

University of Birmingham

Multi-objective grasp pose optimisation for robotic
3D pipe assembly manipulation
Zhang, Zebang; Saadat, Mozafar

DOI:
10.1016/j.rcim.2022.102326

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Zhang, Z & Saadat, M 2022, 'Multi-objective grasp pose optimisation for robotic 3D pipe assembly manipulation',
Robotics and Computer-Integrated Manufacturing, vol. 76, 102326. https://doi.org/10.1016/j.rcim.2022.102326

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1016/j.rcim.2022.102326
https://doi.org/10.1016/j.rcim.2022.102326
https://birmingham.elsevierpure.com/en/publications/5b495db3-baff-4c80-92a2-bacb47a6060d

Robotics and Computer–Integrated Manufacturing 76 (2022) 102326

Available online 11 February 2022
0736-5845/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Multi-objective grasp pose optimisation for robotic 3D pipe
assembly manipulation

Zebang Zhang *, Mozafar Saadat
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

A R T I C L E I N F O

Keywords:
3D pipe assembly
Multi-objective optimization
Grasp pose optimization
Robotic manipulation
Deformable object
Bees Algorithm

A B S T R A C T

This paper considers the problem of grasp pose optimisation for manipulating 3D pipe assemblies during the
manufacturing process. The method presented in this paper is specifically developed for manufacturing cryogenic
pipe assemblies autonomously in a Factory-In-A-Box scenario (i.e., a compact factory built inside an industrial
container). However, it also can be used for robotic manipulation of general frame structures. The problem is
formulated as a constrained multi-objective optimisation problem. The optimisation algorithm searches for so-
lutions that satisfy two constraints: (i) robot workspace reachability (i.e., feasible inverse kinematics solution for
a given end-effector pose); and (ii) any possible collision when executing the post-grasp trajectory, and
continuously improves them based on three objectives: (i) minimise robot joint motion for executing a specified
pipe trajectory; (ii) minimise the sum of maximum deformation of pipe assembly along the trajectory; and (iii)
minimise the sum of robot force manipulability along the trajectory. A special constraint handling method is used
to decouple the constraint and objective evaluation process, allowing expensive objectives to be evaluated only
when constraints are satisfied. The algorithm explicitly considers the possibility of multiple inverse kinematics
solutions and uses a graph search algorithm (Dijkstra’s Algorithm) to find the optimal trajectory amongst all
feasible trajectories. The weighted sum approach is used to combine the three objectives with weights deter-
mined by the Analytical Hierarchy Process. The optimisation problem is solved using the Bees Algorithm with a
proposed problem-specific local search strategy. Extensive benchmarks show that the proposed strategy achieves
better overall results than the default strategy of the Bees Algorithm and other metaheuristics.

1. Introduction

Robotic manipulation including grasping has been an active research
topic for decades. Most research on grasp synthesis focuses on finding a
successful grasp configuration so that the object is firmly attached to the
end-effector. Methods for grasp synthesis includes data-driven ap-
proaches and analytic approaches [1,2]. Recent advances in data-driven
grasping approaches focus on using deep learning and vision sensors to
generate the grasp pose [3]. However, the grasping motion alone is only
one stage of the whole manipulation process. After successfully grasping
the object, the robot manipulator is expected to move the object to the
goal pose and perform subsequent tasks. To perform the required
movements after grasping, motion planning is a necessary step. The
robot motion planning problem is defined as finding a continuous tra-
jectory from the start configuration of the robot to the goal configuration
(or goal region) while avoiding any obstacles inside the environment
[4]. Sampling-based planners like Rapidly-exploring Random Trees

(RRT) [5] and Probabilistic Road Map (PRM) [6] are widely used for
solving high dimensional motion planning problems such as planning
motion for a robot manipulator.

Although the individual problem of grasping and motion planning
have been studied for decades, the literature on the combined problem is
still very limited due to the complexity of the individual problem. The
whole manipulation process is treated as an optimal control problem in
[7] so that the locally optimal grasp contact position, grasping force and
robot arm trajectory can be obtained by solving a single optimisation
problem. Grasp-RRT is developed in [8] to plan collision-free grasping
motion for the robot given the start configuration of the robot and the
object pose. The impact of choosing different grasp poses on the
post-grasp manipulation process has been analysed in [9]. In their work,
the optimal trajectory of the manipulated object is assumed to be found
either by human knowledge or an optimal motion planner [10,11]. Then
a few grasp candidates are generated by a grasp planner. Next, for each
grasp pose, an inverse kinematics (IK) solver is used to generate robot

* Corresponding author.
E-mail addresses: zebang22@gmail.com (Z. Zhang), m.saadat@bham.ac.uk (M. Saadat).

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

https://doi.org/10.1016/j.rcim.2022.102326
Received 5 March 2021; Received in revised form 4 February 2022; Accepted 5 February 2022

mailto:zebang22@gmail.com
mailto:m.saadat@bham.ac.uk
www.sciencedirect.com/science/journal/07365845
https://www.elsevier.com/locate/rcim
https://doi.org/10.1016/j.rcim.2022.102326
https://doi.org/10.1016/j.rcim.2022.102326
https://doi.org/10.1016/j.rcim.2022.102326
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2022.102326&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

2

motion and an objective function is defined to evaluate the quality of the
grasp candidates. In this way, a more efficient grasp pose is found by
considering the robot motion after grasping. The objective used in [9] is
to maximise its distance from any collisions along the trajectory.

The work mentioned above mainly focuses on the grasp and motion
planning of rigid objects, However, many objects in industrial and do-
mestic environments are deformable. Manipulation of deformable ob-
jects has been reviewed in [12–14]. This paper specifically analyses the
manipulation of 3D pipe (or in general, frame) structure. The 3D pipe is
bent or assembled by joints from multiple 1D pipes. A 1D pipe can be
viewed as a deformable linear object (DLO), i.e., they are much larger
along one dimension than the other two. Manipulation planning stra-
tegies have been widely researched for DLOs [15–17]. In [15], A
two-phase path planner together with a cable pose measurement
approach is proposed for cable grasping. The method focuses on the
pre-grasp stage and uses force directional manipulability to determine
the optimal grasp pose. A method for automatic mating of a wire harness
onto a car body by wire tracing operation is proposed in [16]. In [17], A
manipulation framework is proposed to shape the cable by environ-
mental contacts. However, common techniques used in the literature for
DLO manipulation like structure reshaping and exploiting environ-
mental contacts are not suitable for 3D pipe manipulation due to the
complex structure and relatively large strain. Instead, the method pre-
sented in this paper aims at maintaining the geometry and reducing the
deformation of the pipe during the manipulation process.

Researchers have investigated the problem of minimising deforma-
tion when handling compliant sheet metal parts. A trajectory optimi-
sation approach is used in [18] to plan a minimal deformation trajectory
while maintaining the same productivity. A response surface model is
generated based on finite element analysis (FEA) of the handled part and
end-effector, so that deformation can be quickly estimated during
optimisation. Other approaches attempt to reduce the deformation of an
object during handling by designing a part-specific end-effector layout.
A simple methodology is proposed in [19] to determine the number of
vacuum cups needed for handling a compliant sheet metal part as well as
their locations. The method focuses on placing vacuum cups evenly
based on the gravity distribution of the object. Although the deforma-
tion and holding force decrease significantly by using the proposed
method, the deformation information is not directly used during the
optimisation process, which means the positions of the end-effector
could be further optimised. A methodology is proposed in [20] to
optimise the design of end-effector and robot motion simultaneously in
order to achieve less cycle time as well as less deformation for a
multi-robot system. Although the deformation information is used
directly, it also relies on a precomputed model to estimate the defor-
mation during optimisation as in [18], which is not suitable for
manipulating objects with different dimensions and geometries. To
address the above limitations, the end-effector used in this paper is a

general two-finger gripper so that the optimisation is performed at the
actual manipulation stage rather than the design stage and no pre-
computed deformation model is required. Hence, the proposed method
is more versatile to different pipe geometries.

The aim of this paper is to present a general method for grasp pose
optimisation based on post-grasp trajectory objectives. This method is
specifically developed for robot that perform repetitive 3D pipe assem-
bly manipulation in a static environment. Therefore, once the optimal
solution is computed offline, the robot can execute the trajectory
repetitively with the optimal grasp to increase the production efficiency.
Previous work on the similar problem like [9] only deals with a limited
number of grasp candidates, thus no optimisation algorithm is used. This
paper follows the same assumption in [9] that an optimal object tra-
jectory is known beforehand. However, this paper considers deforma-
tion and other objectives that are not used in previous work and uses
Analytical Hierarchy Process (AHP) to determine weights for each
objective. The method also decouples the constraint and objective
evaluation process, allowing expensive objectives (e.g., deformation) to
be evaluated only when constraints are satisfied, thus significantly
reducing the computation time. In addition, this paper presents a
method effectively utilising multiple IK solutions (for the same
end-effector pose) to further optimise the objective cost. A
problem-specific local search strategy for optimisation is also proposed
to achieve a high success rate in finding the optimal solution.

The remainder of the paper is structured as follows: Section 2 pre-
sents an industrial case study. In Section 3, the problem is introduced
and then optimisation variables, objectives, and constraints are
modelled. Section 4 describes the details of the objective and constraint
evaluation method. Section 5 introduces the optimisation algorithm
used in this paper and proposes problem-specific search strategies.
Section 6 presents the experiments, results, and analyses. Section 7
concludes the paper.

2. Industrial case study

Deploying a flexible robotic workcell is becoming an increasingly
popular choice with the trends of mass customisation [21], especially for
small and mid-size enterprises. A good example of deploying such a
flexible robotic workcell is the Factory-In-A-Box (FIAB) project. FIAB is a
high-profile project funded by Innovate UK as part of the Thermal En-
ergy Research Accelerator (T-ERA) carried out at the Manufacturing
Technology Centre (MTC), UK, with the support of the University of
Birmingham. A simulated FIAB environment is shown in Fig. 1. FIAB is a
successful demonstrator of a high technology, compact and autonomous
factory inside a container to manufacture cryogenic pipe assemblies
with the focus on flexibility (the factory can adapt quickly to manu-
facture pipes of different structures at different quantities according to
customer needs) and mobility (the factory can be rapidly deployed

Fig. 1. Simulated factory-in-a-box layout Image Courtesy of Manufacturing Technology Centre (MTC), Coventry, UK.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

3

anywhere) [22]. Cryogenic piping systems are used for applications
which require extremely low temperature, typically lower than -150 ◦C.
FIAB accepts orders from customers and performs simulations to check if
the required dimensions of the pipes can be manufactured by the facility.
The manufacturing process usually involves cutting, bending, brazing,
and pressure testing. An industrial robot is mounted on an overhead rail
to grasp and transfer pipes between different stations inside FIAB.
Currently, the solution for grasping pipe assemblies is by designing a
part-specific end-effector. While this solution provides a robust grasp
and reduces excessive deformation during manipulation, it also in-
creases the weight of the end-effector which makes the process less
energy efficient. Besides, as the custom-designed end-effector is larger
and more complex in terms of its geometry, the possibility of collision
with the end-effector increases. Therefore, it may be infeasible for some
pipes to be manufactured. More importantly, the custom-designed
gripper is much more expensive than a general gripper.

Therefore, the method proposed in this paper is based on using a
general two-finger gripper. As shown in Fig. 2, the pipe assembly con-
sists of several sections. The simple cylindrical shape of each section
makes it possible for the assembly to be grasped by a low-cost parallel
gripper robustly with a properly designed attachment (as shown in
Fig. 3). Although the grasping motion alone is easy, other issues may
arise when the robot motion after grasping is considered. For example,
some grasp poses may lead to collisions between the robot (or grasped
object) and the environment. This is very common inside FIAB since the
space is relatively compact. Other grasp poses may lead to redundant
motion of the robot, proximity to robot singularity and excessive
deformation of the pipe assemblies. Therefore, an optimisation process
needs to be implemented to find a suitable and possibly optimal grasp
pose for the pipe assembly.

3. Problem formulation

3.1. Problem description

The simulated environment is shown in Fig. 4. The pipe is placed on a
fixture for the robot to grasp. The initial pose of the pipe is denoted as
Ap,0. Ap,0 is a homogeneous transformation matrix with respect to world

Fig. 2. A 3D pipe assembly.

Fig. 3. Attachment design for securely pipe grasping.

Fig. 4. Robot picks up a pipe assembly and transfer it to desired pose.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

4

frame. After successfully grasping the pipe, the robot will transfer the
pipe to a desired pose Ap,n. The trajectory of the pipe is denoted by a
series of waypoints: Ap,1,Ap,2,…,Ap,n.

As mentioned above, the end-effector can grasp the pipe at almost
any position with a properly designed attachment. However, not every
pose is reachable for the robot to perform grasping, or even if the grasp
pose is reachable, the predefined pipe trajectory cannot be followed
exactly. In order to achieve fast and efficient production as well as
maintain the quality of the pipe, there are several issues that need to be
considered when the robot chooses a pose to grasp the pipe:

• the trajectory of the pipe can be followed exactly.
• there is no collision between the robot (with the grasped pipe) and

the environment or self-collision.
• minimise the robot joint motion distance.
• minimise the deformation of pipe along the trajectory.
• minimise force manipulability of robot along the trajectory.

The first two issues are modelled as constraints and the latter three
are modelled as objectives in Section 3.3.

3.2. Abstracted pipe geometry

The pipe assembly is abstracted to simplify the process of generating
grasp poses and computing the deformation after being grasped by the
robot. The abstraction of the 3D pipe assembly in Fig. 2 is shown in
Fig. 5. The assembly consists of several sections (S1, S2, S3, …). Each
section is defined by two nodes. Each node stores the 3D position with
respect to its local coordinate system. Each section stores properties like
diameter, wall thickness and material density. In this way, theoretically,

the pipe can consist of sections with different materials (PVC and cop-
per) and diameters. The geometry of the pipe assembly in Fig. 5 can be

defined by a 6 by 2 matrix
[

1 2 3 4 4 6
2 3 4 5 6 7

]T
, where each entry of

the matrix is the index of the node and each row defines a section.

3.3. Mathematical modelling

In this section, the optimisation variables, constraints, and objectives
of the problem are modelled based on the issues discussed in Section 3.1.

3.3.1. Optimisation variables
The problem is aimed at finding the optimal grasp pose. A grasp pose

is essentially a rigid body transformation and can be represented by a
homogeneous transformation matrix. In our problem, the grasp pose
must satisfy certain constraints to enable feasible grasping. Specifically,
the position vector must be on the centreline of the pipe and the
orientation vector has to be perpendicular to the pipe centreline. Given
the geometry of the pipe assembly, a grasp pose can then be defined with
4 variables as shown in Fig. 5 and Fig. 6. The definitions of the variables
are given as follows:

• grasp section (S): this variable specifies which section of the pipe the
robot will grasp.

• grasp position (len): this is the length between the starting node of a
section (e.g., the starting node of S1 is N1) and the grasp location
(where gripper TCP is placed).

• grasp angle (ϕ): this is the angle between the y-axis and the gripper
approaching direction (grey arrow).

• flip angle (θ): this angle is around the gripper approaching direction
(grey arrow) and can only be either 0 or 180 due to geometric
constraint of pipe and the design of parallel gripper.

Given the geometry of pipe P, grasp g = {S, len,ϕ, θ} can then be
generated. Knowing the grasp parameter, it becomes convenient to
calculate the end-effector grasp pose BP

e in the matrix form with respect
to the pipe local coordinate system.

3.3.2. Optimisation constraints

3.3.2.1. Reachability constraint (C1). The first constraint that needs to
be considered is the reachability of the robot. All the end-effector poses
for completing the trajectory must be inside the workspace of the robot.
Given the trajectory of the pipe and the generated local grasp pose BP

e ,
the robot end-effector pose in the world frame can be computed as
follows:

Te,i = Ap,iBP
e (g) (1)

Therefore, the robot joint trajectory can be computed by solving the
inverse kinematics problem:

qi = IK
(
Te,i

)
(2)

qi is a vector that describes the robot configuration. The dimension of qi
is the degrees of freedom of the robot. If for i=0..n, , Eq. (2) is solvable
and the solution satisfy the robot joint range constraint, then this grasp
pose satisfies the reachability constraint.

3.3.2.2. Collision constraint (C2). The second constraint that needs to be
satisfied is that the whole manipulation process must be collision-free.
To satisfy this constraint, collision checking is performed for all the
robot configurations (q0, q1, …, qn) and intermediate states during the
manipulation process. When performing collision checking, a safe dis-
tance is implemented to ensure that no collision happens in case of any
uncertainties e.g., geometric modelling errors, robot motion inaccuracy

Fig. 5. Abstracted pipe assembly in its local frame.

Fig. 6. Variables that define a grasp.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

5

or part deformation. The collision checking is performed by an open
source library FCL [23] which supports both collision detection and
distance queries.

3.3.3. Optimisation objectives

3.3.3.1. Joint motion (O1). Objective O1 is defined as the sum of
squared displacements between two consecutive waypoints to
encourage minimum robot joint motion. Since the robot configurations
required to follow the given pipe trajectory have been calculated already
using IK solver in the constraint checking process, the computation of O1
is straightforward:

Cost(O1) =
∑n

i=1
‖ qi − qi− 1 ‖2 (3)

where n is the number of waypoints of the trajectory as mentioned
above.

3.3.3.2. Deformation of the pipe (O2). This objective intends to mini-
mise the sum of maximum deformation that happens at each waypoint
along the trajectory. In this way, the geometric shape of the pipe can be
maintained during the manipulation process. The deformation depends
on the grasp position with respect to the pipe frame as well as the
orientation of the pipe with respect to the world frame. The pipe is
modelled as a frame structure that consists of arbitrarily orientated
beam members which are connected rigidly. The beam members support
bending, shearing as well as axial loads. A custom FEA program is
implemented by using the matrix method described in [24]. The key step
here is to reconstruct the boundary condition when evaluating different
grasp poses. After grasping, the pipe is assumed to be rigidly supported
at the grasping location. The initial pipe structure is created before the
optimisation process starts as in Section 3.2. Once the current grasp pose
is determined, a new node is created at the grasp location and the
original grasp section is broken into two sections. The matrix used to
store the geometry of the pipe assembly is updated accordingly. After
creating the new geometry, the stiffness matrix of the pipe can be

Fig. 7. (a) Loading condition of pipe element under gravity (b) Equivalent loading condition.

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EA
L

0 0 0 0 0 −
EA
L

0 0 0 0 0

12EIz

L3 0 0 0
6EIz

L2 0
12EIz

L3 0 0 0
6EIz

L2

12EIy

L3 0 −
6EIy

L2 0 0 0 −
12EIy

L3 0 −
6EIy

L2 0

GJ
L

0 0 0 0 0 −
GJ
L

0 0

S
4EIy

L
0 0 0

6EIy

L2 0
2EIy

L
0

Y
4EIz

L
0 −

6EIz

L2 0 0 0
2EIz

L

M
EA
L

0 0 0 0 0

M
12EIz

L3 0 0 0 −
6EIz

L2

E
12EIy

L3 0
6EIy

L2 0

T
GJ
L

0 0

R
4EIy

L
0

Y
4EIz

L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

6

constructed. The general stiffness matrix for a 1D pipe section in the
local frame is given by Eq. (4):

where E and G are the Young’s modulus and the shear modulus. Iy and Iz
are the second moment of area. J is the torsional constant (same as Ix in
the circular case) and L is the length of the pipe section. Since each node
has 6 degrees of freedom, assuming the structure has N nodes, the
stiffness matrix for the whole structure is a 6N by 6N matrix. The stiff-
ness matrix needs to be transformed from local to the global coordinate
system by:

Kglobal = RT KR (5)

where R is the rotation matrix which represents how each pipe section is
orientated from the global coordinate system. Details about constructing
the stiffness matrix for a structure can be found in [24].

After obtaining the stiffness matrix, the forces acting on the pipe will
then be determined. The weight of the pipe distributes evenly along its
length as shown in Fig. 7(a). Therefore, the loading conditions is
equivalent to having one force and one moment acting on each node of
the section as shown in Fig. 7(b). Assuming W is the weight per unit
length, the equivalent loading can be obtained as follows:

F = − WL/2

M1 = WL2/12 (6)

M2 = − WL2/12

The force vector can then be constructed for each node by using the
above equations. Once the force vector is obtained, the displacement
vector U can be computed by:

F = KU (7)

Both F and U are all column vectors of size 6N.
The maximum deformation (maxDeform) of the pipe at one specific

pose can then be obtained by computing the norm of displacement
vector U for each node. The Cost(O2) is defined to be the sum of the
maximum deformation at each pose along the trajectory as follows:

Cost(O2) =
∑n

i=1
maxDeformi (8)

Note here the deformation of the pipe at the first trajectory waypoint
(i = 0) is not computed since the pipe is still placed on a fixture.

3.3.3.3. Force manipulability (O3). The third objective is to minimise
the force manipulability along the end-effector moving direction. Ac-
cording to the force/velocity duality, minimising the force manipula-
bility is equivalent to maximising its velocity manipulability. Therefore,
for a given set of joint velocities, the end-effector can move faster with a
large velocity manipulability.1 In order to compute the manipulability
along a specific trajectory, the manipulability ellipsoids are constructed
as follows:

vT (Jf (q).Jf
T(q)

)− 1v = 1 (9)

γT (Jf (q).Jf
T(q)

)
γ = 1 (10)

where Jf (q) is the Jacobian matrix of joint configuration q. v is the ve-
locity vector of the end-effector and γ is the force (torque) vector of the
end-effector. Eq. (9) defines the velocity manipulability ellipsoid and
Eq. (10) defines the force manipulability ellipsoid. Both ellipsoids are
shown in Fig. 8 for a simple 3-link planar robot manipulator.

Given a unit vector u represents the direction of movement of the
end-effector, the velocity manipulability (β(q)) and the force manipu-
lability (α(q)) are defined to be the length of the vector from the centre of
the ellipsoid along u to the surface of the respective ellipsoid. β(q) and
α(q) can be computed by rearranging Eq. (9) and (10) as follows:

β(q) =
(
uT (Jf (q).Jf

T(q)− 1u
))− 1/2

(11)

α(q) =
(
uTJf (q).Jf

T(q)u
)− 1/2 (12)

As shown in Fig. 8, a direction with small α(q) has a relatively large
β(q) which suggests that the end-effector is relatively easier to move
along the given direction u. The objective function is defined as follows:

Cost(O3) =
∑n

i=1
α(qi) (13)

Note here again i starts from 1 rather than 0, since ui is defined to be
the vector when robot attempts to move from pose i − 1 to pose i. In this
way, all three objectives are consistent in the sense that they are
trajectory-based objectives since there have to be at least 2 waypoints on
the trajectory.

4. Objective and constraint evaluation

4.1. Constraint handling method

This paper handles constraints by using the method reported in [25].
The method compares two solutions based on the following 3 criteria:

• A feasible solution is always better than an infeasible solution.
• Between two infeasible solutions, the one that violates the constraint

less is considered to be better.
• Between two feasible solutions, the one with a better objective cost is

better.

The advantages of this method are twofold. Firstly, it does not
require an explicit penalty parameter to handle the constraints. Besides,
it allows objectives to be evaluated only when all the constraints are
satisfied, which significantly reduces the algorithm running time

Fig. 8. Force and velocity ellipsoid for a 3-link planar robot.

1 Although the intention is to maximise the velocity manipulability, the ve-
locity manipulability is not directly used in the paper to avoid the scenario that
2 objectives need to be minimised while the other one needs to be maximised.
This scenario often leads to negating the objective to be maximised. However,
negative objective costs are not ideal since Dijkstra’s Algorithm used later re-
quires edge weights of the graph to be positive. Therefore, the force manipu-
lability is used instead.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

7

especially in the case of having an expensive objective function.
The optimisation problem has two constraints. The collision

constraint is checked by the FCL library [23]. To check if the reach-
ability constraint is satisfied, a third party IK solver (IKfast [26]) is used.
The returned result of the IK solver is binary, either successful or not,
which means it is impossible to compare two infeasible grasps which one
violates the constraint more. To solve this problem, a combined
constraint cost is defined for each waypoint along the trajectory as
follows:

Cost(Ci) =

⎧
⎨

⎩

0, if both C1 and C2 are satisfied
1, if C1 is satisfied while C2 is not

2, if C1 is not satisfied
(14)

And the cost for the whole trajectory is defined as follows:

Cost(C) =
∑n

i=0
Cost(Ci) (15)

It should be noted that the constraint cost for the waypoint is set to 2
automatically when C1 is not satisfied. That is because the joint
configuration (q), which is required for checking C2, can only be ob-
tained when C1 is satisfied.

4.2. Weights selection for combining multiple objectives

A weighted sum approach is used to handle multiple objectives:

Cost(O) = w1Cost(O1) + w2Cost(O2) + w3Cost(O3) (16)

To systematically determine the weights for each objective, an
Analytical Hierarchy Process [27] is used. The approach determines the
relative importance amongst objectives by a series of pairwise com-
parisons. The results of the comparison are used to generate a compar-
ison matrix as follows:

M =

⎛

⎜
⎜
⎝

O1 O2 O3
O1 1 6 2
O2 1/6 1 1/4
O3 1/2 4 1

⎞

⎟
⎟
⎠ (17)

The entry of the matrix tells the preference level between the 2 ob-
jectives. For example, the entry at (O1, O2) is 6, which means O1 is
much preferred to O2. Then the consistency of the matrix is verified by
computing the consistency ratio (CR) as follows:

Table 1
Random indices from [27].

m 3 4 5 6 7 8 9 10

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Fig. 9. Robot IK solution graph.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

8

⎧
⎪⎪⎨

⎪⎪⎩

CI =
λmax − m

m − 1

CR =
CI
RI

(18)

where CI is the consistency index of the comparison matrix M, RI is the
average random index (given in Table 1), CR is the random consistency
ratio of the comparison matrix, λmax is the maximal eigenvalue, and m is
the order of the judgement matrix. If CR is less than 10%, the matrix is
considered to have an acceptable consistency. In our case, the CR is
0.79%, which is acceptable.

For a consistent matrix, the weights are computed by normalising
each column of the matrix and then calculating the average of each row.
The resultant weight vector is w = [w1 w2 w3]

T
= [0.56 0.12 0.32]T

4.3. Considering multiple IK solutions

Eq. (2) assumes only one IK solution is available given an end-
effector pose. However, there could be at most 16 different joint con-
figurations for a 6 DoF robot [28]. Analytical IK solvers like IKFast can
compute multiple IK solutions efficiently. In this section, the method
used to handle multiple IK solutions is introduced. As shown in Fig. 9,
each circle corresponds to a robot configuration (IK solution). All the
circles in the same column have the same end-effector pose. A graph can
then be constructed. The vertices of the graph are the robot

configurations (blue circles in Fig. 9). The edges are created by con-
necting each vertex in one column to all the vertices in the next column.
The cost of each edge is the weighted sum of joint motion distance (O1)
and manipulability (O3). Deformation objective (O2) is not used to
compute the cost because the deformation only depends on the orien-
tation of the pipe and the grasp pose. Different arm configurations
producing the same end-effector pose will not have an impact on the
deformation cost. In this way, evaluating the cost of a single grasp is
converted to a graph search problem. The problem is solved by running
Dijkstra’s algorithm for each start vertex (i.e., vertices in the first col-
umn). This process is similar to the Descartes Planner in ROS industrial
project [29].

4.4. Overall evaluation process

The complete procedure for evaluating objective and constraint cost
is presented in Function 1. The function starts by initialising both
constraint cost and objective cost to be 0 and then for each waypoint on
the trajectory of the pipe, the end-effector pose is computed. Given an
end-effector pose, a subfunction MULTI-IK is called to get multiple IK
solutions (Qi) from the IK solver. If the size of Qi is zero, the end-effector
pose is determined to be not reachable (i.e., C1 is not satisfied), thus the
constraint cost is incremented by 2. If there is at least 1 feasible IK so-
lution, the function will perform collision checking for all IK solutions. If
there is no collision-free IK solution in Qi (i.e., C2 is not satisfied), the
constraint cost is incremented by 1. After checking whether constraints
are satisfied or not, the objective cost will be evaluated for the
constraint-free grasp. A weighted graph is created first (Line 14). Then,
for each IK solution (Q0[j]) in Q0, Dijkstra’s Algorithm is used to search
for the shortest path from Q0[j] to any IK solution in Qn, whose cost is
assigned to current cost. optimal cost tracks the cost of the best IK solu-
tions found so far in Q0. Then the cost for the grasp is set to be the sum of
the optimal graph cost and the weighted deformation cost.

Table 2
BA parameters and definitions.

Parameter Definition

ns Number of scout bees
ne Number of elite sites
nb Number of best sites
nre Number of recruited bees for elite sites
nrb Number of recruited bees for remaining best sites
stlim Number of no improve iterations before site abandonment (stagnation

limit)

Fig. 11. (a) Pipe2 (b) Pipe3.

Fig. 10. Search neighbourhood for Str1, Str2 and Str3 respectively.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

9

5. Optimisation algorithm

5.1. Original Bees algorithm

Bees algorithm (BA) [30], a population-based search algorithm
which mimics the food foraging behaviour of honey bees, is used to solve
the optimisation problem. The algorithm is shown in Algorithm 1 and
the definitions of hyperparameters are given in Table 2. The algorithm
initialises graspVec by creating a colony of ns scout bees randomly in the
search space. Each point in the search space (also known as a site in the
Bees Algorithm literature) corresponds to a solution grasp g. After
evaluating the cost of each site, all sites visited by scout bees are sorted
and the best nb < ns sites are selected for local search. amongst nb best
sites, the scout bees at top ne sites recruit nre bees to perform local search
in the neighbourhood. The bees at the remaining nb-ne best sites recruit
nrb bees to perform local search (nrb < nre). If the result of local search
does not improve and the site is searched again in the next iteration, the
neighbourhood size is shrunk. The initial neighbourhood size is defined
to be a proportion of the interval where the variable is defined. If the
same site is searched for a predefined number of iterations (known as
stagnation limit, stlim) without improving, the local minimum is
considered to be reached and the scout bee at that site will perform
random search again (site abandonment). After finishing local search,
the remaining scout bees will be placed randomly in the search space to
perform global search. Unlike the standard implementation of BA, the
number of global searches in this work is set as ns − ne × nre − (nb −

ne) × nrb to keep the same number of function evaluations in the ini-
tialisation process and later iterations.

(continued on next column)

(continued)

5.2. Local search strategy

The local search strategy of the standard Bees Algorithm is
straightforward. Given a solution site, The neighbourhood of the site is
defined as a hyperrectangle. Recruited bees are randomly placed in the
hyperrectangle to generate new grasps. The size of the hyperrectangle is
shrunk when the same site is searched multiple times without
improving. However, the optimisation variables used in this paper does
not ensure newly generated grasps inside hyperrectangular are close to
each other in terms of their Cartesian coordinate (as shown in Fig. 10
(a)). Since only variable S and len determine the Cartesian coordinates of
a grasp, three different neighbourhood generation strategies for S and
len are presented as follows:

Str1: This strategy performs the default behaviour of the Bees Al-
gorithm i.e., treating S and len independently. For example, if the so-
lution site is on S3 and the neighbourhood size for S is 4, the newly
generated grasps can be on S1 – 5. If the solution site is close to one end
of the section, it is likely that the newly generated grasp position len is
out of the range. In this case, the len will be set as the limit.

Str2: This strategy is similar to Str1 except that the neighbourhood
size for S is always 0. This ensures the newly generated grasps are always
close to the solution site being searched since they are constrained to be
on the same section. However, this strategy is very conservative and may
lead to early convergence.

Str3 (proposed): Like Str2, Str3 does not allow the section to be
changed in the usual condition. However, if the newly generated grasp
position len is out of the range, unlike Str1 and Str2, Str3 will explicitly
find if there is any other section connected to the section of the solution
site and select randomly from all connected sections to locate the new
grasp. For example, the feasible range for len on S3 is [0, 150]. If the
generated len is -10 on S3, the grasp will be located on S2 with len set as
max length(S2) − 10. In this way, Str3 ensures the newly generated
grasps are close to the solution site and also allow the change of section
during local search to avoid early convergence.

The neighbourhoods of Str1, Str2 and Str3 are shown as the blue area
in Fig. 10 (a), (b) and (c). The red star is the solution site.

6. Experiment and results

6.1. Experiment setup

Three different copper pipe assemblies are tested in a simulated
environment using the proposed method. The geometry of Pipe1 is
shown in Fig. 2. Pipe2 and Pipe3 are shown in Fig. 11(a) and (b)
respectively. The dimension of each pipe section is given in Table 3.
Other properties of the pipe are listed in Table 4. The program is run on a
Linux machine with an Intel Core i7–4712MQ CPU @ 2.30 GHz and 8GB
RAM. The IK solver and collision checking library are accessed through

Table 3
Pipe assembly dimension.

Section (mm) S1 S2 S3 S4 S5 S6 S7 S8

Pipe1 200 200 150 200 400 100 \ \
Pipe2 200 200 300 200 200 \ \ \
Pipe3 200 150 200 200 400 150 100 50

Table 4
Pipe properties.

Outer
diameter
(mm)

Inner
diameter
(mm)

Density
(kg/m^3)

Young’s
modulus (GPa)

Shear
modulus
(GPa)

12mm 10mm 8960 110 40

Table 5
Tested 9 sets of hyperparameters for the Bees algorithm.

No. ne nre nb nrb Random Scout ns Iteration

1 1 12 7 3 4 (10%) 34 45
2 1 15 7 5 6 (10%) 51 30
3 1 20 15 5 12 (10%) 102 15
4 1 12 5 3 10 (30%) 34 45
5 1 15 6 4 16 (30%) 51 30
6 1 20 11 5 32 (30%) 102 15
7 1 10 4 3 15 (45%) 34 45
8 1 12 5 4 23 (45%) 51 30
9 1 15 9 5 47 (45%) 102 15

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

10

ROS MoveIt/Descartes API.
To avoid the potential impact of hyperparameters on the perfor-

mance of the algorithm, each strategy is tested with 9 different sets of
hyperparameters (listed in Table 5) for 50 times. In the experiment,
three sets of hyperparameters are tested in parallel to accelerate the
computation. The percentage 10%, 30% and 45% under the “Random
Scout” column indicate the approximate proportion of global search in
population. The optimal solution is determined to be found if the
objective cost is within ±0.1% range of the known optimal cost. The
optimisation process stops if the optimal solution is found, or the
maximum iteration is reached. For all 9 sets of hyperparameters, their
maximum number of grasp evaluations are the same (ns × iteration =

1530).
Genetic Algorithm (GA) [31] and Particle Swarm Optimisation (PSO)

[32], two widely used population-based metaheuristics, are also
implemented to solve the proposed problem for comparison. To ensure a
relatively unbiased comparison, 9 sets of hyperparameters are tested for
both GA and PSO and the stopping condition is the same as BA. For GA, 9
sets of hyperparameters are generated from 3 population sizes (34, 51
and 102) and 3 mutation rates (0.2, 0.3 and 0.4). Binary tournament
selection is used in the parents selection process of GA. The solutions are
real value encoded. Single point crossover is used with crossover rate 1.
The mutation operator for the binary variable θ is simply bit-flip. For S,
len and ϕ, the mutation operator samples uniformly within a given
mutation range. For S, the mutation range is [S1,Smax], where Smax is the
maximum section number of the current pipe. For len and ϕ, if the
current solution value is a, the mutation range is [a − 100, a + 100],
while satisfying the usual lower and upper limits of the variable.

For PSO, 9 sets of hyperparameters are generated from 3 population
sizes (34, 51 and 102) and 3 connectivity levels (10%, 50%, and 100%).
For example, if the population size is 34, a 10% connectivity level means
each particle is connected to 3 closest particles (fractional part is trun-
cated). Inertia weight is set to 0.7 and both acceleration coefficients (c1

and c2) are set to 2. The velocity update is not implemented for the grasp
section S and the flip angle θ since they are intrinsically discrete (bi-
nary). These two variables are updated to be the same as their personal
best, global best or keep their original value with probability 0.3, 0.4
and 0.3, respectively.

An additional experiment is performed to compare the performance
of the multi IK evaluation method (Function 1) and single IK counterpart
(implemented by removing the graph search step from Function 1). Both
methods use the same set of hyperparameters (No. 7 in Table 5, except
the number of iterations). The same 3 pipes in Table 3 are tested in this
experiment. However, the stopping condition is different since it is
difficult to determine the optimal solution for the single IK method.
Theoretically, the optimal solution should be the same as the multi IK
method. However, in practice, it almost never finds the same optimal
solution since 1). the single IK method uses a numerical IK solver which
usually only finds the solution closer to the initially provided solution;
2). There are too many possible arm motions for a predefined workspace
object trajectory (for example, imagine there are 10 waypoints, and each
waypoint has 2–4 possible IK solutions, the probability for the IK solver
to generate the exact optimal combination is between 1/210 and 1/410).
Therefore, the stopping condition for both methods is set to be the
completion of 30 search iterations (i.e., 1020 grasp evaluations).

6.2. Results and discussion

6.2.1. Optimal grasp and robot trajectory
The optimal grasp parameters found for each pipe to complete the

given pipe trajectory are listed in Table 6. The trajectory of the robot for
manipulating Pipe1–3 is shown in Fig. 12. It can be found in Table 6 that
the flip angle θ can choose either 0 or 180 for all 3 pipes. This is because
the gripper that used in this paper is symmetric and mounted to be
aligned with the rotation axis of the last joint of the robot. Therefore, θ
can be chosen as either 0 or 180 without affecting the following motion
of the robot.

6.2.2. Comparison amongst different algorithms
For each algorithm (strategy), the best optimisation results for

solving 3 problems are listed in Table 7. It is worth noting that the best
set of hyperparameters is different for different problems. Therefore,
each column in Table 7 is not for a single set of hyperparameters but the
combination of best results from different sets of hyperparameters on

Table 6
Optimal solutions found for each pipe.

S len Φ θ Objective Cost

Pipe1 S4 79 -155 180/0 4.7638
Pipe2 S3 151 -100 180/0 4.1487
Pipe3 S2 96/97 23 180/0 5.7905

Fig. 12. Robot trajectory for manipulating Pipe1–3.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

11

different problems. The results show that by using an appropriate set of
hyperparameters, all 3 BA local search strategies can achieve a 100%
success rate out of 50 tests in finding the optimal solution. However, the
computation speed of each strategy is different. The row named “Grasp
Evaluations” lists the total number of grasps evaluated for solving 3
problems by each strategy. It is clear that Str2 and Str3 require signifi-
cantly fewer grasp evaluations than Str1, which suggests that Str2 and
Str3 should converge much faster than Str1. However, in terms of the
actual running time shown in the next row, Str1 is a lot faster than both
Str2 and Str3. The inconsistency is due to the constraint handling
method used in this work (see Section 4.1). Since Str1 is intrinsically
more stochastic and does not focus on a single section during the local
search, the search efficiency of Str1 is lower than Str2 and Str3, thus it
requires generating a large number of grasps to find the optimal solu-
tion. However, the grasp evaluation process is not required to be fully
performed if the generated grasp is in constraint. Therefore, although
Str1 generates more grasps to be evaluated, most of them can be eval-
uated within a short time. On the other hand, Str2 and Str3 mainly
generate grasps that are close to the feasible grasp, which makes the
generated grasps more likely to be feasible and need to be fully

evaluated. Since evaluating the deformation objective O2 is relatively a
time-consuming operation, Str1 has the advantage in terms of time
consumption even though it generates more grasps. The results of GA
and PSO are listed in the last two columns of Table 7. By using the al-
gorithm setup in Section 6.1, the GA and PSO generally perform not as
good as BA as they cannot achieve a 100% success rate on all three
problems and the time required to finish the optimisation is longer.

The first three columns of Table 8 show the average results of 3
strategies over 9 sets of hyperparameters. Still, Str1 evaluates more
grasps with less time than both Str1 and Str2. In terms of overall success
rate, Str3 achieves the highest success rate. Table 9 lists how many times
each local search strategy fails to find the optimal solution on the in-
dividual problem out of 450 tests (9 configs × 50 tests/config). It can be
found that Str1 is likely to fail on Pipe2 and Str2 is likely to fail on Pipe3,
while Str3 performs more consistently over different problems. The
inconsistency of the algorithm performance is due to the choice of
hyperparameters. More analyses regarding the impact of hyper-
parameters on the performance of the algorithm are presented in the
next section. The average results of GA and PSO over all sets of hyper-
parameters are listed in the last two columns of Table 8. It can be found
that, by using the algorithm setup in Section 6.1, GA and PSO are more
sensitive to the selection of hyperparameters than BA as the success rate
drops significantly compared to the best results in Table 7. The last 2
columns of Table 9 also show that the implemented GA and PSO in this
work perform worse than BA on all tested problems except Pipe2, where
the result of PSO is comparable to BA.

Based on the above analyses, generally, it is recommended to use
Str3 for consistently good performance over different problems. How-
ever, if the computation time is extremely critical, Str1 can be consid-
ered as well.

6.2.3. The impact of the hyperparameters on the performance of the
algorithm

The impact of hyperparameters (i.e., population size and the pro-
portion of global search) on the performance of BA is analysed in this
section.

The size of scout bees
As shown in Table 10, by using a large size of population, all 3

strategies take longer to converge in terms of both the number of
function evaluations and actual running time. In terms of success rate,
Str1 with population size 102 only achieves a 97.7% success rate, which
is obviously worse than others. Generally speaking, a large size of the
population means fewer iterations can be run given a finite number of
grasp evaluations, thus the algorithm cannot update current best solu-
tions timely and reallocate computation resources efficiently, which
leads to longer running time and less success rate. However, if the
strategy lacks stochastics, using a large population size may have some

Table 10
Optimisation results using different population size.

Str1 Str2 Str3

Population size 34 51 102 34 51 102 34 51 102
Grasp Evaluations 1179 1453 2085 976 1137 1462 975 1090 1441
Time (s) 35.0 39.5 48.4 52.4 57.5 62.3 48.9 49.8 55.8
Success Rate 99.5% 99.5% 97.7% 98.4% 98.4% 98.7% 99.5% 99.8% 99.5%

Table 11
Optimisation results using different proportion of global search.

Str1 Str2 Str3

Global Search Proportion 10% 30% 45% 10% 30% 45% 10% 30% 45%

Grasp Evaluations 1503 1546 1668 1180 1208 1186 1212 1112 1178
Time (s) 41.2 40.3 41.6 67.4 56.8 48.0 61.5 47.4 45.3
Success Rate 98.4% 99.3% 99.1% 96.8% 99.6% 99.1% 99.3% 100% 99.6%

Table 7
Optimisation results of the best performed set of hyperparameters for each
strategy.

Str1(BA) Str2(BA) Str3(BA) GA PSO

Grasp Evaluations 1100 845 832 2172 1205
Time (s) 31.4 40.1 37.5 76.49 49.7
Success Rate 100% 100% 100% 93.3% 98%

Table 8
Average optimisation results over 9 sets of hyperparameters for each strategy.

Str1(BA) Str2(BA) Str3(BA) GA PSO

Grasp Evaluations 1572 1192 1168 2699 1891
Time (s) 41 57.4 51.4 92.4 93.2
Success rate 98.9% 98.5% 99.6% 76.8% 81.3%

Table 9
Number of times that the algorithm fails to find global optimal.

Str1(BA) Str2(BA) Str3(BA) GA PSO

Pipe1 0 0 2 46 154
Pipe2 9 2 2 76 7
Pipe3 5 18 1 191 91
Total 14 20 5 313 252

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

12

advantages. As in the case of Str2, using 102 achieves a 98.7% success
rate, which is slightly higher than both 34 and 51. This is because a large
population size ensures that initially the scout bees can cover the search
space as much as possible and avoid early convergence.

The proportion of global search
As shown in Table 11, with the increase of global search proportion,

the number of grasp evaluations for Str2 and Str3 almost stay at the same
level, while Str1 increases steadily. This is because Str1 already has a lot
of stochastics, continuing to increase the proportion of global search
only makes the algorithm need more evaluations to converge. In terms of
actual running time, Str1 is not impacted by the increase of global search
proportion, while Str2 and Str3 run faster. This is due to the same reason
why Str1 is faster than Str2 and Str3 as explained in Section 6.2.2. In
terms of success rate, Str2 with 10% global search performs significantly
worse than others. This is because Str2 does not allow any change of
section during local search and relies heavily on global search to jump
out of the local minimum. It is also interesting to see that the success
rates of all 3 strategies go up when the global search proportion increase
from 10% to 30%, and then drops when the proportion keeps increasing.
This trend indicates that by keep adding more global searches to the
algorithm a negative impact on the success rate may result.

6.2.4. Comparison between multi IK and single IK method
The final result presented is the comparison between the multi IK

grasp evaluation method and the single IK counterpart. The single IK
method has the advantage that it does not need an analytical solver to
generate multiple IK solutions, which is preferable if the robot system is
not standard and does not have available analytical solutions. Although
the details of the single IK grasp evaluation method are not presented in
the paper, it should be easy to implement by slightly modifying the multi
IK method.

As shown in Fig. 13, for all 3 pipes, the multi IK method achieves
significantly lower average objective cost (19.6%, 11.3% and 8.4%
respectively). Besides, the standard errors are also smaller, which means
the results are more consistent. In terms of the running time, multi IK
requires more time to finish for solving Pipe1 and Pipe2 than the single
IK. This is predictable as multi IK has an additional graph search process.
However, it is interesting to see that single IK requires more time for
solving Pipe3 than multi IK. A possible explanation is that the neigh-
bourhood of the solution that single IK converges to may have many
other feasible solutions, which requires a large amount of time to fully

evaluate them. On the contrary, the neighbourhood of the true optimum
that multi IK converges to has fewer feasible solutions, therefore the
method skips the objective function evaluation process, which results in
faster convergence. This result suggests that although multi IK requires
an additional graph search process when evaluating a single grasp pose,
it is not necessarily slower than the single IK method. Therefore, the
multi IK method is preferable whenever a suitable IK solver is available.

7. Conclusion

In this paper, a methodology is developed to optimise the grasp pose
for 3D pipe assembly manipulation. The method can effectively optimise
the grasp pose based on three trajectory-based objectives (joint motion,
deformation of the object and force manipulability) while satisfying
reachability and collision constraint. The grasp evaluation process fea-
tures a decoupled constraint handling method to reduce grasp evalua-
tion time, an AHP method to select the weights for combining multiple
objectives, and a Dijkstra’s Algorithm to find optimal trajectory amongst
all possible IK solutions. The Bees Algorithm is used to solve the con-
strained optimisation problem with a proposed problem-specific local
search strategy. Extensive benchmarks have been performed to evaluate
the performance of 3 local search strategies and 2 other metaheuristics
(GA and PSO). It is found that BA with proposed Str3 is less sensitive to
the hyperparameters and can achieve consistently good performance on
different problems. Besides, the comparison between multi IK and single
IK method proves that by considering multiple IK solutions, the objec-
tive cost can be improved significantly.

The method is intended for manufacturing pipe assemblies in the
Factory-In-A Box (FIAB) scenario to address the limitation of specially
designed end-effector, the compact environment of FIAB and the flexi-
bility of pipe structure. However, it can also be generalised to manipu-
lating other compliant objects that have many grasp candidates with
alternative deformation estimation methods.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Fig. 13. (a) – (c) The average objective costs at each iteration for solving Pipe1 – 3 with multi IK and single IK method for 30 iterations. (d) – (e) The average time
consumption at each iteration for solving Pipe1 – 3 with multi IK and single IK method for 30 iterations.

Z. Zhang and M. Saadat

Robotics and Computer-Integrated Manufacturing 76 (2022) 102326

13

Acknowledgement

The author would like to thank the Manufacturing Technology
Centre (MTC), Coventry, UK, and Innovate UK for supporting this
project through funding and case study.

References

[1] J. Bohg, A. Morales, T. Asfour, D. Kragic, Data-driven grasp synthesis-A survey,
IEEE Trans. Robot. (2014), https://doi.org/10.1109/TRO.2013.2289018.

[2] J.P.C. de Souza, L.F. Rocha, P.M. Oliveira, A.P. Moreira, J. Boaventura-Cunha,
Robotic grasping: from wrench space heuristics to deep learning policies, Robot.
Comput. Integr. Manuf. 71 (2021), 102176, https://doi.org/10.1016/j.
rcim.2021.102176.

[3] A. ten Pas, M. Gualtieri, K. Saenko, R. Platt, Grasp pose detection in point clouds,
Int. J. Rob. Res. (2017), https://doi.org/10.1177/0278364917735594.

[4] S.M. LaValle, Planning algorithms, 2006. https://doi.org/10.1017/
CBO9780511546877.

[5] S.M. LaValle, J.J. Kuffner, Randomized kinodynamic planning, Int. J. Rob. Res.
(2001), https://doi.org/10.1177/02783640122067453.

[6] L.E. Kavraki, P. Švestka, J.C. Latombe, M.H. Overmars, Probabilistic roadmaps for
path planning in high-dimensional configuration spaces, IEEE Trans. Robot.
Autom. (1996), https://doi.org/10.1109/70.508439.

[7] M.B. Horowitz, J.W. Burdick, Combined grasp and manipulation planning as a
trajectory optimization problem, in: Proc. - IEEE Int. Conf. Robot. Autom, 2012,
https://doi.org/10.1109/ICRA.2012.6225104.

[8] N. Vahrenkamp, M. Do, T. Asfour, R. Dillmann, Integrated grasp and motion
planning, in: Proc. - IEEE Int. Conf. Robot. Autom, 2010, https://doi.org/10.1109/
ROBOT.2010.5509377.

[9] T. Pardi, R. Stolkin, A.M.E. Ghalamzan, Choosing Grasps to Enable Collision-Free
Post-Grasp Manipulations, in: IEEE-RAS Int. Conf. Humanoid Robot, 2019, https://
doi.org/10.1109/HUMANOIDS.2018.8625027.

[10] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning,
Int. J. Robot. Res. (2011).

[11] M. Zucker, N. Ratliff, A.D. Dragan, M. Pivtoraiko, M. Klingensmith, C.M. Dellin, J.
A. Bagnell, S.S. Srinivasa, CHOMP: Covariant Hamiltonian optimization for motion
planning, Int. J. Rob. Res. (2013), https://doi.org/10.1177/0278364913488805.

[12] M. Saadat, P. Nan, Industrial applications of automatic manipulation of flexible
materials, Ind. Rob. (2002), https://doi.org/10.1108/01439910210440255.

[13] J. Sanchez, J.A. Corrales, B.C. Bouzgarrou, Y. Mezouar, Robotic manipulation and
sensing of deformable objects in domestic and industrial applications: a survey, Int.
J. Rob. Res. (2018), https://doi.org/10.1177/0278364918779698.

[14] P. Jiménez, Survey on model-based manipulation planning of deformable objects,
Robot. Comput. Integr. Manuf. (2012), https://doi.org/10.1016/j.
rcim.2011.08.002.

[15] W. Wu, Y. Zhu, X. Zheng, Y. Guo, A novel cable-grasping planner for manipulator
based on the operation surface, Robot. Comput. Integr. Manuf. 73 (2022), 102252,
https://doi.org/10.1016/j.rcim.2021.102252.

[16] X. Jiang, Y. Nagaoka, K. Ishii, S. Abiko, T. Tsujita, M. Uchiyama, Robotized
recognition of a wire harness utilizing tracing operation, Robot. Comput. Integr.
Manuf. (2015), https://doi.org/10.1016/j.rcim.2014.12.002.

[17] J. Zhu, B. Navarro, R. Passama, P. Fraisse, A. Crosnier, A. Cherubini, Robotic
manipulation planning for shaping deformable linear objects with environmental
contacts, IEEE Robot. Autom. Lett. (2020), https://doi.org/10.1109/
LRA.2019.2944304.

[18] E. Glorieux, P. Franciosa, D. Ceglarek, Quality and productivity driven trajectory
optimisation for robotic handling of compliant sheet metal parts in multi-press
stamping lines, Robot. Comput. Integr. Manuf. (2019), https://doi.org/10.1016/j.
rcim.2018.10.004.

[19] H. Hoffmann, M. Kohnhäuser, Strategies to optimize the part transport in crossbar
transfer presses, CIRP Ann. - Manuf. Technol. (2002), https://doi.org/10.1016/
S0007-8506(07)61458-9.

[20] E. Glorieux, P. Franciosa, D. Ceglarek, End-effector design optimisation and multi-
robot motion planning for handling compliant parts, Struct. Multidiscip. Optim.
(2018), https://doi.org/10.1007/s00158-017-1798-x.

[21] B. Tipary, G. Erdős, Generic development methodology for flexible robotic pick-
and-place workcells based on Digital Twin, Robot. Comput. Integr. Manuf. (2021)
71, https://doi.org/10.1016/j.rcim.2021.102140.

[22] M. Jackson, M. Wiktorsson, M. Bellgran, Factory-in-a-box — Demonstrating the
next generation manufacturing provider, Manuf. Syst. Technol. New Front. (2008),
https://doi.org/10.1007/978-1-84800-267-8_70.

[23] J. Pan, S. Chitta, D. Manocha, FCL: A general purpose library for collision and
proximity queries, in: 2012 IEEE Int. Conf. Robot. Autom., IEEE, 2012,
pp. 3859–3866, https://doi.org/10.1109/ICRA.2012.6225337.

[24] A.J.M. Ferreira, MATLAB codes for finite element analysis: Solids and structures,
Solid Mech. Appl. (2009).

[25] K. Deb, An efficient constraint handling method for genetic algorithms, Comput.
Methods Appl. Mech. Eng. (2000), https://doi.org/10.1016/S0045-7825(99)
00389-8.

[26] R. Diankov, Automated construction of robotic manipulation programs, 2010.
https://doi.org/isbn 9781124535470.

[27] T.L. Saaty, A scaling method for priorities in hierarchical structures, J. Math.
Psychol. (1977), https://doi.org/10.1016/0022-2496(77)90033-5.

[28] R. Manseur, K.L. Doty, A robot manipulator with 16 real inverse kinematic solution
sets, Int. J. Rob. Res. (1989), https://doi.org/10.1177/027836498900800507.

[29] J. Meyer, Descartes_Planner - ROS Wiki, (n.d.), 2022. http://wiki.ros.org/descarte
s_planner. accessed January 11.

[30] D.T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, M. Zaidi, The Bees
algorithm - a novel tool for complex optimisation problems, in: Intell. Prod. Mach.
Syst. - 2nd I*PROMS Virtual Int. Conf. 3-14, 2006, p. 2006, https://doi.org/
10.1016/B978-008045157-2/50081-X. July.

[31] D. Goldberg, Genetic Algorithms in optimization, Search and Machine Learning,
Addison Wesley, 1988.

[32] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 - Int. Conf.
Neural Networks, IEEE, 1995, pp. 1942–1948, https://doi.org/10.1109/
ICNN.1995.488968.

Z. Zhang and M. Saadat

https://doi.org/10.1109/TRO.2013.2289018
https://doi.org/10.1016/j.rcim.2021.102176
https://doi.org/10.1016/j.rcim.2021.102176
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/ICRA.2012.6225104
https://doi.org/10.1109/ROBOT.2010.5509377
https://doi.org/10.1109/ROBOT.2010.5509377
https://doi.org/10.1109/HUMANOIDS.2018.8625027
https://doi.org/10.1109/HUMANOIDS.2018.8625027
http://refhub.elsevier.com/S0736-5845(22)00015-1/sbref0010
http://refhub.elsevier.com/S0736-5845(22)00015-1/sbref0010
https://doi.org/10.1177/0278364913488805
https://doi.org/10.1108/01439910210440255
https://doi.org/10.1177/0278364918779698
https://doi.org/10.1016/j.rcim.2011.08.002
https://doi.org/10.1016/j.rcim.2011.08.002
https://doi.org/10.1016/j.rcim.2021.102252
https://doi.org/10.1016/j.rcim.2014.12.002
https://doi.org/10.1109/LRA.2019.2944304
https://doi.org/10.1109/LRA.2019.2944304
https://doi.org/10.1016/j.rcim.2018.10.004
https://doi.org/10.1016/j.rcim.2018.10.004
https://doi.org/10.1016/S0007-8506(07)61458-9
https://doi.org/10.1016/S0007-8506(07)61458-9
https://doi.org/10.1007/s00158-017-1798-x
https://doi.org/10.1016/j.rcim.2021.102140
https://doi.org/10.1007/978-1-84800-267-8_70
https://doi.org/10.1109/ICRA.2012.6225337
http://refhub.elsevier.com/S0736-5845(22)00015-1/sbref0024
http://refhub.elsevier.com/S0736-5845(22)00015-1/sbref0024
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1016/0022-2496(77)90033-5
https://doi.org/10.1177/027836498900800507
http://wiki.ros.org/descartes_planner
http://wiki.ros.org/descartes_planner
https://doi.org/10.1016/B978-008045157-2/50081-X
https://doi.org/10.1016/B978-008045157-2/50081-X
http://refhub.elsevier.com/S0736-5845(22)00015-1/sbref0031
http://refhub.elsevier.com/S0736-5845(22)00015-1/sbref0031
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968

	Multi-objective grasp pose optimisation for robotic 3D pipe assembly manipulation
	1 Introduction
	2 Industrial case study
	3 Problem formulation
	3.1 Problem description
	3.2 Abstracted pipe geometry
	3.3 Mathematical modelling
	3.3.1 Optimisation variables
	3.3.2 Optimisation constraints
	3.3.2.1 Reachability constraint (C1)
	3.3.2.2 Collision constraint (C2)

	3.3.3 Optimisation objectives
	3.3.3.1 Joint motion (O1)
	3.3.3.2 Deformation of the pipe (O2)
	3.3.3.3 Force manipulability (O3)

	4 Objective and constraint evaluation
	4.1 Constraint handling method
	4.2 Weights selection for combining multiple objectives
	4.3 Considering multiple IK solutions
	4.4 Overall evaluation process

	5 Optimisation algorithm
	5.1 Original Bees algorithm
	5.2 Local search strategy

	6 Experiment and results
	6.1 Experiment setup
	6.2 Results and discussion
	6.2.1 Optimal grasp and robot trajectory
	6.2.2 Comparison amongst different algorithms
	6.2.3 The impact of the hyperparameters on the performance of the algorithm
	6.2.4 Comparison between multi IK and single IK method

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References

