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Abstract—In the early design phase of automotive digital devel-
opment, one of the key challenges for the designer is to consider
multiple-criteria like aerodynamics and structural efficiency be-
sides aesthetic aspects for designing a car shape. In our research,
we imagine a cooperative design system in the automotive domain
which provides guidance to the designer for finding sets of design
options or well-performing designs for preferred search areas. In
the present paper, we focus on two perspectives for this multi-
criteria decision-making problem: First, a scenario without prior
information about design preferences, where the designer aims to
explore the search space for a diverse set of design alternatives.
Second, a scenario where the designer has a prior intuition on
preferred solutions of interest. For both scenarios, we assume that
historic 3D car shape data exists, which we can utilize to learn
a compact low-dimensional design representation based on a
variational autoencoder (VAE). In contrast to evolutionary multi-
objective optimization approaches where starting populations are
randomly initialized, we propose to seed the population more ef-
ficiently by exploiting the advantage of linear interpolation in the
latent space of the VAE. In our experiments, we demonstrate that
the multi-objective optimization converges faster and achieves a
diverse set of solutions. For the second scenario, when specifying
design preferences by weights, we improve on the weighted-
sum method, which simplifies the multi-objective problem and
propose a strategy for efficiently adapting the weights towards
the preferred design solution.

Index Terms—multi-objective optimization, preference formu-
lation, autoencoders.

I. INTRODUCTION

A current challenge in automotive digital development is the
increasing number of multi-disciplinary requirements that have
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to be considered in the design process. These requirements
comprise besides aesthetic design targets also engineering
aspects such as aerodynamic and structural efficiency. Even
though various tools from computer-aided design (CAD) and
engineering (CAE) provide means for modifying shapes, the
necessity to simultaneously reach various, potentially con-
flicting targets leads to considerable complexity in the de-
sign process. To support a human designer in handling this
complexity, we imagine a cooperative design system (CDS),
which can provide guidance for a faster design convergence or
suggest potential alternatives to provide inspirations for design
exploration.

In the real-world automotive design process, designers have
to face multi-criteria decisions (MCDM) at various stages
of the design generation. However, providing an efficient
optimization method at an earlier design stage would allow
higher design innovation potential in MCDM analysis. In this
paper, we formulate a 3D multi-criteria design optimization
task and consider two perspectives for multi-criteria decision
analysis: First, where the designer has no prior information
about their design preferences. Second, when the designer has
knowledge about the formulation of design preferences.

Often the first perspective is useful in the initial automotive
digital development phase, where the designers aim to explore
several designs based on multi-criteria for ideation. To support
the MCDM process, the problem can be formulated as a
multi-objective design optimization to generate a diverse set
of design solutions. The multi-objective optimization problem
(MOP) formulation to optimize 3D designs requires several
simplifications and trade-offs. Further, an efficient representa-
tion of the geometry, i.e., capturing essential design features
with a possibly low number of parameters, is advantageous
to reduce the optimization problem complexity. If prior data,
e.g., a large database of design variations, is available, recent



methods from the field of artificial intelligence (AI) such as
deep learning-based (variational) autoencoders (V)AEs [1], [2]
allow to design a low-dimensional representation for geometric
models. Other than dimensionality reduction of the 3D design
representation, autoencoders are capable of abstracting fea-
tures in an unsupervised fashion, enabling different geometric
parameterizations and the generation of novel designs. In the
context of 3D design optimization tasks, a typical encoder-
decoder structure of the AE can be used for basis transfor-
mation, from the design domain to a low-dimensional latent
domain, where the operations on the geometry are performed.
The most popular methods to solve the MOP are using Multi-
objective evolutionary algorithms (MOEAs). These methods
start from a set of initial solutions, so-called initial population,
and try to improve this solution set iteratively throughout
the optimization process. Thus, apart from using the low-
dimensional latent domain as a decision variable for our MOP,
we propose in this paper an efficient seeding mechanism
for generating an initial population for the MOEA to help
incorporating the knowledge of the optimization problem in
the MOEA to pursue the objectives by exploring the latent
space in the AE.

In the second perspective of MCDM analysis, finding the
best design solution from an optimization task involves trade-
offs between different objectives in MOP. Often experienced
designers have prior design preference information that can
be incorporated into the optimization algorithm to generate an
optimal solution. The weighted-sum method (WSM) is one
popular method for MCDM that relies on eliciting designer’s
preference through weighting the criteria. However, even if
with full knowledge of the objectives and satisfactory selection
of weights, the final solutions may not necessarily reflect the
intended preferences that are supposedly incorporated in the
weights [3]. Thus, there is a need for a strategy to adapt the
prior weights in a way that the final solution fits the designer’s
preference criteria.

Our main contributions in this paper are: First, we formulate
the 3D multi-objective design optimization problem from two
perspectives, where the designer does and does not have
prior information about their design preferences. Second, we
propose a novel seeding mechanism which is able to initialize
the initial population of MOEAs in a more effective manner,
utilizing the advantage of latent space interpolations in an
AE. We will provide experimental results from our 3D design
optimization task formulation and show the effectiveness of
our proposed method. Third, we propose a strategy that is able
to automatically determine suitable values for the weighted
coefficients in WSM, leading to the generation of designer
preferred solutions in less function evaluations. Further, we
provide a study to investigate how well different types of
evolutionary algorithms can solve the problem of preference-
based optimization of 3D car designs.

The remainder of the paper is organized as follows: In
Section II, we provide a survey of literature related to multi-
objective evolutionary algorithms and preference formulation
in optimization tasks. Section III discusses the multi-objective

problem formulation for modifying 3D shapes, followed by
two novel approaches—first a mechanism for generating an
initial population of the MOEA and second a strategy to adapt
the weights in WSM to match the DM’s preference in Section
IV. Section V presents the experimental setups. The results
of the experiments are discussed in Section VI. Section VII
concludes the paper.

II. PRIOR ART

Industrial design is a complex engineering activity that
involves multiple criteria. The design task can often be seen
as an optimization problem in which the parameters of the
structure describing the best quality design are sought.

A. (Variational) Autoencoders as 3D Shape Representation

Engineering design data are normally in 3D and are of
higher complexity. Here, common 3D data representations
include voxel, point clouds, or polygon meshes [4]. For our
application, we focus on 3D shapes sampled as surface point
clouds, as they provide high flexibility and better memory-
efficiency, which allows representing finer geometric detail
and scale models to large input sizes [5]. Existing popular
deep learning models like auto-encoders (AEs), variational
auto-encoders (VAEs), and generative adversarial networks
(GANs) are capable of an unsupervised learning of 3D shapes
and generating low latent representations of 3D data. Popular
AE architectures that process point cloud representations are
PointNet [6] and PointNet++ [7]. Achlioptas et al. [1] pro-
posed an AE architecture, where the encoder is similar to
PointNet and the decoder comprises fully connected layers.
However, the generative capabilities of a regular AE in terms
of generating novel and realistic 3D shapes are limited [8].
Thus, in addition, Saha et al. [8] utilized a point cloud-based
variational autoencoder (PC-VAE) [8] that builds on the point
cloud autoencoder originally proposed in [1] and evaluated
the model for novel and realistic 3D shape generation for
engineering applications. In the context of optimization tasks,
previous research [9]–[11] utilized the low-dimensional latent
representation of an AE or a VAE for single and multi-
objective optimization. Due to better generative abilities of
PC-VAE in comparison to AE [1], we intend to use the latent
representation of the PC-VAE proposed in [8] as decision
variables for our optimization task. This overcomes a major
factor contributing to the complexity and difficulty of an
optimization problem by reducing the number of decision
variables.

B. Evolutionary Algorithms

Evolutionary algorithms facilitate the combination of com-
ponents in a novel and creative way, making them a good tool
for creative design problems, while also having the ability to
optimize a parameterized shape for performance criteria. Ren-
ner et. al [12] gave an overview of genetic algorithms (GAs)
in computer-aided design (CAD) concerning both parametric
design and creative design problems. In recent decades, a wide
range of evolutionary algorithms (MOEA) for multi-objective



optimization has been developed, which are classified into two
categories. The first category corresponds to those algorithms
that include the use of selection mechanisms based on fitness
sharing, but does not include mechanisms for the preservation
of good solutions (elitism), e.g., NPGA, NSGA [13], VEGA
[14], MOGA [15]. The second category of algorithms are
characterized by the use of the elitism strategy, e.g., SPEA
[16], PAES [17], SPEA2 [18], NSGA-II [19]. Besides the
above mentioned evolutionary algorithms in MOPs, several
meta-heuristics have been developed to solve such problems as
Ant Colony Optimization (MOACO) [20] and Particle Swarm
Optimization (OMOPSO) [21].

C. Seeding the Initial Population of MOEA

One of the main components of most MOEAs is to maintain
diversity within a population in order to avoid premature con-
vergence. Promoting diversity is a key feature of an efficient
MOEA. A typical MOEA starts from a set of initial solutions
and iteratively improves the solutions during the optimization
process. Here, MOEA rely on random initialization of the
initial populations, but often in large and complex search
spaces this random method leads to an initial population
which consists of infeasible solutions [22]. Previous research
on modifying the initial population of an MOEA [23]–[25]
showed that constructing a well-suited initial population can
speed up GAs and reduce the convergence time to achieve
acceptable results. This method of injecting knowledge about
the problem in the initial population of the MOEA is known
as seeding. Fraser et. al [26] proposed that leveraging target-
oriented knowledge about the problem for the initialization of
the initial population can considerably improve the algorithm’s
performance. Opposed to prior research, we aim to incorporate
the knowledge of the optimization problem using latent space
interpolations of a VAE as advantage to generate a target-
oriented initial population for MOEAs to maintain a good
diversity of the final non-dominated solution set.

D. Incorporating User Preference in Optimization

The decision-maker (DM) is a person who can express
preference information related to conflicting objectives in
a MOP. In our optimization task the designer is our DM.
There are different methods for DMs to specify preferences
[27]: the most common methods include dominance relation,
fitness evaluation, termination criteria, constraint limits, etc.
Another popular approach is based on adjusting the weights
in terms of preferences in a weighted-sum method (WSM).
WSM generates a single final solution point by presumably
incorporating a single set of weights based on DM preferences.
The two most popular approaches are the weighted sum [28]
and Tchebycheff approach [29]. However, a weighted sum is
capable of the linear approximation of a preference function
only when the feasible design space is convex [3]. The weights
in WSM need to be set according to the relative magnitude
of the objective functions rather than the relative importance
of the objectives [30]–[32]. Arbitrary specification of these
weights values can lead to an undesired solution. We here

propose a strategy to adjust the weights in WSM to obtain the
final solution that matches the DM’s preference.

In this paper, we formulate a multi-objective problem for
modifying 3D shapes using the latent code of a VAE as the
decision variable for the optimization task. We propose a
method for seeding the initial population of an MOEA and
compare our proposed method with MOEAs with random
initial populations. Second, we formulate design preferences
for a 3D design optimization problem and utilize preference-
based multi-objective optimization (weighted-sum or MOEA)
approaches for generating solutions based on preference cri-
teria. We propose a method to adapt the DM’s formulated
prior weights to obtain a final solution that reflects the DM’s
design preference. In Section III, we provide details on our
optimization problem and task formulation before we describe
our proposed approach and experimental design setups (Sec-
tion IV).

III. PROBLEM FORMULATION

In this section, we first formulate a multi-criteria decision-
making (MCDM) problem for modifying 3D shapes. Then, we
introduce two scenarios for MCDM analysis.

A. MCDM Problem Formulation

Fig. 1. A digital car represented as 3D polygonal mesh and 3D point cloud.

For designing a car shape, the designer has many objectives
in mind, i.e., the designer aims to modify a complete car
design based on multiple criteria like aerodynamics efficiency
and structural analysis. To solve this multi-criteria problem
and also to keep the computational cost low, we formulate a
multi-objective design optimization task using two 3D target
matching problems for this study. In a target shape matching
problem, an initial 3D shape defined by a set of points
representing the surface mesh (Fig. 1), has to be altered
to match a given 3D target point set. Here, we consider
two reference (target) shapes which reflect e.g., an aesthetic
design target (S1) and an aerodynamic target (S2). Our multi-
objective design problem can be formulated as,

min
x∈D

f1 (~xj) , f2 (~xj) j = 1, .., n (1)

where f1, f2 are the two objective functions. ~x is an n-
dimensional latent vector of a VAE used as decision variables
for the optimization. The objective functions of the optimiza-
tion receive an n-dimensional latent vector of each 3D shape
from the latent space of a trained VAE. Then the decoder of
a VAE converts the latent vector to the 3D domain where
the objective function computes the difference between the
reference shapes to the current deform shape.

Mathematically the fitness for the two point sets S and Si is
defined by Equation 2. We use the chamfer distance (CD) as
an objective function since it is invariant to the permutations



of the points in a point cloud which represents the shape [1].
The fitness functions are given as

fi(~x) = CD(S, Si) =∑
a∈S

min
b∈Si

‖a− b‖22 +
∑
a∈Si

min
b∈S
‖a− b‖22 , where i = 1, 2 (2)

where Si represents the two reference shapes S1 and S2, and
S is the shape modified by the optimization algorithm. In a
real-world scenario, the objectives are typically in different
magnitudes. Thus, there is a need for the normalization of
each objective. For normalizing the objective function values,
we need to determine the upper bound (Nadir point zNi ) of the
pareto optimal set. The upper bound is obtained by separating
i objectives into i sub-problems, and these sub-problems are
minimized independently using a single-objective optimization
strategy. We normalized each objective function (f̄i) with the
upper bound value of the opposite objective function. The
normalized objective functions (f̄i) are defined as

zNi = min (fi (~xj))

f̄i =
fi
zNi

and 0 ≤ f̄i ≤ 1
(3)

This multi-objective optimization problem leads to several

Fig. 2. Two scenarios for multi-criteria decision analysis. S1, S2 are two
reference shapes for the optimization task and S0 is the starting shape for the
design modification. (a) Scenario 1 for generating a range of diverse solutions.
(b) Scenario 2 for generating solution(s) of interest based on DM’s design
preference.

multi-criteria decision analysis scenarios. In this paper, we
describe two scenarios here: First, the DM aims to modify
a starting shape S0 to generate a wide range of design
possibilities between two reference shapes S1 and S2 (Figure
2a). In the second scenario, we assume that the DM has a
preference to generate a solution of interest such that the shape
is an intermediate between the two reference shapes S1 and S2

(Figure 2b). For example, the DM aims to generate a solution
of interest and define the preference using a distance d1 and
d2 from the reference designs S1, S2.

Note that prior to all following experiments, we generated a
set of non-dominated solution points as a first approximation
of the pareto front. This set is required to evaluate the
performance of the different algorithms, e.g., using the IGD
measure (Section V.C). For finding this solutions set (best-
NDS), we converted the multi-objective optimization problem
into a mono-objective function using weighted-sum method
and systematically sample weights between [0, 1] to yield

best-NDS. Of course this is only possible here to benchmark
the algorithms using target shape matching, which has a
comparably low function computation time. In practical use
cases like car aerodynamic optimization the computational
time for a systematic WSM is too high.

B. Generation of Diverse Solutions Using MOEA

The first scenario refers to Figure 2a, where we assume that
the DM has no prior preference, and targets to obtain a diverse
range of design solutions that approximates the pareto front of
the multi-objective optimization well. The objective functions
(Eq. 1) are normalized, and the final normalized optimization
functions for our MOP are formulated as

minf̄1(~x), f̄2(~x) (4)

C. Single Solution Generation Incorporating Preference in
MOEA

For the second scenario in Figure 2b, in order to generate
a single solution point that reflects preferences, the DM needs
to specify comparative preference states for each objective
function value. However, since our objective functions are
distance functions, we assume that the DM has knowledge
about the few best pareto optimal points (best-NDS), and the
DM can specify the desired distance values d1 and d2 for
each objective. Thus, the DM’s preference can be defined as
a distance ratio (α) function:

α =
d1
d2

the normalized preference ratio(ᾱ)

with d̄1 =
d1
zN1

and d̄2 =
d2
zN2

ᾱ =
d̄1
d̄2

(5)

The preference relation describes the relative importance over
a set of objective functions. We consider three scenarios
for 3 different preference relations: 1) when the quality of
importance of objective f1 is higher compared to f2 (d1 > d2),
so that α = 2, 2) when objectives are of equal importance
(d1 = d2), α = 1, 3) when the quality of importance of
objective f2 is higher compared to f1 (d1 < d2), α = 0.5.
The normalized preference ratio (ᾱ) is calculated for each of
the above three scenarios and depends on the selection of d1
and d2.

The DM has to state these additional preferences, and often
this additional knowledge of DM preference is integrated as
an additional objective within the optimization algorithm. The
preference information is incorporated in two ways in our
optimization problem:

a) Weighted sum method: The objective functions in
MOP (Eq. 4) are summed up with varying weights, and this
aggregated objective function is optimized. The weights in
WSM need to adjust to obtain the final solution that matches
the normalized preference ratio (ᾱ).



b) Preference as a 3rd objective in MOP: In the second
approach the preference information (ᾱ) is formulated as an
additional objective in MOP.

IV. PROPOSED APPROACH

We propose two approaches to address two issues based on
our problem formulations: First, in order to improve the con-
vergence of MOEA for our multi-objective design optimization
task, we propose a novel mechanism for seeding the initial
population of an MOEA. Second, to determine weight values
in WSM to match the DM’s design preference in our multi-
objective design optimization task, we propose a combinative
strategy to identify the best weight values.

For both approaches, we trained a PC-VAE [8] on the car
class from the ShapeNet data-set [33] (each car design is a
point cloud of 2048 × 3 matrix). The PC-VAE trained with
128 latent dimensions, i.e., each 3D point cloud in converted
into a 128-latent vector. This 128-latent vector is used as the
decision variable for our multi-objective optimization problem.

A. Proposed Method for Seeding the Initial Population of
MOEA

The MOEAs used to solve MOPs are generally initialized
with a random initial population. Thus, to improve the diver-
sity within the non-dominated set, we propose an approach
to generate a target-oriented initial population for MOEAs
in this section. For generating the initial population of an
MOEA, the normalized optimization functions in our MOP
(Eq. 4) are decomposed into 2 single-objective sub-problems.
Each single-objective optimization is performed using the
covariance matrix adaptation evolution strategy (CMA-ES)
[34]. The CMA-ES method is selected due to its suitability
for small populations [34], high convergence ratio, and a
low number of hyper-parameters. Next, the final solutions
of each single-objective optimization are obtained. The final
solutions are in the form of latent vectors, so we interpolate
between the final vectors in the latent manifold of the PC-
VAE by calculating ratios of the contribution from two final
solutions, then enumerate these ratios and construct a vector
for each ratio. The 100 latent vectors generated through
interpolation (Lerp-seed) are used for the initialization of the
initial population of an MOEA. The framework of our seeding
mechanism is shown in Figure 3.

Fig. 3. Proposed seeding mechanism in an MOEA.

B. Proposed Method for Determining the Weights of WSM

For the incorporation of preference information in evolu-
tionary algorithms, we consider one approach as a weighted
sum method (WSM). The WSM solves the multi-objective
problem by transforming the objective functions of MOP in
Equation 4 into a mono-objective one (Eq. 6).

F (~x;w1) = w1f̄1 (~x) + w2f̄2 (~x) (6)

The final solution of the mono-objective optimization depends
on the values of the weights w1 and w2. The normalized
objective functions f̄1 and f̄2 are summed in WSM and
the aggregated objective function F (~x;w1) in Equation 6 is
minimized. w1 and w2 are weight factors, and 0 ≤ w1,2 ≤ 1. It
is common practice to choose weights in a way that their sum
equals to 1, i.e., w2 = 1 − w1. Since there is few research
on adapting the weights in WSM to match DM’s design
preference, we propose a combinative method to determine the
weights of our WSM approach to generate the final solution
that reflects the DM’s design preference criteria.

Generating a final solution by selecting a set of weights in
WSM may not necessarily reflect the intended preferences. So
it is important to determine a strategy to adapt the weights to
obtain the preferred solution in the convex pareto front. In this
study, we propose a strategy to determine iteratively a global
optimum weight w1 in WSM to generate a final solution of
the optimization that is closer to the DM’s design preference
and utilize a low computational cost. To search for an optimal
w1 within a bound, we propose a two-step method involving a
global optimization of the weighted-sum function to minimize
a cost function. The global optimizer minimizes the following
cost function:

C(~x;w1) = (ᾱ− f̄1(~x)

f̄2(~x)
)2 (7)

where ᾱ is the normalized preference ration (Eq. 5)

Fig. 4. Optimization strategy to determine weight w1 in a weighted-sum
method to match the DM’s design preference.

Our proposed strategy iteratively runs two-steps as shown
in Figure 4:

a) Weighted-sum optimization to optimize Eq. 6: In the
first step, we consider the CMA-ES strategy for our WSM.
CMA-ES often requires providing a feasible solution as a
starting point for the initial candidate solution. To select the
initial candidate solution in the CMA-ES algorithm, we con-
sider the initial population vectors generated from Lerp-seed
and calculated their normalized distance (d̂1 and d̂2) from the
respective reference shapes (S1, S2) of the optimization task.
The solution vector in Lerp-seed with normalized distances



(d̂1 and d̂2) closest to the preferred distance function d̄1 and
d̄2 is chosen as the initial solution vector ( ~x0) for CMA-ES.

This approach of selecting the initial solution vector ( ~x0)
is intended to reduce the number of generations required
for convergence to the optimum. The WSM using CMA-ES
generates a final solution by minimizing Equation 6.

b) Global optimization to determine the weights to be
used in Eq. 6: In the second step, we utilize a global optimiza-
tion algorithm that demonstrates a promising global search
capability. There are numerous global optimization techniques,
yet only a few of them are derivative-free. The simplicial
homology global optimization (SHGO) [35] algorithm is a
promising, derivative-free global optimization (GO) algorithm,
and it also returns all other local and global minima. A global
minimum is a point where the function’s value is the minimum
of all possible points in the function’s domain. The optimizer
determines the global minimum of weight w1 by minimizing
the cost function in Equation 7. The final optimal weight w1

helps the DM to understand the relation between the weights
in WSM and the final solution.

V. EXPERIMENTAL SETUP

In this section, we present a sequence of experiments that
illustrates approaches for generating diverse design solutions
and solution(s) of interest using our proposed methods.

A. Model Training of PC-VAE
Data: For all experiments, we used point clouds sampled

from the car class of the ShapeNetCore data-set [33]. As input
to the models, we sampled 2048 points using random uniform
sampling from each shape’s surface, resulting in a matrix of
2048× 3 with spatial coordinates (x, y, z) for each point. We
performed all experiments on a single NVIDIA RTX 2080 Ti
GPU.

Training PC-VAE: We trained the PC-VAE [8] on the
80%− 20% train-test-split, with 128 latent dimensions, using
the ADAM optimizer and a learning rate 5e−03 as proposed
in [8]. Thus, the latent code of the PC-VAE used in the
optimization experiments as a decision variable is set to a
128-dimensional vector.

B. Problem Instances
To define different problem instances involving considerably

different combinations of reference shapes (S1, S2), we cluster
the latent representations of the shapes in the training set using
k-means clustering with Euclidean distance as a metric to
evaluate the similarity in the data. The clustering organizes
the data according to their characteristics in the latent space
of the trained PC-VAE. The reference shapes selection and
optimization framework are shown in Figure 5. We select
the reference shapes for 3 problem instances (PI) based on
3 scenarios:
• PI 1: Reference shapes from two adjacent clusters
• PI 2: Reference shapes from two different clusters
• PI 3: Reference shapes from same cluster
Once the PC-VAE is trained, the optimizations are per-

formed for each problem instance.

Fig. 5. Optimization workflow with the procedure to select different problem
instances.

C. Experimental Setup for Diversity Solution Generation Ex-
periments

This experimental setup refers to Scenario 1 (Figure 2a) of
the multi-criteria decision analysis to generate a range of de-
sign solutions. In this experiment, we considered three multi-
objective optimization tasks based on 3 problem instances.
The MOEAs chosen for the optimization tasks comprises one
that uses elitism strategy (NSGA-II) and another that follows
a meta-heuristic approach (OMOPSO), both MOEAs are ini-
tialized with random seeds. The third chosen MOEA is Lerp-
seed-OMOPSO, where we applied our proposed approach of
seeding for an improved initialization of the initial population
of OMOPSO, since OMOPSO outperforms NSGA-II in initial
experiments (not shown).

a) Parameterization of MOEAs: We have chosen a set
of parameter settings to guarantee a fair comparison among
the algorithms. The GA (NSGA-II) uses an internal population
size equal to 100, and OMOPSO has been configured with 100
particles. To assess the search capabilities of the algorithms,
we perform 10 independent runs of each experiment for 100
generations, and we compare different metrics of performance.

TABLE I
PARAMETERIZATION OF MOEA ALGORITHMS.

Parameterization used in NSGA-II
Population size 100 individuals

Selection of parents binary tournament
Parameterization used in OMOPSO
Swarn size 100 particles
Mutation uniform+non-uniform

Leader size 100

b) Seeding of MOEA: To generate the seeds for our
MOEA with our proposed approach (Figure 3), we converted
the objectives of our MOP in Equation 4 into 2 single objective
sub-problems. Next, each single objective sub-problem is
optimized using CMA-ES. The approach implemented follows
the proposal of Hansen et al. [34], considering a (3,10)
CMA-ES strategy with an initial step size of 0.01 and 100
generations. The objective functions f̄1 and f̄2 in Equation



4 are minimized separately, where ~x is the 128-dimensional
latent vector of the trained PC-VAE. The final solution of each
single objective optimization is 128-dimensional latent vector
that represents a 3D car design. Next, we performed a 100
step linear interpolation in the latent space of the PC-VAE
between the two final solution vectors. All these interpolated
solution vectors (Lerp-seed) are added as an individual to the
initial population of an MOEA. We analyzed the effect of
our seeding strategy (Lerp-seed-OMOPSO) with OMOPSO
and compare our results with no seed MOEAs using the
performance metrics discussed below.

c) Metric of performance: For comparing the behavior
of the MOEAs, we considered the following four metrics:

Hyper-volume indicator (HV) [16]: measures the volume
enclosed by a solution set and a specified reference point and
can provide a quality of convergence and diversity. A high HV
value is preferable, reflecting the set having good comprehen-
sive quality. Since we normalize the objective functions, the
reference point is chosen as (1, 1).

Inverted generational distance (IGD) [36]: indicates how
far are the non-dominated solutions produced by the algorithm
from the reference points in the true pareto front (best-NDS)
of the problem. A smaller IGD indicates that all the elements
generated are in the true pareto front.

Spacing (SP): Spacing as suggested in [37] measures the
distance variance of neighboring vectors in the pareto front.
Lower SP shows that all the non-dominated solutions found
are equidistantly spaced.

Number of function evaluation (NFEs): We considered
total number of simulation (experimental) runs as a perfor-
mance indicator. The total number of function evaluations
performed by the algorithm equals the product of the pop-
ulation size (or the number of particles) and the number of
generations.

D. Experimental Setup for Solutions of Interest Experiments

This experimental setup refers to Scenario 2 (Figure 2b)
of the multi-criteria decision analysis for generating solu-
tion(s) of interest based on DM’s design preference. For each
problem instance, we consider 3 preference scenarios (α =
2, 1 and 0.5) (Section III-C) and the DM is asked to choose
(d1, d2) for all the preference scenarios. Next, we normalize
the preference ratio (ᾱ) using Equation 5. This normalized
preference ratio (α) is considered as additional objective
or constraint in the optimization approaches. Two different
optimization approaches (WSM or 3-objective MOEA) are
used to solve our MOP (Eq. 4) and generate a solution that
satisfies the DM’s preference criteria in Equation 5.

a) Parameterization of WSM: In the first WSM ap-
proach, the composite objective function in Equation 6 is
minimized for different values of w1 until the final solution
satisfies the preference criteria in Equation 5. We utilized our
proposed method (Section IV-B) for determining the weights
(w1, w2) to generate a final solution to match the DM’s design
preference. In each problem instance, for each preference
scenario (α = 2, 1 and 0.5), we provided an initial bound [0, 1]

at the start of each optimization process. The global optimizer
attempts to find the global minimum (Fig. 4) and the process
continues until the cost function (Eq. 7) converges. The global
minimum is considered as the final weight (w1) suggested by
our proposed approach, such that the final solution generated
with this optimal weights (w1, w2) in WSM is closer or
matches the DM’s design preference.

b) Parameterization of 3-objective MOEA: In the second
approach of preference incorporation in MOEA as 3rd objec-
tive function (3-objective MOEA), we minimize the following
objective functions

min f̄1(~x), f̄2(~x), ᾱ− f̄1(~x)

f̄2(~x)
(8)

The normalized preference ratio ᾱ is the third objective of
the multi-objective optimization task. The MOEA chosen for
this optimization task is OMOPSO. Further, to compare the
solution generated by these two approaches, we compared a
range of performance metrics.

c) Metric of comparison: For our comparative study, we
evaluate three unary metrics:

Number of function evaluations (NFEs): The total num-
ber of function evaluations for our combination method de-
pends on the number of calculations of objective functions.
In WSM, we propose to search weights wi using a global
optimizer. Each iteration of the optimization loop needs 500
function evaluations for performing the CMA-ES optimization.
Further, modifying the initial solution of CMA-ES ( ~x0) needs
2000 NFEs. Thus, the total NFEs for our proposed approach
of determining weights wi for WSM is (2000 + n × 500)
NFEs. The total number of function evaluations exhausted by
the MOEA algorithm (OMOPSO) equals the product of the
number of particles (100) and the number of generations(100).

Preference ratio: measures the ratio of the distance in f̄1
to f̄2 of the final generated solution.

Quality: of the final generated solutions is measured
by Euclidean distance between the generated solution and
preferred solution (d̄1, d̄2). The lower the Euclidean distance,
the closer the final generated solution to the DM’s preferred
solution.

VI. RESULTS

In this section, the results obtained by the experimental
evaluations are discussed in detail.

A. Multi-Objective Optimization for Generating Diverse De-
sign Proposals

The results of the comparative study of the experiments in
Section V-C related to Scenario 1 (Figure 2a) are described
here. We firstly evaluated the different MOEAs (NSGA-II,
OMOPSO) with random seeds, and assessed whether our pro-
posed seeding strategy Lerp-seed in OMOPSO can outperform
the existing MOEAs with random seeds. We first explain the
results of multi-objective optimization with reference shapes
from problem instance 1 (Section V-B).



TABLE II
RSULTS OBTAINED FROM OPTIMIZATION OF PROBLEM INSTANCE 1 FOR

NSGA-II, OMOPSO AND Lerp-seed-OMOPSO.

Methods NFEs HV
(mean)

SP
(mean)

IGD
(mean)

NSGA-II 10000 0.473 0.186 0.060
OMOPSO 10000 0.484 0.229 0.059
Lerp-seed
OMOPSO 10000 0.490 0.211 0.055

Table II presents the mean values of HV, IGD, and SP of
the optimization task using NSGA-II, OMOPSO and Lerp-
seed-OMOPSO. Lerp-seed-OMOPSO approach achieved the
best results with respect to mean HV and mean IGD values
for our design optimization task. We tested the HV difference
using Mann-Whitney test in order to prove the difference
between Lerp-seed-OMOPSO and other MOEAs (NSGA-II,
OMOPSO) algorithms are statistically significant. The statis-
tical analysis reveals significant statistical differences between
Lerp-seed-OMOPSO and other MOEAs (p < 0.05∗∗∗). Thus,
an MOEA with high HV and low IGD values provides better
distribution of the generated non-dominated solutions. The
NSGA-II returns a higher number of non-dominated solutions
and has lower spacing (SP) between the solutions. However,
the OMOPSO (with or without seeds) provides a better spread
of solutions than NSGA-II. Besides the quantitative compar-
ison, the non-dominated solutions plot obtained for one run
of problem instance 1 (Fig. 6), shows that the Lerp-seed-
OMOPSO has a better spread of solutions than NSGA-II and
OMOPSO with random seeds.

Fig. 6. Pareto fronts obtained by the NSGA-II, OMOPSO and Lerp-seed-
OMOPSO for problem instance 1 (shown for 1 run).

In addition, we performed multi-objective optimizations
with reference shapes from problem instance 2 and 3 and
took a close look at how the mean values of HV and IGD
change with respect to NFEs as the search evolves. Figure 7
and 8 show the mean HV and mean IGD of the non-dominated
solution set for 10000 NFEs over 10 runs for 3 optimization
tasks. Our proposed method (Lerp-seed OMOPSO) requires
initial 2000 function evaluations to run the two single objective
CMA-ES, so we start the mean HV and mean IGD plot
of our proposed approach after 2000 NFEs to make fair
comparisons.

In all the experiments, the OMOPSO using Lerp-seed
for initial population construction outperformed a random-
based approach on average. This leads to the conclusion that
spending some additional computational effort in constructing
the initial population of an MOEA helps to improve the
convergence in the optimization. However, the exploitation of
this low-dimensional latent domain knowledge comes with an
additional cost of training the PC-VAE with 3D shapes.

Further, we observe that for problem instance 3, the opti-
mization algorithms provide a high scale of HV value and
a low scale of IGD value. While for problem instance 2,
the algorithms provide lower scale of mean HV and IGD
values. This is because reference shapes in problem instance
3 are from similar clusters (less Euclidean distance between
the reference shapes in the latent subspace of the trained
PC-VAE), so the optimization algorithms generated a better
set of diverse non-dominated solutions compared to problem
instance 2, where the reference shapes are from two different
clusters (high Euclidean distance between the reference shapes
in the latent subspace of the trained PC-VAE). However, for all
the problem instances, the optimization algorithms can achieve
feasible car shapes. Thus, we can conclude that different
MOEAs can solve our problem of multi-objective optimization
for generating diverse 3D car designs.

B. Generating Solutions Based on DM Preference
The results of the comparative study of the experiments in

Section V-D related to Scenario 2 (Figure 2b) are described
here. For each problem instance (Section V-B), we tested three
different preference scenarios (α = 2, 1 and 0.5), using WSM
and 3-objective MOEA.

Table III presents the number of function evaluations
(NFEs), preference ratio, and quality of the final solutions
generated by WSM and 3-objective MOEA. The optimization
using the 3-objective MOEA generates more than one final
solution, so we chose one/two final solutions nearer to the
normalized preference ratio (ᾱ). Also, for 3-objective MOEA,
the NFEs are constant for each optimization task.

For all problem instances and normalized preference ratios
in table III, both of the optimization methods converge and
generated feasible car shapes. However, the WSM method
with a global optimizer generates a shape that is closer (lower
quality metrics in table III) to the DM-defined preference and
also with much fewer NFEs. The WSM generates different
weights w1 depending on each problem instance and normal-
ized preference ratio (ᾱ).

Thus, we conclude that our proposed strategy (Fig. 4)
adapted the initial bound [0, 1] of weight (w1) to an optimal
weight value (Optimal w1), and the final solution of WSM with
this optimal w1 is the closest to the DM’s preference criteria.
Thus, WSM provides better results for linear approximation
of preference criteria.

VII. CONCLUSIONS AND OUTLOOK

In the present paper, we discussed a real-world inspired 3D
multi-objective optimization problem related to two scenarios
for coping with designer preferences.



Fig. 7. The change of mean HV (10 runs) with respect to the number of function evaluations (NFEs) on 3 problem instances.

Fig. 8. The change of mean IGD (10 runs) with respect to the number of function evaluations (NFEs) on 3 problem instances.

TABLE III
METRIC COMPARISONS (NFES, PREFERENCE RATIO, AND QUALITY) FOR GENERATING SOLUTION (S) OF INTEREST USING WSM WITH THE GLOBAL

OPTIMIZER AND 3-OBJECTIVE MOEA. EACH OF THE PROBLEM INSTANCES (PI) IS EVALUATED FOR EACH OF THE PREFERENCE SCENARIOS. FOR WSM,
WE REPORTED AS NFES (n), WHERE n IS THE NUMBER OF ITERATIONS THROUGH THE OPTIMIZATION LOOP.

Methods Metrics Preference ratio
(α = 2)

Preference ratio
(α = 1)

Preference ratio
(α = 0.5)

PI 1
ᾱ =7.94

PI 2
ᾱ = 3.62

PI 3
ᾱ=8.66

PI 1
ᾱ=1.6

PI 2
ᾱ=0.91

PI 3
ᾱ=1.06

PI 1
ᾱ=0.56

PI 2
ᾱ=0.22

PI 3
ᾱ=0.085

Search w1

with global
optimizer
in WSM

NFEs (n) 4000 (4) 6000 (8) 4000 (4) 5000 (6) 3500 (3) 4000 (4) 5500 (7) 5000 (6) 5000 (6)
Normalized
preference
ratio (ᾱ)

7.96 3.48 7.72 1.10 0.92 1.09 0.48 0.20 0.095

Quality 0.019 0.085 0.089 0.022 0.003 0.036 0.045 0.054 0.050

3-objective
MOEA

NFEs 10000 10000 10000 10000 10000 10000 10000 10000 10000
Normalized
preference
ratio (ᾱ)

6.30 3.92,
3.35 5.30 1.10,

1.03 1.06 1.04,
0.95

0.56,
0.64 0.24 0.64

Quality 0.114 0.194,
0.139 0.10 0.121,

0.120 0.054 0.24,
0.19

0.28,
0.27 0.16 0.40

In the context of multi-objective design optimization, to
improve the performance of the multi-objective algorithms, we
propose a seeding strategy using the latent space knowledge
of a PC-VAE. However, it should be noted that our proposed
method requires an existing data set for training the PC-
VAE, which is not always available prior to the optimization.
Additionally, defining the data-set is already a challenging
task, since it should contain the complete set of geometric
features that the optimization search should be able to reach
during the optimization. Nevertheless, we demonstrated that
if prior data is available then spending computational budget
on training a PC-VAE provides an additional advantage in
improving the diversity of the generated design solutions and
lowers the convergence cost. Currently, we utilized NSGA-II

and particle swarm optimization algorithms in our framework
but plan to extend our studies for further state-of-the-art
methods, like SPEA2 and MOEA/D.

Further, for the second multi-criteria decision-making sce-
nario, we concluded that the weighted-sum method (WSM)
is easy to use. However, it provides only a linear ap-
proximation of the preference criteria. We quantitatively
showed that our proposed strategy to determine the optimal
weights in WSM performs better than other optimization
algorithms, while being faster to generate the final design with
less number of function evaluations. We demonstrated in an
experimental setup that the weights in WSM with our proposed
strategy generated a feasible final design solution closer to the
designer’s preference criteria.



Finally, this is the first study to explore the feasibility
of latent representations of a point cloud-based variational
autoencoder (PC-VAE) as a geometric representation for multi-
objective optimization problems of 3D designs. The latent
representation of the PC-VAE trained on ShapeNet data-
set showed an advantage for performing a multi-objective
design optimization by generating feasible 3D car designs
with less computational budget in both multi-criteria decision
analysis scenarios. These generated designs may be given
back as suggestions to the designer in a cooperative design
system. Thus, spending additional costs for training a PC-
VAE is advantageous for performing a multi-objective design
optimization task.
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