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Exercise for the prevention of Alzheimer’s disease: Multiple pathways to 
promote non-amyloidogenic AβPP processing 
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A B S T R A C T   

With advancements in our ability to treat or manage more diseases than ever, people are able to live longer in 
greater health. However, for individuals who develop Alzheimer’s disease (AD), therapeutic options are currently 
limited to symptom management or have minimal impact on underlying disease mechanisms. The effectiveness 
of available treatments also diminishes as the disease progresses. Therefore, it is critical that interventions are 
implemented in early stages of disease to prevent the establishment of pathological features and to delay or 
prevent cognitive decline that can severely lower quality of life. Regular exercise is known to reduce the risk of, 
and may slow the progression of AD. A significant portion of the known benefits of exercise are likely due to the 
modification of cardiometabolic risk factors, which are associated with AD. However, the mechanism by which 
exercise might confer neuroprotective benefits, specific to the pathology of AD, are not well understood. This 
review examines the effect of exercise on several biochemical pathways, focusing on their convergence at ‘a 
disintegrin and metalloproteinase-10′ as a mediator capable of delaying the progression of Alzheimer’s disease.   

1. Introduction 

Projections estimating the prevalence of Alzheimer’s Disease (AD) 
suggest a looming epidemic of cases worldwide, in part explained by an 
ageing population [1]. Despite a declining trend in incidence rate, the 
number of years people are living with AD is increasing [2], which 
places a significant burden on health and economic cost. There is sig
nificant evidence to suggest that obesity, alongside associated metabolic 
and vascular comorbidities, is associated with AD and the link between 
obesity and AD is likely through direct mechanisms [3]. The combina
tion of poor dietary intake and a lack of physical activity, which are 
major contributors to obesity, are both associated with an increased risk 
of AD [4]. This risk is thought to be particularly elevated for people with 
obesity in mid-life. Contrary to this, it has been suggested that obesity in 
later life may confer a lower risk of AD. However, it is highly possible 
that this is more representative of reverse causation, especially when 
considering the prodromal nature of AD. That is to say, older people who 
are in a prodromal phase of AD, are more likely to lose weight compared 
to individuals who remain cognitively healthy [5]. With advancements 
in our ability to treat more diseases than ever, it is understandable that 
people are able to live longer in greater health. However, for individuals 

who develop AD, therapeutic options are currently limited to symptom 
management and fail to address underlying disease mechanisms. Reg
ular exercise is known to reduce the risk of AD and may slow the pro
gression of the disease. A significant portion of the known benefits are 
likely due to modifying the cardiometabolic risk factors associated with 
AD. However, the mechanisms that confer the neuroprotective benefits 
specific to the pathology of AD are not well understood. This article aims 
to review the literature surrounding exercise as a preventative tool in the 
prevention of AD with particular focus on the effect of exercise on 
non-amyloidogenic Amyloid-β precursor protein processing. 

2. Amyloid-β precursor protein processing in Alzheimer’s 
disease 

The hallmark neuropathological correlates of the AD brain are 
typically identified as extracellular plaques, primarily consisting of 
Amyloid-β (Aβ), and intracellular tangles of hyperphosphorylated Tau 
protein [6]. Synaptic degeneration, neuroinflammation and perturbed 
morphological features, such as, a reduction in hippocampal volume and 
cortical thinning are also common in the later stages of the neurode
generative process [6]. Of these, Aβ has been extensively studied as one 
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of, if not the major contributing feature to the progression of AD [7]. 
Identification of the mutations to APP and PSEN1/2 genes that cause 
hereditary familial AD, alter the production and processing of the Aβ 
precursor protein (AβPP) [7]. The pathological features shared in both 
late-onset and familial AD brain added significant weight to the role of 
Aβ in AD. This has placed an importance on understanding how Aβ 
generation is regulated and how therapeutic options may be used to 
modify this process. The generation of Aβ occurs through the proteolytic 
shedding of AβPP by enzymatic ‘scissors’ that cut down the full-length 
protein in successive steps [8]. Post-translational modifications, such 
as glycosylation, are known to mediate AβPP trafficking through the 
secretory and endo-lysosomal pathways. N-glycosylated AβPP (Imma
ture AβPP) is held in the endoplasmic reticulum, whereas the modifi
cation of O-glycosylation sites promotes AβPP (mature AβPP) movement 
to the cell membrane [9,10]. Mature O-glycosylated AβPP is also more 
likely to be held in the cell membrane [11]. AβPP is proteolytically 
cleaved in two distinct processing pathways which are highly dependant 
on the cellular trafficking of AβPP and the activity of three key enzy
matic interactions (see Fig. 1). This consecutive shedding process is 
named ‘regulated intramembrane proteolysis’ and is typically associated 
with cell signalling pathways [12]. 

2.1. Amyloidogenic AβPP processing 

The ‘Amyloidogenic’ pathway, termed based on the subsequent 
generation of Aβ, is initiated by β-Amyloid cleaving enzyme-1 (BACE-1). 
BACE-1 cleavage of AβPP predominately occurs in the trans-golgi 
network and endosomal pathways where BACE-1 possesses high activ
ity releasing the N-terminal fragment, soluble AβPP-β, leaving the Aβ- 
containing C-terminal fragment C99 anchored to the membrane [13]. 
Subsequent cleavage by the γ-secretase enzyme, liberates the Aβ-peptide 
and the AβPP intracellular domain. Aβ peptides of differing lengths have 
been identified from Aβ1–37 to Aβ1–43. Most commonly, Aβ1–40 is 
produced and is considered the most physiologically normal Aβ peptide. 
In fact, the regulated release of Aβ1–40 may have benefits for the brain 
including aiding in fighting infection, maintaining the blood brain 
barrier integrity and regulating synaptic functions [14]. Conversely, the 
loss of regulated Aβ production leading to increased generation of longer 
Aβ peptides, in combination with poor clearance is deleterious in the 

brain. Crucially, longer Aβ peptides are able to more rapidly aggregate, 
forming soluble oligomeric Aβ species [15] which are more neurotoxic 
[16]. Intracellular Aβ oligomers have been implicated in elevating 
endoplasmic reticulum stress, calcium ion dyshomeostasis, mitochon
drial damage and a loss of proteostasis leading to apoptosis [17–20] and 
thus are able to significantly disrupt cellular function. Further, Aβ 
oligomers can cause cellular damage by interacting directly in extra
cellular compartments. Such mechanisms include the direct binding to, 
and disruption of, the plasma membrane [21,22]; the formation of pores 
in the membrane that can lead to dysregulated permeability [23,24] and 
binding to receptors to influence cell signalling [25]. This multitude of 
interactions highlights the potential for Aβ oligomers to have wide
spread cytotoxic effects throughout the brain. 

2.2. Non-Amyloidogenic AβPP processing 

The non-amyloidogenic processing pathway is initiated by α-secre
tase enzymatic cleavage of AβPP through the Aβ region. This prevents 
the formation of Aβ peptides. The primary site of α-cleavage is at the cell 
membrane resulting in the release of the N-terminal fragment sAβPPα 
into extracellular compartments. The remaining intramembrane C-ter
minal fragment consisting of 83 amino acids can then be further cleaved 
by the γ-secretase enzyme to release a truncated Aβ peptide known as P3 
and the AβPP intracellular domain [26]. 

Several zinc metalloproteinases are members of the ‘a disintegrin and 
metalloproteinase’ (ADAM) family and are known to possess α-secretase 
activity. This includes ADAM9, ADAM10, ADAM17 and ADAM19 [27, 
28]. Whilst the cleavage of AβPP can be shared between multiple 
ADAMs, in neurons, ADAM10 appears to be the major physiologically 
relevant α-secretase [29,30]. The ADAM10 zymogen (proADAM10) 
undergoes prodomain cleavage by proprotein convertase enzymes, PC7 
and Furin [31]. This generates the catalytically active, mature ADAM10 
(mADAM10) enzyme. Blocking this process can significantly reduce 
membrane expression of ADAM10 [32] and lower sAβPPα secretion 
[31]. The maturation of ADAM10 is regulated during trafficking to the 
cell membrane, where it is most active, by a series of Transmembrane-4 
superfamily proteins known as Tetraspanins (TSPAN). In particular, a 
sub-group known as the C8-TSPANs have been of particular interest 
[33]. These partner proteins have been shown to direct the interaction of 

Fig. 1. Diagrammatic representation of the 
trafficking and processing of AβPP from 
intracellular compartments to the cell 
membrane. Movement of AβPP through the 
secretory pathway to the cell membrane is 
regulated by post-translational glycation. 
ADAM10 prodomain cleavage by propro
tein convertase enzymes, PC7 and Furin, 
during trafficking, enables ADAM10 enzy
matic activity at the cell membrane which 
is a major site for ADAM10 activity and 
non-amyloidogenic AβPP processing. 
ADAM10 cleavage of AβPP leads to the 
liberation of sAβPPα. The remaining intra
membrane C-terminal fragment consisting 
of 83 amino acids can then be further 
cleaved by the γ-secretase enzyme to 
release a truncated Aβ peptide known as P3 
and the AβPP intracellular domain (not 
shown). Internalisation of AβPP into the 
endo-lysosomal pathway is a major site of 
BACE-1 cleavage and Aβ generation. The N- 
terminal fragment, soluble AβPP-β is 
released, leaving the Aβ-containing C-ter
minal fragment C99 anchored to the lyso
somal membrane. This is termed the 
amyloidogenic pathway.   
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ADAM10 with AβPP at the cell membrane and can either have inhibitory 
or promoting effects on non-amyloidogenic AβPP processing depending 
on the C8-TSPAN/ADAM10 pairing [33,34]. The upregulation of 
ADAM10 activity and therefore, non-amyloidogenic AβPP processing, 
significantly blunts the formation of Aβ peptides. This suggests that both 
pathways are able to compete for AβPP substrates [29]. In addition, the 
secretion of sAβPPα is associated with neuroprotective effects. These 
effects include neurogenesis, maintenance of synaptic function and 
supporting the formation of neuronal networks [35]. The generation of 
sAβPPα is thought to be protective in the adult brain, and even more so 
in the aged brain. This is supported by evidence that in AβPP deficient 
mice, the addition of exogenous sAβPPα can rescue long term potenti
ation and have beneficial effects on memory [36]. In both cell and an
imal models, treatment with sAβPPα has also been shown to reduce Aβ 
toxicity, tau hyperphosphorylation and inhibit BACE-1 activity [37,38]. 
Mutations to the ADAM10 gene that attenuate enzymatic activity are 
shown to associate with susceptibility to late-onset AD [39]. Therefore, 
the modulation of ADAM10 could be a target for therapeutic interven
tion in AD. 

3. Exercise as a tool in the prevention of Alzheimer’s disease 

Regular exercise is widely regarded as an effective way to improve 
cerebrovascular and cardiometabolic health, maintain functional abili
ties and promote healthy ageing [40]. Exercise has also been investi
gated as a tool in the primary prevention of AD or as a disease slowing 
intervention [41]. From longitudinal epidemiological research, the 
effectiveness of exercise has been clearly shown to confer protection 
against the risk of cognitive decline, highlighting a role for exercise in 
delaying the onset of AD. Evidence for the ability of exercise engage
ment to slow the progression of severe stage of AD is less clear, however, 
it is evident that promoting exercise throughout the lifespan will convey 
some protective benefits for people with AD, whether this is by directly 
attenuating the core pathology or by reducing risk factors associated 
with AD [42,43]. Contrary to this, a lack of exercise engagement or 
prolonged sedentariness is linked with poor vascular function and an 
increase in the prevalence of risk factors associated with AD [44]. 
Although the optimal ‘dose’ of exercise required to elicit protective 
benefits for the brain is unknown, improved cognitive function is asso
ciated with increased physical activity in people with AD [43,45]. 
Overall, exercise is widely regarded as a non-pharmacological approach 
to preventing the progression of AD. The neuroprotective benefits of 
exercise are attributed to a number of mechanisms affected in the AD 
brain such as, improved energy metabolism, reduced oxidative stress, 
increased neurogenesis, synaptic plasticity, and reduced inflammation. 
One major area of interest is whether such improvements associated 
with engagement in exercise can reduce or prevent the establishment of 
Aβ pathology. 

3.1. Exercise and AβPP processing in Alzheimer’s disease 

Investigating the effects of exercise on AβPP processing, and the 
subsequent generation and clearance of Aβ in animal models, suggests 
exercise can have positive effects. Despite large variance in the duration 
of exercise interventions, ranging from 3 weeks to over 12 months, both 
a reduction in the Aβ1–42:40 ratio [46–48] and Aβ plaque formation 
[49–51] have been evident. Interestingly, exercise interventions of 
shorter duration are most associated with lowering of Aβ peptide gen
eration, which is a more transient marker of AβPP processing. In fact, 
even an acute bout of exercise offers protection against Aβ neurotoxicity 
[52]. The apparent interference of exercise in amyloidogenic AβPP 
processing has been linked to a lower amount of AβPP availability and 
reduced BACE-1 activity [46]. However, this effect was only apparent in 
Aβ-infused conditions and there was no effect of exercise in control 
conditions. This perhaps highlights a scenario whereby exercise is most 
effective at delaying or preventing Aβ accumulation under worsening 

pathology. High levels of cholesterol-rich membrane lipid rafts are a key 
site for BACE-1 – AβPP interaction. Following 12 weeks of treadmill 
running, APP and PSEN1 transgenic mice had a lowered Hippocampal 
lipid raft content which coincided with lowered amyloidogenic AβPP 
processing [53]. This highlights one way in which exercise may indi
rectly modulate AβPP processing. Temporary suppression of Hippo
campal BACE-1 content has also been shown following an acute exercise 
bout in high fat fed mice compared to sedentary controls [54]. Further to 
this, evidence of enhanced Aβ clearance suggests exercise is likely able 
to reduce Aβ pathology in multiple ways, not just by regulating Amy
loidogenic AβPP processing [55]. Despite strong evidence of a reduction 
in Aβ-accumulation with exercise in animal models, the data generated 
from human participants is less convincing all be it relatively under 
investigated. 

In cognitively healthy individuals, lower levels of physical activity 
are associated with an elevation in Aβ-accumulation, suggesting exercise 
may be protective against pathological features of AD [56]. However, 
conflicting evidence from cognitively healthy individuals with elevated 
cerebral Aβ burden suggests that, despite strong cardiometabolic bene
fits, exercise doesn’t modify Aβ pathology [57]. Further, there is evi
dence to suggest that exercise effects on Aβ become less pronounced in 
people with subjective memory complaints or mild cognitive impair
ment. This evidence has been comprehensively explored by Brown et al. 
[58]. This raises a challenging question. Why is exercise promoted as 
beneficial to protect against AD if human data often falls short of 
identifying significant improvements in pathology and symptoms? This 
may be answered by highlighting a number of limitations to the current 
literature surround exercise in people with AD. 

Exercise interventions for AD are often conducted over a short time 
frame relative to the time-course of AD progression. Thus, aiming to 
detect changes in established amyloid pathology, which may have a long 
temporal development prior to clinically recognised symptoms [59] 
with interventions lasting a number of weeks/months, is likely too short. 
Further, exercise interventions are often in relatively small sample sizes. 
Instead, implementing exercise interventions much earlier, perhaps in 
mid-life may be more suited to uncovering the benefits of exercise for 
preventing AD [60]. This will be supported by the development of more 
sensitive methods of detecting changes linked to the progression of AD 
in the prodromal phase. 

Exercise and increased physical activity are however, associated with 
a number of benefits that can impact brain health. Exercise is associated 
with improved cerebral blood flow, stimulation of neurotrophic factors, 
improved neurotransmission, reduced inflammation and improved 
cholesterol metabolism [61]. Investigating the mechanisms and path
ways linked to the potential benefits of exercise for modulating AD is 
critical to improve and optimise physical activity recommendations. 
One such target is the non-amyloidogenic AβPP processing enzyme 
ADAM10. Although direct evidence of this is limited to animal models 
(see Table 1), there is strong suggestion that a number of factors that can 
enhance ADAM10 expression and activity are induced by both acute 
exercise bouts and adherence to greater physical activity [49,50,53,62]. 
This may also explain why limited beneficial effects are seen for 
reversing established AD pathology, instead working as a method to 
prevent the disease progression. Not only this, but ADAM10 may also be 
a useful marker for optimising exercise bouts for maximising the benefits 
in people with AD. 

3.2. ADAM10 as a target for exercise induced non-amyloidogenic AβPP 
processing 

As previously described, promoting non-amyloidogenic AβPP pro
cessing could be beneficial in AD by promoting ADAM10 activity and 
increasing the secretion of sAβPPα. Further, it is possible that elevated 
ADAM10 activity can decrease Aβ generation by reducing BACE-1 
interaction with AβPP, however, evidence supporting this competing 
effect is mixed and limited to specific subcellular compartments [26]. 

R.J. Elsworthy et al.                                                                                                                                                                                                                            
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Whilst conflicting data between animal and human studies for the effect 
of exercise on AD pathology measured via Aβ and Tau has been found, 
ADAM10 may offer a more dynamic marker capable of detecting exer
cise effects on AβPP processing. Although there is only a limited amount 
of research into the potential effect of exercise on ADAM10, there are a 
number of specific mechanisms and pathways which make ADAM10 a 
plausible target (see Fig. 2 for overview). 

3.2.1. Metabolism and redox balance 
Significant evidence of both central and peripheral metabolic 

dysfunction in people with AD has been found with pathophysiological 
pathways beginning to be identified. These include cholesterol imbal
ance, impaired insulin signalling, mitochondrial dysfunction, redox 
imbalance and altered presence of key metabolites [63,64], each of 
which have been linked to the accumulation of Aβ and subsequent 
neurodegeneration. The beneficial effects of regular exercise for pre
venting or even reversing many metabolic diseases and for improving 
outcomes in people with AD is well characterised, however, whether 
exercise confers protection against AD through promoting ADAM10 
activity is less well known. Impaired insulin signalling is widely recog
nised as a feature of the AD brain [65]. With exercise known as an 
intervention capable of restoring insulin sensitivity, it may be a possible 
pathway for restoring ADAM10 activity. Increased hormonal signalling 
by insulin and insulin-like growth factor-1 (IGF-1) has been demon
strated to increase non-amyloidogenic AβPP processing, perhaps 
through altering intracellular AβPP trafficking [66,67]. There is also 
evidence of a reduction in Aβ generation [68]. Although contrasting 
evidence of a reduction in both ADAM10 and BACE-1 processing has 
been shown in APP/PS1 mice following exposure to IGF-1 [69]. 

Evidence of impaired mitochondrial bioenergetics also points to
wards metabolic factors underlying AD pathogenesis. Damaged mito
chondria cannot support neuronal activity and are unable to provide 
enough energy supply and other related mitochondrial functions to 
neurons [70], exposing neurons to mitochondrial related oxidative 
damage. Oxidative damage has been proposed as an early event in the 
development of AD [71]. In conditions where oxidative stress is evident, 
ADAM10 expression and activity is also lower [72,73]. Further, there is 
some evidence that oxidative insults may act to lower ADAM10 activity 
and sAβPPα secretion, whilst favouring amyloidogenic AβPP processing 
[74,75]. With the adaption to regular exercise leading to a better ability 
to tolerate oxidative stress [76], this may provide an avenue of preser
ving ADAM10 activity in AD. 

Exercise also acts against the development and progression of AD via 
promoting mitochondrial fitness and regulation of mitophagy which is 
in part mediated by SIRT1 [77]. SIRT1 is a NAD+-deacetylase and has 
been reported to be involved in the regulation of cellular senescence and 

Table 1 
Effects of exercise on ADAM10 activity.  

Authors Model Mode of 
exercise and 
control 

Exercise 
protocol 

Main outcome 
on ADAM10 

(Yu 
et al., 
2021) 

3-month-old 
C57BL/6 J WT 
(n = 9) and APP/ 
PS1 ΔE9 CE 
model (n = 9). 

Treadmill 
running 
(exercise) or 
stationary 
treadmill 
(control) 

Acclimation: 3 
days 
Protocol: 5 
days per week 
for 12 weeks, 
45mins/ 
session. 

Increased 
hippocampal 
levels of 
ADAM10 and 
sAβPPα in both 
control and AD 
model 
following 
exercise. 

(You 
et al., 
2021) 

12-month-old 
C57BL/6 J WT 
(n = 9) and 
Adiponectin KO 
(APN) model (n 
= 9). 

Treadmill 
running 
(Exercise) 

Acclimation: 4 
days 
Protocol: 7 
days per week 
for 20 
consecutive 
days, 60mins/ 
session. 

Increased 
ADAM10 levels 
in control. No 
change in APN 
model with 
exercise. 

(Wang 
et al., 
2021) 

B6C3F1 
(APPswe) APP/ 
PS1 CE model. 9- 
week-old (n = 7), 
24-week-old (n 
= 7). 

Voluntary 
wheel 
running 
(Exercise) 
or no wheel 
access 
(control) 

Acclimation: 7 
days 
Protocol: 16 
weeks, 
voluntary 
running. 

Young AD mice 
showed 
significant 
elevation in 
hippocampal 
ADAM10 
following 
exercise but not 
in cortex. 
ADAM10 
decreased in the 
hippocampus of 
aged AD mice, 
no change in 
cortex. 

(Choi 
et al., 
2021) 

24-month-old 
WT (n = 9) and 
APP-C105 CE 
model (n = 9). 

Treadmill 
running 
(exercise) or 
stationary 
treadmill 
(control) 

Acclimation: 7 
days 
Protocol: 5 
days per week 
for 8 weeks, 
30mins/day. 

ADAM10 levels 
not significantly 
increased 
following 
exercise, AD 
ADAM10 levels 
were not 
significantly 
different to 
healthy control 
levels following 
exercise. 

(Zhang 
et al., 
2019) 

3-month-old WT 
(n = 12 and 
Tg2576/M145L 
(APP/PS1) 
transgenic AD 
model (n = 12). 

Treadmill 
running 
(exercise) or 
stationary 
treadmill 
(control) 

Acclimation: 6 
days 
Protocol: 5 
days per week 
for 12 weeks, 
45mins/day. 

Increased 
Hippocampal 
ADAM10 level 
following 
exercise in AD 
model, not 
control. 

(Zhang 
et al., 
2018) 

5-month-old 
C57BL/6 WT (n 
= 6) and APP/ 
PS1 transgenic 
AD model (n =
6). 

Treadmill 
running 
(exercise) 

Acclimation: 2 
days 
Protocol: 6 
days per week 
for 20 weeks, 
30mins/day. 

Increased brain 
homogenate 
ADAM10 level 
following 
exercise in AD 
model, not 
control. 

(Nigam 
et al., 
2017) 

7/9-month-old 
B6C3-Tg 
(APPswe/ 
PS1Δ9–85Dbo 
transgenic AD 
model (n = 8). 

Voluntary 
wheel 
running 
(Exercise) 
or locked 
running 
wheel 
(control) 

Acclimation: 2 
days 
3 weeks of 
voluntary 
running 

Increased 
sAβPPα in 
hippocampus 
following 
exercise, this 
effect was 
blocked with 
α-secretase 
inhibitor. 

(Koo 
et al., 
2017) 

12-month-old 
C57BL/6 x BDA/ 
2 WT (sed, n = 8) 
and NSE/ 
APPswe 

Treadmill 
running 
(exercise) or 
stationary 

Acclimation: 5 
days 
Protocol: 5 
days per week 
for 12 weeks, 

Increased 
ADAM10 levels 
and sAβPPα in 
exercise AD 
model  

Table 1 (continued ) 

Authors Model Mode of 
exercise and 
control 

Exercise 
protocol 

Main outcome 
on ADAM10 

transgenic AD 
model (n = 8). 

treadmill 
(control) 

30–60mins/ 
day. 

compared to 
sedentary AD 
model in cortex. 

(Liu 
et al., 
2013) 

3-month-old 
C57BL/6 J WT 
(n = 12) and 
APP/PS1 
transgenic AD 
model (n = 12). 

Treadmill 
running 
(exercise) or 
stationary 
treadmill 
(control) 

Acclimation: 2 
days 
Protocol: 5 
days per week 
for 20 weeks, 
30mins/day. 

ADAM10 levels 
not significantly 
increased but 
restored to 
healthy control 
levels in AD 
model 
following 
exercise. No 
effect on 
sAβPPα. 

Studies investigating the effects of exercise on ADAM10 levels/ activity in ani
mal models. Sample size (n) is indicated as the number in the exercise group. 
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Fig. 2. Exercise can stimulate the release or upregulation of multiple pathways in both peripheral and central tissues. Peripherally secreted factors are able to cross the blood brain barrier and may influence AβPP 
processing. The effects of exercise on these systems are able to shift AβPP processing towards the non-amyloidogenic pathways by increasing ADAM10 activity and reduce Aβ production by limiting BACE-1 activity 
(Created with Biorender.com). 
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ageing, thus making it an interesting therapeutic target for AD [78]. 
Regular exercise has been shown to upregulate SIRT1 expression which 
plays a role in multiple interconnected regulatory networks that 
modulate dendritic and axonal growth, as well as survival against stress. 
SIRT1 is also involved in maintaining neuronal plasticity, cognitive 
functions, protection against ageing-associated neuronal degeneration 
and cognitive decline [79]. Interestingly, SIRT1 is also associated with 
ADAM10 and the upregulation of SIRT1 can boost ADAM10 activity [80, 
81]. In fact, in a mouse model of AD, treadmill exercise inhibited Aβ 
production via upregulation of SIRT-1, which was proposed to bias 
amyloid precursor protein processing towards non-amyloidogenic pro
cessing [49]. From this, it is clear that exercise, by modulating cell 
metabolism and redox balance, may be able to upregulate ADAM10 
activity, although this evidence is limited to a small number of studies, 
often from various cellular and animal models. 

3.2.2. Cholesterol dysregulation 
Dysregulation of cholesterol metabolism in the brain has been 

associated with the pathogenesis of AD [82]. Similarly, high blood 
cholesterol concentrations have been found in people with AD [82] 
which is associated with an increase in the risk of AD in later life [83]. 
An important consideration is that central and peripheral cholesterol 
levels are regulated independently, with dietary intake predominantly 
effecting blood cholesterol and de novo synthesis effecting the choles
terol content of the brain [84]. There is extensive literature published 
showing exercise as a method of improving blood cholesterol levels by 
increasing HDL, lowering LDL/VLDL and reducing triacyclglycerol 
content [85]. This may in turn negate the effects of poor cholesterol 
levels on cerebral vasculature function, promoting overall brain health. 
Yet less is known about how regular exercise may impact cholesterol 
synthesis and transport in the brain. This is important as one mechanism 
by which cholesterol increases the risk of AD is through effecting AβPP 
processing [82]. Strong evidence of the role of lipid transport in AD 
comes from the implications of carrying the ApoEε4 allele, which is a 
major risk factor for AD. ApoE is the main apolipoprotein class present in 
the central nervous system and is a major lipid transporter in the brain 
and in particular responsible for cholesterol transport. ApoE has three 
alleles, ε2, ε3 and ε4, of which ApoEε4 is the major risk factor for 
late-onset AD [86]. In AD, ApoE alleles are often studied for their effect 
on clearance of Aβ oligomers, activation of glial cells and to contribution 
to neuronal dysfunction [87]. In addition, there is some evidence that 
ApoE genotype may affect ADAM10 expression and activity, with 
ADAM10 levels reduced in ApoEε4 carriers compared to ApoEε2 and 
ApoEε3 isoforms. This is supported by evidence of reduced ADAM10 
activity in both cell models exposed to ApoE and lower ADAM10 
expression in solubilised fractions of human cortex [88]. In carriers of 
ApoEε4 exercise is still able to provide benefits against the pathology of 
AD through a number of pathways, one of which is through stabilising 
cholesterol levels [89]. This stabilising of cellular cholesterol may be a 
mechanism by which exercise modulates ADAM10 activity. Interest
ingly, elevated cholesterol is associated with decreased ADAM10 levels 
and elevated Aβ1–42 generation [90]. In contrast, depleting cellular 
cholesterol increases ADAM10 activity and improves membrane dy
namics [91,92]. To support this data, treatment with statins, which act 
to limit cholesterol biosynthesis, is linked with increased ADAM10 ac
tivity [93]. Cholesterol reduction via statin treatment has been shown to 
increase sAβPPα generation and reduced Aβ production [92,94]. 
Further, a 12-week treadmill exercise programme in APP/PS1 mice was 
found to reduce total cholesterol, activity of 3‑hydrox
y-3-methylglutaryl-coenzyme A reductase, as well as reduce the number 
of lipid rafts in the hippocampus whilst increasing ADAM10 activity and 
limiting Aβ deposits [53]. Thus, the positive effects of exercise on 
cholesterol homoeostasis may act to regulate ADAM10 activity and thus, 
protect against AD. 

3.2.3. Brain derived neurotrophic factor 
Brain Derived Neurotrophic Factor (BDNF) can enhance neuro

plasticity through regulation of several pathways relating to synapto
genesis, neurogenesis, and long-term potentiation [95]. BDNF may also 
be a crucial mediating factor between exercise and improved brain 
health [95,96]. For an extensive review see here [62]. Reduced BDNF 
has been long associated with AD, possibly linked to the progression of 
the disease [97,98]. In more severe cases of AD, lower BDNF can be 
detected peripherally in serum samples [99]. Further, alterations in 
hippocampal BDNF levels may be linked to the presentation of 
phosphorylated Tau pathology [100]. Polymorphisms linked to the 
BDNF gene have also been associated with a worse rate of cognitive 
decline in Aβ+individuals defined as preclinical AD [101]. BDNF binds 
to Tropomyosin receptor kinase B (TrkB) and results in the autophos
phorylation of the intracellular tyrosine kinase domain of the receptors. 
This affects a number of downstream signalling pathways such 
as, mitogen-activated protein kinase (MAPK), phospholipase C-c, 
phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC) and 
cAMP-response element biding (CREB) protein [62]. There is evidence 
that this BDNF signalling can modify ADAM10 activity. The differenti
ation of neuroblastoma into neuron-like cells through retinoic acid and 
BDNF is associated with a concomitant increase in α-secretase process
ing of AβPP [102]. Further, the disruption of BDNF signalling results in 
an increased secretion of Aβ, leading to neuronal death in primary 
hippocampal neurons [103]. Interestingly, a dose-dependant neuro
protective effect of BDNF against Aβ exposure has been shown in rats. 
Inhibiting TrkB signalling blocked this protection [104]. This is sup
ported by evidence of an exercise-induced increase in α-secretase ac
tivity and a reduction of Aβ generation in transgenic mice. This was 
mediated by a redistribution of α-secretase within the cell and an inhi
bition of β-secretase activity [105]. Thus, it is possible that exercise may 
be of therapeutic value against AD through increasing BDNF, although 
the mechanisms merit further investigation. 

3.2.4. Serotonin signalling 
The effect of exercise on brain serotonin (5HT) levels has been of 

particular interest in understanding the potential for antidepressant 
action without need for pharmacological intervention. Neurogenesis 
and neuroplasticity are both associated with increased exercise which 
may be mediated by restored 5HT signalling [106]. A direct role for 5HT 
in exercise induced neurogenesis has been identified in Tryptophan 
hydroxylase-2 deficient mice [107]. Interestingly, these effects may act 
in shared pathways with BDNF [108]. Measuring peripheral tryptophan 
bioavailability, which is a precursor to 5HT, has also been seen to be 
elevated following both acute bouts and chronic exercise in older adults 
[109, 110]. 

In AD, increasing 5HT concentrations in the synaptic cleft is thought 
to be of therapeutic value to slow the progression of pathological fea
tures [111]. This has also resulted in the development and trialling of 
small molecules to modulate 5HT receptor action as well as the potential 
utility of selective serotonin reuptake inhibitors (SSRI) for delaying AD 
[112]. Modulation of the 5HT receptors (5HTr), 5HT4r and 5HT6r, have 
been of particular interest for their regulation of AβPP. Agonist stimu
lation of 5HT4r is associated with a shift in AβPP processing towards 
sAβPP-α liberation by increasing ADAM10 activity [113,114]. A similar 
effect has been observed for 5HT6r [115]. In addition, treatment with 
SSRIs have been found to act on ADAM10 activity, increasing sAβPPα 
secretion [112,115-117]. Thus, it is possible that engaging in exercise 
may increase ADAM10 activity through modulation of 5HT signalling, 
although a better understanding of the mechanisms of underpinning this 
action is crucial and likely interlinks with BDNF signalling. 

3.2.5. Small extracellular vesicles as a vehicle for ADAM10 and stimulating 
co-factors 

Whilst the beneficial effects of exercise on brain health are widely 
accepted, the route of communication from periphery to central systems 
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and back again is less clear. The possibility of tissue-cross talk between 
systemic factors secreted from cells during exercise and central systems 
is a novel area of ongoing research. Extracellular vesicles are membra
nous structures known to be released from all cells and contain active 
biomolecules including proteins, RNA and DNA. Healthy cells shed 
microvesicles from the plasma membrane and exosomes are also formed 
from multivesicular bodies of endosomal origin. Since current technol
ogies encounter difficulties in distinguishing these vesicle types, they 
will herein be collectively referred to as small extracellular vesicles 
(sEVs). First thought to simply represent debris of degenerated cells, it is 
now theorised that sEVs represent a means of intercellular communi
cation. sEVs can transfer their cargo to recipient cells through mem
brane receptor interaction or by uptake into the recipient cell, eliciting a 
functional response. Importantly, evidence suggests that following in 
particular exhaustive endurance exercise, there is a significant increase 
in the level of EVs in circulation compared to the resting state [118]. 
Intriguingly, high coverage quantitative proteomic analyses of sEV ly
sates from human blood indicates the protein diversity carried in cir
culation is vast (>5000) [118,119], highlighting the potential for 
significant intercellular communication via sEVs during both physio
logical and pathological stimuli. Indeed, similar, cutting edge, mass 
spectrometry analyses of sEVs in the context of exercise confirms sEV 
released into circulation is significant and importantly, can identify, in 
an unbiased manner, the proteins carried within the sEVs [118]. One of 
the markers highly enriched in sEVs in response to both endurance (1hr) 
[118] and high intensity interval cycling (4 × 4 min at 90% VO2max, 
[119]) was ADAM10. ADAM10 positive sEVs were significantly elevated 
in an acute response post exercise, before returning to baseline between 
1 and 3 h. Whether this transient elevation is affected by repeated bouts 
or in altered in response to chronic exercise interventions is not known. 
Interestingly, EVs are also site of AβPP processing and have been 
considered as a source of biomarkers for AD [120]. Thus, delivery of post 
exercise sEVs which are enriched with proteolytically active ADAM10, 
antioxidant enzymes and BDNF, to the brain may provide a mechanism 
to promote non-amyloidogenic AβPP processing and stimulate neuro
genesis [118], particularly in light of the observation that sEVs can pass 
the blood brain barrier [121]. 

4. Conclusion 

In this review we have focused upon the possible mechanisms by 
which exercise may promote non-amyloidogenic AβPP processing in the 
context of prevention of AD. Whilst the benefits of engaging in regular 
exercise for improving brain health reducing the risk of AD is widely 
acknowledged, the specific pathways for which this protection is pro
vided is not known. The potential for ADAM10 to be a therapeutic target 
in AD is of interest due to opposing the amyloidogenic AβPP pathway 
and liberating sAβPPα which is neuroprotective. Further, ADAM10 has 
emerged as a key player in several developmental processes, including 
synaptic pruning and cell signalling events. The pleiotropic nature of 
ADAM10 interaction with partnering proteins and cleavage sites high
lights a number of routes by which its proteolytic activity may be 
increased. This is of importance in AD as lower ADAM10 expression is 
typically seen. The pathways highlighted in this review showcase a 
number of ways by which exercise may lead to increased ADAM10 ac
tivity, however, it is clear that further investigation of these areas is 
warranted. Ultimately, further investigation of the link between 
ADAM10 activity and exercise may provide a novel biomarker for the 
effectiveness of exercise bouts and inform future therapeutic interven
tion for AD. 
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