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a b s t r a c t

In this paper, we focus on the analysis of the regularized Wasserstein barycenter
problem. We provide uniqueness and a characterization of the barycenter for two
important classes of probability measures, each regularized by a particular entropy
functional: (i) Gaussian distributions and (ii) q-Gaussian distributions. We propose an
algorithm based on gradient projection method (GPM) in the space of matrices in order
to compute these regularized barycenters. Finally, we numerically show the influence of
parameters and stability of the algorithm under small perturbation of data and compare
the gradient projection method with Riemannian gradient method.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Regularization of barycenters in the Wasserstein space

In this paper we are interested in the regularization of barycenters in the Wasserstein space, which is a minimization
roblem of the form

min
µ∈P2(Rd)

n∑
i=1

1
2
λiW 2

2 (µ,µi) + γ F (µ), (1.1)

where P2(Rd) is the Wasserstein space of probability measures on Rd with finite second moments; {µi}
n
i=1 are n given

probability measures in P2(Rd); W2 is the L2-Wasserstein distance between two probability measures in P2(Rd) (cf.
ection 2), and F : P2(Rd) → R is an entropy functional. Finally γ ≥ 0 is a given regularization parameter; λ1, . . . , λn are
iven non-negative numbers (weights) satisfying

∑n
i=1 λi = 1.

.2. Literature review

Problem (1.1) for γ = 0 has been studied intensively in the literature. It was first studied by Knott and Smith [1]
or Gaussian measures. In [2], Agueh and Carlier studied the general case proving, among other things, the existence and
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uniqueness of a minimizer provided that one of µi’s vanishes on small sets (i.e. sets whose Hausdorff dimension is at most
− 1). Examples of such measures include those that are absolutely continuous with respect to the Lebesgue measure.
he minimizer is called the barycenter of the measures µi with weights λi extending a classical characterization of the
uclidean barycenter. The article [2] has sparked off many research activities from both theoretical and computational
spects over the last years. Wasserstein barycenters in different settings, such as over compact Riemannian manifolds [3]
nd over discrete data [4] have been investigated. In the compact Riemannian setting, the condition to vanish on small
ets ensuring uniqueness is replaced by absolute continuity with respect to the volume measure [3]. However, in the
iscrete setting, the uniqueness and absolute continuity of the barycenter is lost [4]. Connections between Wasserstein
arycenters and optimal transports have been explored [5,6]. Several computational methods for the computation of the
arycenter have been developed [7–10]. Recently Wasserstein barycenters has found many applications in statistics, image
rocessing and machine learning [11–13]. We refer the reader to the mentioned papers and references therein for a more
etailed account of the topic.
The case γ > 0 has been studied in recent papers [14,15] where the existence, uniqueness and stability of a minimizer,

hich is called the regularized barycenter, has been established. In particular, [14] shows that if the regularizing function is
proper and lower semicontinuous function (for the Wasserstein distance) and is strictly convex on its domain, then there
xists a unique regularized barycenter even in the case of discrete measures. In addition, the regularization parameter γ
as proved to provide smooth barycenters especially when the input probability measures are irregular which is useful

or data analysis [16,17]. In addition, the regularized barycenter problem also resembles the discretization formulation
f Wasserstein gradient flows for dissipative evolution equations [18–20] and the fractional heat equation [21] at a
iven time step where {µi} represent discretized solutions at the previous steps and γ is proportional to the time-step
arameter.
Gaussian measures play an important role in the study of Wasserstein barycenter problem since in this case a useful

haracterization of the barycenter exists [2,22] which gives rise to efficient computational algorithms such as the fixed
oint approach [8] and the gradient projection method [9]. Our aim in this paper is to seek for a large class of probability
easures so that the regularized barycenter can be explicitly characterized and computed similarly to the case of Gaussian
easures. It is worth mentioning that many papers in the literature study a related problem of entropic regularization of
ptimal transports where the Wasserstein distance is regularized by an entropic term. The problem of finding a closed
orm solution for such problems in the case of Gaussian distributions has increasingly attracted interest in the community
f computational optimal transport and machine learning [23,24]. The problem that we study in this paper is different
rom these papers since the entropy term is added outside of the Wasserstein distance.

We will study the regularization problem (1.1) for two important classes of probability measures, namely Gaussian
nd q-Gaussian measures, where the entropy functional is the negative Boltzmann entropy and the Tsallis entropy,
espectively. The two classes are both special cases of a more general class of probability measures, namely ϕ-exponential
easures. To state our main results, we now briefly recall the definition of ϕ-exponential measures; more details will be
iven in the Appendix.

.3. ϕ-exponential distributions

Let ϕ be an increasing, positive, continuous function on (0,∞), the ϕ-logarithmic function is defined by [25]

lnϕ(t) :=

∫ t

1

1
ϕ(s)

ds, (1.2)

hich is increasing, concave and C1 on (0,∞). Let lϕ and Lϕ be respectively the infimum and the supremum of lnϕ , that
is

lϕ := inf
t>0

lnϕ(t) = lim
t↓0

lnϕ(t) ∈ [−∞, 0),

Lϕ := sup
t>0

lnϕ(t) = lim
t↑∞

lnϕ(t) ∈ (0,+∞).

The function lnϕ has the inverse function, which is called the ϕ-exponential function, and is defined on (lϕ, Lϕ). This
nverse function can be extended to the whole R as

expϕ(s) :=

⎧⎨⎩
0 for s ≤ lϕ,
ln−1
ϕ (s) for s ∈ (lϕ, Lϕ),

∞ for s ≥ Lϕ,
(1.3)

hich is C1 on (lϕ, Lϕ).
Let S(d,R)+ be the set of symmetric positive definite matrices of order d. Let v ∈ Rd be a given vector and V ∈ S(d,R)+

be a given symmetric positive definite matrix. The ϕ-exponential measure with mean v and covariance matrix V , denoted
by Gϕ(v, V ), is the probability measure on Rd with Lebesgue density

g (v, V )(x) := exp (λ − c |x − v|2 )
(
det(V )

)−
1
2
, (1.4)
ϕ ϕ ϕ ϕ V

2
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where |x|2V := ⟨x, V−1x⟩, λϕ and cϕ are normalization constants. Two important examples of ϕ-exponential measures
nclude Gaussian measures and q-Gaussian measures corresponding to ϕ(s) = s and ϕ(s) = sq respectively. The ϕ-
xponential measures play an important role in statistical physics, information geometry and in the analysis of nonlinear
iffusion equations [26–29]. More information about ϕ-exponential measures will be reviewed in the Appendix.

.4. Main results of the paper

As already mentioned, in this paper we study the regularized problem (1.1) for Gaussian measures and q-Gaussian
easures, where the entropy functional is the (negative) Boltzmann entropy functional and the Tsallis entropy functional

espectively. Main results of the present paper are explicit characterizations of the minimizer of (1.1) and properties of
he objective functions that can be summarized as follows.

heorem 1.1. Suppose that for each i = 1, . . . , n, µi is a q-Gaussian measure (Gaussian measure when q = 1) with mean zero
nd covariance matrix Ai ∈ S(d,R)+. Then the regularized barycenter problem (1.1), with F being the Tsallis entropy functional
the negative Boltzmann entropy functional when q = 1), has a unique minimizer, which is also a q-Gaussian measure with
ean zero and covariance matrix X satisfying

X − γm(q, d)(det X)
q−1
2 I =

n∑
i=1

λi

(
X

1
2 AiX

1
2

) 1
2
,

here m(q, d) is a constant depending on q and d (see Theorem 4.1 for its explicit formula, in particular m = 1 when q = 1).

Theorem 1.2. Suppose that {µi} are all Gaussian measures or all q-Gaussian measures with mean zero. Then the gradient of
the objective function in the minimization problem (1.1) is Lipschitz continuous, where the Lipschitz constant in each case can
be found explicitly (see Theorem 5.2 and Theorem 5.3 respectively).

Theorem 1.1 summarizes Proposition 2.3, Theorem 3.1 (for Gaussian measures), Theorem 4.1 (for q-Gaussian measures).
Theorem 1.2 summarizes Theorem 5.2 (for Gaussian measures) and Theorem 5.3 (for q-Gaussian measures).

The key to the analysis of the present paper is that the spaces of ϕ-exponential measures and Gaussian measures are
sometric in the sense of Wasserstein geometry [28,29], that is

W2(Gϕ(v, V ),Gϕ(u,U)) = W2(N (v, V ),N (u,U)),

here N (v, V ) denotes a Gaussian measure with mean v and covariance matrix V . Therefore, since the Wassertein
istance between Gaussian measures can be computed explicitly, the objective functional in (1.1) can also be computed
xplicitly in terms of the covariance matrices and (1.1) becomes a minimization problem over the space of symmetric
ositive definite matrices. We then prove the strict convexity of the objective function and the existence of solutions to
he optimality equation using matrix analysis tools as in [22]. Theorems 3.1 and 4.1 establish the existence and uniqueness
f a minimizer and provide an explicit characterization of the minimizer in terms of nonlinear matrix equations for the
ovariance matrix generalizing the characterization of the Wasserstein barycenter for Gaussian measures in [2,22] to
he regularized Wasserstein barycenter for Gaussian measures and q-Gaussian measures. Theorems 5.2 and 5.3 prove
he Lipschitz continuity of the gradient of the objective function providing an explicit upper bound for the Lipschitz
onstant generalizing the results of [9] for the barycenter for Gaussian measures to our setting. We also perform numerical
xperiments to show the affect of the parameter q and a stability property of the algorithm under small perturbation of the
ata, and compare our proposed method with the existing state-of-art Riemannian gradient method [30–32], cf. Section 6.

.5. Organization of the paper

The rest of the paper is organized as follows. In Section 2 we review relevant knowledge that will be used in subsequent
ections on the Wasserstein distance and the Wasserstein geometry of Gaussian and ϕ-exponential distributions. Then
e study the regularization of barycenters for Gaussian measures in Section 3 and extend these results to q-Gaussian
easures in Section 4. In Section 5 we describe a gradient projection method for the computation of the minimizer and
rove that the gradient function is Lipschitz continuous. In Section 6, we numerically show effect of parameters to the
inimizer and stability of the algorithm under small perturbation of data. Comparison of our proposed algorithm, gradient
rojection method, with Riemannian gradient method [30–32] is also presented. We provide a summary of the paper and
ossible directions for future work in Section 7. Finally, we recall some detailed knowledge about ϕ-exponential measures
n the Appendix.

. Wasserstein distance, Gaussian measures and ϕ-exponential measures

In this section, we summarize relevant knowledge that will be used in subsequent sections on the Wasserstein distance
nd the Wasserstein geometry of Gaussian and ϕ-exponential distributions.
3
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2.1. Wasserstein distance

We recall that P2(Rd) is the space of probability measures µ on Rd with finite second moment, namely∫
Rd

|x|2µ(dx) < ∞.

Let µ and ν be two probability measures belonging to P2(Rd). The L2-Wasserstein distance, W2(µ, ν), between µ and ν
s defined via

W 2
2 (µ, ν) := inf

γ∈Γ (µ,ν)

∫
Rd×Rd

|x − y|2 γ (dx, dy), (2.1)

here Γ (µ, ν) denotes the set of transport plans between µ and ν, i.e., the set of all probability measures on Rd
× Rd

having µ and ν as the first and the second marginals respectively. More precisely,

Γ (µ, ν) := {γ ∈ P(Rd
× Rd) : γ (A × Rd) = µ(A) and γ (Rd

× A) = ν(A)},

for all Borel measurable sets A ⊂ Rd. It has been proved that, under rather general conditions (e.g., when µ and ν are
absolutely continuous with respect to the Lesbegue measure), an optimal transport plan in (2.1) uniquely exists and is of
the form γ = [id × ∇ψ]#µ for some convex function ψ where # denotes the push forward [33,34].

The Wasserstein distance is an instance of a Monge–Kantorevich optimal transportation cost functional and plays a key
role in many branches of mathematics such as optimal transportation, partial differential equations, geometric analysis
and has been found many applications in other fields such as economics, statistical physics and recently in machine
learning. We refer the reader to the celebrated monograph [35] for a great exposition of the topic.

We now consider two important classes of probability measures, namely Gaussian measures and ϕ-exponential
measures, for which there is an explicit expression for the Wasserstein distance between two members of the same
class. Although Gaussian measures are special cases of ϕ-exponential measures, we consider them separately since many
proofs for the former are much simpler than those for the latter.

2.2. Wasserstein distance of Gaussian measures

Given any X ∈ S(d,R)+, we define a symmetric positive definite matrix X1/2 such that X1/2X1/2
= X . Throughout

the paper, we denote by I the identity matrix of order d. The Wasserstein distance between two Gaussian measures is
well-known [36], see also e.g., [28]:

W2(N (u,U),N (v, V ))2 = |u − v|2 + trU + trV − 2tr
√
V

1
2 UV

1
2 . (2.2)

urthermore, [id × ∇T ]#N (u,U) is the optimal plan between them, where

T (x) =
1
2
⟨x − u, T (x − u)⟩ + ⟨x, v⟩, T = V

1
2

(
V

1
2 UV

1
2

)−
1
2
V

1
2 . (2.3)

.3. The entropy of Gaussian measures

The (negative) Boltzmann entropy of a probability measure µ = µ(x)dx on Rd is defined by

F (µ) :=

∫
Rd
µ(x) logµ(x) dx. (2.4)

Using Gaussian integral, the (negative) Boltzmann entropy of a Gaussian measure can be computed explicitly [37, Theorem
9.4.1]:

F (N (u,U)) = −
d
2
ln(2πe) −

1
2
ln det(U). (2.5)

.4. q-Gaussian measures and Wassertein distance

In the Appendix we review an important class Gϕ of probability measures, namely ϕ-exponential measures where ϕ
s a given function satisfying certain conditions. The class contain two special cases:

(i) ϕ = s, Gϕ reduces to the class of Gaussian measures.
(ii) In the case ϕ = sq, Gϕ becomes the class of all q-Gaussian measures

G =

{
G (v, V )

⏐⏐(v, V ) ∈ Rd
× S(d,R)

}

q q +

4
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a

P

2

where

Gq(v, V ) = C0(q, d)(det V )−
1
2 expq

(
−

1
2
C1(q, d)⟨x − v, V−1(x − v)⟩

)
Ld,

and C0(q, d), C1(q, d) are given by

C1(q, d) =
2

2 + (d + 2)(1 − q)
,

C0(q, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Γ

(
2−q
1−q +

d
2

)
Γ

(
2−q
1−q

) (
(1−q)C1(q,d)

2π

) d
2

if 0 < q < 1,

Γ

(
1

q−1

)
Γ

(
1

q−1 −
d
2

)( (q−1)C1(q,d)
2π

) d
2

if 1 < q < d+4
d+2 .

Note that C1(1, d) = 1 and C0(q, d) → (2π )−d/2 as q → 1, which follows from Stirling’s formula. Thus Gaussian
measures are special cases of q-Gaussian measures.

The following result explains why q-Gaussian measures and ϕ-exponential measures are of special interest. It will play
key role in the analysis of this paper.

roposition 2.1. The following statements hold [28,29]

1. For any q ∈ (0, 1) ∪

(
1, d+4

d+2

)
, the space of q-Gaussian measures is convex and isometric to the space of Gaussian

measures with respect to the Wasserstein metric.
2. For any ϕ ∈ O(2/(d + 2)) with d ≥ 2, the space Gϕ is convex and isometric to the space of Gaussian measures with

respect to the Wasserstein metric.
3. Let Gϕ(v, V ) and Gϕ(u,U) be two ϕ-exponential distributions. Then [id × ∇T ]#Gϕ(u,U), where T is defined in (2.3), is

the optimal plan in the definition of W 2
2 (Gq(v, V ),Gϕ(u,U)).

4. We have

W2(Gϕ(µ,U),Gϕ(ν, V ))2 = W2(Gq(µ,U),Gq(ν, V ))2

= W2(N (µ,U),N (ν, V ))2

= |µ− ν|2 + trU + trV − 2tr
√
V

1
2 UV

1
2 . (2.6)

.5. The Tsallis entropy of a q-Gaussian measure

The Tsallis entropy of a probability measure µ = µ(x)dx on Rd is defined by

Fq(µ) :=

∫
Rd
µ(x) lnq µ(x) dx =

1
1 − q

∫
Rd

[µ(x)1−q
− 1]µ(x) dx. (2.7)

The Tsallis entropy of a q-Gaussian can also be computed explicitly using the property (A.1) and similar computations as
in the Gaussian case.

Lemma 2.2. It holds that [38]

Fq(Gq(µ,U)) = −
d
2
C1(q, d) +

[
1 − (1 − q)

d
2
C1(q, d)

]
lnq

C0(q, d)

(detU)
1
2
.

The first result of the present paper is the following proposition.

Proposition 2.3. Suppose that µi = Gq(0, Ai). Then the regularized barycenter problem (1.1) has a unique minimizer, which
is also a q-Gaussian measure with mean 0. This statement holds also for q = 1 and in this case, the minimizer is a Gaussian
measure with mean 0. Similarly, when {µi} are all ϕ-exponential distributions with mean 0, then the unregularized barycenter
problem has a unique minimizer which is also a ϕ-exponential distribution with mean 0.

Proof. Since each of {µi}
n
i=1 is a q-Gaussian measure with mean zero, then there exists a unique minimizer µ∗ ∈ P2(Rd),

which is absolutely continuous with respect to the d-dimensional Lebesgue measure [14]. Let v and V be the mean and
covariance matrix of µ∗. Let Gq(v, V ) be the q-Gaussian measure with the same mean v and covariance matrix V . Next
we will show that

µ = G (v, V ) and v = 0 (thus µ = G (0, V )).
∗ q ∗ q

5
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Since Gq(v, V ) minimizes the Tsallis entropy Fq among all probability measures µ which are absolutely continuous with
the d-dimensional Lebesgue measure having mean v and covariance matrix V (see for instance [28]), we have

Fq(µ∗) ≥ Fq(Gq(v, V )). (2.8)

e recall the following equivalent, Monge and Kantorovich duality, characterizations of the Wassertein distance between
wo probability measures µ, ν ∈ P2(Rd) (see [39, Theorem 5.10])

W2(µ, ν)2 = inf
T#µ=ν

∫
Rd

|x − T (x)|2 dµ(x)

= sup
φ∈L1(µ)

{∫
Rd
φ(y)c dν(y) −

∫
Rd
φ(x) dµ(x)

}
,

here φc(y) = infx∈Rd{φ(x) + |x − y|2}. In addition, the optimal transport map T ∗ and the optimal Kantorovich potential
∗ in the above problems satisfy

x − T ∗(x) =
1
2
∇φ∗(x).

Let Ti and φi, i = 1, . . . , n be the optimal transport map and the optimal Kantorovich potential for W2(µi,Gq(v, V )), that
is

W2(µi,Gq(v, V ))2 =

∫
Rd

|x − Ti(x)|2 dµi(x)

=

∫
Rd
φi(y)c dGq(v, V )(y) −

∫
Rd
φ(x) dµi(x).

According to [28, Theorem A], Ti is given by Ti = ∇Ti(x) where

Ti(x) =
1
2
⟨x, T̄ix⟩ + ⟨x, v⟩, T̄i = V 1/2

(
V 1/2AiV 1/2

)−1/2
V 1/2.

t follows that

φi(x) = |x|2 − 2Ti(x) = |x|2 − ⟨x, T̄ix⟩ − 2⟨x, v⟩.

Therefore,

φi(y)c = φi(x̄) +
1
4
|∇φi(x̄)|2 where ∇φi(x̄) + 2(x̄ − y) = 0.

It follows that (using the symmetry of T̄i)

y = y(x̄) = x̄ +
1
2
∇φi(x̄) = 2x̄ − T̄i x̄ − 2v.

Therefore, the Jacobian matrix Ji when changing the variable from y to x̄ is constant, which is given by

Ji = Dx̄y = 2I − T̄i.

We have∫
Rd
φc
i (y)dµ∗(y) =

∫
Rd

(
φi(x̄) +

1
4
|∇φi(x̄)|2

)
dµ∗(y)

(∗)
= |Ji|

∫
Rd

(
φi(x̄) +

1
4
|∇φi(x̄)|2

)
dµ∗(x̄)

(∗∗)
= |Ji|

∫
Rd

(
φi(x̄) +

1
4
|∇φi(x̄)|2

)
dGq(v, V )(x̄)

=

∫
Rd
φc
i (y)dGq(v, V )(y),

where (∗∗) follows from (∗) since (∗) depends only on the mean and covariance of µ∗ (because φi(x̄) +
1
4 |∇φi(x̄)|2 is a

uadratic function of x̄), which is the same as Gq(v, V ). Therefore

W2(µi, µ∗)2 ≥

∫
Rd
φi(y)c dµ∗(y) −

∫
Rd
φi(x) dµi(x)

=

∫
Rd
φi(y)cdGq(v, V )(y) −

∫
Rd
φi(x) dµi(x)

= W2(µi,Gq(v, V ))2. (2.9)
6
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From (2.8) and (2.9) we get
n∑

i=1

λiW2(µi, µ∗)2 + Fq(µ∗) ≥

n∑
i=1

λiW2(µi,Gq(v, V ))2 + Fq(Gq(v, V )).

By the uniqueness of minimizers, we deduce that µ∗ = Gq(v, V ). Moreover, the facts that

Fq(Gq(v, V )) = Fq(Gq(0, V )), W2(µi,Gq(0, V )) ≤ W2(µi,Gq(v, V ))

ensure v = 0. Note that this proof also holds true for q = 1 where q-Gaussian measures and the Tsallis entropy are
respectively replaced by Gaussian measures and the Boltzmann entropy. Similarly, using the third part of Proposition 2.1,
we can show that the minimizer of the unregularized barycenter is again a ϕ-exponential distribution if all the µi are
ϕ-exponential distributions. This completes the proof of this proposition. □

3. Regularization of barycenters for Gaussian measures

In this section we study the following regularization of barycenters in the space of Gaussian measures

min
µ∈P2(Rd)

n∑
i=1

1
2
λiW 2

2 (µ,µi) + γ F (µ), (3.1)

where µi ∼ N (0, Ai) (i = 1, . . . , n), F is the (negative) Boltzmann entropy functional of a probability measure defined in
(2.4) and γ > 0 is a regularization parameter.

According to Proposition 2.3, we only need to seek for the minimizer µ among Gaussian measures with mean zero, that
s µ ∼ N (0, X) for some covariance matrix X . We note that we consider here Gaussian measures with zero mean just for
implicity, see Remark 3.3 for further discussion on this assumption. The main results of the paper can be easily extended
o the case of non-zero mean. From now on, we equip S(d,R)+ with the Frobenius inner product ⟨X, Y ⟩ := tr(XTY ). The

Frobenius norm is defined by ∥X∥F =

(
tr(XTX)

) 1
2
. For X, Y ∈ S(d,R), we write X ≤ Y if Y − X is positive semidefinite,

and X < Y if Y − X is positive definite. Note that X ≤ Y if and only if ⟨x, Xx⟩ ≤ ⟨x, Yx⟩ for all x ∈ Rd. We denote [X, Y ] by
the Löwner order interval [X, Y ] := {Z : X ≤ Z ≤ Y }.

Theorem 3.1. Assume that {µi} are Gaussian distributions with mean zero and covariance matrix Ai, µi = N (0, Ai) for
i = 1, . . . , n. The regularization of barycenters problem (1.1) has a unique solution µ = N (0, X) where the covariance matrix
X solves the following nonlinear matrix equation

X − γ I =

n∑
i=1

λi(X
1
2 AiX1/2)

1
2 . (3.2)

n particular, in the scalar case (d = 1), we obtain

X =

[∑n
i=1 λiA

1
2
i +

((∑n
i=1 λiA

1
2
i

)2
+ 4γ

) 1
2
]2

4
. (3.3)

Before proving this theorem, we show the existence of solutions to Eq. (3.2).

Lemma 3.2. Eq. (3.2) has a positive definite solution.

roof. Pick 0 < α0 < β0 so that α0I ≤ Ai ≤ β0I for all i = 1, . . . , n. Set

α∗ :=

(√
α0 +

√
α0 + 4γ

2

)2

, β∗ :=

(√
β0 +

√
β0 + 4γ

2

)2

.

hen for matrices X satisfying α∗I ≤ X ≤ β∗I we have,

α0X ≤ X1/2AiX1/2
≤ β0I, i = 1, . . . , n

nd hence
√
α0

√
α∗I ≤

√
α0X1/2

≤ (X1/2AiX1/2)1/2 ≤
√
β0X1/2

≤
√
β0
√
β∗I.

y definition of α∗ and β∗,

α∗I =
√
α0

√
α∗I + γ I ≤

n∑
i=1

λi(X1/2AiX1/2)1/2 + γ I√ √

≤ β0 β∗I + γ I = β∗I

7
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for every X ∈ [α∗I, β∗I] := {Z : α∗I ≤ Z ≤ β∗I}. This shows that the map

f (X) :=

n∑
i=1

λi(X1/2AiX1/2)1/2 + γ I

s a continuous self map on the Löwner order interval [α∗I, β∗I]. By Brouwer’s fixed point theorem, it has a fixed point. □

We are now ready to prove Theorem 3.1

roof of Theorem 3.1. According to (2.2) and (2.5) we have

W 2
2 (µi, µ) = trX + trAi − 2tr

(
A

1
2
i XA

1
2
i

) 1
2
,

F (µ) = −
d
2
ln(2πe) −

1
2
ln(det X).

Thus we can write (1.1) as a minimization problem in the space of symmetric positive definite matrices

min
X∈S(d,R)+

1
2
f (X) (3.4)

where

f (X) :=

n∑
i=1

λitrAi +

n∑
i=1

λitr
(
X − 2

(
A

1
2
i XA

1
2
i

) 1
2
)

− γ ln det(X) − γ d ln(2πe)

:= f1(X) + γ f2(X), (3.5)

where

f1(X) =

n∑
i=1

λitrAi +

n∑
i=1

λitr
(
X − 2

(
A

1
2
i XA

1
2
i

) 1
2
)
,

f2(X) = − ln det(X) − d ln(2πe).

It has been proved [22] that

(i) X ↦→ f1(X) is strictly convex,
(ii) Df1(X)(Y ) = tr

(
I −

∑n
i=1 λi(Ai♯X−1)

)
Y ,

where A♯B denotes the geometric mean between A and B defined by

A♯B = A1/2(A−1/2BA−1/2)1/2A1/2, (3.6)

which is symmetric in A and B. According to [40, Proof of Theorem 8, Chapter 10] X ↦→ − ln det(X) is strictly convex.
Using Jacobi’s formula for the derivative of the determinant and the chain rule, we get

Df2(X)(Y ) = −
d
dt

ln det(X + εY )
⏐⏐⏐
t=0

= −
1

det X
· det X · tr(X−1Y ) = −tr(X−1Y ).

It follows that X ↦→ f (X) is strictly convex. Furthermore, we have

Df (X)(Y ) = tr
(
I − γX−1

−

n∑
i=1

λi(Ai♯X−1)
)
Y .

From this we deduce that

∇f (X) = I − γX−1
−

n∑
i=1

λi(Ai♯X−1),

where the gradient is with respect to the Frobenius inner product. Hence ∇f (X) = 0 if and only if

I − γX−1
=

n∑
λi(Ai#X−1).
i=1

8
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Using the definition (3.6) of the geometric mean, the above equation can be written as

X − γ I =

n∑
i=1

λi(X
1
2 AiX1/2)

1
2 ,

which is Eq. (3.2). By Lemma 3.2 this equation has a positive definite solution. This together with the strict convexity of
f imply that f has a unique minimizer which is a Gaussian measure N (0, X) where X solves (3.2). In the one dimensional
case this equation reads

X − γ =
√
X

n∑
i=1

λi
√
ai,

hich results in

X =

[∑n
i=1 λia

1
2
i +

((∑n
i=1 λia

1
2
i

)2
+ 4γ

) 1
2
]2

4
.

This completes the proof of the theorem. □

Remark 3.3 (The Case of Non-Zero Mean Distributions). Assume that {µi} are Gaussian distributions with means {mi} and
covariance matrices {Ai}, that is µi ∼ N (mi, Ai). Using the following formulas of the Wasserstein distances

W 2
2 (µi, µ) = ∥m − mi∥

2
+ trX + trAi − 2tr

(
A

1
2
i XA

1
2
i

) 1
2
,

and the formula of the entropy functional (2.5) (noting that the entropy of a normal distribution is independent of its
mean), we deduce that the minimizer µ ∼ N (m, X) where the mean m is given by

m =

n∑
i=1

λimi,

and the covariance matrix X satisfies the nonlinear matrix Eq. (3.2). The above statement about the mean is also true for
the case of q-Gaussian measures and ϕ-exponential measures in the subsequent sections.

4. Regularization of barycenters for q-Gaussian measures

In this section we study the following regularization of barycenters in the space of q-Gaussian measures

min
µ∈P2(Rd)

n∑
i=1

1
2
λiW 2

2 (µ,µi) + γ Fq(µ), (4.1)

where µi = Gq(0, Ai) (i = 1, . . . , n), Fq is the Tsallis entropy for a probability measure µ = µ(x)dx on Rd defined by

Fq(µ) :=

∫
Rd
µ(x) logq µ(x) dx.

According to Proposition 2.3, we only need to seek for the minimizer µ among q-Gaussian measures with mean zero, that
is µ = Gq(0, X) for some covariance matrix X .

Theorem 4.1. Assume that µi = Gq(0, Ai). Suppose that αI ≤ Ai ≤ βI for all i = 1, . . . , n. The regularization of barycenters
problem (4.1) has a unique solution µ = Gq(0, X) for all γ ≥ 0 if either 0 < q ≤ 1 or 1 < q ≤ 1 +

2α2

dβ2
and for γ sufficiently

small if 1 +
2α2

dβ2
< q < d+4

d+2 . The covariance matrix X solves the following nonlinear matrix equation

X − γm(q, d)(det X)
q−1
2 I =

n∑
i=1

λi

(
X

1
2 AiX

1
2

) 1
2
, (4.2)

here m(q, d) is defined by

m(q, d) :=
2(2 − q)C0(q, d)1−q

2 + (d + 2)(1 − q)
.

The following proposition shows that Eq. (4.2) possesses a positive definite solution.

Proposition 4.2. Eq. (4.2) has a positive definite solution.
9
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Proof. Similarly as the proof of Lemma 3.2 we will also apply Brouwer’s fixed point theorem. We will show that

ψ(X) :=

n∑
i=1

λi(X1/2AiX1/2)1/2 + γm(q, d)(det X)
q−1
2 I

has a fixed point which is a positive definite matrix. Due to the appearance of the second term on the left-hand side of
(4.2) the proof of this proposition is significantly involved than that of Lemma 3.2. Suppose that α0I ≤ Ai ≤ β0I for all
i = 1, . . . , n. Then similarly as in the proof of Lemma 3.2, for α∗I ≤ X ≤ β∗I (with α∗, β∗ chosen later), we have

√
α0

√
α∗I ≤

√
α0X1/2

≤ (X1/2AiX1/2)1/2 ≤
√
β0X1/2

≤
√
β0
√
β∗I, i = 1, . . . , n,

o that
√
α0

√
α∗I ≤ (X1/2AiX1/2)1/2 ≤

√
β0
√
β∗I.

Multiplying this inequality with λi then adding them together, noting that
∑
λi = 1, we obtain

√
α0

√
α∗I ≤

n∑
i=1

λi(X1/2AiX1/2)1/2 ≤
√
β0
√
β∗I,

rom which it follows that

√
α0

√
α∗I + γm(q, d)(det X)

q−1
2 I ≤

n∑
i=1

λi(X1/2AiX1/2)1/2 + γm(q, d)(det X)
q−1
2 I

≤
√
β0
√
β∗I + γm(q, d)(det X)

q−1
2 I. (4.3)

o continue we consider two cases.

Case 1: 1 < q < d+4
d+2 . It follows from (4.3) that

√
α0

√
α∗I + γm(q, d)α

d(q−1)
2

∗ I ≤
√
α0

√
α∗I + γm(q, d)(det X)

q−1
2 I

≤ γm(q, d)(det X)
q−1
2 I +

n∑
i=1

λi(X1/2AiX1/2)1/2

≤
√
β0
√
β∗I + γm(q, d)(det X)

q−1
2 I ≤

√
β0
√
β∗I + γm(q, d)β

d(q−1)
2

∗ I. (4.4)

ince 1 < q < d+4
d+2 , we have 0 < (q − 1)d < 2d

d+2 < 2.

Case 1.1: d(q − 1) ≤ 1. Consider the following equation

g1(t) := t1−
q(d−1)

2 −
√
α0t

1−d(q−1)
2 − γm(q, d) = 0.

We have limt→0 g1(t) = −γm(q, d) < 0 and limt→+∞ g1(t) = +∞. Since g1 is continuous, it follows that there exists
∗ ∈ (0,∞) such that g1(α∗) = 0, that is

α
1− q(d−1)

2
∗ =

√
α0α ∗

1−d(q−1)
2 +γm(q, d), i.e., α∗ =

√
α0

√
α∗ + γm(q, d)α

d(q−1)
2

∗ .

Similarly by considering the function g2(t) := t1−
q(d−1)

2 −
√
β0t

1−d(q−1)
2 −γm(q, d), we deduce that there exists β∗ ∈ (0,∞)

such that

β∗ =
√
β0
√
β∗ + γm(q, d)β

d(q−1)
2

∗ .

Case 1.2: d(q − 1) > 1. Using the same argument as in the previous case for

g3(t) = t1/2 −
√
α0 − γm(q, d)t

d(q−1)−1
2 and g4(t) = t1/2 −

√
β0 − γm(q, d)t

d(q−1)−1
2

we can show that there exist α∗, β∗ ∈ (0,∞) such that

α∗ =
√
α0

√
α∗ + γm(q, d)α

d(q−1)
2

∗ and β∗ =
√
β0
√
β∗ + γm(q, d)β

d(q−1)
2

∗ .

Therefore in both Cases 1.1 and 1.2, there exist α∗, β∗ ∈ (0,∞) such that

√ √ d(q−1)
2

√ √ d(q−1)
2
α∗ = α0 α∗ + γm(q, d)α∗ and β∗ = β0 β∗ + γm(q, d)β∗ .

10
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Substituting these quantities into (4.4) we obtain

α∗I =
√
α0

√
α∗I + γm(q, d)α

d(q−1)
2

∗ I

≤ γm(q, d)(det X)
q−1
2 I +

n∑
i=1

λi(X1/2AiX1/2)1/2

≤
√
β0
√
β∗I + γm(q, d)β

d(q−1)
2

∗ I = β∗I.

Thus α∗I ≤ ψ(X) ≤ β∗I . By Brouwer’s fixed point theorem, ψ(X) has a fixed point in [α∗I, β∗I] as desired.

Case 2. 0 < q < 1.
It follows from (4.3) that

√
α0

√
α∗I + γm(q, d)β

d(q−1)
2

∗ I ≤
√
α0

√
α∗I + γm(q, d)(det X)

q−1
2 I

≤ γm(q, d)(det X)
q−1
2 I +

n∑
i=1

λi(X1/2AiX1/2)1/2

≤
√
β0
√
β∗I + γm(q, d)(det X)

q−1
2 I ≤

√
β0
√
β∗I + γm(q, d)α

d(q−1)
2

∗ I (4.5)

ext we will show that following system has positive solutions 0 < α∗ < β∗ < ∞:⎧⎨⎩α∗ =
√
α0

√
α∗ + γm(q, d)β

d(q−1)
2

∗

β∗ =
√
β0

√
β∗ + γm(q, d)α

d(q−1)
2

∗ .

(4.6)

efine f : (0,∞)2 → (0,∞)2 by

f
((

x
y

))
=

(
√
α0

√
x + γm(q, d)y

d(q−1)
2

√
β0

√
y + γm(q, d)x

d(q−1)
2

)
Set

a∗ =

⎛⎝√
α0 +

√
α0 + 4γm(q, d)β (q−1)d/2

0

2

⎞⎠2

,

b∗ =

⎛⎝√
β0 +

√
β0 + 4γm(q, d)α(q−1)d/2

0

2

⎞⎠2

.

Thus a∗ and b∗ satisfy

a∗ =
√
α0

√
a∗ + γm(q, d)β (q−1)d/2

0 , b∗ =
√
β0

√
b∗ + γm(q, d)α(q−1)d/2

0 .

We now show that f : [α0, a∗] × [β0, b∗] → [α0, a∗] × [β0, b∗]. In fact, consider α0 ≤ x ≤ a∗ and β0 ≤ y ≤ b∗. We have

α0 ≤
√
α0

√
x ≤

√
α0

√
x + γm(q, d)y

d(q−1)
2 ≤

√
α0

√
x + γm(q, d)β

d(q−1)
2

0 = a∗,

β0 ≤
√
β0

√
y ≤

√
β0

√
y + γm(q, d)x

d(q−1)
2 ≤

√
β0

√
y + γm(q, d)α

d(q−1)
2

0 = b∗.

Thus f ((x, y)T ) ∈ [α0, a∗] × [β0, b∗]. By Brouwer’s fixed point theorem, f has a fixed point in [α0, a∗] × [β0, b∗], which
means that system (4.6) has a positive solution (α∗, β∗). Using this solution in (4.5) we obtain

α∗I =
√
α0

√
α∗I + γm(q, d)β

d(q−1)
2

∗ I

≤ γm(q, d)(det X)
q−1
2 I +

n∑
i=1

λi(X1/2AiX1/2)1/2

≤
√
β0
√
β∗I + γm(q, d)α

d(q−1)
2

∗ I = β∗I.

Hence by Brouwer’s fixed point theorem again, ψ has a fixed point in [α∗I, β∗I] as desired. This finishes the proof of the
proposition. □
11
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Next we will show that the functional that we wish to minimize in (4.1) is strictly convex under rather general
onditions. According to Propositions 2.1 and Lemma 2.2 we have

W 2
2 (µi, µ) = trX + trAi − 2tr

(
A

1
2
i XA

1
2
i

) 1
2
,

Fq(µ) = −
d
2
C1(q, d) +

[
1 − (1 − q)

d
2
C1(q, d)

]
lnq

C0(q, d)

(detU)
1
2
.

Therefore the minimization problem (4.1) can be written as

min
X∈S(d,R)+

1
2
g(X) (4.7)

here

g(X) =

n∑
i=1

λitrAi +

n∑
i=1

λitr
(
X − 2(A

1
2
i XA

1
2
i )

1
2

)
+ γ

[
2 − (1 − q)dC1(q, d)

]
lnq

C0(q, d)

(detU)
1
2

− γ dC1(q, d)

= f1(X) + γ

[
2 − (1 − q)dC1(q, d)

]
lnq

C0(q, d)

(detU)
1
2

− γ dC1(q, d), (4.8)

ith f1(X) =
∑n

i=1 λitrAi+
∑n

i=1 λitr
(
X−2(A

1
2
i XA

1
2
i )

1
2

)
, which appeared in (3.5). Note that by definition of the q-logarithmic

unction we have

lnq
C0(q, d)

(detU)
1
2

=
1

1 − q

[
C0(q, d)1−q(detU)−

1−q
2 − 1

]
.

Using explicit formula of C1(q, d) we get

2 − (1 − q)dC1(q, d) = 2 − (1 − q)d
2

2 + (d + 2)(1 − q)

=
4(2 − q)

2 + (d + 2)(1 − q)
.

ubstituting these expressions into (4.8) we get

g(X) = f1(X) +
4γ (2 − q)C0(q, d)1−q

(2 + (d + 2)(1 − q))(1 − q)
(det X)−

1−q
2

−
4(2 − q)

(1 − q)(2 + (d + 2)(1 − q))
− γ dC1(q, d). (4.9)

The following proposition studies the convexity of g .

Proposition 4.3. Suppose that αI ≤ Ai, X,≤ βI for all i = 1, . . . , n. The functional g given in (4.9) is strictly convex for all
γ ≥ 0 when one of the following condition holds

1. 0 < q < 1,
2. 1 < q ≤ 1 +

2α2

dβ2
.

n addition, if 1 +
2α2

dβ2
< q < d+4

d+2 , then g is strictly convex for 0 ≤ γ < γ0 where

γ0 =
1
2
α1/2

β3/2

1
1
β2

−
(q−1)d
2α2

1
m(q, d)

1
βd(q−1)/2 .

roof. We consider two cases.

ase 1. 1 < q < d+4
d+2 .

Let k(X) :=
4γ (2−q)C0(q,d)1−q

(2+(d+2)(1−q))(1−q) (det X)
q−1
2 . Let h(X) := (det X)

q−1
2 . Similarly as in the proof of Theorem 3.1, using again

Jacobi’s formula for the derivative of the determinant and the chain rule, we get

Dh(X)(Y ) =
q − 1

(det X)
q−3
2 · det(X) · tr(X−1Y ) =

q − 1
(det X)

q−1
2 tr(X−1Y ).
2 2
12
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T

F

Therefore, using the definition of m(q, d), we have

∇k(X) = −γm(q, d)(det X)
q−1
2 X−1

= −γm(q, d)h(X)X−1. (4.10)

In the computations below the linear operator P(X) is defined to be P(X)Y = XYX . This operator is called the quadratic
representation in the literature. By the Leibniz rule, we get

∇
2k(X)(H) = D(∇k)(X)(H)

= −γm(q, d)[Dh(X)(H)X−1
+ h(X)(−P(X−1))(H)]

= −γm(q, d)[⟨∇h(X),H⟩X−1
− h(X)X−1HX−1

]

= −γm(q, d)
[⟨

q − 1
2

(det X)
q−1
2 X−1,H

⟩
X−1

− (det X)
q−1
2 X−1HX−1

]
= −γm(q, d)(det X)

q−1
2

[⟨
q − 1
2

X−1,H
⟩
X−1

− X−1HX−1
]
.

Thus

⟨∇
2k(X)(H),H⟩ = −γm(q, d)(det X)

q−1
2

[
q − 1
2

⟨
X−1,H

⟩2
− ⟨X−1H, X−1H⟩

]
= −γm(q, d)(det X)

q−1
2

[
q − 1
2

tr2(X−1H) − ∥X−1H∥
2
]
.

Furthermore, according to [22], for αI ≤ Ai, X ≤ βI , we have

⟨∇
2f1(X)(H),H⟩ ≥

1
2
α1/2

β3/2 ∥H∥
2.

hus we get

⟨∇
2g(X)(H),H⟩ = ⟨∇

2f1(X)(H),H⟩ + ⟨∇
2k(X)(H),H⟩

≥ −γm(q, d)(det X)
q−1
2

[
q − 1
2

tr2(X−1H) − ∥X−1H∥
2
]

+
1
2
α1/2

β3/2 ∥H∥
2

= γm(q, d)(det X)
q−1
2

[
⟨P(X−1)H,H⟩ −

q − 1
2

tr2(X−1H)
]

+
1
2
α1/2

β3/2 ∥H∥
2

≥ γm(q, d)(det X)
q−1
2

[
1
β2 ∥H∥

2
−

q − 1
2

∥X−1
∥
2
∥H∥

2
]

+
1
2
α1/2

β3/2 ∥H∥
2

=

{
γm(q, d)(det X)

q−1
2

[
1
β2 −

q − 1
2

∥X−1
∥
2
]

+
1
2
α1/2

β3/2

}
∥H∥

2

≥

{
γm(q, d)(det X)

q−1
2

[
1
β2 −

q − 1
2

d
α2

]
+

1
2
α1/2

β3/2

}
∥H∥

2

≥

{
γm(q, d)(det X)

q−1
2

[
1
β2 −

q − 1
2

d
α2

]
+

1
2
α1/2

β3/2

}
∥H∥

2.

rom this estimate, we deduce the following cases

(i) If

1 < q ≤ 1 +
2α2

dβ2 ,

thus 1
β2

−
q−1
2

d
α2
> 0, which implies that the Hessian of g is positive for all γ . Note that the above condition is

fulfilled if α and β satisfy β2
≤

d+2
d α

2. In fact, we have

q < 1 +
2

d + 2
≤ 1 +

2α2

dβ2 ,

(ii) If

1 +
2α2

< q <
d + 4

.

dβ2 d + 2

13
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H

P
o

T
o

then for

γ <
1
2
α1/2

β3/2

1
1
β2

−
(q−1)d
2α2

1
m(q, d)

1
βd(q−1)/2

the Hessian of g is positive since

γ <
1
2
α1/2

β3/2

1
1
β2

−
(q−1)d
2α2

1
m(q, d)

1
βd(q−1)/2

≤
1
2
α1/2

β3/2

1
1
β2

−
(q−1)d
2α2

1
m(q, d)

1
(det X)(q−1)/2

Case 2. 0 < q < 1. Similarly, we obtain

⟨∇
2k(X)(H),H⟩ = γm(q, d)(det X)

q−1
2

[
1 − q
2

⟨
X−1,H

⟩2
+ ⟨P(X−1)H,H⟩

]
≥ γm(q, d)(det X)

q−1
2

1
λ2max(X)

∥H∥
2.

ence the Hessian of g is always positive definite in this case. □

We are now ready to prove Theorem 4.1.

roof of Theorem 4.1. Suppose that the hypothesis of the statement of Theorem 4.1 is satisfied, that is either (i) 0 < q ≤ 1
r (ii) 1 < q ≤ 1 +

2α2

dβ2
or (iii) 1 +

2α2

dβ2
< q < d+4

d+2 . Suppose that γ is sufficiently small in the last case; in the other cases
it can be arbitrarily positive. As has been shown in the paragraph before Proposition 4.3, the minimization problem (4.1)
can be written as

min
X∈H

1
2
g(X),

where g(X) is given in (4.9)

g(X) = f1(X) + k(X) −
4(2 − q)

(1 − q)(2 + (d + 2)(1 − q))
− γ dC1(q, d).

By Proposition 4.3, X ↦→ g(X) is strictly convex. Now we compute the derivative of g(X). We have

∇g(X) = ∇f1(X) + ∇k(X), (4.11)

According to the proof of Theorem 3.1 we have

∇f1(X) = I −

n∑
i=1

λi(Ai♯X−1).

By (4.10), we have

∇k(X) = −γm(q, d)(det X)
q−1
2 X−1

Substituting these computations into (4.11) we obtain

∇g(X) =

(
I −

n∑
i=1

λi(Ai♯X−1)
)

− γm(q, d)(det X)
q−1
2 X−1.

Thus ∇g(X) = 0 if and only if

I − γm(q, d)(det X)
q−1
2 X−1

=

n∑
i=1

λi(Ai♯X−1),

which, by using the definition of the geometric mean (3.6), is equivalent to

X − γm(q, d)(det X)
q−1
2 I =

n∑
i=1

λi

(
X

1
2 AiX

1
2

) 1
2
.

his is precisely Eq. (4.2). By Proposition 4.2, it has a positive definite solution. This, together with the strictly convexity
f g , guarantees the existence and uniqueness of a minimizer of g . We complete the proof of the theorem. □
14
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5. GPM-based algorithm

In this section, we propose an GPM-based algorithm for solving regularization problems(3.4) and (4.7), and analyze its
onvergence properties.
First, we formally describe the algorithmic procedure for the gradient projection method (GPM) below.

Algorithm 1 GPM

Choose X0
∈ [α̂I, β̂I]. Initialize k = 0. Update X (k+1) from X (k) by the following template:

Step 1. Find X̄ (k)
= [X (k)

− ∇ψ(X (k))]+,

Step 2. Select a stepsize t (k),

Step 3. X (k+1)
= X (k)

+ t (k)(X̄ (k)
− X (k)).

Here [·]
+ denotes the projection on the set [α̂I, β̂I].

The stepsize is selected by Armijo rule along the feasible direction [41]. It is described below.

Let t (k) be the largest element of {ξ j}j=0,1,... satisfying

ψ(X (k)
+ t (k)D(k)) ≤ ψ(X (k)) − σ t (k)⟨∇ψ(X (k)), D(k)

⟩,

where 0 < ξ < 1, 0 < σ < 1, and D(k)
= X̄ (k)

− X (k).

Note that ψ = f for the regularization problem (3.4) and ψ = g for the regularization problem (4.7). The projection
f the matrix S ∈ Sd, where Sd is the set of d × d symmetric matrices, onto the set [α̂I, β̂I] is to find the solution of the
ollowing minimization problem

min
X∈[α̂I,β̂I]

∥ X − S ∥F .

he solution of the above problem is

[S]+ = UDiag(min(max(α̂, λ1), β̂), . . . ,min(max(α̂, λd), β̂))UT ,

where λ1 ≥ · · · ≥ λd are the eigenvalues of S and U is a corresponding orthogonal matrix of eigenvalues of S.
Now, we establish the global convergence of GPM. For the proof, we refer to [41, Proposition 2.3.1].

Theorem 5.1. Let {X (k)
} be the sequence generated by GPM with t (k) chosen by Armijo rule along the feasible direction. Then

every limit point of {X (k)
} is stationary.

In the following subsections, we show the Lipschitz continuity of the gradient function of the regularization problems.
In this case, we can use a constant stepsize for the gradient projection method. That is, t (k) =

1
L where L is a Lipschitz

onstant. Then we have

X (k+1)
= X (k)

+
1
L
(X̄ (k)

− X (k)).

5.1. Regularization of barycenters for Gaussian measures

We recall that the unique minimizer of the minimization problem (3.1) in the space of Gaussian measures satisfies the
following nonlinear matrix equation ∇f (X) = 0 where

∇f (X) = I −

n∑
i=1

λi(Ai♯X−1) − γX−1
=: F1(X) − γ F2(X).

We establish the following theorem for the Lipschitz continuity of the gradient function.

Theorem 5.2. Suppose that Ai ∈ [αI, βI] for all i = 1, . . . , n. Then for αI ≤ X ̸= Y ≤ βI we have

∥∇f (X) − ∇f (Y )∥F
≤
β2

3 +
γ

2 .
∥X − Y∥F 2α α

15
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5

I

f

Proof. According to [9, Proof of Theorem 3.1] we have

∥F1(X) − F1(Y )∥F

∥X − Y∥F
≤
β2

2α3 and
∥F2(X) − F2(Y )∥F

∥X − Y∥F
≤

1
α2 .

Therefore we get

∥∇f (X) − ∇f (Y )∥F

∥X − Y∥F
≤

∥F1(X) − F1(Y )∥F + γ ∥F2(X) − F2(Y )∥F

∥X − Y∥F

≤
β2

2α3 +
γ

α2 . □

.2. Regularization of barycenters for q-Gaussian measures

We recall that the unique minimizer of the minimization problem (4.1) in the space of q-Gaussian measures solves
the nonlinear matrix equation ∇g(X)=0 where

∇g(X) =

(
I −

n∑
i=1

λi(Ai♯X−1)
)

− γm(q, d)(det X)
q−1
2 X−1

=: F1(X) − γm(q, d)h̃(X), (5.1)

where F1(X) =

(
I −

∑n
i=1 λi(Ai♯X−1)

)
as in the previous section and h̃(X) = (det X)

q−1
2 X−1

= h(X)X−1. The following
main theorem of this section proves the Lipschitz continuity of ∇g .

Theorem 5.3. Suppose that Ai ∈ [αI, βI] for all i = 1, . . . , n. Then for αI ≤ X ̸= Y ≤ βI , we have

∥∇g(X) − ∇g(Y )∥F

∥X − Y∥F
≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β2

2α3
+

γ

α2
+

γm(q,d)
α2

· β
q−1
2 d
(
1 +

q−1
2 d

)
, if 1 < q < d+4

d+2 ,

β2

2α3
+

γ

α2
+ γm(q, d)α−2+ q−1

2 d
(
1 +

1−q
2 d

)
, if 0 < q < 1.

Proof. Let αI ≤ X, Y ≤ βI . According to the proof of Theorem 5.2, we have

∥F1(X) − F1(Y )∥F

∥X − Y∥F
≤
β2

2α3 +
γ

α2 . (5.2)

t remains to study the Lipschitz continuity of h̃(X) = (det X)
q−1
2 X−1

= h(X)X−1.

Case 1. 1 < q < d+4
d+2 . First, we have

|h(X) − h(Y )| =
⏐⏐ exp(ln(det X) q−1

2 ) − exp(ln(det Y )
q−1
2 )
⏐⏐

= eθ
⏐⏐ ln(det X) q−1

2 − ln(det Y )
q−1
2
⏐⏐

≤ β
q−1
2 d
⏐⏐ ln(det X) q−1

2 − ln(det Y )
q−1
2
⏐⏐

=
q − 1
2

· β
q−1
2 d

| ln det X − ln det Y |

≤
q − 1
2

· β
q−1
2 d
(

max
αI≤X≤βI

∥X−1
∥

)
∥X − Y∥

≤
q − 1
2

· β
q−1
2 d

·

√
d
α

∥X − Y∥

where lnα
q−1
2 d

≤ θ ≤ lnβ
q−1
2 d because lnα

q−1
2 d

≤ ln(det X)
q−1
2 ≤ lnβ

q−1
2 d. The second equality and inequality are derived

rom the mean value theorem. Moreover, we get

∥h̃(X) − h̃(Y )∥ = ∥h(X)(X−1
− Y−1) + (h(X) − h(Y ))Y−1

∥

≤ h(X)∥X−1
− Y−1

∥ + |h(X) − h(Y )| ∥Y−1
∥

≤

(
max

αI≤X≤βI
h(X)

)
·
1
α2 ∥X − Y∥

+

(
max ∥Y−1

∥

)
·
q − 1

· β
q−1
2 d

·

√
d
∥X − Y∥
αI≤Y≤βI 2 α
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a

=

(
β

q−1
2 d

·
1
α2 +

√
d
α

·
q − 1
2

· β
q−1
2 d

·

√
d
α

)
∥X − Y∥

=
1
α2 · β

q−1
2 d
(
1 +

q − 1
2

d
)

∥X − Y∥ (5.3)

here the second inequality comes from [9, Proof of Theorem 3.1].

ase 2. 0 < q < 1. Similarly, we obtain

|h(X) − h(Y )| ≤
1 − q
2

· α
q−1
2 d

·

√
d
α

∥X − Y∥.

ence

∥h̃(X) − h̃(Y )∥ ≤

(
max

αI≤X≤βI
h(X)

)
·
1
α2 ∥X − Y∥

+

(
max

αI≤Y≤βI
∥Y−1

∥

)
·
1 − q
2

· α
q−1
2 d

·

√
d
α

∥X − Y∥

=

(
α

q−1
2 d

·
1
α2 +

√
d
α

·
1 − q
2

· α
q−1
2 d

·

√
d
α

)
∥X − Y∥

= α−2+ q−1
2 d
(
1 +

1 − q
2

d
)

∥X − Y∥. (5.4)

ubstituting the estimates (5.2), (5.3) and (5.4) back into (5.1) we obtain the desired inequality. □

. Numerical experiments

In this section, we report numerical tests for the regularized model (4.7) of barycenters in the space of q-Gaussian
easures on randomly generated data.

.1. Test on various q and stability

in this subsection, we numerically observe how the solution is affected as q → 1. To see this, we apply the gradient
rojection method to the regularization of barycenters for q-Gaussian measures (4.7) on n randomly generated matrices
f the size d × d. The random matrices we use for our test are generated by matlab code as follows:

for i = 1 : n
[Q , ] = qr(randn(d));
Ai = Q ∗ diag(eiglb + eigub ∗ rand(d, 1)) ∗ Q ′

;

he eigenvalues of generated matrices are randomly distributed in the interval [eiglb, eiglb+ eigub]. In our experiments,
e set n = 100, d = 10 if q < 1 and n = 50, d = 5 if q > 1. And we set eiglb = 0.1 and eigub = 9.9.
We set ξ = 0.5, σ = 0.1, α̂ = 10−5, β̂ = 105, λi = 1/n, i = 1, . . . , n for GPM in our experiment. All runs are

erformed on a Laptop with Intel Core i7-10510U CPU (2.30 GHz) and 16 GB Memory, running 64-bit windows 10 and
ATLAB (Version 9.8). Throughout the experiments, we choose the initial iterate to be X0

= I and stop the algorithm
hen

D(k)

F ≤ 10−8.

We report in Table 1 our numerical results, showing the Frobenius norm of the difference between the final estimated
olution of the model (4.7) with q = 0.5 and that with various given q less than 1. In Table 2, the difference between the
inal estimated solution of the model (4.7) with q = 1.25 and that with various given q greater than 1 is reported.

From Tables 1–2, we see that the difference is increasing as q goes to 1 when the regularization parameter γ is fixed
nd we observe that the bigger the regularization parameter γ is, the bigger the difference is when q is fixed. In particular,
hen q is fixed, the position of the first nonzero decimal point of the value is related to the position of the first nonzero
ecimal point of the regularization parameter γ , i.e., if γ is multiplied by 10, then the position of first nonzero decimal
oint of the difference is moved one position forward as if multiplied by 10.
In the next experiment, we investigate stability properties for the model (4.7). We perturb the given data, Ai as follows:

Bi = Ai + ϵI i = 1, . . . , n

In Table 3, we can observe that ∥XB − XA∥F ≤ 5ϵ, where XA is the final estimated solution of the model (4.7) with data
i and XB is that with the perturbed data Bi, for all the cases. We see that if q is fixed, then the value ∥XB − XA∥F/ϵ tends
o decrease as the regularization parameter γ is decreasing and, if the regularization parameter γ is fixed, then the value
s increasing as q goes to 1 except when q = 0.99 and γ = 0.1, 0.01.

From Table 4, for all the cases, ∥XB − XA∥F ≤ 3ϵ is observed. It is observed that the value ∥XB − XA∥F/ϵ is decreasing
s q goes away from 1 when the regularization parameter γ is fixed and the value is increasing as the regularization
17
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Table 1
Test results of the value ∥X0.5 − Xq∥F where X0.5 is the final estimated solution of the model (4.7) with
q = 0.5 and Xq is that with various given q less than 1 on 5 random data sets.

q Difference when γ = 1

0.6 0.00110 0.00111 0.00119 0.00101 0.00108
0.7 0.01023 0.01029 0.01088 0.00959 0.01012
0.8 0.08709 0.08746 0.09084 0.08338 0.08646
0.9 0.76237 0.76417 0.78058 0.74408 0.75926
0.99 6.0825 6.09018 6.18696 5.97885 6.05433

q Difference when γ = 0.1

0.6 0.00011 0.00011 0.00012 0.00010 0.00011
0.7 0.00102 0.00103 0.00109 0.00096 0.00101
0.8 0.00865 0.00869 0.00902 0.00829 0.00859
0.9 0.07344 0.07360 0.07500 0.07186 0.07318
0.99 0.51458 0.51471 0.51590 0.51321 0.51434

q Difference when γ = 0.01

0.6 0.000011 0.000011 0.000011 0.000009 0.000010
0.7 0.00010 0.00010 0.00011 0.00010 0.00010
0.8 0.00086 0.00087 0.00090 0.00083 0.00086
0.9 0.00732 0.00733 0.00747 0.00716 0.00729
0.99 0.05095 0.05096 0.05105 0.05083 0.05093

Table 2
Test results of the value ∥X1.25 −Xq∥F where X1.25 is the final estimated solution of the model (4.7) with
q = 1.25 and Xq is that with various given q greater than 1 on 5 random data sets.

q Difference when γ = 0.01

1.2 0.41764 0.39779 0.38627 0.43071 0.42259
1.1 0.71682 0.68549 0.66727 0.73737 0.72459
1.01 0.80209 0.76872 0.74931 0.82395 0.81036

q Difference when γ = 0.001

1.2 0.04387 0.04184 0.04067 0.04520 0.04437
1.1 0.07421 0.07104 0.06919 0.07630 0.07500
1.01 0.08274 0.07936 0.07740 0.08496 0.08358

Table 3
Test results of the value ∥XB − XA∥F /ϵ where XA is the final estimated solution of the model (4.7) with data Ai and XB is that with the perturbed
data Bi on 5 random data sets when q < 1.
q γ = 1 and ϵ = 10−2 γ = 1 and ϵ = 10−3 γ = 1 and ϵ = 10−5

0.6 3.897 3.788 3.877 3.831 3.843 3.905 3.793 3.884 3.837 3.850 3.906 3.793 3.885 3.837 3.850
0.7 3.901 3.792 3.881 3.834 3.847 3.909 3.796 3.888 3.840 3.853 3.910 3.797 3.888 3.841 3.854
0.8 3.921 3.811 3.903 3.852 3.866 3.929 3.816 3.909 3.858 3.873 3.930 3.816 3.910 3.859 3.873
0.9 4.014 3.903 4.002 3.937 3.957 4.023 3.908 4.009 3.947 3.964 4.024 3.908 4.010 3.944 3.965
0.99 4.637 4.510 4.761 4.414 4.508 4.653 4.522 4.777 4.424 4.520 4.654 4.523 4.779 4.426 4.521

γ = 0.1 and ϵ = 10−2 γ = 0.1 and ϵ = 10−3 γ = 0.1 and ϵ = 10−5

0.6 3.897 3.788 3.877 3.830 3.843 3.905 3.792 3.883 3.836 3.849 3.906 3.793 3.884 3.837 3.850
0.7 3.897 3.788 3.877 3.830 3.843 3.905 3.793 3.884 3.836 3.849 3.906 3.793 3.884 3.837 3.850
0.8 3.899 3.790 3.879 3.832 3.845 3.907 3.794 3.886 3.838 3.851 3.908 3.795 3.886 3.839 3.852
0.9 3.907 3.797 3.887 3.839 3.852 3.915 3.802 3.894 3.845 3.859 3.916 3.803 3.895 3.846 3.860
0.99 3.906 3.796 3.886 3.838 3.851 3.913 3.801 3.892 3.844 3.858 3.914 3.801 3.893 3.845 3.858

γ = 0.01 and ϵ = 10−2 γ = 0.01 and ϵ = 10−3 γ = 0.01 and ϵ = 10−5

0.6 3.897 3.787 3.877 3.830 3.843 3.905 3.792 3.883 3.836 3.849 3.907 3.796 3.885 3.840 3.841
0.7 3.897 3.788 3.877 3.830 3.843 3.905 3.792 3.883 3.836 3.849 3.906 3.793 3.884 3.837 3.850
0.8 3.897 3.788 3.877 3.830 3.843 3.905 3.792 3.883 3.836 3.849 3.906 3.793 3.884 3.837 3.850
0.9 3.898 3.788 3.878 3.831 3.844 3.906 3.793 3.884 3.837 3.850 3.906 3.794 3.885 3.838 3.851
0.99 3.898 3.788 3.877 3.831 3.843 3.905 3.793 3.884 3.837 3.850 3.906 3.793 3.885 3.837 3.851

parameter γ is decreasing when q is fixed. To illustrate the aforementioned trends, we present ∥XB −XA∥F/ϵ versus ϵ and

∥XB − XA∥F/ϵ versus q for one random data in Figs. 1 and 2 respectively.

To visualize the effect of γ , we create the following toy example:

A1 =

[
1 0

]
, A2 =

[
5 0

]
, A3 =

[
10 0

]
.
0 1 0 5 0 10
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Table 4
Test results of the value ∥XB − XA∥F /ϵ where XA is the final estimated solution of the model (4.7) with data Ai and XB is that with the perturbed
data Bi on 5 random data sets when q > 1.

γ = 0.01 and ϵ = 10−2 γ = 0.01 and ϵ = 10−3 γ = 0.01 and ϵ = 10−5

1.2 2.682 2.643 2.761 2.628 2.672 2.687 2.647 2.767 2.632 2.677 2.688 2.647 2.768 2.633 2.677
1.1 2.731 2.694 2.815 2.676 2.722 2.737 2.698 2.821 2.680 2.726 2.738 2.698 2.822 2.681 2.726
1.01 2.740 2.703 2.824 2.684 2.730 2.746 2.707 2.831 2.689 2.735 2.746 2.707 2.832 2.689 2.735

γ = 0.001 and ϵ = 10−2 γ = 0.001 and ϵ = 10−3 γ = 0.001 and ϵ = 10−5

1.2 2.735 2.697 2.818 2.679 2.725 2.740 2.701 2.825 2.683 2.730 2.741 2.701 2.826 2.684 2.730
1.1 2.740 2.702 2.824 2.684 2.730 2.745 2.706 2.830 2.688 2.734 2.746 2.706 2.831 2.688 2.734
1.01 2.740 2.703 2.825 2.685 2.731 2.746 2.707 2.831 2.689 2.735 2.747 2.707 2.832 2.689 2.735

Fig. 1. ∥XB−XA∥F
ϵ

vs. ϵ.

Fig. 2. ∥XB−XA∥F
ϵ

vs. q.

In this experiment, we first set q = 0.5 and ϵ = 10−5.

XA,1 =

[
4.29505684 0

0 4.29505684

]
XB,1 =

[
4.29506977 0

0 4.29506977

]
XA,0.5 =

[
4.42471564 0

]
XB,0.5 =

[
4.42472836 0

]

0 4.42471564 0 4.42472836

19
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w

Table 5
Test results of algorithms on 5 random data sets when q = 0.5 and q = 1.25.

q = 0.5 with γ = 1 q = 0.5 with γ = 0.1

GPM 333 327 315 343 334 333 321 315 338 327
RGM 222 222 219 226 223 33 33 32 33 33

q = 1.25 with γ = 0.01 q = 1.25 with γ = 0.001

GPM 307 285 285 331 310 325 302 300 348 328
RGM 2 2 2 2 2 2 2 2 2 2

XA,0.1 =

[
4.52436136 0

0 4.52436136

]
XB,0.1 =

[
4.52437393 0

0 4.52437393

]
XA,0.01 =

[
4.54632757 0

0 4.546327571

]
XB,0.01 =

[
4.54634011 0

0 4.54634011

]
XA,0 =

[
4.54875843 0

0 4.54875843

]
XB,0 =

[
4.54877096 0

0 4.54877096

]
,

here XA,γ is the final estimated solution with the given γ and data Ai and XB,γ is the final estimated solution with the
given γ and the perturbed data Bi.

Next, we set q = 0.5 and ϵ = 10−3.

XA,1 =

[
4.29505684 0

0 4.29505684

]
XB,1 =

[
4.29635024 0

0 4.29635024

]
XA,0.5 =

[
4.42471564 0

0 4.42471564

]
XB,0.5 =

[
4.42598739 0

0 4.42598739

]
XA,0.1 =

[
4.52436136 0

0 4.52436136

]
XB,0.1 =

[
4.52561833 0

0 4.52561833

]
XA,0.01 =

[
4.54632757 0

0 4.54632757

]
XB,0.01 =

[
4.54758147 0

0 4.54758147

]
XA,0 =

[
4.54875843 0

0 4.54875843

]
XB,0 =

[
4.54877096 0

0 4.54877096

]
,

where XA,γ is the final estimated solution with the given γ and data Ai and XB,γ is the final estimated solution with the
given γ and the perturbed data Bi.

From this experiment, we can see that the bigger the penalty parameter γ is, the smaller the value of each diagonal
entry of the solution is. In other words, the regularization term has the effect of reducing the value of diagonal entries.
We also observe that diagonal entries of XA,γ and XB,γ are equal up to the second decimal place when ϵ = 10−3 and
diagonal entries of XA,γ and XB,γ are equal up to the fourth decimal place when ϵ = 10−5 as expected.

6.2. Comparison of gradient projection method and Riemannian gradient method

In this subsection, we compare the performance of the gradient projection method on Euclidean space with that of
Riemannian gradient methods (RGM) [30–32]. RGM that we are comparing is the version in [30] and it has been proved
in [30, Theorem 4] that RGM has a linear convergence rate and the rate depends on the regularization parameter and the
distribution of eigenvalues of given data matrices but does not depends on the dimension of matrices. The algorithmic
procedure of this method is briefly described below. We note that the stepsize is selected by the rule in [30, Theorem 4],
i.e., tk = 1/(1 + 2γ β̂) for all k. We refer [30] for detailed description of RGM.

Algorithm 2 RGM

Choose X0
∈ [α̂I, β̂I]. Initialize k = 0. Update X (k+1) from X (k) by the following template:

Step 1. Find gradψ(Xk),

Step 2. Select a stepsize t (k),

Step 3. X (k+1)
= ExpXk (−tkgradψ(Xk)).

Here gradψ(Xk) denotes the Riemannian gradient at Xk and ExpXk (·) denotes the exponential map.

For comparison, we generate random matrices using the same procedure as in Section 6.1 and we first run GPM and
then RGM until it reaches the same objective function value reached by GPM. Note that q = 0.5 with γ = 1 and γ = 0.1
20
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Table 6
Test results of algorithms on 5 random data sets when q = 1 with various γ .

γ = 10 γ = 1 γ = 0.1

GPM 792 765 745 834 808 349 351 323 361 352 296 298 283 303 299
RGM 2184 2121 2095 2270 2237 290 293 279 294 295 39 40 40 39 40

Table 7
Test results of algorithms on 5 random data sets when q = 1 and γ = 1 with different distribution of eigenvalues.

eiglb = 0.1 and eigub = 9.9 eiglb = 0.01 and eigub = 99.99

GPM 349 351 323 361 352 2695 2649 2569 2766 2705
RGM 290 293 279 294 295 2962 2956 2970 2946 2965

Table 8
Test results of algorithms on 5 random data sets when q = 1 and γ = 1 with different dimension of matrices.

d = 10 d = 100

GPM 349 351 323 361 352 363 363 340 339 346
RGM 290 293 279 294 295 299 301 282 283 287

and q = 1.25 with γ = 0.01 and γ = 0.001 are used. In Table 5, we report the number of iterations of 5 random instances.
rom Table 5, RGM reaches the final objective value of GPM in a few iterations for the case q = 1.25, but, for the case
= 0.5 with γ = 1, it requires many iterations to reach that of GPM and so the difference in the number of iterations
etween RGM and GPM is not as large as in the other cases. The performance of GPM does not depend significantly on
he parameters q and γ but that of RGM depends on the parameter γ since the stepsize for RGM relies on γ .

To further investigate the dependence of the regularization parameter γ , we compare GPM and RGM for the case
= 1 with various γ from 10 to 0.1. In Table 6, the dependence of the parameter γ is greater in RGM than in GPM. If

he parameter γ is increased a factor of 10, then the number of iterations for RGM is approximately 7 times larger.
In order to investigate the effect of eigenvalue distribution on the performance of algorithms, we run algorithms with

iglb = 0.01 and eigub = 99.99. And to observe the effect of the dimension of matrices on the performance of algorithms,
andom matrices with d = 100 are generated for testing. We note that q = 1 is set for observing those effects (see Tables 7
nd 8).
The distribution of eigenvalues for randomly generated matrices affects the performance of both GPM and RGM. GPM

equires 8 times and RGM needs 10 times more iterations if the distribution range is 10 times wider. The dimension of
atrices has little effect on the performance of both GPM and RGM. Neither methods requires much more iterations.
From numerical comparison of GPM with RGM, if the regularization parameter is relatively large, it is recommended

o use GPM, otherwise it is recommended to use RGM.

. Conclusion and outlook

In this paper we have studied the Wasserstein barycenter problem for Gaussian and q-Gaussian measures, each
egularized by a particular entropy functional. We have provided the existence and a characterization of the barycenters
nd proposed an algorithm based on gradient projection method in the space of matrices in order to compute them. We
ave also numerically shown the influence of parameters and stability of the algorithm under small perturbation of data
nd compared the gradient projection method with Riemannian gradient method. As has been shown in Proposition 2.1,
he space of ϕ-exponential measures is also isometric to the space of Gaussian measures with respect to the Wasserstein
istance. Therefore, the unregularized Wasserstein barycenter problem for ϕ-exponential measures can be solved exactly
he same as in the case of Gaussian measures. However, we presently do not know of an explicit formulation of the
ntropy in the case of ϕ-exponential measures and leave the problem of regularized Wasserstein barycenter for them for
urther study. Another interesting topic for future work would be to generalize the results of this paper to probability
easures living in different spaces using unbalanced optimal transport.
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Appendix. ϕ-Exponential measures

We recall that for a given increasing, positive and continuous function ϕ on (0,∞), the ϕ-logarithmic function and the
-exponential function are respectively defined in (1.2) and (1.3). Two important classes of ϕ-exponential functions are:

(i) ϕ(s) = s: the ϕ-logarithmic function and the ϕ-exponential function become the traditional logarithmic and
exponential functions: lnϕ(t) = ln(t), expϕ(t) = exp(t).

(ii) ϕ(s) = sq for some q > 0: the ϕ-logarithmic function and the ϕ-exponential function become the q-logarithmic
and q-exponential functions respectively

lnϕ(t) = logq(t) =
t1−q

− 1
1 − q

for t > 0, expϕ(t) = expq(t) =

(
1 + (1 − q)t

) 1
1−q

+

,

where [x]+ = max{0, x} and by convention 0a
:= ∞. The q-logarithmic function satisfies the following property

lnq(xy) = lnq(x) + lnq(y) + (1 − q) lnq(x) lnq(y). (A.1)

efinition A.1. For any a ∈ R, we define O(a) to be the set of all increasing, positive, continuous functions ϕ on (0,∞)
uch that max{δϕ, δϕ} < a where

δϕ := inf
{
δ ∈ R

⏐⏐⏐ lim
s↓0

s1+δ

ϕ(s)
exists

}
, δϕ := inf

{
δ ∈ R

⏐⏐⏐ lim
s↑∞

s1+δ

ϕ(s)
= ∞

}
.

t is proved in [29, Proposition 3.2] that for any ϕ ∈ O(2/(d + 2)) there exist constants λϕ and cϕ such that (cf. (1.4) in
he Introduction)

gϕ(v, V )(x) := expϕ(λϕ − cϕ |x − v|2V )
(
det(V )

)−
1
2
,

where |x|2V := ⟨x, V−1x⟩, is a probability density on Rd with mean v and covariance matrix V , which is called a ϕ-
exponential distribution. Note that, in the above expression, λϕ and cϕ do not depend on the choice of V . We define
the space of all ϕ-exponential distribution measures by

Gϕ :=

{
Gϕ(v, V ) := gϕ(v, V )Ld

⏐⏐(v, V ) ∈ Rd
× S(d,R)+

}
.

Above Ld is the Lesbesgue measure on Rd. Two important cases:

(i) ϕ = s, Gϕ reduces to the class of Gaussian measures.
(ii) In the case ϕ = sq, Gϕ becomes the class of all q-Gaussian measures

Gq =

{
Gq(v, V )

⏐⏐(v, V ) ∈ Rd
× S(d,R)+

}
where

Gq(v, V ) = C0(q, d)(det V )−
1
2 expq

(
−

1
2
C1(q, d)⟨x − v, V−1(x − v)⟩

)
Ld,

and C0(q, d), C1(q, d) are given by

C1(q, d) =
2

2 + (d + 2)(1 − q)
,

C0(q, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Γ

(
2−q
1−q +

d
2

)
Γ

(
2−q
1−q

) (
(1−q)C1(q,d)

2π

) d
2

if 0 < q < 1,

Γ

(
1

q−1

)
Γ

(
1

q−1 −
d
2

)( (q−1)C1(q,d)
2π

) d
2

if 1 < q < d+4
d+2 .

Note that C1(1, d) = 1 and C0(q, d) → (2π )−d/2 as q → 1, which follows from Stirling’s formula. Thus Gaussian
measures are special cases of q-Gaussian measures.

he ϕ-exponential measures play an important role in statistical physics, information geometry and in the analysis of
onlinear diffusion equations [26–29]. We refer to [27,28,38] for further details on q-Gaussian measures, ϕ-exponential
easures and their properties.
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