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Molecular Basis of Hematological Disease Caused by
Inherited or Acquired RUNX1 Mutations

Check for
updates

Sophie G. Kellaway**, Daniel J.L. Coleman®, Peter N. Cockerill’, Manoj Raghavan™", and
Constanze Bonifer®

Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham,
Birmingham, UK; *Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK

The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the
germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin land-
scape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differen-
tiation. However, once blood stem cells are formed, the mutation of the RUNX7 gene is not lethal but can
lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current litera-
ture on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the
structure of the RUNX1 protein itself, and place these changes in the context of what is known about
RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and dis-
cuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells
on the path to malignancy. © 2022 ISEH - Society for Hematology and Stem Cells. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

HIGHLIGHTS

e Germline and acquired RUNX1 mutations are associated with
FPD and MDS/AML.

® | arge deletions and nonsense mutations are more common in
germline FPD patients.

® Missense mutations affecting the transactivation domain are more
commonly acquired.

e Both loss of function and altered function of RUNX1 contribute to
disease.

e Expression and function of many pathogenic RUNX1 proteins
remain elusive.

THE RUNX FAMILY OF TRANSCRIPTION FACTORS

RUNX1 is a DNA-binding transcription factor that binds to the
DNA consensus sequence TGTGGT as a heterodimer with its cofac-
tor core-binding factor subunit 8 (CBFg) (Figure 1). CBFB does not
contact DNA directly, but it is required for efficient binding of
RUNXI [1,21. The RUNX family of RUNT homology domain
(RHD) transcription factors also includes RUNX2 and RUNX3, and
all three RUNX proteins play multiple roles contibuting both to nor-
mal development and to cancer in various tissues [3,4]. RUNXI
was originally termed AMLI1 because it was identified as a fusion
protein with altered function in acute myeloid leukemia (AML) cells
carrying the t(8;21) translocation (RUNXI1/RUNXIT1). This fusion

replaced the transactivation domain (TAD) of RUNXI1 with the
repressive domain of the ETO protein [4]. Dysregulated or mutated
RUNXI is able to contribute to leukemia in many ways whereby
either too much [5] or too little RUNXI, or altered function of
RUNXI, can promote AML [6] or myelodysplastic syndromes
(MDS) [7]. Deregulation of RUNX1 or other RUNX proteins is
also not just a feature of myeloid malignancy. In one study of T
acute lymphoblastic leukemia (T-ALL), mutations of the RUNXI
RHD or TAD were also encountered in 18% of cases [8]. Further-
more, ectopic expression of RUNX2 can promote T-cell lymphoma
and other cancers [3,4], while either loss of RUNX3 or reduced
RUNX3 expression is a feature of gastric cancer [9]. Mutations or
translocations of the RUNX1 and CBFB genes are now widely seen
as major drivers of AML and MDS, and myeloid disorders carrying
RUNXI1 mutations frequently progress to AML. This review focuses
on the molecular impact of different classes of RUNX1 mutations
found either in AML as somatic mutations or in familial platelet dis-
order (FPD) as inherited germline mutations.

RUNX1 COORDINATES BLOOD DEVELOPMENT

Hematopoiesis is the process by which blood cells develop in adults
and during embryogenesis. Hematopoietic stem cells (HSCs) are at
the apex of this process and are capable of self-renewal as well as dif-
ferentiation into multipotential progenitors; these progenitors then
give rise to myeloid, lymphoid, and erythroid cells. This complex pro-
cess is carefully orchestrated by a number of transcription factors that
control cell type-specific gene expression. When hematopoiesis is
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Figure 1 X-Ray crystal structure of the RUNT Homology domain
(residues 50—177 of RUNX1b, residues 77—204 of RUNX1c) in
association with the heterodimerization domain of CBFg (resi-
dues 1—135) bound to DNA containing the RUNX1 consensus
binding sequence TGTGGT. This model is based on structural
data from Bravo et al. [1] and has been adapted, with permis-
sion, from Bowers et al. [10]. CBF g=core-binding factor subunit
B; FPD=familial platelet disorder.

perturbed by mutation of these transcription factors, hematological
disorders such as leukemia can develop. During embryonic hemato-
poietic development, the transcription factor RUNX1 is required for
the process of endothelial-hematopoietic transition (EHT), which
forms blood progenitors [11,12]. Thereafter, RUNX1 is involved in
terminal blood development across multiple lineages. Experiments
with conditional RUNX1 knockout mice have found that in adults,
RUNXT1 is required for maturation of megakaryocytes and lymphoid
cells and for balanced myeloid differentiation [13,14]. However,
RUNX1 does not act alone. The RUNXI1 protein contains multiple
regions that interact with other proteins to coordinate lineage-specific
transcriptional events, and as such, it has been named a master
hematopoietic regulator [13,15—191. The interactions of RUNXI
with other transcription factors are cell type dependent, as is the bind-
ing pattern of RUNX1 within the genome; thus, RUNXI1 regulates
multiple cell fates. For example, RUNXI1 activates the expression of
CEBPA and PU.1, but then also interacts with these two transcription
factors to drive myelopoiesis [18,20—221.

Three isoforms of RUNX1 are expressed: the longest isoform is
RUNXIc, RUNX1b has a shorter N-terminus and is expressed from
an alternate promoter to RUNX1c, and RUNXIa is missing a large
portion of the C-terminus. RUNXIc¢ is expressed primarily in adult

Experimental Hematology
July 2022

blood cells, whereas RUNX1a and RUNX1b expression is primarily
during development, with RUNX1b also coordinating adult megakar-
yocyte/erythroid differentiation [23,241.

RUNX1 MUTATION IN HEMATOLOGICAL DISORDERS

RUNX1 mutations are involved in a variety of hematological disor-
ders, most notably somatic mutations in AML/myelodysplastic syn-
drome (MDS) and germline in FPD, which may then lead to AML/
MDS or other malignancies [25].

The presentation of FPD is very variable. Some patients present in
early childhood with thrombocytopenia, but many others present
much later in life, even into their fifties or sixties [26]. They may have
loss of chromosome 7 or del(7q) even in the absence of transforma-
tion to AML/MDS. Most patients have platelet dysfunction, but there
is considerable variation between and within families in the propen-
sity to transform to AML/MDS [26—-28].

RUNXI-mutated AML is a highly heterogeneous set of myeloid
neoplasms [29—311, many of which have their initial phenotype as
MDS. The presentation can be as de novo MDS at any stage from
single-lineage dysplasia to excess blasts, but the prognosis is frequently
poor. This heterogeneity and poor prognosis are also reflected in the
presence of RUNXI mutations in therapy-related myeloid neo-
plasms. The World Health Organization has provisionally classified
AML with mutated RUNXI1 as a separate entity, where it occurs in
the absence of dysplasia; they note the poor prognosis of this group
in a number of studies [32]. Additionally, RUNX1 mutations are
found less frequently in MDS/myeloproliferative neoplasms (MDS/
MPN) particularly in chronic myelomonocytic leukemia. Occasionally
patients may present with acute lymphoblastic leukemia (ALL), of T-
cell and less frequently B-cell phenotypes [33]. RUNXT mutations
typically co-occur with mutations in genes involved in signaling, RNA
splicing, or epigenetic modifications.

STRUCTURE, FUNCTION, AND LOCALIZATION OF
RUNX1

RUNXI1 protein function can be broadly divided into DNA binding
and co-factor interactions. RUNX1 contains the RHD, a DNA bind-
ing region, which also mediates interactions with its obligate partner
CBEFB, illustrated in Figure 1 [34,351. CBFg significantly enhances the
stability and DNA binding capacity of RUNX1 by altering its confor-
mation when the two proteins are partnered, and is itself commonly
mutated in hematological malignancies [2]. The RHD forms an
immunoglobulin fold that interacts with DNA directly via loops at
either end of the fold [36,371. Within the RHD, 33 amino acids are
predicted to be in contact with CBFgB, with amino acids 136, 140,
176, 186, and 188 found to be specifically required for this contact
[35,38]. Fewer amino acids are thought to be directly in contact with
DNA, but targeted mutations within amino acids 72, 107, 108, 110,
169, 171, 198, 201, and 204 disrupt DNA binding [38—411.

RUNXI1 alone is a weak activator of transcription, and it typically
functions within multimeric complexes containing other transcription
factors controlling the activities of promoters and enhancers. RUNX1
can be found bound to genes in the presence of either activating or
repressive chromatin regulators and other transcription factors. While
the RUNXI TAD recruits co-activators, the C-terminus of the
RUNXIb and RUNXIc proteins contains a “VWRPY” domain, a
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conserved sequence that allows interactions with Groucho/TLE pro-
teins mediating repression of transcription [42].

Many proteins are known to interact with RUNXT1 directly or indi-
rectly, including other transcription factors such as SCL, GATA2, and
FLIT [15,18,43,44]1 and chromatin modifiers such as p300 and
mSin3a [17,45—471. Initially, the activation domain was presumed to
be concentrated within the region of the protein unique to RUNX1b
and RUNX ¢ because of the increased ability of RUNX1b compared
with RUNX1a to activate transcription of myeloid genes [48,491.
Functional deletion studies have indicated roles for some of the resi-
dues within this region, but not all, with the region between 291 and
371 amino acids having the highest transactivation potential and
being involved in regulating the cell cycle [43,501. Interaction with
the transcriptional activator p300 occurs between amino acids 178
and 294 [45], whereas the amino acids following 371 are involved in
reduced transcriptional activation of myeloid genes and so are consid-
ered inhibitory [501.

As a transcription factor, RUNXI is located predominately in the
nucleus. The protein contains both a nuclear localization signal (NLS)
at the end of the RHD at amino acids 194—210 and a nuclear matrix
targeting signal (NMTS) within the transactivation domain [51,52].
Within the nucleus, RUNXT1 binds to DNA to control gene transcrip-
tion and may act as a scaffolding protein within the nucleus to orga-
nize chromatin [53].

POSTTRANSLATIONAL MODIFICATION OF RUNX1
PROTEIN

The functionality and stability of the RUNX1 protein are modulated
through multiple post-translational modifications occurring through-
out the regions of the protein. These include moieties that can be
phosphorylated, acetylated, methylated, or ubiquitinated to alter
RUNXI activity.

Phosphorylation of serine and threonine residues in RUNXI1 is the
primary mechanism by which RUNX1 function is altered by protein
—protein interactions and signaling. RUNX1 is phosphorylated by mul-
tiple signaling molecules. The interaction between RUNX1 and CBFS
promotes phosphorylation of RUNXI1 at Ser276 and Thr300/Ser303
in the C-terminus of the protein by HIPK2 [54]. Phosphorylation of
these residues promotes phosphorylation of the associated histone ace-
tyltransferase p300, also by HIPK2, which plays a major role in upregu-
lating RUNXT1 target gene expression. Interestingly, the oncogenic
CBFB/SMMHC mutation prevents this phosphorylation of RUNX1
through sequestration of HIPK2 by the fusion protein [541.

The product of the proto-oncogene PIM1 has also been reported
to phosphorylate RUNXT1 at multiple target sites, leading to increased
transactivation of RUNXI1 target genes [55]. RUNXI activity is also
modulated by cyclin-dependent kinases (CDKs). CDK 1/2/6 phos-
phorylate RUNXT1 at Ser276 and Ser303 to mediate RUNX1 ubiqui-
tination and degradation [56]. Conversely, CDK1/6 can reduce the
interaction of RUNX1 with HDAC1/3 through phosphorylation of
Ser48, Ser303, and Ser424, resulting in enhanced activation of bone
marrow progenitor differentiation [57,58].

ERK, a key member of the RAS/MAPK pathway, phosphorylates
RUNXI1 at Ser276 and Ser293, which has been found to enhance the
transcriptional activation capacity of RUNXI1 in fibroblasts [59] as it
disrupts the interaction of RUNX1 with the corepressor SIN3A, stimu-
lating transcription of RUNXI targets [60]l. ERK-mediated
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phosphorylation of RUNXI1 has also been described at moieties
Ser303, Ser462, and Thr300 in the RUNX1 C-terminus. This action of
the RAS/MAPK signaling pathway on RUNX1 may explain the impor-
tance of RUNX1 in maintaining the transcriptome in FLT3-[TD-mutated
AML, which has constitutively activated signaling through RAS/MAPK
[61]. However, there have also been reports of direct action of FLT3-
ITD on RUNXI1, where the mutated protein causes phosphorylation of
Tyr402, Tyr405, Tyr406, and Tyr413 in the inhibitory domain of
RUNX1, which stabilizes the protein, leading to intracellular accumula-
tion; this, in turn, is critical for the onset of AML in cells with FLT3-ITD
[5]. Conversely, phosphorylation of tyrosine residues 281, 285, 287,
403, 406, 407, and 414 by SRC family kinases alter the protein—protein
interactions of RUNX1 with GATA1 and the SWI/SNF chromatin
remodeler complex to negatively regulate RUNX1 activity in CD8 T-cell
differentiation and megakaryocyte maturation [62].

Acetylation and methylation also modulate RUNXI activity.
RUNX1 DNA binding activity is augmented by p300 by acetylation
of Lys51 and Lys70, although the effect on transcription activation of
RUNX1 targets is relatively small [63]. PRMT1 methylates multiple
arginine residues in RUNXI1 such as Arg233 and Arg237, which dis-
associates RUNX1 and the corepressor SIN3A, leading to increased
transcription of RUNX1 targets [64]. PRMT4 methylates RUNX1 at
Arg250, which promotes the assembly of the repressive DPF2 com-
plex, which inhibits expression of miR-233 and therefore differentia-
tion of CD34™* cord blood cells [65].

The RUNXI1 protein contains multiple lysine residues, which are
the target of ubiquitin ligases, including Lys51, Lys70, Lys110, Lys117,
Lys152, Lys171, Lys194, Lys209, and Lys215 [66]. These moieties
cluster around the RHD of the protein and are protected from ubig-
uitination when RUNX1 is bound by CBFg, MLL, and H3K methyl-
transferases (671, increasing the stability of the protein when it forms
a complex.

RUNX1 AND CELLULAR SIGNALING

The interactions between RUNXI1 and various signaling pathways
have been investigated in multiple studies addressing the relationships
between chronic signaling and RUNX1 depletion in FPD and AML/
MDS. Although it has previously been reported that RUNX1 expres-
sion can be regulated by the RAS/MAPK pathway [5,61,68],
RUNXI1 has also been described as directly regulating signaling cas-
cades and being regulated by signaling in a post-translational manner.
The STAT3 signaling cascade, which is activated by colony-stimulating
factor granulocyte (G-CSP), is negatively regulated by RUNXI by
two mechanisms [69]. First, the RUNX1 target PIAS1 negatively reg-
ulates phosphorylation of STAT3, and mutations in RUNXI reduce
the expression of this protein, leading to an increase in STAT3 phos-
phorylation. Second, the RUNXI1 protein physically interacts with
STAT3 through the RHD, which attenuates phosphorylation of
STAT3. It is possible that similar mechanisms of interaction between
RUNXI1 and signaling proteins are responsible for the inhibitory
effect of RUNX1 on JNK phosphorylation [70], although this mecha-
nism has not been thoroughly investigated.

Regions of homology between different RUNX family members
can also indicate potential interactions of RUNXI1 with other signal-
ing pathways, such as the PY motif, which is conserved in all RUNX
family members has been found to interact with YAP1, a member of
the Hippo signaling pathway. Recruitment of YAP1 to RUNX-bound
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Figure 2 Diagram of the location and type of 88 reported FPD-causing mutations (above the lines) and 189 AML-causing mutations

(below the lines), aligned with the three main isoforms of RUNX1,

known functional protein domains, and posttranslational modifica-

tions. Amino acid numbers are listed according to the RUNX1c isoform. Where mutations coincide with posttranslational modifica-
tion, this is indicated by a vertical line. Multiple recorded mutations at the same location are shown with additional vertically stacked
squares. AML=acute myeloid leukemia; FPD=familial platelet disorder.

promotors enhances transcription, resulting in Hippo signaling induc-
ing RUNX target genes [71,721.

RUNX1 therefore has numerous links to signaling pathways within
the cell, and its activity is strongly regulated by the related post-trans-
lational modifications.

HOW DO RUNX1 MUTATIONS LEAD TO DISEASE?

The wide variety of RUNX1 mutations seen in myeloid malignancies,
as well as the potentially differing impact when they occur somatically
or in the germline, provides a unique challenge in resolving how they
contribute to disease. RUNXI is involved in multiple aspects of hema-
tological development, which makes it challenging to elucidate pre-
cisely how different RUNX1 mutations contribute to hematological
disorders. The effect of RUNX1 mutations can be broadly divided into
either haploinsufficiency or dominant negative gain of function pheno-
types. The predisposition and transformation to AML seen in FPD
families is particulary poorly understood. It is known that FPD is associ-
ated with platelet maturation associated with inappropriate CD34
expression, as well as misregulation of other RUNXI target
genes including NFE2, but this also varies between individual muta-
tions [73—771. To gain insights into the relationship between RUNX1
structure and function, we have collated available mutational data
from 101 reported cases of FPD, with or without coinciding AML,
where pedigrees were reported or germline transmission is confirmed
[26—28,73—76,78—105] (Raghavan, unpublished). We have com-
pared these data with 196 reported cases of AML with mutated
RUNX1 without a reported history of FPD, from several sources, while
avoiding duplicate reports on the same patient [29,30,81,94,102,

105—108]1 (Raghavan, unpublished). The point mutations (88 FPD,
189 AML) have been plotted onto the RUNX ¢ protein structure in
Figure 2. In line with previous summaries, we see the majority of muta-
tions are confined to the RHD: 54 of 88 in FPD and 144 of 196 in
AML. Outside of the RHD, most alterations are frameshift mutations,
but missense and nonsense mutations have also been recorded.

Large deletions of the RUNX1 gene have been reported in nine
cases of FPD and lead to haploinsufficiency; beyond this, the muta-
tional landscape is more complex. If inherited mutations would all
simply lead to haploinsufficiency, consistent phenotypes and a dis-
turbance of blood development would be expected [109,110],
which is not in keeping with the heterogeneity observed in RUNX1-
mutated hematological disorders. Typically, frameshift mutations,
particularly those at the beginning of the gene, are considered to be
null alleles, but real experimental evidence for this statement is lim-
ited, which we discuss in the following. Similarly, mutations leading
to truncated proteins could lead to a loss of functional domains and
haploinsufficiency, but could equally be subjected to nonsense-
mediated decay of their mRNAs or simply become unstable. Mis-
sense mutations equally could either be rendered nonfunctional or
gain a dominant negative function. Simon et al. [111] suggest a differ-
ing gene signature resulting from both nonsense and frameshift
mutations, as opposed to missense mutations, supporting the idea
that these proteins are not all simply nonfunctional. Interestingly, the
dominant class of mutations varies between the inherited FPD-caus-
ing mutations and the sporadic AML-causing mutations (Figure 3),
with large deletions, splicing defects, and nonsense mutations occur-
ring roughly twice as often in FPD compared with AML. This fact
may indicate that haploinsufficiency of RUNXI1 causes FPD more
readily than AML.
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Figure 3 Percentage of each type of mutation reported in Figure 2, with the addition of large deletions, splicing defects, and in-frame
insertions/deletions. AML=acute myeloid leukemia; FPD=familial platelet disorder.

HOTSPOT LOCATIONS FOR MUTATIONS

Several amino acids are subject to recurrent mutations in both FPD
and AML, such as those at positions 166, 201, and 204. Mutations at
these locations were some of the first reported [101], and it is unclear
whether these are the most common mutations or are screened for
more. Two genomic locations are subject to recurrent mutation in
AML only, leading to alterations in amino acids 107 and 141. To our
surprise we found several recurrent hotspots for frameshift mutations
in FPD—at least three cases were found with frameshift mutations
from amino acids 289 and 335, with an additional five frameshift
and two nonsense mutations in the region between amino acids 319
and 334. In AML, three frameshift mutations were seen beginning at
amino acids 169 in the RHD and 346. Few mutations coincided with
amino acids subjected to posttranslational modification with the
exception of amino acids 110, 117, and 171, which are all ubiquiti-
nated and have five missense mutations and one frameshift recorded,
driving both FPD and AML.

EXPRESSION OF MUTANT PROTEINS IN MODEL
SYSTEMS

To correctly understand the behavior of these mutations, we must
first know whether the altered proteins can be stably produced.
Because of the wide variety of mutations and limited availability of
antibodies to probe them, studies on protein expression are generally
confined to model systems. Missense mutations would all generally
be expected to be produced. However, nonsense and frameshift
mutated proteins can be subject to degradation, effectively being null
alleles. The variant proteins that have been detected, or have been
experimentally confirmed as not detected, and the models used are
outlined in Table 1—both nonsense and frameshift proteins have
been assayed, with stable proteins produced. Of note, Matheny et al.
[41] could not detect the R204X mutant in the thymocytes of 6-
week-old mice, either because the protein was degraded (e.g., by
nonsense-mediated decay) or because cells containing it were not

viable. To our knowledge, the presence of only one mutated protein,
L. 472fsX 123, has been confirmed in patient-derived cells [93]; one
has been confirmed as not expressed, albeit in myeloproliferative
neoplasm patient cells [112]. As the expression of mutated proteins
could be an artifact of the expression model systems used, proof of
protein expression in patient-derived blood cells would be highly
informative.

The model systems used have their own advantages and disad-
vantages. NIH3T3, HEK293T, REF52, and COS-7 cells are easy to
stably express proteins in but do not express endogenous RUNX1
or other myeloid transcription factors; therefore, physiological func-
tions in a context where these proteins are present cannot be stud-
ied. Mouse models expressing mutant proteins in the germline
allow for a native environment to study FPD-causing proteins; how-
ever, particularly for AML-causing mutations, mutant protein
expression could be incompatible with development because of
blocking of the EHT. Mouse and human pluripotent stem cell differ-
entiation models circumvent this issue and allow the mutant pro-
teins to be induced either before or after the developmental crux
point of EHT [113—116], but do not produce adult-type blood cells.
Validation of key findings in patient-derived primary cells would
therefore be important.

If we assume that results from model systems are applicable to
native patient blood cells, the next questions are what functions the
mutated proteins retain and how their normal function is altered.
Because of the complexity of RUNXI1 functions and interactions, this
is again challenging to investigate in the context of such a wide range
of mutations [1171].

DISRUPTION OF RUNX1 ACTIVITY BY MUTATION

RUNX1 is normally localized to the nucleus, but when the NLS is
partially or completely absent, as is the case in a number of FPD and
AML mutations, the RUNXT protein is located at least partially in the
cytoplasm. Some point mutations also result in disrupted intracellular
localization caused by changes in polarity of the protein [84], while
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Table 1 Known RUNX1 mutations where translated proteins have or have not been detected and how they were detected

Mutation Model Assay
S141X REF52 [107] Immunofluorescence
R166X HEK293T [75] Immunofluorescence, Western blot
R201X NIH3T3 [84] Immunofluorescence
R204X REF52 [107] Immunofluorescence
COS-7 [41] Western blot
mESC-derived hematopoietic progenitors [116] Immunofluorescence, Western blot Immunofluorescence
NIH3T3 [84]
S388X HEK293T [87] Western blot
C72insfs111X REF52 [107] Immunofluorescence
K117fsX101 NIH3T3 [84] Immunofluorescence
R162fsX177 NIH3T3 [84] Immunofluorescence
L472fsX123 Patient-derived PBSCs [93] Western blot
H85N REF52 [107] Immunofluorescence
W106R HEK293T [117] Western blot
R107C REF52 [107] Immunofluorescence
K110N REF52 [107] Immunofluorescence
NIH3T3 [84] Immunofluorescence
K110E NIH3T3 [84] Immunofluorescence
HEK293T [117] Western blot
R166Q NIH3T3 [84] Immunofluorescence
HEK293T [117] Western blot
K194N HEK293T [102,117] Western blot
R201Q NIH3T3 [84] Immunofluorescence
COS-7 [41] Western blot
HEK293T [75,117] Immunofluorescence, Western blot
mESC-derived hematopoietic progenitors [116] Immunofluorescence, Western blot
R204Q REF52 [107] Immunofluorescence
NIH3T3 [84] Immunofluorescence
R204X Mouse [41] Western blot—not detected
R230X Patient-derived blood and bone marrow [112] RT-PCR, mutation-specific primers—not detected

RT-PCR=reverse transcription polymerase chain reaction.

disruption to the NMTS prevents intranuclear targeting, which
impairs RUNX1-driven roles in hematopoietic differentiation [118].
Correct localization to the nucleus is therefore essential for RUNX1
function, including the ability to bind DNA; therefore, aberrant locali-
zation is one way in which mutations contribute to RUNX1-driven
disease.

Many RUNX1 mutations do not disrupt nuclear localization, but
instead disrupt the function of the RUNXI protein within the
nucleus. RUNX1 directly binds DNA, which is significantly enhanced
by interaction with CBFB No mutations were recorded in either FPD
or AML at any amino acids associated with CBFg interaction, with
the exception of a single frameshift starting from amino acid 136
seen in AML [35,38]. However, mutations have been observed in
both FPD and AML at many, but not all, amino acids thought to be
involved in direct DNA contact [38,40]l—amino acids 107, 110, 169,
171, 198, and 201 (see Figure 2)—and these are some of the most
recurrent mutations detected.

Mutations in both FPD and AML also coincide with several ubiqg-
uitination sites, at amino acids 110, 117, 171, and 194 within the RHD
(Figure 2), which may have an impact on the stability of the RUNX1
protein and the other functions of the RHD [66]. Notably, two of
the residues subject to ubiquitination, lysines 51 and 70, are also the
targets of acetylation, but no mutations were observed at these sites.

Mutations in the RUNX1 protein can also lead to altered signaling.
The Leu56Ser missense variant of RUNX1 has a mutant allele fre-
quency of 0.012 in the general population and may be associated
with a RUNX I-related disorder [119], which impairs platelet function.
Homozygous Leu56Ser mice develop thrombocytopenia as a result
of a deficiency in PKC signaling, which appears to be due to post-
translational mechanisms as no change in protein kinase o (PKCa) or
protein kinase 8 (PKCB) mRNA levels was observed [119]. However,
whether this is an effect of a direct protein—protein interaction of
RUNX1 with PKC signaling proteins or of altered expression of an
inhibitory protein within the pathway is currently unknown. When
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RUNXI1 carries FPD-associated mutations such as R201Q and
Y287X, attenuation of STAT3 phosphorylation caused by RUNXI
—STAT3 interaction no longer occurs [69], indicating that although
the Runt domain of RUNXI1 is necessary for the protein to interact
with STAT3, the carboxyl terminus is required to inhibit STAT3 phos-
phorylation. While few mutations are observed at sites of posttransla-
tional modification, the question remains whether chronic signaling
and inflammation contribute to the transition from FPD to AML.

The mutational spectrum beyond the RHD is less clear. As men-
tioned previously, mutations in the TAD are far less recurrent than in
the RHD—interactions may be mediated by broader ranges of the
protein than are required for DNA binding. It is therefore unclear
exactly what contribution mutations within the TAD lead to the
development of disease, particularly in the case of the missense muta-
tions reported in AML, which are R207P, R250C, N260K, M267],
G387A, and L472P. Studies to identify the roles of the transactivation
domains have deleted large regions rather than specific amino acids
and looked at general phenotypes such as transcriptional activity
[45,461.

No mutations were recorded in the VWRPY domain as illustrated
in Figure 2; therefore, blocking transcriptional repression of the
RUNXI1 complex seemingly does not lead to myeloid malignancy.
Indeed, evidence points to this domain being more important in the
lymphoid lineages [16]. A large number of mutations are found in
both FPD and AML scattered throughout the TAD, including the sec-
tion between AML1a and the TAD identified by Kanno et al. [50]
which is a highly phosphorylation prone amino acid sequence. Non-
sense and frameshift mutations were observed at and around residues
known to be phosphorylated, suggesting an importance to this region
that has not been fully explored.

The majority of nonsense mutations in both FPD and AML are
within or at the end of the RHD, thereby eliminating the entire TAD
but preserving DNA binding activity, presuming these proteins are
produced and able to bind. Differences in histone acetylation were
seen in mouse embryonic stem cell—derived progenitors expressing
the R204X protein, which is truncated from the last amino acid of
the RHD, but changes were modest and did not have an immediate
impact on gene expression [ 116]. This result is likely due to the limited
quantity of these proteins, which reach the nucleus because of a dis-
rupted NLS [84,107,116]. Loss of the TAD may therefore confer a
mild dominant negative phenotype because of expression of a pro-
tein with limited DNA binding capacity capable of variable interac-
tion with chromatin modifiers or transcription factor complexes. The
cofactor interactions retained would be dependent on the exact loca-
tion of the truncation, which would account for some of the hetero-
geneity seen within disease presentation.

IMPACT OF RUNX1 MUTATIONS ON THE CHROMATIN
LANDSCAPE

As outlined, most mutant RUNXT1 proteins occur in a heterozygous
genetic background in which the wild-type protein is still present.
Moreover, the presence of the latter is required for the survival of
cells carrying at least some of these mutants, indicating a fine balance
between normal and mutant proteins that will have to be played out
at the level of the genome [120]. However, only a handful of experi-
ments have studied in detail how different types of RUNXI
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mutations causing both AML and FPD affect the chromatin binding
activity of wtRUNX1 and the expression of its target genes.

A number of studies used human and mouse ES systems
expressing inducible versions of RUNXI fusion proteins such as
RUNXI-ETO and RUNXI-EVI in progenitors differentiated from
such cells. This system was previously used to illustrate that
RUNXT1 is essential for the EHT [11] and that the induction of
RUNXI1 leads to a profound reorganization of the chromatin
landscape, with RUNXI1 orchestrating the binding of multiple
other transcription factors to gain access to DNA [19,121]. These
data confirmed the mouse studies indicating that the expression
of these proteins is incompatible with the EHT [114—116,122]
and disrupt the earliest instructions for the differentiation trajec-
tory of hematopoietic progenitors. Once expressed in already
formed progenitors, both fusion proteins interfere with the bind-
ing of wild-type RUNXI, alter chromatin, and lead to the estab-
lishment of a preleukemic state with enhanced self-renewal and a
skewed differentiation trajectory. However, gene expression
changes and alterations in the open chromatin landscape, as well
as RUNXI1 binding, differed between the two oncoproteins.

Kellaway et al. [116] also studied two RUNXI1 point mutants. One
(R204X) is a truncated protein that lacks the activation domain and
is associated mainly with AML,; the other (R201Q) is associated with
FPD and is unable to bind to DNA because of a point mutation.
Both proteins contained an HA tag, which allowed us to examine
their own DNA binding activities as well. Consistent with the fact
that these mutants run in families, the EHT was not affected when
mutant proteins were induced before the EHT and progenitors could
be formed. When induced in these cells, the R204X protein caused
no changes in RUNX1 binding but altered the chromatin landscape,
including histone acetylation, and caused a defect in priming chroma-
tin toward the production of common myeloid progenitors. The
R201Q protein had the most drastic effect of all tested mutants: Its
induction led to a drastic reduction in global endogenous RUNX1
chromatin binding by sequestering CBFS. The result of RUNX1 inac-
tivation is a defect in setting up chromatin for multilineage differentia-
tion, with the most severe defect in the megakaryocyte lineage,
which is in keeping with the FPD phenotype. Importantly, none of
the mutant proteins was capable of stable chromatin binding itself as
they were undetectable in chromatin immunoprecipitation assays,
pointing to gene regulation and chromatin remodeling by RUNX1
being highly dynamic and dependent on the cooperation with other
factors. These results are consistent with the idea that the finely bal-
anced interactions that are at the heart of cell fate decisions are dis-
turbed in the presence of aberrant RUNXI1 proteins. Over time, and
in response to other defects, this disturbance progresses and cell dif-
ferentiation and cellular function go astray. It is highly likely that other
mutant RUNXI1 proteins described wield a similar deregulatory influ-
ence in individuals carrying such mutations. It is also likely that each
class of mutation will have a slightly different biochemical phenotype
and reprogram the epigenome in different ways, leading to different
disease phenotypes.

CONCLUSIONS AND OUTLOOK

In summary, despite numerous studies in various model systems, it is
still unclear precisely how most RUNX1 mutations contribute to dis-
ease. Heterogeneity in RUNXI-driven AML is not accounted for
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Figure 4 Summary of the different classes of mutations overrepresented in FPD or AML and how these may differentially contribute
to disease. AML=acute myeloid leukemia; EHT=endothelial-to-hematopoietic transition; FPD=familial platelet disorder; MDS=myelo-
dysplastic syndromes; RHD=Runt homology domain; TAD=transactivation domain; WT=wild type.

solely by haploinsufficiency of RUNXT1 or by co-occurring mutations.
We have also identified several mutational hotspots that are specific
to either FPD or AML or have a greater proportion of one mutation
type in one disease. The altered bias of mutation type between FPD
and AML is summarized in Figure 4, along with the likely molecular
contribution of this type of mutation to disease. Going forward it will
be essential to determine which proteins are expressed in patient
cells. Interactions of RUNX 1 with other proteins such as transcription
factors and chromatin modifiers must also be considered, not just
DNA binding capacity, requiring studies in physiologically relevant
models.

A key aim for researchers and clinicians working on FPD is to pre-
vent the transformation to AML. This task requires a clear under-
standing of the mechanism of why this predisposition exists and how
transformation takes place. Krutein et al. [123] recently suggested
inhibition of RUNX1 degradation as a potential therapy, which they
found to be partially effective in an iPSC model containing RUNX,
with a splicing defect resulting in a frameshift and early termination.
However, this study also did not determine whether this mutation
produced a protein—any protein produced would be truncated
without the transactivation domain [123]. Similarly, overexpression
of wild-type RUNXI partially rescues erythroid and megakaryocyte
differentiation defects caused by point mutation in the RHD [124].
Restoration of RUNX1 could therefore be useful in cases where the
mutation does lead to true haploinsufficiency, to increase RUNXI
from the wild-type allele, but as discussed it is unclear to what extent
this is the underlying cause in all cases of FPD. Any rescue strategy
will be complicated by the fact that actions of RUNX1 appear to be
extremely dosage dependent in ways that have not been fully

elucidated [125]; hence only partial rescues have been determined.
The recent establishment of a database to collate RUNX1 mutations
in FPD will undoubtedly accelerate understanding of the heterogene-
ity and function of these mutations and inform future research to pre-
vent transformation into AML [33].

In AML caused by mutated RUNX1, Mill et al. [120] determined
that knockdown of RUNXI induced apoptosis and improved sur-
vival of RUNXI-mutated AML-engrafted mice. Sensitivity to BET
inhibitors associated with reduction in RUNX1 expression was also
seen with RUNXI-mutated AML cells [126]. With the advent of
drugs to target RUNXI1 binding this could offer a specific treatment
avenue for RUNXI-mutated AML [127]. We therefore need to
resolve how RUNX1 must be modulated in the context of both FPD
and AML, with a consideration for the type of mutation, whether a
nonfunctional or dominant negative RUNXI1 protein is produced
and how this therefore affects the various functions of RUNX1.
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