any m is even if and only if F is not twisted, so GF = Dn(q).

The Dynkin diagram of L within that of G is given below. Note that it cannot 
contain the two leftmost nodes which would be considered in [14] as D2 ∼= A1 × A1 or 
2D2 ∼= A1(q2).

Dn

Considering σ as an automorphism of GF that stabilises bGF , by [53, Prop. 4.9] there 
is some automorphism σ′ ∈ Aut(GF ) in the coset σ ∈ Out(GF ) that also stabilises LF . 
As above, L contains one but not both of the leftmost nodes, so [L, L] is contained in one 
but not both of the two Levi subgroups of G of the form An−1. The graph automorphism 
τ of G swaps the two leftmost nodes, and since n is even the two An−1 Levi subgroups 
are not conjugate by [44, Prop. 2.6]; hence it does not stabilise LF , and therefore σ is 
not a graph automorphism.

If ρ ∈ Aut(GF ) is a diagonal automorphism then there is some g ∈ Inn(GF ) such 
that gρ stabilises LF , so, since the two An−1 Levi subgroups are not conjugate and τ
does not stabilise LF , neither does g′ρτ for any g′ ∈ Inn(GF ); hence neither is σ the 
product of a diagonal automorphism and graph automorphism.
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Therefore σ must be a diagonal automorphism, and there is a simple algebraic group 
H (one of the three intermediate groups of type D, a special orthogonal or half-spin 
group, whose fixed point groups are each of the form 2.G.2) with a central subgroup Z ′

of order 2 such that H = HF /Z ′ ∼= G.2. Consider B as a block of H with defect group 
D.

There are no non-trivial quasi-isolated 2′-elements for type D and the principal blocks 
do not have dihedral or semidihedral defect groups for any isogeny type, so B is not quasi-
isolated. Theorem 3.9 then implies that B is Morita equivalent to a block BM of some 
M = MF /Z ′, where M is a proper F -stable Levi subgroup of H, also with defect group 
D.

Consider a block of [M, M ] covered by BM with defect group P = D ∩ [M, M ] as in 
Lemma 4.6. Then, as in the proof of Proposition 4.4, we have that P is 1, the index-2
dihedral subgroup of D, or D; but D/P is abelian so P �= 1. In either case P cannot be 
expressed as a non-trivial central product, so there is a block BY of some quasi-simple 
Y � M with defect group P . If P = D then BY is Morita equivalent to B by Remark 4.5; 
otherwise we see that BY is in D(3K), as in Proposition 4.3.

Notice that the rank of Y as a group of Lie type is at least 1 but strictly less than G
and H, and that Y must be of type A or D, with BY in D(3K) or SD(2B)1.

Consider Y of type A, so Y = SLm′(ε′qa′)/Z ′ for some ε′ = ±1, m′, a′. Then if BY is 
in SD(2B)1 it cannot be quasi-isolated, otherwise it would have appeared in Section 5. 
Hence we can do with Y as with H above, and get a block of a quasi-simple normal 
subgroup of some Levi subgroup of Y (which now must be of type A) that is in D(3K)
or SD(2B)1. Therefore, by induction on the rank of H, we can assume that BY is in 
D(3K) and is covered by a block of H in SD(2B)1. Set T =

{
g ∈ M | BY

g = BY

}
; by 

Lemma 3.16 there is a block of T covering BY that is Morita equivalent to BM with defect 
group D̃ ∼= D. Then, since Y � T and BY is T -invariant, we can consider the unique 
block BD̃Y of D̃Y covering BY , which by [38, Ch. 10, Thm 5.10] also has semidihedral 
defect group D̃. Then, since |D̃Y : Y | = 2 and BY is in D(3K), we see that BD̃Y must 
be in SD(2B)1. But we have shown in (ii) that a block of Y , being of type A, in D(3K)
cannot be covered by a block of Y.2 in SD(2B)1.

If Y is of type D, and if BY is in SD(2B)1, then we can similarly use induction on the 
rank of H to assume that BY is in D(3K) (with Y of type D since we have just shown 
that it cannot be of type A) and is covered by a block of Y.2 in SD(2B)1. But then we 
can consider Y and BY in place of G and b throughout (iii), and induction on the rank 
of G shows that this case is also not possible.

(iv) G of Type E7: If GF = E7(q)sc then σ must be a diagonal automorphism and 
G.2 = E7(q)ad ∼= (G∗)F . If B is not quasi-isolated, then as above there is a block of a 
quasi-simple normal subgroup Y of some Levi subgroup of (G∗)F in D(3K) or SD(2B)1, 
and we have shown that such Y cannot be of type A or D. Then Y is of type E6, so 
the block cannot be in D(3K) since the group’s centre has odd order; using our earlier 
argument that Z must be non-trivial. But if it is in SD(2B)1 then in the same way we 
can get a block of a quasi-simple normal subgroup of some Levi subgroup of Y in D(3K)
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or SD(2B)1; now this must be of type A or D, so we have shown that this case is not 
possible. Hence B must be quasi-isolated, but not unipotent by Section 5.3.1.

Again 
∣∣Z(GF )

∣∣ is even, so bX must be isolated, implying that X = SL2(qa)/Z and 
[LF , LF ] = SL2(qa). Since |Z| = 2 we have that |T | is odd, so from the possible connected 
centralisers of E7 listed in [17, Table 1], we have that CG∗(s)F = PGL2(q3).S, where 
|S| = Φ2

3, Φ2
6, or Φ12. Then bLF is Morita equivalent to the principal block of SL2(q3) by 

Lemma 4.1, which is therefore Morita equivalent to bGF ; so the ordinary character degrees 
of bGF are those of the principal block of SL2(q3) multiplied by 

∣∣E7(q)ad : CG∗(s)F
∣∣
p′

according to Theorem 3.5. Hence the ordinary character degrees of b are among these, 
and those of B are also among these or twice these if they fuse on induction to G.2; 
let d be equal to or twice the degree of an ordinary character of the principal block of 
SL2(q3).

On the other hand, we can see from [4, Table III] that CG(s′)F = SL6(ε1q).SL3(ε2q), 
where ε1, ε2 = ±1 and s′ ∈ E7(q)sc is the semisimple label for B; note that CG(s′) is con-
nected since G∗ has connected centre, and CG(s′) = [CG(s′), CG(s′)] is simply connected 
since (G∗)∗ ∼= G is. Then B must contain some character in E(E7(q)ad, s′), correspond-
ing to a unipotent character χu of CG(s′)F , with degree χu(1) ·

∣∣E7(q)sc : CG(s′)F
∣∣
p′ by 

Theorem 3.5.
But the degree of each of the unipotent characters of CG(s′)F is too small. Indeed, 

we must have

χu(1) ·
∣∣∣E7(q)sc : CG(s′)F

∣∣∣
p′

= d ·
∣∣∣E7(q)ad : CG∗(s)F

∣∣∣
p′
,

that is,

χu(1) ·
∣∣∣PGL2(q3)

∣∣∣
p′
· |S| = d ·

∣∣SL6(ε1q).SL3(ε2q)
∣∣
p′ . (∗)

Considering the 2-part of (∗) gives

∣∣χu(1) · Φ1Φ2
∣∣
2 ≥

∣∣SL6(ε1q)
∣∣
2 ≥

∣∣∣Φ3
1Φ3

2

∣∣∣
2
,

so we must have 
∣∣χu(1)

∣∣
2 ≥

∣∣Φ2
1Φ2

2
∣∣
2.

Note that χu is a product of unipotent characters χ6 and χ3 of SL6(ε1q) and SL3(ε2q)
respectively. Calculating these degrees using [15, Section 13.8], each possible χ3 has ∣∣χ3(1)

∣∣
2 ≤ |Φ2|2, and the only possible χ6 whose degree has 2-part greater than 2 has 

degree q4Φ3
2Φ4Φ6. But as in [47] for q ≡ mod2 the power of q in any ordinary character 

degree of SL2(q3), and hence the power of q in d and the right-hand side of (∗), is at 
most q3, so this is not possible.

Hence B is not quasi-isolated, G is not of type E7, and finally B is not in SD(2B)1. �
Therefore if B is in SD(2B)1 with defect groups of order at least 32 then it does not 

cover a block with dihedral defect groups.
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