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Our senses provide us with a vast amount of simultaneous 
information. Attention helps focus perceptual processing 
on the important parts of a scene, boosting both percep-

tual sensitivity and neural responses to a stimulus1. The effects of 
attention were traditionally assumed to be sustained over short 
timescales; as long as someone holds their attention on a stimulus, 
processing of that stimulus is boosted. However, the field is now 
converging on a dramatically different view: that covert attention 
rhythmically switches between objects at 3–8 Hz (refs. 2–5). Here I 
show that ubiquitous analyses in this literature conflate periodic 
oscillations with aperiodic temporal structure, leading to drastically 
inflated rates of statistical false positives. I then present two alterna-
tive analyses that can distinguish between periodic and aperiodic 
temporal structure in behaviour while controlling the rate of false 
positives. These methods could be applied to test for rhythms in the 
presence of structured noise, for any brief time series.

A growing behavioural literature argues that the focus of attention 
moves rhythmically between stimuli several times per second6–26. 
The experiments in this literature use a variety of stimuli but are 
built on a shared core design. In these studies, participants monitor 
two peripheral stimuli for a faint target. After a short delay, a cuing 
stimulus flashes on the screen. This cue has been hypothesized to 
reset the phase of low-frequency neural oscillations and serves to 
draw attention to one of the two peripheral stimuli. After a second 
variable delay, a faint target flashes on one of the peripheral stimuli. 
By averaging target-detection accuracy at each cue-to-target delay, 
these studies create a time course of attention towards the cued and 
uncued locations. To identify rhythms in attentional switching, 
amplitude spectra are then computed for these behavioural time 
courses. Peaks in the spectra are interpreted as evidence that atten-
tion moves rhythmically around the perceptual scene.

Studies of rhythmic attentional switching have used a wide range 
of different stimuli and dependent variables. For example, some 
studies examine visual attention to different spatial locations6,7,9, 
whereas others focus on feature-based attention20, global–local 
processing27 or auditory attention14. These studies have reported 
rhythms in detection accuracy6,7, reaction times8, binocular 
rivalry17, cue validity effects25 and sensitivity and criterion metrics 
from signal detection theory14. Most studies reset ongoing dynam-
ics with a cue stimulus, but some rely on participant-initiated 

actions11. Although prominent theories focus on rhythms around 
4–8 Hz (refs. 3–5), studies in this literature have reported behavioural 
rhythms as low as 2.5 Hz (ref. 15) and as high as 20 Hz (ref. 27). This 
large and diverse literature is widely interpreted as convergent evi-
dence for robust rhythms in attentional switching.

Here I demonstrate that the findings in this literature 
can be accounted for by attentional switching that is entirely 
non-oscillatory. Using computational simulations, I demonstrate 
that the spectral analyses used in this literature are sensitive not only 
to periodic rhythms but also to aperiodic temporal structure. I pres-
ent two alternative methods that discriminate between periodic and 
autocorrelated aperiodic structure, control the rate of false positives, 
and recover true oscillations in behaviour.

Results
Identifying oscillations by shuffling in time. Does attention move 
rhythmically between different objects? A large number of studies 
have addressed this question by searching for oscillations in densely 
sampled behavioural time series. After this time series has been 
converted to the frequency domain, oscillations appear as peaks in 
the amplitude spectrum. To interpret this spectrum, any putative 
oscillations must be discriminated from the background noise. How 
can we test whether a peak in the spectrum is significantly greater 
than the background noise?

Studies in this literature test for statistically significant oscil-
lations by performing a randomization procedure that relies on 
shuffling the data in time. By shuffling in time, this analysis cre-
ates a surrogate distribution without any temporal structure and 
searches for oscillations against this surrogate distribution. I illus-
trate the basic procedure using details from an early influential 
study, Landau and Fries6 (Fig. 1a). First, accuracy is computed at 
each time point, yielding a densely sampled behavioural time series. 
The data are then linearly detrended, multiplied by a Hanning taper 
and zero-padded, before the amplitude spectrum is computed with 
a discrete Fourier transform (DFT). To test whether peaks in this 
spectrum are statistically significant, a randomization test is per-
formed. The time stamps of the raw behavioural data are shuffled a 
large number of times, and then the spectra of these time-shuffled 
data are computed. This results in a surrogate distribution of ran-
domized spectra. For each frequency, the P value is computed as the 
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proportion of randomized spectra with greater amplitude than the 
empirical spectrum. The P values are then corrected for multiple 
comparisons using Bonferroni corrections.

This shuffling-in-time procedure is widely used to study atten-
tional switching6–26 as well as other rhythms in perception27–32. The 
details of the analysis pipeline often differ between studies. For 
example, instead of computing accuracy at each time point, some 
studies use different dependent measures, such as average reaction 
time8 or d′ (ref. 14). Some studies do not zero-pad the data before 
computing the amplitude spectrum9, or they correct for multi-
ple comparisons across frequencies using the false discovery rate 
(FDR)7 or by selecting the largest peak in each shuffled spectrum20. 
All of these studies, however, determine statistical significance using 
a randomization test that shuffles the raw data in time.

Shuffling in time alters aperiodic temporal structure. Significant 
spectral peaks from the shuffling-in-time procedure are interpreted 
as reflecting periodic rhythms in attention. By shuffling the data in 
time, however, these studies test the null hypothesis that the behav-
ioural data have no structure in time. These tests therefore do not 
provide unique evidence for oscillations in behaviour. Instead, they 

provide evidence for any kind of structure in time. Randomization 
tests that shuffle the data in time reflect at least two varieties of 
non-oscillatory structure: aperiodic autocorrelation and consis-
tency over trials.

First, shuffling in time destroys aperiodic temporal structure due 
to autocorrelation. Autocorrelation refers to correlations between a 
signal and lagged copies of itself. For periodic signals, the autocorre-
lation function has regularly spaced bumps, showing that the signal 
is positively correlated with itself at those periodic lags. For aperi-
odic signals, however, a different pattern emerges. For example, in 
a random walk, the signal at time t is strongly correlated with itself 
at time t − 1 but weakly correlated with itself at more distant times. 
As a consequence, the autocorrelation function smoothly drops 
down to zero with increasing lags. When data are simulated using a 
noisy random walk (an autoregressive model with a single positive 
coefficient (AR(1)); Fig. 2a), the autocorrelation function slowly 
drops to zero (Fig. 2c). After shuffling in time (Fig. 2b), however, 
the autocorrelation is approximately zero at all non-zero time lags  
(Fig. 2c). This difference in the autocorrelation functions also 
appears in the amplitude spectra. When those data are prepro-
cessed using detrending and other common analysis steps, an  
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Fig. 1 | analysis pipelines for identifying oscillations in behaviour. a, Standard analysis pipeline for identifying behavioural oscillations by shuffling in 
time. The analysis steps shown in grey are not performed in every study. Different researchers sometimes perform some steps in different ways—for 
example, by detrending with a second-order polynomial versus a sliding rectangular window. In the panel labelled ‘Significant spectral peaks’, the solid line 
indicates the empirical spectrum, the dashed line shows the significance threshold and the solid bar shows frequencies that were identified as statistically 
significant. b, AR surrogate analysis for identifying oscillations in behaviour.
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aperiodic autocorrelated signal often shows a single spectral peak, 
even though the data reflect a purely aperiodic process (Fig. 2d).

Second, shuffling in time destroys aperiodic consistency across 
trials. This is illustrated by simulating a behavioural time course 
with a single peak in accuracy (Fig. 2e). After the time points 
are shuffled between trials, that single peak in accuracy is spread 
out over all time points. In the amplitude spectra, this results in 
decreased amplitude at a wide range of frequencies, with a single 
peak that depends on the shape of the original aperiodic signal, as 
well as the preprocessing (for example, linear versus second-order 
polynomial detrending; Fig. 2f).

In summary, shuffling in time tests the null hypothesis that a 
time series contains no temporal structure whatsoever. However, 
this method cannot distinguish between periodic rhythms and ape-
riodic temporal structure.

Distinguishing between periodic and aperiodic structure. 
Shuffling in time tests the null hypothesis that a time series has 
no temporal structure of any kind. Here I outline two procedures 
that can discriminate between periodic structure and autocor-
related aperiodic temporal structure in behavioural time series. 
The first procedure is a parametric bootstrap method based on 

autoregressive models. The second procedure, based on harmonic 
analysis with the multi-taper method, is commonly used to identify 
rhythms in climate science33.

The first method creates a surrogate distribution using an autore-
gressive model instead of by shuffling in time. I call this the ‘AR sur-
rogate’ analysis (Fig. 1b). First, the empirical time series is obtained 
by computing accuracy (or some other aggregated measure) at each 
time point. Next, an autoregressive model with one positive coef-
ficient (AR(1)) is fit to this time series. This AR(1) model captures 
the lag-1 autocorrelated aperiodic structure—but not the periodic 
structure—of the time series33. The fitted AR(1) model is then used 
to generate a large distribution of surrogate time courses. By com-
paring the empirical data with this surrogate distribution, we can 
test for oscillations against the null hypothesis that the data are lag-1 
autocorrelated (but not periodic). For the empirical and surrogate 
time courses, the amplitude spectrum is obtained using a DFT after 
linearly detrending the data. P values are computed for each fre-
quency as the proportion of surrogate spectra with greater ampli-
tude than the empirical spectrum (selecting non-DC frequencies 
below 15 Hz). Finally, a cluster-based permutation test34 is used to 
correct for multiple comparisons across frequencies (though other 
corrections for multiple comparisons could also be used here).

For the second analysis method, I use a procedure that is wide-
spread in climate science33. This method, called the ‘robust estimate’, 
was developed to identify oscillations in autocorrelated background 
noise in geological time series. Because human behaviour is also 
autocorrelated35,36, this method may help distinguish behavioural 
rhythms from aperiodic background activity. This method uses 
multi-taper spectral analysis to compute the power spectrum of the 
signal, removes narrow-band peaks with median smoothing and 
then makes a robust estimate of the background noise by fitting 
an analytic AR(1) noise spectrum. Finally, statistical significance is 
computed by comparing the empirical spectrum to the AR(1) back-
ground fit33.

Shuffling in time inflates the rate of false positives. Aperiodic 
temporal structure may appear as a peak in the amplitude spectrum 
when analysed by shuffling in time. To test how the different analy-
sis methods reflect periodic and aperiodic structure, I simulated 
behavioural experiments of attentional switching. The experiments 
were simulated following the methods and analyses of two founda-
tional studies in this literature: Landau and Fries6, and Fiebelkorn 
et al.7. To explore the AR surrogate and robust estimate analyses, 
I simulated experiments following the behavioural paradigm in 
Landau and Fries.

To examine how aperiodic structure can lead to false positive 
results, I simulated four types of temporal structure. First, I sim-
ulated experiments in which every trial was independently and 
randomly determined to be a hit or a miss (‘fully random’). These 
experiments had no temporal structure at all and act as a baseline 
for each analysis method. All four analysis methods yield false posi-
tives around or below the expected rate of α = 0.05 (Fig. 3a and Table 
1), indicating that they avoid false positives when testing against the 
null hypothesis that behaviour does not contain any temporal struc-
ture (but note that the false positive rate for Landau and Fries is 
slightly greater than 0.05).

To investigate how these methods perform with behaviour that 
is consistent across trials, I simulated experiments in which the 
response in each trial was randomly determined according to an 
idealized accuracy function. This function specified the time course 
of accuracy that would be obtained with an infinite number of tri-
als. Experiments were simulated for three types of idealized accu-
racy time courses. In ‘white noise’ simulations, idealized accuracy 
time courses were generated with a random Gaussian process; these 
simulations included consistency over time but no other temporal 
structure. In ‘random walk’ simulations, idealized accuracy time 
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Fig. 2 | Shuffling in time alters aperiodic temporal structure.  
a–d, Autocorrelation is destroyed by shuffling in time. Panel a shows 
simulated behavioural data generated with an aperiodic autoregressive 
model with a single positive coefficient (AR(1); β = 0.5). Panel b shows the 
same time series after being shuffled. Panel c shows the autocorrelation of 
the original AR(1) and shuffled time series. Panel d shows the amplitude 
spectra of the original AR(1) and shuffled time series, computed using the 
pipeline from Landau and Fries. Shuffling in time introduces an apparent 
peak in the spectrum of the AR(1) process, even though the autocorrelation 
function does not suggest that the signal is periodic. e,f, Consistency 
across trials is destroyed by shuffling in time. Panel e shows a simulated 
behavioural time series with a single peak in accuracy, and accuracy 
computed after shuffling trials. Panel f shows the amplitude spectra of the 
original and shuffled data, computed using the pipeline from Landau and 
Fries. The solid and dashed lines illustrate the results when preprocessed 
using linear and second-order polynomial detrending.
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courses were generated with a random walk, including both consis-
tency over trials and aperiodic temporal structure. Random walks, 
also called Brownian noise and 1/f2 noise, form the basis for various 
models in neuroscience37 and psychology, including drift–diffusion 
models of decision-making38. Finally, in ‘AR(1) noise’ simulations, 
idealized accuracy time courses were generated with an autoregres-
sive process with one coefficient (β = 0.5); these simulations include 
both consistency over trials and aperiodic temporal structure. These 
aperiodic noise functions are not intended to accurately model the 
dynamics of behaviour; instead, the goal is to test whether the dif-
ferent analysis methods can distinguish between oscillations and 
each type of aperiodic noise.

Analyses based on shuffling in time (Landau and Fries, and 
Fiebelkorn et al.) showed strongly inflated rates of false positives 
when the simulated data were consistent over trials (Fig. 3a, ‘white 
noise’). False positive rates were higher still when the simulated data 
included autocorrelational structure (Fig. 3a, ‘random walk’ and 
‘AR(1) noise’). In contrast, the analyses that do not rely on shuffling 
in time (AR surrogate and robust estimate) had low rates of false 
positives for all noise types.

False positives when shuffling in time appeared at a wide range 
of frequencies, with the most common frequencies depending on 
the process used to generate the noise. To visualize these frequency 
profiles, we can plot the rate of significant results without correcting 

for multiple comparisons over frequencies (Fig. 3b–e). In the white 
noise simulations, false positives were evenly distributed across 
frequencies (Fig. 3c), reflecting the flat spectrum of white noise. In 
the random walk simulations, false positives were biased towards 
lower frequencies, with a dip at very low frequencies (Fig. 3d) due to 
detrending before computing the Fourier transform. False positives 
in the AR(1) noise simulations were intermediate between the prior 
two noise types, with slightly higher rates of false positives at lower 
frequencies (Fig. 3e).

Do false positives appear at frequencies that are consistent with 
the reported literature? To answer this question, we can select experi-
ments that show a statistically significant result after correcting for 
multiple comparisons over frequencies. We then plot the distribution 
of spectral peaks in those experiments (Fig. 3f–i). In the random walk 
simulations, false positive peaks tended to appear below 5 Hz but 
could also appear at higher frequencies (Fig. 3h). In the white noise 
and AR(1) noise simulations, false positive peaks appeared at a range 
of frequencies, including many within the theta band (Fig. 3g,i).

In summary, shuffling in time cannot distinguish between peri-
odic and aperiodic temporal structure. Time-shuffled analyses can 
therefore lead us to conclude that behaviour is rhythmic even when 
that behaviour is generated using a purely aperiodic process. Brief 
aperiodic sequences often have amplitude spectra that appear plau-
sibly rhythmic by eye; shuffling in time causes us to misidentify  
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Fig. 3 | False positive oscillations from aperiodic signals. a, Proportion of false positive results in simulated experiments. All noise processes except fully 
random noise include consistency over trials, and non-zero autocorrelations are present in both random walk and AR(1) noise. The error bars show 95% 
confidence intervals. Each bar includes data from 1,000 simulated experiments. The dashed line shows the expected rate of false positives (α = 0.05).  
b–e, The rate of false positives for each frequency bin, uncorrected for multiple comparisons. The dashed line depicts chance level (uncorrected, α = 0.05). 
The exact frequency bins differ across methods due to differences in how each method computes the amplitude spectrum. f–i, Histograms of the spectral 
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these spurious peaks as significant behavioural oscillations 
(Supplementary Fig. 1). In contrast, the two alternative analysis 
methods (AR surrogate and robust estimate) control the rate of false 
positives for aperiodic processes.

The robust estimate analysis is conservative across all types of ape-
riodic noise, showing a rate of false positives that is consistently below 
0.05, and the AR surrogate method is conservative for some types of 
aperiodic noise (Fig. 3a). However, these methods must be preferred 
over shuffling in time, which inflates the rate of type I errors.

Alternative methods recover true oscillations. We can avoid false 
positive results by using analysis methods that do not rely on shuf-
fling in time (the AR surrogate and robust estimate methods). Can 
these alternative methods also recover true oscillations in behav-
iour? To find out, I simulated experiments by combining random 
walk noise with sinusoidal modulation. These simulations examine 
the rate of statistically significant results as a function of the fre-
quency and amplitude of behavioural oscillations. Amplitude was 
coded as the difference in accuracy between peaks and troughs of 
the idealized oscillation. For example, with amplitude 0.2, accuracy 
oscillates between 0.4 and 0.6.

These analyses report the proportion of simulated experiments 
that successfully recovered the behavioural oscillation. This mea-
sure is akin to an estimate of experimental power, assuming behav-
ioural data include random walk background noise. Both the AR 
surrogate method and the robust estimate method successfully 
recover true oscillations in simulated behaviour. These methods 
most effectively recover oscillations at higher frequencies and higher 
amplitudes (Fig. 4a,b) and recover few behavioural rhythms below 
4 Hz or below an amplitude of 0.2. The AR surrogate method out-
performed the robust estimate method above 3 Hz, but the robust  

estimate method performed slightly better at 2–3 Hz (Fig. 4c). 
Neither method reliably identified oscillations at 2–3 Hz, near the 
frequency resolution in these experiments.

How accurately does each analysis method reconstruct the fre-
quency of oscillations in behaviour? For each experiment with a sta-
tistically significant result, we can compare the frequency of the true 
oscillation with the peak frequency in the amplitude spectrum. All 
four analysis methods were highly accurate for behavioural oscilla-
tions with amplitudes greater than 0.2 (Fig. 4d–g,l). Averaging over 
all frequencies and amplitudes, every analysis method had an aver-
age error of less than 0.3 Hz (Fig. 4m). This error is smaller than 
the frequency resolution of the AR surrogate and robust estimate 
analyses (1.15 Hz).

How do these alternative methods compare to the standard 
approach of shuffling in time? Shuffling in time could identify a 
large proportion of true oscillations, but results from these methods 
would be difficult to interpret if they also produced a large number 
of false positives. To quantify this trade-off, I computed the ratio 
of correct positive results to false positives when no oscillation is 
present (‘detection ratio’). When the data were analysed by shuffling 
in time, the detection ratio was low (<3.5) for all frequencies and 
amplitudes (Fig. 4h,i). The AR surrogate and robust estimate analy-
ses, however, showed much stronger detection ratios, especially at 
high frequencies and amplitudes (Fig. 4j,k). Aggregating over fre-
quencies and amplitudes of simulated oscillations, both of the alter-
native methods showed substantially higher detection ratios than 
the methods that use shuffling in time (Fig. 4n and Table 2). The 
robust estimate method has the highest detection ratio, due to its 
exceptionally low rate of false positives (Fig. 3a and Table 1).

False positives in published studies. In principle, shuffling in time 
could cause researchers to find spurious rhythms in non-rhythmic 
behaviour. Alternatively, positive findings in this literature could 
reflect true attentional rhythms. To distinguish between rhythmic 
and aperiodic structure in prior studies, I reanalysed behavioural 
time courses in publicly available data14,17,21,25. These four published 
studies reported 11 statistically significant behavioural oscillations 
out of 23 tested time courses. When reanalysed using the AR surro-
gate and robust estimate methods, none of these tests reached statis-
tical significance with either analysis method (Fig. 5). Although no 
statistical analysis can conclusively prove the absence of oscillations, 
the present results suggest that putative rhythms in behaviour could 
be explained by aperiodic temporal structure.

Exploring the alternative methods. How do the different methods 
behave with different experimental designs and analysis choices? 
The following simulations determine the proportion of false posi-
tive results under random walk noise, as well as the proportion of 
true positive results when the data are generated with an oscillation 
(frequency 6 Hz, amplitude 0.4, plus random walk noise). Because 
the rate of true positives depends on the frequency and amplitude 
of the behavioural oscillation (Fig. 4), these simulations should not 
be interpreted as an estimate of overall experimental power. Instead, 
they can help us understand how the analysis and experimental 
design influence the sensitivity and rate of false positives.

When the analysis only considers frequencies below 15 Hz (as in 
the analyses above), the AR surrogate method controls the rate of 
false positives (Table 1) and has a high proportion of true positive 
results (Fig. 6a). With a higher cut-off frequency, the AR surrogate 
method becomes more conservative (a smaller number of false pos-
itives; 15 versus 30 Hz: χ2(1) = 8.5; P = 0.003; Cramér’s V (ϕC) and 
95% confidence interval, 0.07 (0.03, 0.11)) and less sensitive to true 
oscillations (15 versus 30 Hz: χ2(1) = 258.1, P = 4 × 10−58, ϕC = 0.36 
(0.33, 0.40)).

Do the differences between analysis methods arise due to dif-
ferences in how they correct for multiple comparisons across  

Table 1 | Proportion of false positives for each noise type and 
analysis method

Noise type analysis 
method

False 
positive 
rate

95% 
confidence 
interval

P

Fully random Landau and 
Fries

0.083 0.067, 0.102 7 × 10−6

Fiebelkorn et al. 0.039 0.028, 0.053 ≈ 1

Robust estimate 0.000 0.000, 0.004 ≈ 1

AR surrogate 0.028 0.019, 0.040 ≈ 1

White noise Landau and 
Fries

0.219 0.194, 0.246 3 × 10−76

Fiebelkorn et al. 0.470 0.439, 0.501 ≈ 0

Robust estimate 0.001 0.000, 0.006 ≈ 1

AR surrogate 0.038 0.027, 0.052 ≈ 1

Random walk Landau and 
Fries

0.460 0.429, 0.491 4 × 10−313

Fiebelkorn et al. 0.835 0.811, 0.857 ≈ 0

Robust estimate 0.015 0.008, 0.025 ≈ 1

AR surrogate 0.044 0.032, 0.059 0.8

AR(1) noise Landau and 
Fries

0.226 0.200, 0.253 2 × 10−81

Fiebelkorn et al. 0.738 0.710, 0.765 ≈ 0

Robust estimate 0.003 0.001, 0.009 ≈ 1

AR surrogate 0.027 0.018, 0.039 ≈ 1

The P values reflect the difference from the expected false positive rate of 0.05 (one-tailed binomial 
tests). N = 1,000 simulated experiments in each cell.
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Fig. 4 | the aR surrogate and robust estimate methods recover oscillations in simulated behaviour. a, Proportion of simulated experiments that correctly 
recover an oscillation when analysed with the AR surrogate method, plotted as a function of the frequency and amplitude of behavioural oscillations. The 
colours correspond to the proportion of experiments that found significant oscillations in behaviour at P < 0.05. Each cell shows the results from 1,000 
simulated experiments. b, As in a, but analysed with the robust estimate method. c, Difference in the proportion of recovered oscillations between the AR 
surrogate and robust estimate methods. Positive values correspond to higher experimental power for the AR surrogate method, and negative values to 
higher experimental power for the robust estimate method. d–g, The frequency of reconstructed oscillations is highly accurate across all analysis methods. 
The mean frequency of recovered oscillations is shown separately for each analysis method: the Landau and Fries method (d), the Fiebelkorn et al. 
method (e), the robust estimate method (f) and the AR surrogate method (g). h–k, Ratio of correct positive results to false positives. The detection ratio 
is computed as the proportion of significant results when the simulated data include oscillations, divided by the proportion of significant false positives 
when the data do not include oscillations. The ratio is plotted as a function of the frequency and amplitude of simulated behavioural oscillations, shown 
separately when analysed using the Landau and Fries method (h), the Fiebelkorn et al. method (i), the robust estimate method (j) and the AR surrogate 
method (k). l, Violin plots of the distribution of errors of reconstructed frequencies for each analysis method. m, The absolute value of the error of 
reconstructed frequencies for each analysis method, averaged over each cell of the simulations. The error bars show 95% confidence intervals.  
n, Detection ratio for each analysis method. The centre line indicates the median, the box limits indicate the upper and lower quartiles, the whiskers 
indicate 1.5 × the interquartile range up to the minimum and maximum, and the points indicate outliers.
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frequencies? For the robust estimate analysis (Fig. 6b), the choice of 
Bonferroni or FDR correction39 does not significantly influence the 
rate of either false positives (χ2(1) = 0.2, P = 0.7, ϕC = 0.01 (0.00, 0.06)) 
or true positives (χ2(1) = 0.5, P = 0.5, ϕC = 0.02 (0.00, 0.06)). For the 
AR surrogate analysis (Fig. 6c), the rate of false positives depends 
on the correction method (χ2(2) = 14.0, P = 0.0009, ϕC = 0.07 (0.04, 
0.10)) and is adequately controlled with cluster-based permutation 
tests (0.04, P = 0.8) but not with Bonferroni (0.08, P = 0.00003) or 
FDR correction (0.08, P = 0.00002). The rate of true positives with 
the AR surrogate analysis also depends on the correction method 
(χ2(2) = 55.0, P = 1 × 10−12, ϕC = 0.14 (0.10, 0.17)), with cluster 
tests showing slightly lower sensitivity than Bonferroni correction 
(χ2(1) = 34.0, P = 6 × 10−9, ϕC = 0.13 (0.10, 0.16)) or FDR correction 
(χ2(1) = 26.1, P = 3 × 10−7, ϕC = 0.12 (0.08, 0.15)).

The reliability of these tests depends on the design of the behav-
ioural experiments. Landau and Fries analysed the spectrum of a 
behavioural time series that was 0.85 s long, sampled at 60 Hz. These 
simulations show the results of behavioural time series from 1/2 to 
2 times this duration. When the data are analysed as in Landau and 
Fries, false positives are above 0.05 regardless of signal length (Fig. 
6d, all > 0.4, all P < 10−259). For the robust estimate analysis, the 
rate of false positives rises slightly with longer time series (Fig. 6e, 
0.42 versus 1.7 s: χ2(1) = 13.2, P = 0.0003, ϕC = 0.09 (0.05, 0.12)) but 
remains below 0.05 for all signal lengths. The rate of true positives, 
however, rises dramatically with longer time series (0.42 versus 1.7 s: 
χ2(1) = 947.5, P = 5 × 10−208, ϕC = 0.69 (0.66, 0.72)). For the AR sur-
rogate analysis, the rate of false positives rises with longer signals 
(Fig. 6f, 0.42 versus 1.7 s: χ2(1) = 144.8, P = 2 × 10−33, ϕC = 0.27 (0.23, 
0.31)) and is no longer adequately controlled for signals that are 
twice as long as that used in Landau and Fries (0.22, P = 10−77).

Changing the sampling rate of the behavioural time series has 
a similar effect as changing its length. When the data are analysed 
as in Landau and Fries, false positives are above 0.05 regardless of 
the sampling rate (Fig. 6g, all > 0.4, all P < 10−259). For the robust 
estimate analysis, higher sampling rates do not alter the rate of false 
positives (Fig. 6h, 30 versus 120 Hz: χ2(1) = 0.0, P = 0.9, ϕC = 0.01 
(0.00, 0.05)), and they increase the sensitivity of the test to true oscil-
lations (30 versus 120 Hz: χ2(1) = 23.6, P = 1 × 10−6, ϕC = 0.11 (0.06, 
0.15)). For the AR surrogate analysis, the false positive rate rises 
with increasing sampling rate (Fig. 6i, χ2(1) = 214.4, P = 2 × 10−48, 

ϕC = 0.33 (0.30, 0.36)) and is no longer adequately controlled when 
behaviour is sampled at 120 Hz (0.21, P = 10−68).

The AR surrogate method shows higher sensitivity to true oscil-
lations than the robust estimate method when a behavioural time 
series has a small number of samples (χ2(1) = 732.3, P = 3 × 10−161, 
ϕC = 0.61 (0.57, 0.64)) or when it is measured at a low sampling 
rate (χ2(1) = 191.3, P = 2 × 10−43, ϕC = 0.31 (0.27, 0.35)). However, 
the robust estimate is the only method that appropriately controls 
the rate of false positives when a behavioural time series has a large 
number of samples or when it is measured at a high sampling rate. 
Taken together, these results suggest that, when designing a new 
study of behavioural oscillations, researchers should simulate a vari-
ety of signals to select the best behavioural paradigm and analysis 
method for the question at hand.

Discussion
What is the temporal structure of attention? Although the field is 
approaching consensus that attention moves rhythmically, the com-
putational simulations presented here suggest that this conclusion 
may be premature. Shuffling in time tests the null hypothesis that a 
behavioural time course shows no temporal structure whatsoever. 
This type of analysis therefore yields positive results whenever the 
data show any structure in time, regardless of whether that struc-
ture is oscillatory. In contrast, the AR surrogate and robust estimate 
methods test the null hypothesis that the data are generated by an 
AR(1) process, allowing us to disentangle periodic and aperiodic 
structure. When applied to published datasets, these alternative 
analyses do not find any evidence for oscillations in behaviour. 
These findings do not rule out the possibility of there being rhythms 
in attention. Instead, they show that the current evidence arguing 
for oscillations cannot distinguish between periodic and aperi-
odic temporal structure. The present simulations are consistent, 
however, with the now-widespread conclusion that attention is 
not sustained uniformly over time6,7. These results encourage us to 
question whether attention switches rhythmically after all.

These results also provide guidance on how future studies 
could be designed. For example, many researchers are interested 
in behavioural rhythms around 4 Hz. When using common experi-
mental designs, however, no existing analysis method can reliably 

Table 2 | Statistical tests comparing the detection ratios of the 
different analysis methods

Comparison estimate 95% confidence 
interval

t P value

Landau and 
Fries, Fiebelkorn 
et al.

0.95 0.93, 0.96 132.81 1.3 × 10−110

Landau and 
Fries, robust 
estimate

34.04 28.37, 39.72 11.91 1.3 × 10−20

Landau and 
Fries, AR 
surrogate

−13.94 −15.86, −12.02 −14.42 9.4 × 10−26

Fiebelkorn et al., 
robust estimate

34.99 29.31, 40.67 12.23 2.8 × 10−21

Fiebelkorn et al., 
AR surrogate

−14.88 −16.81, −12.96 −15.36 1.3 × 10−27

Robust estimate, 
AR surrogate

20.11 15.18, 25.03 8.11 1.7 × 10−12

Each row shows the results of a linear regression comparing two analysis methods (for example, 
AR surrogate versus robust estimate). The regressions include terms to control for the amplitude 
and frequency of the simulated oscillation, with degrees of freedom (3, 96).
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Fig. 5 | No evidence for behavioural oscillations in reanalyses of published 
datasets. Reanalysis of publicly available data from published studies. 
Each bar shows the number of significant results (filled portion of the bar) 
and the number of non-significant results (unfilled portion of the bar). The 
‘Original’ bar shows the statistical tests reported in the original studies (all 
based on shuffling in time), and the ‘AR surrogate’ and ‘robust estimate’ 
bars show the results after reanalysing those data with the alternative 
analysis methods. The numbers at the top of each bar show (the number of 
significant results)/(the total number of statistical tests).
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distinguish weak 4-Hz oscillations from aperiodic noise (Fig. 4h–k). 
Future studies of theta-band rhythms in behaviour could solve this 
problem by extending the length of the behavioural time series and 
analysing the results using the robust estimate method (Fig. 6e).

When we shuffle the data in time, we test the null hypothesis 
that the data show no structure in time whatsoever. Any structure 
in time can therefore lead to significant results in those tests. For 
example, shuffling in time gives a positive result if the data show 
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Fig. 6 | False positives and sensitivity with different analysis choices and experimental designs. a–i, The proportion of significant positive results for each 
condition. False positives (red) are computed as the proportion of significant results for data generated as a random walk. True positives (blue) are computed 
as the proportion of significant results for data generated as a random walk plus an oscillation (frequency 6 Hz, amplitude 0.4, plus a random walk). k = 1,000 
simulated experiments per condition. The error bars show 95% confidence intervals. The dashed lines show the expected rate of false positives (α = 0.05). 
Panel a shows the AR surrogate analysis when varying the frequency cut-off. Panel b shows the effects of different methods of multiple comparison correction 
on the robust estimate analysis. Panel c shows the effects of different methods of multiple comparison correction on the AR surrogate analysis. Panels d–f 
show the effect of varying the signal length on the Landau and Fries analysis (d), the robust estimate analysis (e) and the AR surrogate analysis (f). Panels  
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either consistency over trials (for example, accuracy tends to be 
lower immediately following a cue stimulus) or autocorrelation 
(for example, accuracy at 300 ms is more similar to accuracy at 
333 ms than to accuracy at 1,000 ms). Consistency over trials can 
also be thought of as ‘phase-locking’ of the behavioural response; 
this is orthogonal, however, to the question of whether behaviour 
is rhythmic. Shuffling in time therefore does not uniquely identify 
oscillations—instead, it tests whether the data show any kind of  
temporal structure.

In contrast, the two alternative methods specifically account 
for non-oscillatory temporal structure. The AR surrogate method 
fits a model of the data that captures first-order autocorrelational 
structure, and uses this model to generate a surrogate distribution. 
This method therefore tests the null hypothesis that the data fol-
low a non-oscillatory ‘red noise’ pattern. The AR(1) model in this 
method is agnostic about the underlying neural processes and is 
not intended to fully capture the temporal structure of behaviour. 
Instead, it provides a clear null hypothesis against which we can 
test for oscillations. The robust estimate method was designed to 
test for rhythms in climate data, and it fits the spectrum to an ana-
lytic AR(1) spectrum. Oscillations in climate data are embedded in 
autocorrelated noise, similar to theorized oscillations in behavioural 
data. This method therefore also tests the null hypothesis that the 
data follow a non-oscillatory red noise pattern.

Shuffling in time leads to spectral peaks that could reflect either 
periodic or aperiodic regularities in behaviour. This finding does 
not invalidate the literature on attentional switching. On the con-
trary, it encourages us to consider these results in the context of the 
rich aperiodic temporal structure in perception and cognition. On 
short timescales, for example, attention is impaired when two target 
events appear within around 100–500 ms of each other; this is called 
the ‘attentional blink’40. Furthermore, when people search through 
a visual scene, attention shows ‘inhibition of return’, with a sup-
pression of perceptual processing of objects that have recently been 
attended to; inhibition of return appears as quickly as 50 ms after 
a cue41, and its effects can last for up to 3 s (ref. 42). At longer tim-
escales (seconds to hours), behaviour is correlated with itself over 
time, roughly following a 1/f spectrum. This 1/f pattern appears in 
reaction times, accuracy and many other aspects of behaviour35,36. 
Furthermore, rhythmic behaviours can arise without underlying 
neural oscillations. For example, saccades occur fairly periodi-
cally, but saccade timing can be explained using non-oscillatory 
first-order properties (such as transient inhibition and rebound)43.

Aperiodic dynamics are pervasive in neural recordings as 
well as in behaviour44, and a number of different mathematical 
approaches have been developed to distinguish between oscilla-
tory and non-oscillatory features of neural time series45–47. The 1/f 
slope of a neural power spectrum correlates with the excitation/
inhibition balance48 and predicts a range of different behavioural 
variables47,49. Aperiodic dynamics also appear in phenomena that 
are widely considered to be inherently oscillatory. For example, the 
power of high-frequency oscillations often depends on the phase 
of lower-frequency oscillations50. A similar pattern emerges in 
non-oscillatory scale-free activity: the power of higher-frequency 
neural activity depends on the ‘phase’ of aperiodic lower-frequency 
activity51. For a second example, when spiking accompanies a con-
sistent neural oscillation, the information carried by an action 
potential can depend on the oscillatory phase at which that action 
potential occurs52. This phenomenon is not limited to consistent 
neural oscillations—the information carried by a spike can also 
depend on the ‘phase’ of aperiodic low-frequency activity53. This 
type of non-oscillatory phase coding has been observed in behav-
ing animals. Bats do not show any low-frequency oscillations in 
the hippocampal formation; but despite this lack of oscillations, 
hippocampal spiking locks to broadband fluctuations in the local 
field potential, and spike timing shows non-oscillatory ‘phase  

precession’ as the animal moves through space54. The findings sum-
marized above suggest that non-oscillatory dynamics may play an 
important role in generating temporal structure in the brain and 
in behaviour55,56, complementing the well-documented roles of  
neural oscillations.

The AR surrogate method was designed to test whether a time 
series shows stronger evidence for oscillations than would be 
expected from an AR(1) process. This method could be adapted 
to test a number of related questions and hypotheses. For exam-
ple, the AR(1) model could be replaced with a 1/fβ model to test 
whether a time series shows stronger oscillations than would be 
expected from a power-law process. Alternatively, fitting the data 
to an ARMA model could help test for oscillations in the pres-
ence of time-lagged errors. This framework can be adapted to 
use any generative time-series model, allowing researchers to 
discriminate oscillations from different varieties of aperiodic  
temporal structure.

Although the current study focuses on the dynamics of atten-
tional switching, the AR surrogate method could be used to identify 
rhythms in any brief time series. For example, this method could 
be used to test for other behavioural rhythms, such as in percep-
tual sensitivity29 or visual categorization28. This method may also 
be useful for identifying bursts of neural oscillations in ongoing 
non-oscillatory activity57,58, by testing whether brief snippets of neu-
ral recordings show stronger oscillations than would be expected 
from the autocorrelated background activity alone. In this case, 
the generative model of aperiodic activity could be derived from a 
much longer segment of data, yielding improved estimates of rhyth-
mic activity. Finally, the AR surrogate method could be applied to 
time series in climate science that are too brief for the robust esti-
mate method to provide reliable results (Fig. 6e).

Attentional switching is not the only aspect of perception that 
has been proposed to oscillate. A related literature shows robust 
evidence for rhythmic fluctuations in perceptual sensitivity2. 
Oscillations in perceptual sensitivity have been widely reported in 
behavioural studies59,60. Electrophysiological studies show that per-
ceptual sensitivity depends on the phase of ongoing neural oscilla-
tions18,61–68 (but see ref. 69). These studies of rhythms in sensitivity do 
not test for significant oscillations by shuffling the data in time and 
are therefore not subject to the same statistical issues as the studies 
of attentional switching.

methods
In this study, data from four published studies were reanalysed. These prior data 
were collected in compliance with local ethical regulations, with experimental 
procedures approved by the Human Research Ethics Committees of the University 
of Sydney14, the Monash University Human Research and Ethics Committee17, 
the CERES (Conseil d’Évaluation Éthique pour les Recherches En Santé) ethics 
committee of Paris Descartes University21, and the ethics committee of the faculty 
of psychology and sports science, University of Muenster (no. 2018-36-RM)25.

In addition, computational simulations of behavioural experiments were 
analysed according to standard procedures from highly cited papers. The 
simulations and analyses followed the details from two prominent studies: Landau 
and Fries6, and Fiebelkorn et al.7.

Simulated behavioural experiments. Behavioural studies were simulated using 
the details of the experiments in Landau and Fries, and Fiebelkorn et al. In both 
experiments, the participants were first presented with visual stimuli on the screen. 
After a short delay, the participants saw a cue stimulus intended to attract spatial 
attention and reset ongoing cortical dynamics. After a variable delay, a faint target 
stimulus appeared briefly at either the cued location or an uncued location. These 
studies then considered changes in accuracy as a function of the delay between the 
cue and the target.

In these simulations, each experiment began with an idealized accuracy time 
course. This is the time course of accuracy that would be obtained after running 
an infinite number of trials. For each trial, a cue–target delay was randomly 
selected, with a balanced number of trials at each delay. Accuracy for each trial 
was randomly determined as a function of the idealized accuracy time course. 
For example, if a trial was selected for a cue–target delay of 0.5 s, and the idealized 
accuracy at 0.5 s was 60%, then that trial had a 60% chance of being a hit and a 40% 
chance of being a miss.
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Experiment details: Landau and Fries. For simulations following Landau and Fries, 
time courses were simulated with cue–target delays of 0.15 s to 1.0 s, sampled at 
60 Hz. I simulated data from 16 subjects, with each subject having 104 trials  
at each location.

Experiment details: Fiebelkorn et al. For the simulations following Fiebelkorn et al., 
time courses were simulated with cue–target delays of 0.3 to 1.1 s, sampled  
at 60 Hz. I simulated data from 15 subjects, with each subject having 441 trials  
at each location.

Experiment details: AR surrogate and robust estimate analysis. For the simulations 
using the other two methods (AR surrogate and robust estimate), the experiments 
were simulated as in Landau and Fries.

Identifying rhythms in simulated behaviour. I simulated behavioural 
experiments following the analysis pipelines from Landau and Fries, and 
Fiebelkorn et al. In addition, experiments were simulated using a permutation 
method that uses autoregressive models to generate a surrogate distribution. 
Finally, experiments were simulated using a method for determining spectral peaks 
in climatic time series33. All analyses only considered frequencies below 15 Hz 
(12 Hz in the Fiebelkorn et al. analysis, reflecting the plotted data).

An experiment is counted as a positive result if it shows any significant peaks 
in the spectrum after correcting for multiple comparisons across frequencies. For 
simulations without an oscillatory component, positive results are referred to as 
‘false positives’.

Shuffling in time: Landau and Fries. For this analysis method, I search for rhythms 
in behaviour following Landau and Fries. To derive the spectrum, accuracy is 
first averaged over trials and subjects at every cue–target delay. The data are then 
linearly detrended, tapered with a Hanning window and padded to 256 samples. 
Finally, the amplitude spectrum is obtained by taking the magnitude of a DFT of 
this time series.

A randomization procedure is used to determine the statistical significance of 
peaks in the spectrum. For k = 500 permutations, the time of the cue–target delay 
is randomly shuffled among all the trials, and the spectrum is calculated following 
the same procedure as used in the empirical data. P values in each simulated 
experiment are computed as the proportion of values at each frequency that 
have greater spectral magnitude than the empirical spectrum (a one-tailed test), 
followed by Bonferroni correction for multiple comparisons across frequencies. 
For frequencies at which no permutations are stronger than the empirical value, 
the P value is taken as P = 0. Bonferroni correction has no effect on these P values 
(because zero times any number equals zero). But if one permutation had a higher 
value the empirical value, then P = 1/500 = 0.002, with an adjusted P value of 
P = 0.002 × 256 samples = 0.512. This analysis therefore selects any frequencies 
at which the empirical value is stronger than every permutation, and excludes all 
other frequencies.

Shuffling in time: Fiebelkorn et al. This analysis method follows the procedures in 
Fiebelkorn et al. To derive the spectrum, accuracy is first averaged over trials and 
subjects in overlapping time windows with width 0.05 s, advancing by steps of 
0.01 s. This accuracy time series is then detrended with a second-order polynomial, 
tapered with a Hanning window and padded to 128 samples. Finally, the spectrum 
is computed by taking the magnitude of the DFT of this time series. To match the 
plots in Fiebelkorn et al., these analyses only retained frequencies less than or equal 
to 12 Hz.

Statistical significance is determined as in Landau and Fries, by shuffling the 
trials in time and recomputing the spectra (k = 1,000), correcting over multiple 
comparisons across frequencies using the FDR39.

Robust estimation of background noise. In addition to the randomization analyses 
popular in cognitive neuroscience, I used a technique that is common in geology 
and climate science33. This procedure was developed to identify rhythms in 
geological time series and to isolate these rhythms from a background of 
autocorrelated noise. I apply this analysis to the time course of average accuracy 
at each cue–target delay. The mean of the time course is subtracted, and the 
spectrum is computed using Thomson’s multi-taper procedure70. For appropriate 
spectral smoothing, I selected a time-bandwidth parameter of 1.5 with two tapers. 
I then estimate the aperiodic background spectrum by smoothing the multi-taper 
spectrum with a median filter (width = 7) and using this robustly smoothed 
spectrum to fit an estimate of an AR(1) spectrum approximating the aperiodic 
background activity:

S(f) = S0
1 − ρ2

1 − 2ρ cos π(f/fN) + ρ2 (1)

where f is the frequency, fN is the Nyquist frequency, S0 is the average value of 
the power spectrum and ρ is the AR(1) coefficient. Finally, I test for statistically 
significant periodic components by taking the ratio of the multi-taper amplitude 
spectrum against the robust estimate of the AR(1) background spectrum, 

separately for each frequency, and comparing this to a χ2 distribution with 
degrees of freedom equal to 2 × (number of tapers). These analyses only retained 
frequencies less than or equal to 15 Hz. To correct for multiple comparisons across 
frequencies, P values were adjusted with the Bonferroni correction. For further 
details, see Mann and Lees33.

AR surrogate. The data were also analysed using a method to test for significant 
oscillations in autocorrelated time series. This method uses AR(1) models to 
generate a surrogate distribution for non-parametric bootstrap tests. First, accuracy 
is averaged at each cue–target delay. I then remove the linear trend and fit an 
autoregressive model with one parameter:

Xt = c + ϕXt−1 + ϵt (2)

where Xt is the time series at each time point, c is a constant, ϕ is the AR parameter 
and ϵt is white noise. The AR model is fit using exact maximum likelihood 
with the Kalman filter. This AR(1) model captures the first-order aperiodic 
temporal structure in the behavioural time series but does not generate consistent 
oscillations. This fitted AR(1) model is then used to generate a surrogate 
distribution of time courses with the same length, AR parameter and residual 
variance as the empirical time series (k = 2,000). The time courses generated by 
this model preserve the first-order aperiodic structure of the empirical data but 
lack any periodic components. The time courses from the empirical data and 
the AR-generated surrogate signals are then linearly detrended, and the spectra 
are computed by taking the magnitude of the DFT. No tapering, smoothing 
or zero-padding was applied. In preliminary analyses, tapering was found to 
drastically reduce both the power of this analysis and the accuracy of the frequency 
estimates. These analyses only retained frequencies greater than 0 (DC) and less 
than or equal to 15 Hz.

I correct for multiple comparisons across frequencies using a one-sided 
cluster-based permutation test34 (cluster threshold α, 0.05; cluster statistic, summed 
z score). This procedure tests whether the empirical and the surrogate data come 
from the same distribution71. A significant result therefore indicates that the 
empirical data are not compatible with an AR(1) process. The specific frequencies 
of any putative oscillations can be interpreted by visual inspection of the peaks 
in the spectrum. Samples were included in a cluster if their z values exceeded the 
one-tailed cluster threshold (for α = 0.05, zthreshold = +1.64). A one-tailed threshold 
was chosen to focus on points at which the empirical spectrum exceeds the 
surrogate distribution. For each run (the empirical data and each surrogate run), 
the cluster statistic was computed as the summed z score within each cluster. P 
values were calculated as the proportion of surrogate runs in which the maximum 
cluster statistic was greater than or equal to the maximum cluster statistic in the 
empirical data.

Simulated behavioural time courses. To determine how the different analysis 
methods respond to different types of temporal structure in behaviour, I simulated 
literatures of 1,000 experiments for each combination of analysis method 
and temporal structure. Each simulated experiment began with an idealized 
accuracy time course that was the same across all participants and trials within 
that experiment. This idealized accuracy formalizes the temporal structure of 
attentional switching after the cue stimulus. For each trial, a cue–target delay was 
randomly selected. I then randomly determined whether that trial was a hit or a 
miss on the basis of the idealized accuracy for that cue–target delay. For example, 
if one simulation had an idealized accuracy of 70% at a cue–target delay of 0.60 s, 
then each trial for that time point was determined as a weighted coin toss, with 
P(hit) = 0.7 and P(miss) = 1 − 0.7 = 0.3.

I tested four types of aperiodic temporal structure. ‘Fully random’ simulations 
contained no temporal structure at all, with no consistency over trials. These time 
series were simulated with an idealized accuracy time course with P(hit) = 0.5 
at every cue–target delay. For ‘white noise’ simulations, idealized accuracy was 
generated by sampling a random Gaussian process. ‘Random walk’ simulations 
were generated with a Gaussian random walk; this is equivalent to a power-law 
spectrum with an exponent of 2 (1/f2). ‘AR(1) noise’ simulations were generated 
with a one-coefficient Gaussian autoregressive process with β = 0.5. For simulations 
that included consistency across trials (all except ‘fully random’), the idealized 
accuracy was rescaled to approximate the accuracy range in the behavioural 
literature: (0.5, 0.7).

For each method and noise type, I tested for an inflated rate of false positives 
using a one-tailed t test. One-tailed tests were chosen to focus on control of the 
type I error rate.

Next, I tested how the different analyses reconstruct true oscillations in 
behaviour. For these simulations, the idealized accuracy time course was generated 
as a sine wave with randomized phase, at frequencies from 2 to 12 Hz in steps of 
1 Hz. The amplitude of these behavioural oscillations (corresponding to the range 
between minimum and maximum accuracy) was varied from 0.1 to 0.6 in steps of 
0.1. Mean accuracy was held at 0.5. These oscillations were then added to a random 
walk generated as described above, and the resulting time series was used as an 
idealized accuracy time course.

To measure the precision of each analysis method, I computed the error in 
recovered rhythms. For experiments with a statistically significant peak after 
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controlling for multiple comparisons, I identified the frequency with the maximum 
spectral amplitude.

To quantify the selectivity of each analysis method, I computed a detection 
ratio: (the rate of correct positive results when an oscillation is present)/(the rate of 
false positive results when no oscillation is present). Linear regressions were then 
used to test for differences between each pair of analysis methods. The detection 
ratio was modelled as a function of the analysis method, with terms to control for 
the frequency and amplitude of the simulated oscillation. I report the regression 
coefficient reflecting the analysis method, along with 95% confidence intervals, t 
statistics and P values.

Reanalysis of publicly available data. Data from four previous studies were 
retrieved from public repositories14,17,21,25. Data for Fiebelkorn et al. were requested 
from the first author, but these data were not provided. Data for Landau and Fries 
were provided by the authors and analysed with their input. However, we could 
not exactly reproduce the raw time series plotted in Fig. 2a,c of Landau and Fries. 
The differences between our replotted data and the original data were fairly small, 
but the reanalysed data had been preprocessed with a low-pass filter (that is, it had 
been smoothed in time). Because the alternative methods both rely on fitting an 
AR(1) model to the data, these smoothed time courses would provide an incorrect 
estimate of the AR(1) parameter. The statistical conclusions of these analyses 
would therefore be difficult to interpret. As a consequence, these data were not 
reanalysed using the AR surrogate and robust estimate methods.

In the publicly available data, every test using shuffling in time was reanalysed 
using the two alternative methods. For each test, I reproduced the aggregated 
behavioural time course and verified it against the plot of the time course in the 
original paper. These time series were then reanalysed using the AR surrogate and 
robust estimate methods. I counted the number of statistically significant results 
(P < 0.05 after correcting for multiple comparisons) reported in the published 
paper and compared this with the count of statistically significant results from the 
alternative methods.

Variations to the analysis methods. The simulations reported in Fig. 6 test how 
altering the analysis methods and experimental design can influence the results 
(k = 1,000 simulations per condition). To test for false positives, behaviour was 
simulated as a random walk. To test for true positives, behaviour was simulated as 
a random walk plus an oscillation (6 Hz, amplitude 0.4). To test whether the false 
positive rate was controlled in each condition, the proportion of false positives was 
compared against α = 0.05 using one-tailed binomial tests. Multiple conditions 
were compared using chi-squared tests, which included the counts of significant 
versus non-significant results in each condition. Effect size was calculated as 
Cramér’s V (ϕC) with bootstrapped 95% confidence intervals.

To test the effect of cut-off frequency in the AR surrogate analysis, the cut-off 
frequency was varied between 15 and 30 Hz in steps of 5 Hz.

To test for differences between methods of multiple comparison correction, 
the AR surrogate analysis was performed using (1) the cluster-based permutation 
test described above, (2) Bonferroni corrections and (3) FDR correction39. The 
robust estimate analysis was tested with Bonferroni and FDR corrections. The 
cluster-based test was not examined for the robust estimate analysis, because this 
analysis does not involve a surrogate distribution that can be randomly permuted.

To test for an effect of the length of the time series, behaviour was simulated 
according to Landau and Fries (0.85 s), at half this length (0.42 s) and at twice this 
length (1.7 s). These simulations compared the Landau and Fries, robust estimate, 
and AR surrogate analyses. The Fiebelkorn et al. analysis was not analysed here 
because it has uniformly higher rates of false positives than the Landau and Fries 
method. These simulations maintained roughly the same number of trials within 
an experiment; this allows us to consider these as different options available to an 
experimenter, without requiring the experimenter to double the resources required 
to collect a dataset. To preserve the same number of observations at each time point, 
the number of total trials differed slightly between conditions (1,647 to 1,664 trials).

To test for an effect of the sampling rate of the behavioural time series, 
behaviour was simulated according to Landau and Fries (60 Hz), at half this rate 
(30 Hz) and at twice this rate (120 Hz). As with the simulations varying the length 
of the time series, these simulations maintained roughly the same number of trials 
within an experiment. To preserve the same number of observations at each time 
point, the number of total trials differed slightly between conditions (1,647 to 
1,664 trials).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The results of all simulations are available at this repository: https://osf.io/6bs4e/. 
The data used for the reanalyses are publicly available at the following repositories: 
Ho et al.14, https://ars.els-cdn.com/content/image/1-s2.0-S09609822173132
09-mmc2.xlsx; Davidson et al.17, https://figshare.com/projects/Crossmodal_
binocular_rivalry_attention_sampling_project/56252; Senoussi et al.21, https://
osf.io/2d9sc/?view_only=6ef3f85d9f944d27b23fc7af5a26f087; and Michel et al.25, 
https://osf.io/de4bu/.

Code availability
All code used to perform the analyses and generate the plots is available at https://
github.com/gbrookshire/simulated_rhythmic_sampling.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No new data-sets were collected for this study. Simulated data were generated using the code described below under "Data analysis."

Data analysis All code used to perform these analyses is available online at https://github.com/gbrookshire/simulated_rhythmic_sampling. These analyses 
were performed using open-source Python code. The exact versions of all external libraries are specified in "requirements.txt" at the Github 
repository.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All simulated data is available at a public repository: https://osf.io/6bs4e/. The paper provides links to all previously-published datasets that were reanalyzed here.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative study based on computational simulations and reanalysis of publicly-available data.

Research sample We re-analyzed data from four papers. 
- Ho et al. (2017): "Twenty healthy adults (7 male, 3 left-handed, mean age 21.8 ± 3.9) with normal hearing" from around the 
University of Sydney.  
- Davidson et al. (2018): "34 healthy individuals (21 females, 1 left-handed, average age 23 ± 4.7) were recruited via convenience 
sampling at Monash University, Melbourne, Australia". 
- Senoussi et al. (2019): "Thirteen human observers (nine women, four men; age [M ± SD] = 20.9 ± 0.8 years; range: 20–22)" around 
Paris Descartes University. 
- Michel et al. (2021): "Fourteen participants participated in the main study (10 women, 13 right-handed, 11 right-eye dominant, 
aged 18–28 years, Mage = 21.4, SDage = 2.6)." Participants were recruited from the University of Muenster.

Sampling strategy Reanalyzed data-sets used convenience samples, with sample sizes based on previous research in the literature.

Data collection Reanalyzed data-sets were collected on computers. The experimental conditions were manipulated on a trial-by-trial basis, and by 
virtue of the design any experimenter would have been blind to the relevant experimental condition (i.e. the delay between the cue 
and the target stimulus).

Timing The reanalyzed data-sets do not specify the dates of data collection.

Data exclusions I reanalyzed the data as provided by the original study authors. No additional data were excluded from the analyses. 
- Ho et al. (2017): None specified. 
- Davidson et al. (2018): None specified. 
- Senoussi et al. (2019): "Due to technical issues during data recording, two observers were excluded from the analysis." 
- Michel et al. (2021): "An additional participant did not complete the preregistered minimum number of sessions and was therefore 
excluded. One participant had previously participated in the pilot experiment."

Non-participation - Ho et al. (2017): None specified. 
- Davidson et al. (2018): None specified. 
- Senoussi et al. (2019): None specified. 
- Michel et al. (2021): "An additional participant did not complete the preregistered minimum number of sessions and was therefore 
excluded."

Randomization The experimental conditions were varied within-subjects on a trial-by-trial basis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Convenience samples. All manipulations were performed within-subjects, so it is not likely that biases in recruiting 
substantially changed the results.

Ethics oversight - Ho et al. (2017): "The study was approved by the Human Research Ethics Committees of the University of Sydney." 
- Davidson et al. (2018): "Monash University Human Research and Ethics Committee approved this study" 
- Senoussi et al. (2019): "All procedures were approved by the CERES (Conseil d'Évaluation Éthique pour les Recherches En 
Santé) ethics committee of Paris Descartes University." 
- Michel et al. (2021): "approved by the ethics committee of the faculty of psychology and sports science, University of 
Muenster (#2018-36-RM)"

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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