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Multi-objective grasp pose optimisation for robotic 3D pipe 
assembly manipulation 

Zebang Zhang *, Mozafar Saadat 
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom   

A R T I C L E  I N F O   
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A B S T R A C T   

This paper considers the problem of grasp pose optimisation for manipulating 3D pipe assemblies during the 
manufacturing process. The method presented in this paper is specifically developed for manufacturing cryogenic 
pipe assemblies autonomously in a Factory-In-A-Box scenario (i.e., a compact factory built inside an industrial 
container). However, it also can be used for robotic manipulation of general frame structures. The problem is 
formulated as a constrained multi-objective optimisation problem. The optimisation algorithm searches for so
lutions that satisfy two constraints: (i) robot workspace reachability (i.e., feasible inverse kinematics solution for 
a given end-effector pose); and (ii) any possible collision when executing the post-grasp trajectory, and 
continuously improves them based on three objectives: (i) minimise robot joint motion for executing a specified 
pipe trajectory; (ii) minimise the sum of maximum deformation of pipe assembly along the trajectory; and (iii) 
minimise the sum of robot force manipulability along the trajectory. A special constraint handling method is used 
to decouple the constraint and objective evaluation process, allowing expensive objectives to be evaluated only 
when constraints are satisfied. The algorithm explicitly considers the possibility of multiple inverse kinematics 
solutions and uses a graph search algorithm (Dijkstra’s Algorithm) to find the optimal trajectory amongst all 
feasible trajectories. The weighted sum approach is used to combine the three objectives with weights deter
mined by the Analytical Hierarchy Process. The optimisation problem is solved using the Bees Algorithm with a 
proposed problem-specific local search strategy. Extensive benchmarks show that the proposed strategy achieves 
better overall results than the default strategy of the Bees Algorithm and other metaheuristics.   

1. Introduction 

Robotic manipulation including grasping has been an active research 
topic for decades. Most research on grasp synthesis focuses on finding a 
successful grasp configuration so that the object is firmly attached to the 
end-effector. Methods for grasp synthesis includes data-driven ap
proaches and analytic approaches [1,2]. Recent advances in data-driven 
grasping approaches focus on using deep learning and vision sensors to 
generate the grasp pose [3]. However, the grasping motion alone is only 
one stage of the whole manipulation process. After successfully grasping 
the object, the robot manipulator is expected to move the object to the 
goal pose and perform subsequent tasks. To perform the required 
movements after grasping, motion planning is a necessary step. The 
robot motion planning problem is defined as finding a continuous tra
jectory from the start configuration of the robot to the goal configuration 
(or goal region) while avoiding any obstacles inside the environment 
[4]. Sampling-based planners like Rapidly-exploring Random Trees 

(RRT) [5] and Probabilistic Road Map (PRM) [6] are widely used for 
solving high dimensional motion planning problems such as planning 
motion for a robot manipulator. 

Although the individual problem of grasping and motion planning 
have been studied for decades, the literature on the combined problem is 
still very limited due to the complexity of the individual problem. The 
whole manipulation process is treated as an optimal control problem in 
[7] so that the locally optimal grasp contact position, grasping force and 
robot arm trajectory can be obtained by solving a single optimisation 
problem. Grasp-RRT is developed in [8] to plan collision-free grasping 
motion for the robot given the start configuration of the robot and the 
object pose. The impact of choosing different grasp poses on the 
post-grasp manipulation process has been analysed in [9]. In their work, 
the optimal trajectory of the manipulated object is assumed to be found 
either by human knowledge or an optimal motion planner [10,11]. Then 
a few grasp candidates are generated by a grasp planner. Next, for each 
grasp pose, an inverse kinematics (IK) solver is used to generate robot 
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motion and an objective function is defined to evaluate the quality of the 
grasp candidates. In this way, a more efficient grasp pose is found by 
considering the robot motion after grasping. The objective used in [9] is 
to maximise its distance from any collisions along the trajectory. 

The work mentioned above mainly focuses on the grasp and motion 
planning of rigid objects, However, many objects in industrial and do
mestic environments are deformable. Manipulation of deformable ob
jects has been reviewed in [12–14]. This paper specifically analyses the 
manipulation of 3D pipe (or in general, frame) structure. The 3D pipe is 
bent or assembled by joints from multiple 1D pipes. A 1D pipe can be 
viewed as a deformable linear object (DLO), i.e., they are much larger 
along one dimension than the other two. Manipulation planning stra
tegies have been widely researched for DLOs [15–17]. In [15], A 
two-phase path planner together with a cable pose measurement 
approach is proposed for cable grasping. The method focuses on the 
pre-grasp stage and uses force directional manipulability to determine 
the optimal grasp pose. A method for automatic mating of a wire harness 
onto a car body by wire tracing operation is proposed in [16]. In [17], A 
manipulation framework is proposed to shape the cable by environ
mental contacts. However, common techniques used in the literature for 
DLO manipulation like structure reshaping and exploiting environ
mental contacts are not suitable for 3D pipe manipulation due to the 
complex structure and relatively large strain. Instead, the method pre
sented in this paper aims at maintaining the geometry and reducing the 
deformation of the pipe during the manipulation process. 

Researchers have investigated the problem of minimising deforma
tion when handling compliant sheet metal parts. A trajectory optimi
sation approach is used in [18] to plan a minimal deformation trajectory 
while maintaining the same productivity. A response surface model is 
generated based on finite element analysis (FEA) of the handled part and 
end-effector, so that deformation can be quickly estimated during 
optimisation. Other approaches attempt to reduce the deformation of an 
object during handling by designing a part-specific end-effector layout. 
A simple methodology is proposed in [19] to determine the number of 
vacuum cups needed for handling a compliant sheet metal part as well as 
their locations. The method focuses on placing vacuum cups evenly 
based on the gravity distribution of the object. Although the deforma
tion and holding force decrease significantly by using the proposed 
method, the deformation information is not directly used during the 
optimisation process, which means the positions of the end-effector 
could be further optimised. A methodology is proposed in [20] to 
optimise the design of end-effector and robot motion simultaneously in 
order to achieve less cycle time as well as less deformation for a 
multi-robot system. Although the deformation information is used 
directly, it also relies on a precomputed model to estimate the defor
mation during optimisation as in [18], which is not suitable for 
manipulating objects with different dimensions and geometries. To 
address the above limitations, the end-effector used in this paper is a 

general two-finger gripper so that the optimisation is performed at the 
actual manipulation stage rather than the design stage and no pre
computed deformation model is required. Hence, the proposed method 
is more versatile to different pipe geometries. 

The aim of this paper is to present a general method for grasp pose 
optimisation based on post-grasp trajectory objectives. This method is 
specifically developed for robot that perform repetitive 3D pipe assem
bly manipulation in a static environment. Therefore, once the optimal 
solution is computed offline, the robot can execute the trajectory 
repetitively with the optimal grasp to increase the production efficiency. 
Previous work on the similar problem like [9] only deals with a limited 
number of grasp candidates, thus no optimisation algorithm is used. This 
paper follows the same assumption in [9] that an optimal object tra
jectory is known beforehand. However, this paper considers deforma
tion and other objectives that are not used in previous work and uses 
Analytical Hierarchy Process (AHP) to determine weights for each 
objective. The method also decouples the constraint and objective 
evaluation process, allowing expensive objectives (e.g., deformation) to 
be evaluated only when constraints are satisfied, thus significantly 
reducing the computation time. In addition, this paper presents a 
method effectively utilising multiple IK solutions (for the same 
end-effector pose) to further optimise the objective cost. A 
problem-specific local search strategy for optimisation is also proposed 
to achieve a high success rate in finding the optimal solution. 

The remainder of the paper is structured as follows: Section 2 pre
sents an industrial case study. In Section 3, the problem is introduced 
and then optimisation variables, objectives, and constraints are 
modelled. Section 4 describes the details of the objective and constraint 
evaluation method. Section 5 introduces the optimisation algorithm 
used in this paper and proposes problem-specific search strategies. 
Section 6 presents the experiments, results, and analyses. Section 7 
concludes the paper. 

2. Industrial case study 

Deploying a flexible robotic workcell is becoming an increasingly 
popular choice with the trends of mass customisation [21], especially for 
small and mid-size enterprises. A good example of deploying such a 
flexible robotic workcell is the Factory-In-A-Box (FIAB) project. FIAB is a 
high-profile project funded by Innovate UK as part of the Thermal En
ergy Research Accelerator (T-ERA) carried out at the Manufacturing 
Technology Centre (MTC), UK, with the support of the University of 
Birmingham. A simulated FIAB environment is shown in Fig. 1. FIAB is a 
successful demonstrator of a high technology, compact and autonomous 
factory inside a container to manufacture cryogenic pipe assemblies 
with the focus on flexibility (the factory can adapt quickly to manu
facture pipes of different structures at different quantities according to 
customer needs) and mobility (the factory can be rapidly deployed 

Fig. 1. Simulated factory-in-a-box layout Image Courtesy of Manufacturing Technology Centre (MTC), Coventry, UK.  

Z. Zhang and M. Saadat                                                                                                                                                                                                                      



Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

3

anywhere) [22]. Cryogenic piping systems are used for applications 
which require extremely low temperature, typically lower than -150 ◦C. 
FIAB accepts orders from customers and performs simulations to check if 
the required dimensions of the pipes can be manufactured by the facility. 
The manufacturing process usually involves cutting, bending, brazing, 
and pressure testing. An industrial robot is mounted on an overhead rail 
to grasp and transfer pipes between different stations inside FIAB. 
Currently, the solution for grasping pipe assemblies is by designing a 
part-specific end-effector. While this solution provides a robust grasp 
and reduces excessive deformation during manipulation, it also in
creases the weight of the end-effector which makes the process less 
energy efficient. Besides, as the custom-designed end-effector is larger 
and more complex in terms of its geometry, the possibility of collision 
with the end-effector increases. Therefore, it may be infeasible for some 
pipes to be manufactured. More importantly, the custom-designed 
gripper is much more expensive than a general gripper. 

Therefore, the method proposed in this paper is based on using a 
general two-finger gripper. As shown in Fig. 2, the pipe assembly con
sists of several sections. The simple cylindrical shape of each section 
makes it possible for the assembly to be grasped by a low-cost parallel 
gripper robustly with a properly designed attachment (as shown in 
Fig. 3). Although the grasping motion alone is easy, other issues may 
arise when the robot motion after grasping is considered. For example, 
some grasp poses may lead to collisions between the robot (or grasped 
object) and the environment. This is very common inside FIAB since the 
space is relatively compact. Other grasp poses may lead to redundant 
motion of the robot, proximity to robot singularity and excessive 
deformation of the pipe assemblies. Therefore, an optimisation process 
needs to be implemented to find a suitable and possibly optimal grasp 
pose for the pipe assembly. 

3. Problem formulation 

3.1. Problem description 

The simulated environment is shown in Fig. 4. The pipe is placed on a 
fixture for the robot to grasp. The initial pose of the pipe is denoted as 
Ap,0. Ap,0 is a homogeneous transformation matrix with respect to world 

Fig. 2. A 3D pipe assembly.  

Fig. 3. Attachment design for securely pipe grasping.  

Fig. 4. Robot picks up a pipe assembly and transfer it to desired pose.  
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frame. After successfully grasping the pipe, the robot will transfer the 
pipe to a desired pose Ap,n. The trajectory of the pipe is denoted by a 
series of waypoints: Ap,1,Ap,2,…,Ap,n. 

As mentioned above, the end-effector can grasp the pipe at almost 
any position with a properly designed attachment. However, not every 
pose is reachable for the robot to perform grasping, or even if the grasp 
pose is reachable, the predefined pipe trajectory cannot be followed 
exactly. In order to achieve fast and efficient production as well as 
maintain the quality of the pipe, there are several issues that need to be 
considered when the robot chooses a pose to grasp the pipe:  

• the trajectory of the pipe can be followed exactly.  
• there is no collision between the robot (with the grasped pipe) and 

the environment or self-collision.  
• minimise the robot joint motion distance.  
• minimise the deformation of pipe along the trajectory.  
• minimise force manipulability of robot along the trajectory. 

The first two issues are modelled as constraints and the latter three 
are modelled as objectives in Section 3.3. 

3.2. Abstracted pipe geometry 

The pipe assembly is abstracted to simplify the process of generating 
grasp poses and computing the deformation after being grasped by the 
robot. The abstraction of the 3D pipe assembly in Fig. 2 is shown in 
Fig. 5. The assembly consists of several sections (S1, S2, S3, … ). Each 
section is defined by two nodes. Each node stores the 3D position with 
respect to its local coordinate system. Each section stores properties like 
diameter, wall thickness and material density. In this way, theoretically, 

the pipe can consist of sections with different materials (PVC and cop
per) and diameters. The geometry of the pipe assembly in Fig. 5 can be 

defined by a 6 by 2 matrix 
[

1 2 3 4 4 6
2 3 4 5 6 7

]T
, where each entry of 

the matrix is the index of the node and each row defines a section. 

3.3. Mathematical modelling 

In this section, the optimisation variables, constraints, and objectives 
of the problem are modelled based on the issues discussed in Section 3.1. 

3.3.1. Optimisation variables 
The problem is aimed at finding the optimal grasp pose. A grasp pose 

is essentially a rigid body transformation and can be represented by a 
homogeneous transformation matrix. In our problem, the grasp pose 
must satisfy certain constraints to enable feasible grasping. Specifically, 
the position vector must be on the centreline of the pipe and the 
orientation vector has to be perpendicular to the pipe centreline. Given 
the geometry of the pipe assembly, a grasp pose can then be defined with 
4 variables as shown in Fig. 5 and Fig. 6. The definitions of the variables 
are given as follows:  

• grasp section (S): this variable specifies which section of the pipe the 
robot will grasp.  

• grasp position (len): this is the length between the starting node of a 
section (e.g., the starting node of S1 is N1) and the grasp location 
(where gripper TCP is placed).  

• grasp angle (ϕ): this is the angle between the y-axis and the gripper 
approaching direction (grey arrow).  

• flip angle (θ): this angle is around the gripper approaching direction 
(grey arrow) and can only be either 0 or 180 due to geometric 
constraint of pipe and the design of parallel gripper. 

Given the geometry of pipe P, grasp g = {S, len,ϕ, θ} can then be 
generated. Knowing the grasp parameter, it becomes convenient to 
calculate the end-effector grasp pose BP

e in the matrix form with respect 
to the pipe local coordinate system. 

3.3.2. Optimisation constraints 

3.3.2.1. Reachability constraint (C1). The first constraint that needs to 
be considered is the reachability of the robot. All the end-effector poses 
for completing the trajectory must be inside the workspace of the robot. 
Given the trajectory of the pipe and the generated local grasp pose BP

e , 
the robot end-effector pose in the world frame can be computed as 
follows: 

Te,i = Ap,iBP
e (g) (1) 

Therefore, the robot joint trajectory can be computed by solving the 
inverse kinematics problem: 

qi = IK
(
Te,i

)
(2)  

qi is a vector that describes the robot configuration. The dimension of qi 
is the degrees of freedom of the robot. If for i=0..n, , Eq. (2) is solvable 
and the solution satisfy the robot joint range constraint, then this grasp 
pose satisfies the reachability constraint. 

3.3.2.2. Collision constraint (C2). The second constraint that needs to be 
satisfied is that the whole manipulation process must be collision-free. 
To satisfy this constraint, collision checking is performed for all the 
robot configurations (q0, q1, …, qn) and intermediate states during the 
manipulation process. When performing collision checking, a safe dis
tance is implemented to ensure that no collision happens in case of any 
uncertainties e.g., geometric modelling errors, robot motion inaccuracy 

Fig. 5. Abstracted pipe assembly in its local frame.  

Fig. 6. Variables that define a grasp.  
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or part deformation. The collision checking is performed by an open 
source library FCL [23] which supports both collision detection and 
distance queries. 

3.3.3. Optimisation objectives 

3.3.3.1. Joint motion (O1). Objective O1 is defined as the sum of 
squared displacements between two consecutive waypoints to 
encourage minimum robot joint motion. Since the robot configurations 
required to follow the given pipe trajectory have been calculated already 
using IK solver in the constraint checking process, the computation of O1 
is straightforward: 

Cost(O1) =
∑n

i=1
‖ qi − qi− 1 ‖2 (3)  

where n is the number of waypoints of the trajectory as mentioned 
above. 

3.3.3.2. Deformation of the pipe (O2). This objective intends to mini
mise the sum of maximum deformation that happens at each waypoint 
along the trajectory. In this way, the geometric shape of the pipe can be 
maintained during the manipulation process. The deformation depends 
on the grasp position with respect to the pipe frame as well as the 
orientation of the pipe with respect to the world frame. The pipe is 
modelled as a frame structure that consists of arbitrarily orientated 
beam members which are connected rigidly. The beam members support 
bending, shearing as well as axial loads. A custom FEA program is 
implemented by using the matrix method described in [24]. The key step 
here is to reconstruct the boundary condition when evaluating different 
grasp poses. After grasping, the pipe is assumed to be rigidly supported 
at the grasping location. The initial pipe structure is created before the 
optimisation process starts as in Section 3.2. Once the current grasp pose 
is determined, a new node is created at the grasp location and the 
original grasp section is broken into two sections. The matrix used to 
store the geometry of the pipe assembly is updated accordingly. After 
creating the new geometry, the stiffness matrix of the pipe can be 

Fig. 7. (a) Loading condition of pipe element under gravity (b) Equivalent loading condition.  
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constructed. The general stiffness matrix for a 1D pipe section in the 
local frame is given by Eq. (4):  

where E and G are the Young’s modulus and the shear modulus. Iy and Iz 
are the second moment of area. J is the torsional constant (same as Ix in 
the circular case) and L is the length of the pipe section. Since each node 
has 6 degrees of freedom, assuming the structure has N nodes, the 
stiffness matrix for the whole structure is a 6N by 6N matrix. The stiff
ness matrix needs to be transformed from local to the global coordinate 
system by: 

Kglobal = RT KR (5)  

where R is the rotation matrix which represents how each pipe section is 
orientated from the global coordinate system. Details about constructing 
the stiffness matrix for a structure can be found in [24]. 

After obtaining the stiffness matrix, the forces acting on the pipe will 
then be determined. The weight of the pipe distributes evenly along its 
length as shown in Fig. 7(a). Therefore, the loading conditions is 
equivalent to having one force and one moment acting on each node of 
the section as shown in Fig. 7(b). Assuming W is the weight per unit 
length, the equivalent loading can be obtained as follows: 

F = − WL/2  

M1 = WL2/12 (6)  

M2 = − WL2/12 

The force vector can then be constructed for each node by using the 
above equations. Once the force vector is obtained, the displacement 
vector U can be computed by: 

F = KU (7) 

Both F and U are all column vectors of size 6N. 
The maximum deformation (maxDeform) of the pipe at one specific 

pose can then be obtained by computing the norm of displacement 
vector U for each node. The Cost(O2) is defined to be the sum of the 
maximum deformation at each pose along the trajectory as follows: 

Cost(O2) =
∑n

i=1
maxDeformi (8) 

Note here the deformation of the pipe at the first trajectory waypoint 
(i = 0) is not computed since the pipe is still placed on a fixture. 

3.3.3.3. Force manipulability (O3). The third objective is to minimise 
the force manipulability along the end-effector moving direction. Ac
cording to the force/velocity duality, minimising the force manipula
bility is equivalent to maximising its velocity manipulability. Therefore, 
for a given set of joint velocities, the end-effector can move faster with a 
large velocity manipulability.1 In order to compute the manipulability 
along a specific trajectory, the manipulability ellipsoids are constructed 
as follows: 

vT ( Jf (q).Jf
T(q)

)− 1v = 1 (9)  

γT ( Jf (q).Jf
T(q)

)
γ = 1 (10)  

where Jf (q) is the Jacobian matrix of joint configuration q. v is the ve
locity vector of the end-effector and γ is the force (torque) vector of the 
end-effector. Eq. (9) defines the velocity manipulability ellipsoid and 
Eq. (10) defines the force manipulability ellipsoid. Both ellipsoids are 
shown in Fig. 8 for a simple 3-link planar robot manipulator. 

Given a unit vector u represents the direction of movement of the 
end-effector, the velocity manipulability (β(q)) and the force manipu
lability (α(q)) are defined to be the length of the vector from the centre of 
the ellipsoid along u to the surface of the respective ellipsoid. β(q) and 
α(q) can be computed by rearranging Eq. (9) and (10) as follows: 

β(q) =
(
uT ( Jf (q).Jf

T(q)− 1u
))− 1/2

(11)  

α(q) =
(
uTJf (q).Jf

T(q)u
)− 1/2 (12) 

As shown in Fig. 8, a direction with small α(q) has a relatively large 
β(q) which suggests that the end-effector is relatively easier to move 
along the given direction u. The objective function is defined as follows: 

Cost(O3) =
∑n

i=1
α(qi) (13) 

Note here again i starts from 1 rather than 0, since ui is defined to be 
the vector when robot attempts to move from pose i − 1 to pose i. In this 
way, all three objectives are consistent in the sense that they are 
trajectory-based objectives since there have to be at least 2 waypoints on 
the trajectory. 

4. Objective and constraint evaluation 

4.1. Constraint handling method 

This paper handles constraints by using the method reported in [25]. 
The method compares two solutions based on the following 3 criteria:  

• A feasible solution is always better than an infeasible solution.  
• Between two infeasible solutions, the one that violates the constraint 

less is considered to be better.  
• Between two feasible solutions, the one with a better objective cost is 

better. 

The advantages of this method are twofold. Firstly, it does not 
require an explicit penalty parameter to handle the constraints. Besides, 
it allows objectives to be evaluated only when all the constraints are 
satisfied, which significantly reduces the algorithm running time 

Fig. 8. Force and velocity ellipsoid for a 3-link planar robot.  

1 Although the intention is to maximise the velocity manipulability, the ve
locity manipulability is not directly used in the paper to avoid the scenario that 
2 objectives need to be minimised while the other one needs to be maximised. 
This scenario often leads to negating the objective to be maximised. However, 
negative objective costs are not ideal since Dijkstra’s Algorithm used later re
quires edge weights of the graph to be positive. Therefore, the force manipu
lability is used instead. 
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especially in the case of having an expensive objective function. 
The optimisation problem has two constraints. The collision 

constraint is checked by the FCL library [23]. To check if the reach
ability constraint is satisfied, a third party IK solver (IKfast [26]) is used. 
The returned result of the IK solver is binary, either successful or not, 
which means it is impossible to compare two infeasible grasps which one 
violates the constraint more. To solve this problem, a combined 
constraint cost is defined for each waypoint along the trajectory as 
follows: 

Cost(Ci) =

⎧
⎨

⎩

0, if both C1 and C2 are satisfied
1, if C1 is satisfied while C2 is not

2, if C1 is not satisfied
(14) 

And the cost for the whole trajectory is defined as follows: 

Cost(C) =
∑n

i=0
Cost(Ci) (15) 

It should be noted that the constraint cost for the waypoint is set to 2 
automatically when C1 is not satisfied. That is because the joint 
configuration (q), which is required for checking C2, can only be ob
tained when C1 is satisfied. 

4.2. Weights selection for combining multiple objectives 

A weighted sum approach is used to handle multiple objectives: 

Cost(O) = w1Cost(O1) + w2Cost(O2) + w3Cost(O3) (16) 

To systematically determine the weights for each objective, an 
Analytical Hierarchy Process [27] is used. The approach determines the 
relative importance amongst objectives by a series of pairwise com
parisons. The results of the comparison are used to generate a compar
ison matrix as follows: 

M =

⎛

⎜
⎜
⎝

O1 O2 O3
O1 1 6 2
O2 1/6 1 1/4
O3 1/2 4 1

⎞

⎟
⎟
⎠ (17) 

The entry of the matrix tells the preference level between the 2 ob
jectives. For example, the entry at (O1, O2) is 6, which means O1 is 
much preferred to O2. Then the consistency of the matrix is verified by 
computing the consistency ratio (CR) as follows: 

Table 1 
Random indices from [27].  

m 3 4 5 6 7 8 9 10 

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49  

Fig. 9. Robot IK solution graph.  
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⎧
⎪⎪⎨

⎪⎪⎩

CI =
λmax − m

m − 1

CR =
CI
RI

(18)  

where CI is the consistency index of the comparison matrix M, RI is the 
average random index (given in Table 1), CR is the random consistency 
ratio of the comparison matrix, λmax is the maximal eigenvalue, and m is 
the order of the judgement matrix. If CR is less than 10%, the matrix is 
considered to have an acceptable consistency. In our case, the CR is 
0.79%, which is acceptable. 

For a consistent matrix, the weights are computed by normalising 
each column of the matrix and then calculating the average of each row. 
The resultant weight vector is w = [w1 w2 w3]

T
= [0.56 0.12 0.32]T 

4.3. Considering multiple IK solutions 

Eq. (2) assumes only one IK solution is available given an end- 
effector pose. However, there could be at most 16 different joint con
figurations for a 6 DoF robot [28]. Analytical IK solvers like IKFast can 
compute multiple IK solutions efficiently. In this section, the method 
used to handle multiple IK solutions is introduced. As shown in Fig. 9, 
each circle corresponds to a robot configuration (IK solution). All the 
circles in the same column have the same end-effector pose. A graph can 
then be constructed. The vertices of the graph are the robot 

configurations (blue circles in Fig. 9). The edges are created by con
necting each vertex in one column to all the vertices in the next column. 
The cost of each edge is the weighted sum of joint motion distance (O1) 
and manipulability (O3). Deformation objective (O2) is not used to 
compute the cost because the deformation only depends on the orien
tation of the pipe and the grasp pose. Different arm configurations 
producing the same end-effector pose will not have an impact on the 
deformation cost. In this way, evaluating the cost of a single grasp is 
converted to a graph search problem. The problem is solved by running 
Dijkstra’s algorithm for each start vertex (i.e., vertices in the first col
umn). This process is similar to the Descartes Planner in ROS industrial 
project [29]. 

4.4. Overall evaluation process  

The complete procedure for evaluating objective and constraint cost 
is presented in Function 1. The function starts by initialising both 
constraint cost and objective cost to be 0 and then for each waypoint on 
the trajectory of the pipe, the end-effector pose is computed. Given an 
end-effector pose, a subfunction MULTI-IK is called to get multiple IK 
solutions (Qi) from the IK solver. If the size of Qi is zero, the end-effector 
pose is determined to be not reachable (i.e., C1 is not satisfied), thus the 
constraint cost is incremented by 2. If there is at least 1 feasible IK so
lution, the function will perform collision checking for all IK solutions. If 
there is no collision-free IK solution in Qi (i.e., C2 is not satisfied), the 
constraint cost is incremented by 1. After checking whether constraints 
are satisfied or not, the objective cost will be evaluated for the 
constraint-free grasp. A weighted graph is created first (Line 14). Then, 
for each IK solution (Q0[j]) in Q0, Dijkstra’s Algorithm is used to search 
for the shortest path from Q0[j] to any IK solution in Qn, whose cost is 
assigned to current cost. optimal cost tracks the cost of the best IK solu
tions found so far in Q0. Then the cost for the grasp is set to be the sum of 
the optimal graph cost and the weighted deformation cost. 

Table 2 
BA parameters and definitions.  

Parameter Definition 

ns Number of scout bees 
ne Number of elite sites 
nb Number of best sites 
nre Number of recruited bees for elite sites 
nrb Number of recruited bees for remaining best sites 
stlim Number of no improve iterations before site abandonment (stagnation 

limit)  

Fig. 11. (a) Pipe2 (b) Pipe3.  

Fig. 10. Search neighbourhood for Str1, Str2 and Str3 respectively.  
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5. Optimisation algorithm 

5.1. Original Bees algorithm 

Bees algorithm (BA) [30], a population-based search algorithm 
which mimics the food foraging behaviour of honey bees, is used to solve 
the optimisation problem. The algorithm is shown in Algorithm 1 and 
the definitions of hyperparameters are given in Table 2. The algorithm 
initialises graspVec by creating a colony of ns scout bees randomly in the 
search space. Each point in the search space (also known as a site in the 
Bees Algorithm literature) corresponds to a solution grasp g. After 
evaluating the cost of each site, all sites visited by scout bees are sorted 
and the best nb < ns sites are selected for local search. amongst nb best 
sites, the scout bees at top ne sites recruit nre bees to perform local search 
in the neighbourhood. The bees at the remaining nb-ne best sites recruit 
nrb bees to perform local search (nrb < nre). If the result of local search 
does not improve and the site is searched again in the next iteration, the 
neighbourhood size is shrunk. The initial neighbourhood size is defined 
to be a proportion of the interval where the variable is defined. If the 
same site is searched for a predefined number of iterations (known as 
stagnation limit, stlim) without improving, the local minimum is 
considered to be reached and the scout bee at that site will perform 
random search again (site abandonment). After finishing local search, 
the remaining scout bees will be placed randomly in the search space to 
perform global search. Unlike the standard implementation of BA, the 
number of global searches in this work is set as ns − ne × nre − (nb −

ne) × nrb to keep the same number of function evaluations in the ini
tialisation process and later iterations.  

(continued on next column)  

(continued ) 

5.2. Local search strategy 

The local search strategy of the standard Bees Algorithm is 
straightforward. Given a solution site, The neighbourhood of the site is 
defined as a hyperrectangle. Recruited bees are randomly placed in the 
hyperrectangle to generate new grasps. The size of the hyperrectangle is 
shrunk when the same site is searched multiple times without 
improving. However, the optimisation variables used in this paper does 
not ensure newly generated grasps inside hyperrectangular are close to 
each other in terms of their Cartesian coordinate (as shown in Fig. 10 
(a)). Since only variable S and len determine the Cartesian coordinates of 
a grasp, three different neighbourhood generation strategies for S and 
len are presented as follows: 

Str1: This strategy performs the default behaviour of the Bees Al
gorithm i.e., treating S and len independently. For example, if the so
lution site is on S3 and the neighbourhood size for S is 4, the newly 
generated grasps can be on S1 – 5. If the solution site is close to one end 
of the section, it is likely that the newly generated grasp position len is 
out of the range. In this case, the len will be set as the limit. 

Str2: This strategy is similar to Str1 except that the neighbourhood 
size for S is always 0. This ensures the newly generated grasps are always 
close to the solution site being searched since they are constrained to be 
on the same section. However, this strategy is very conservative and may 
lead to early convergence. 

Str3 (proposed): Like Str2, Str3 does not allow the section to be 
changed in the usual condition. However, if the newly generated grasp 
position len is out of the range, unlike Str1 and Str2, Str3 will explicitly 
find if there is any other section connected to the section of the solution 
site and select randomly from all connected sections to locate the new 
grasp. For example, the feasible range for len on S3 is [0, 150]. If the 
generated len is -10 on S3, the grasp will be located on S2 with len set as 
max length(S2) − 10. In this way, Str3 ensures the newly generated 
grasps are close to the solution site and also allow the change of section 
during local search to avoid early convergence. 

The neighbourhoods of Str1, Str2 and Str3 are shown as the blue area 
in Fig. 10 (a), (b) and (c). The red star is the solution site. 

6. Experiment and results 

6.1. Experiment setup 

Three different copper pipe assemblies are tested in a simulated 
environment using the proposed method. The geometry of Pipe1 is 
shown in Fig. 2. Pipe2 and Pipe3 are shown in Fig. 11(a) and (b) 
respectively. The dimension of each pipe section is given in Table 3. 
Other properties of the pipe are listed in Table 4. The program is run on a 
Linux machine with an Intel Core i7–4712MQ CPU @ 2.30 GHz and 8GB 
RAM. The IK solver and collision checking library are accessed through 

Table 3 
Pipe assembly dimension.  

Section (mm) S1 S2 S3 S4 S5 S6 S7 S8 

Pipe1 200 200 150 200 400 100 \ \ 
Pipe2 200 200 300 200 200 \ \ \ 
Pipe3 200 150 200 200 400 150 100 50  

Table 4 
Pipe properties.  

Outer 
diameter 
(mm) 

Inner 
diameter 
(mm) 

Density 
(kg/m^3) 

Young’s 
modulus (GPa) 

Shear 
modulus 
(GPa) 

12mm 10mm 8960 110 40  

Table 5 
Tested 9 sets of hyperparameters for the Bees algorithm.  

No. ne nre nb nrb Random Scout ns Iteration 

1 1 12 7 3 4 (10%) 34 45 
2 1 15 7 5 6 (10%) 51 30 
3 1 20 15 5 12 (10%) 102 15 
4 1 12 5 3 10 (30%) 34 45 
5 1 15 6 4 16 (30%) 51 30 
6 1 20 11 5 32 (30%) 102 15 
7 1 10 4 3 15 (45%) 34 45 
8 1 12 5 4 23 (45%) 51 30 
9 1 15 9 5 47 (45%) 102 15  
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ROS MoveIt/Descartes API. 
To avoid the potential impact of hyperparameters on the perfor

mance of the algorithm, each strategy is tested with 9 different sets of 
hyperparameters (listed in Table 5) for 50 times. In the experiment, 
three sets of hyperparameters are tested in parallel to accelerate the 
computation. The percentage 10%, 30% and 45% under the “Random 
Scout” column indicate the approximate proportion of global search in 
population. The optimal solution is determined to be found if the 
objective cost is within ±0.1% range of the known optimal cost. The 
optimisation process stops if the optimal solution is found, or the 
maximum iteration is reached. For all 9 sets of hyperparameters, their 
maximum number of grasp evaluations are the same (ns × iteration =

1530). 
Genetic Algorithm (GA) [31] and Particle Swarm Optimisation (PSO) 

[32], two widely used population-based metaheuristics, are also 
implemented to solve the proposed problem for comparison. To ensure a 
relatively unbiased comparison, 9 sets of hyperparameters are tested for 
both GA and PSO and the stopping condition is the same as BA. For GA, 9 
sets of hyperparameters are generated from 3 population sizes (34, 51 
and 102) and 3 mutation rates (0.2, 0.3 and 0.4). Binary tournament 
selection is used in the parents selection process of GA. The solutions are 
real value encoded. Single point crossover is used with crossover rate 1. 
The mutation operator for the binary variable θ is simply bit-flip. For S, 
len and ϕ, the mutation operator samples uniformly within a given 
mutation range. For S, the mutation range is [S1,Smax], where Smax is the 
maximum section number of the current pipe. For len and ϕ, if the 
current solution value is a, the mutation range is [a − 100, a + 100], 
while satisfying the usual lower and upper limits of the variable. 

For PSO, 9 sets of hyperparameters are generated from 3 population 
sizes (34, 51 and 102) and 3 connectivity levels (10%, 50%, and 100%). 
For example, if the population size is 34, a 10% connectivity level means 
each particle is connected to 3 closest particles (fractional part is trun
cated). Inertia weight is set to 0.7 and both acceleration coefficients (c1 

and c2) are set to 2. The velocity update is not implemented for the grasp 
section S and the flip angle θ since they are intrinsically discrete (bi
nary). These two variables are updated to be the same as their personal 
best, global best or keep their original value with probability 0.3, 0.4 
and 0.3, respectively. 

An additional experiment is performed to compare the performance 
of the multi IK evaluation method (Function 1) and single IK counterpart 
(implemented by removing the graph search step from Function 1). Both 
methods use the same set of hyperparameters (No. 7 in Table 5, except 
the number of iterations). The same 3 pipes in Table 3 are tested in this 
experiment. However, the stopping condition is different since it is 
difficult to determine the optimal solution for the single IK method. 
Theoretically, the optimal solution should be the same as the multi IK 
method. However, in practice, it almost never finds the same optimal 
solution since 1). the single IK method uses a numerical IK solver which 
usually only finds the solution closer to the initially provided solution; 
2). There are too many possible arm motions for a predefined workspace 
object trajectory (for example, imagine there are 10 waypoints, and each 
waypoint has 2–4 possible IK solutions, the probability for the IK solver 
to generate the exact optimal combination is between 1/210 and 1/410). 
Therefore, the stopping condition for both methods is set to be the 
completion of 30 search iterations (i.e., 1020 grasp evaluations). 

6.2. Results and discussion 

6.2.1. Optimal grasp and robot trajectory 
The optimal grasp parameters found for each pipe to complete the 

given pipe trajectory are listed in Table 6. The trajectory of the robot for 
manipulating Pipe1–3 is shown in Fig. 12. It can be found in Table 6 that 
the flip angle θ can choose either 0 or 180 for all 3 pipes. This is because 
the gripper that used in this paper is symmetric and mounted to be 
aligned with the rotation axis of the last joint of the robot. Therefore, θ 
can be chosen as either 0 or 180 without affecting the following motion 
of the robot. 

6.2.2. Comparison amongst different algorithms 
For each algorithm (strategy), the best optimisation results for 

solving 3 problems are listed in Table 7. It is worth noting that the best 
set of hyperparameters is different for different problems. Therefore, 
each column in Table 7 is not for a single set of hyperparameters but the 
combination of best results from different sets of hyperparameters on 

Table 6 
Optimal solutions found for each pipe.   

S  len  Φ  θ  Objective Cost 

Pipe1 S4 79 -155 180/0 4.7638 
Pipe2 S3 151 -100 180/0 4.1487 
Pipe3 S2 96/97 23 180/0 5.7905  

Fig. 12. Robot trajectory for manipulating Pipe1–3.  
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different problems. The results show that by using an appropriate set of 
hyperparameters, all 3 BA local search strategies can achieve a 100% 
success rate out of 50 tests in finding the optimal solution. However, the 
computation speed of each strategy is different. The row named “Grasp 
Evaluations” lists the total number of grasps evaluated for solving 3 
problems by each strategy. It is clear that Str2 and Str3 require signifi
cantly fewer grasp evaluations than Str1, which suggests that Str2 and 
Str3 should converge much faster than Str1. However, in terms of the 
actual running time shown in the next row, Str1 is a lot faster than both 
Str2 and Str3. The inconsistency is due to the constraint handling 
method used in this work (see Section 4.1). Since Str1 is intrinsically 
more stochastic and does not focus on a single section during the local 
search, the search efficiency of Str1 is lower than Str2 and Str3, thus it 
requires generating a large number of grasps to find the optimal solu
tion. However, the grasp evaluation process is not required to be fully 
performed if the generated grasp is in constraint. Therefore, although 
Str1 generates more grasps to be evaluated, most of them can be eval
uated within a short time. On the other hand, Str2 and Str3 mainly 
generate grasps that are close to the feasible grasp, which makes the 
generated grasps more likely to be feasible and need to be fully 

evaluated. Since evaluating the deformation objective O2 is relatively a 
time-consuming operation, Str1 has the advantage in terms of time 
consumption even though it generates more grasps. The results of GA 
and PSO are listed in the last two columns of Table 7. By using the al
gorithm setup in Section 6.1, the GA and PSO generally perform not as 
good as BA as they cannot achieve a 100% success rate on all three 
problems and the time required to finish the optimisation is longer. 

The first three columns of Table 8 show the average results of 3 
strategies over 9 sets of hyperparameters. Still, Str1 evaluates more 
grasps with less time than both Str1 and Str2. In terms of overall success 
rate, Str3 achieves the highest success rate. Table 9 lists how many times 
each local search strategy fails to find the optimal solution on the in
dividual problem out of 450 tests (9 configs × 50 tests/config). It can be 
found that Str1 is likely to fail on Pipe2 and Str2 is likely to fail on Pipe3, 
while Str3 performs more consistently over different problems. The 
inconsistency of the algorithm performance is due to the choice of 
hyperparameters. More analyses regarding the impact of hyper
parameters on the performance of the algorithm are presented in the 
next section. The average results of GA and PSO over all sets of hyper
parameters are listed in the last two columns of Table 8. It can be found 
that, by using the algorithm setup in Section 6.1, GA and PSO are more 
sensitive to the selection of hyperparameters than BA as the success rate 
drops significantly compared to the best results in Table 7. The last 2 
columns of Table 9 also show that the implemented GA and PSO in this 
work perform worse than BA on all tested problems except Pipe2, where 
the result of PSO is comparable to BA. 

Based on the above analyses, generally, it is recommended to use 
Str3 for consistently good performance over different problems. How
ever, if the computation time is extremely critical, Str1 can be consid
ered as well. 

6.2.3. The impact of the hyperparameters on the performance of the 
algorithm 

The impact of hyperparameters (i.e., population size and the pro
portion of global search) on the performance of BA is analysed in this 
section. 

The size of scout bees 
As shown in Table 10, by using a large size of population, all 3 

strategies take longer to converge in terms of both the number of 
function evaluations and actual running time. In terms of success rate, 
Str1 with population size 102 only achieves a 97.7% success rate, which 
is obviously worse than others. Generally speaking, a large size of the 
population means fewer iterations can be run given a finite number of 
grasp evaluations, thus the algorithm cannot update current best solu
tions timely and reallocate computation resources efficiently, which 
leads to longer running time and less success rate. However, if the 
strategy lacks stochastics, using a large population size may have some 

Table 10 
Optimisation results using different population size.   

Str1 Str2 Str3 

Population size 34 51 102 34 51 102 34 51 102 
Grasp Evaluations 1179 1453 2085 976 1137 1462 975 1090 1441 
Time (s) 35.0 39.5 48.4 52.4 57.5 62.3 48.9 49.8 55.8 
Success Rate 99.5% 99.5% 97.7% 98.4% 98.4% 98.7% 99.5% 99.8% 99.5%  

Table 11 
Optimisation results using different proportion of global search.   

Str1 Str2 Str3 

Global Search Proportion 10% 30% 45% 10% 30% 45% 10% 30% 45% 

Grasp Evaluations 1503 1546 1668 1180 1208 1186 1212 1112 1178 
Time (s) 41.2 40.3 41.6 67.4 56.8 48.0 61.5 47.4 45.3 
Success Rate 98.4% 99.3% 99.1% 96.8% 99.6% 99.1% 99.3% 100% 99.6%  

Table 7 
Optimisation results of the best performed set of hyperparameters for each 
strategy.   

Str1(BA) Str2(BA) Str3(BA) GA PSO 

Grasp Evaluations 1100 845 832 2172 1205 
Time (s) 31.4 40.1 37.5 76.49 49.7 
Success Rate 100% 100% 100% 93.3% 98%  

Table 8 
Average optimisation results over 9 sets of hyperparameters for each strategy.   

Str1(BA) Str2(BA) Str3(BA) GA PSO 

Grasp Evaluations 1572 1192 1168 2699 1891 
Time (s) 41 57.4 51.4 92.4 93.2 
Success rate 98.9% 98.5% 99.6% 76.8% 81.3%  

Table 9 
Number of times that the algorithm fails to find global optimal.   

Str1(BA) Str2(BA) Str3(BA) GA PSO 

Pipe1 0 0 2 46 154 
Pipe2 9 2 2 76 7 
Pipe3 5 18 1 191 91 
Total 14 20 5 313 252  
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advantages. As in the case of Str2, using 102 achieves a 98.7% success 
rate, which is slightly higher than both 34 and 51. This is because a large 
population size ensures that initially the scout bees can cover the search 
space as much as possible and avoid early convergence. 

The proportion of global search 
As shown in Table 11, with the increase of global search proportion, 

the number of grasp evaluations for Str2 and Str3 almost stay at the same 
level, while Str1 increases steadily. This is because Str1 already has a lot 
of stochastics, continuing to increase the proportion of global search 
only makes the algorithm need more evaluations to converge. In terms of 
actual running time, Str1 is not impacted by the increase of global search 
proportion, while Str2 and Str3 run faster. This is due to the same reason 
why Str1 is faster than Str2 and Str3 as explained in Section 6.2.2. In 
terms of success rate, Str2 with 10% global search performs significantly 
worse than others. This is because Str2 does not allow any change of 
section during local search and relies heavily on global search to jump 
out of the local minimum. It is also interesting to see that the success 
rates of all 3 strategies go up when the global search proportion increase 
from 10% to 30%, and then drops when the proportion keeps increasing. 
This trend indicates that by keep adding more global searches to the 
algorithm a negative impact on the success rate may result. 

6.2.4. Comparison between multi IK and single IK method 
The final result presented is the comparison between the multi IK 

grasp evaluation method and the single IK counterpart. The single IK 
method has the advantage that it does not need an analytical solver to 
generate multiple IK solutions, which is preferable if the robot system is 
not standard and does not have available analytical solutions. Although 
the details of the single IK grasp evaluation method are not presented in 
the paper, it should be easy to implement by slightly modifying the multi 
IK method. 

As shown in Fig. 13, for all 3 pipes, the multi IK method achieves 
significantly lower average objective cost (19.6%, 11.3% and 8.4% 
respectively). Besides, the standard errors are also smaller, which means 
the results are more consistent. In terms of the running time, multi IK 
requires more time to finish for solving Pipe1 and Pipe2 than the single 
IK. This is predictable as multi IK has an additional graph search process. 
However, it is interesting to see that single IK requires more time for 
solving Pipe3 than multi IK. A possible explanation is that the neigh
bourhood of the solution that single IK converges to may have many 
other feasible solutions, which requires a large amount of time to fully 

evaluate them. On the contrary, the neighbourhood of the true optimum 
that multi IK converges to has fewer feasible solutions, therefore the 
method skips the objective function evaluation process, which results in 
faster convergence. This result suggests that although multi IK requires 
an additional graph search process when evaluating a single grasp pose, 
it is not necessarily slower than the single IK method. Therefore, the 
multi IK method is preferable whenever a suitable IK solver is available. 

7. Conclusion 

In this paper, a methodology is developed to optimise the grasp pose 
for 3D pipe assembly manipulation. The method can effectively optimise 
the grasp pose based on three trajectory-based objectives (joint motion, 
deformation of the object and force manipulability) while satisfying 
reachability and collision constraint. The grasp evaluation process fea
tures a decoupled constraint handling method to reduce grasp evalua
tion time, an AHP method to select the weights for combining multiple 
objectives, and a Dijkstra’s Algorithm to find optimal trajectory amongst 
all possible IK solutions. The Bees Algorithm is used to solve the con
strained optimisation problem with a proposed problem-specific local 
search strategy. Extensive benchmarks have been performed to evaluate 
the performance of 3 local search strategies and 2 other metaheuristics 
(GA and PSO). It is found that BA with proposed Str3 is less sensitive to 
the hyperparameters and can achieve consistently good performance on 
different problems. Besides, the comparison between multi IK and single 
IK method proves that by considering multiple IK solutions, the objec
tive cost can be improved significantly. 

The method is intended for manufacturing pipe assemblies in the 
Factory-In-A Box (FIAB) scenario to address the limitation of specially 
designed end-effector, the compact environment of FIAB and the flexi
bility of pipe structure. However, it can also be generalised to manipu
lating other compliant objects that have many grasp candidates with 
alternative deformation estimation methods. 
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Fig. 13. (a) – (c) The average objective costs at each iteration for solving Pipe1 – 3 with multi IK and single IK method for 30 iterations. (d) – (e) The average time 
consumption at each iteration for solving Pipe1 – 3 with multi IK and single IK method for 30 iterations. 
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