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Recent studies have demonstrated that following learning tasks, changes in the resting
state activity of the brain shape regional connections in functionally specific circuits.
Here we expand on these findings by comparing changes induced in the resting
state immediately following four motor tasks. Two groups of participants performed a
visuo-motor joystick task with one group adapting to a transformed relationship between
joystick and cursor. Two other groups were trained in either explicit or implicit procedural
sequence learning. Resting state BOLD data were collected immediately before and
after the tasks. We then used graph theory-based approaches that include statistical
measures of functional integration and segregation to characterize changes in biologically
plausible brain connectivity networks within each group. Our results demonstrate that
motor learning reorganizes resting brain networks with an increase in local information
transfer, as indicated by local efficiency measures that affect the brain’s small world
network architecture. This was particularly apparent when comparing two distinct forms
of explicit motor learning: procedural learning and the joystick learning task. Both groups
showed notable increases in local efficiency. However, a change in local efficiency in
the inferior frontal and cerebellar regions also distinguishes between the two learning
tasks. Additional graph analytic measures on the “non-learning” visuo-motor performance
task revealed reversed topological patterns in comparison with the three learning tasks.
These findings underscore the utility of graph-based network analysis as a novel means
to compare both regional and global changes in functional brain connectivity in the resting
state following motor learning tasks.

Keywords: fMRI, resting state, graph analysis, complex networks, motor learning

INTRODUCTION
The combination of resting state neuroimaging methods with
motor learning paradigms has ushered in a new era to the inves-
tigations of adult brain plasticity. Until recently neuroimaging
paradigms examining motor learning were almost exclusively
investigated during the execution of a learning task. This has
generated a wealth of data showing rapid neural changes occur-
ring during the execution of the learning task. Although the
vast majority of these studies were investigated with fMRI, other
techniques such as diffusion weighted imaging have shown that
long term motor practice can induce structural changes in both
gray (Maguire et al., 2000) and white matter (Scholz et al.,
2009; Johansen-Berg, 2010; Tomassini et al., 2011). So, given that
learning a new skill alters both functional and structural brain
networks, one key unanswered question is how the rapid func-
tional changes seen in task related activity contribute to sustain
longer term changes in structure or function i.e., in essence the
relationship between short-term and long term motor memory.
While it has been previously speculated that resting state func-
tional networks may hold at least a partial answer to this question
(Miall and Robertson, 2006; Albert et al., 2009; Ma et al., 2010), it
was not until recently that such a link has been provided (Taubert
et al., 2011; Vahdat et al., 2011).

However, many questions about the very nature of functional
resting states remain unanswered (Deco et al., 2011). Ever since
Biswal and colleagues measured spontaneous activity over the
motor cortex there has been a great interest in resting state
networks (Biswal et al., 1995). “Resting state activity” usually
measures endogenous and spontaneous rhythms and can be con-
sidered low frequency fluctuations in the BOLD signal. It has
now been established that resting state-brain networks (RSNs)
are highly reliable, showing reproducible traits over time, over
subjects and across testing sessions, as well as having a strong
association to task-related activation patterns (Smith et al., 2009).
Recent studies have investigated the functional relevance of rest-
ing state networks by striving to link changes in RSNs with known
functionally active task-related networks. One of the first studies
was by Albert et al. (2009) investigating the effect of a visuo-
motor learning task on resting state BOLD. They found that the
fronto-parietal and cerebellar networks are particularly engaged
following learning, highlighting that functional changes seen in
resting state immediately following motor training are represen-
tative of changes generally seen during motor learning task per-
formance. Moreover, this comparative approach has given us an
additional insight into RSNs, highlighting common characteris-
tics between brains regions that share a common function (Smith
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et al., 2009). The comparisons between RSN and task-based net-
work modulations has been largely achieved through the use of
novel neuroimaging techniques like seed-based correlations and
ICA, and have allowed the categorization of further functional
sub-networks (Van den Heuvel and Hulshoff Pol, 2010).

Even though a number of key networks have been identified
through ICA little is known about their network properties. More
recently, graph theoretical network analysis has provided a novel
approach to identify biologically plausible network architectures
and this could provide insight into organizational rules as well
as the processing properties of these networks following learning
(Heitger et al., 2012).

Graph analysis of neuroimaging data is still a very new tech-
nique. Until now the most common use of graph-based analysis
of resting fMRI data, has been to characterize normal functional
connectivity at rest, and to examine differences in brain networks
in healthy individuals compared to patients with neurological
disorders (Liu et al., 2008; Lynall et al., 2010). Most recently a
few studies have utilized graph analysis of neuroimaging data
related to motor learning. Bassett et al. (2011) looked at dynamic
changes following a simple motor learning task focusing on mod-
ular network changes only, while Heitger et al. (2012) looked at a
more complete set of graph analytic measures investigating motor
learning in a task based experiment. Given the paucity of work on
resting state graph based analysis following motor learning, we
were interested in whether these techniques can usefully comple-
ment more common ICA-based approaches. Here we utilize this
graph analytic approach to compare immediate changes induced
in the resting state following four motor tasks. Two groups of par-
ticipants performed a visuo-motor target-tracking task with one
group adapting to a transformed relationship between joystick
and cursor. Two further groups were trained in either explicit or
implicit procedural sequence learning. Based on our previous ICA
results (Albert et al., 2009) and on a recent meta-analysis of the
motor learning literature (Hardwick et al., 2012), we hypothesize
that the visuo-motor tasks will show significantly stronger cere-
bellar activity while the procedural sequence-learning tasks will
show more widespread cortical activity.

MATERIALS AND METHODS
We used resting state BOLD signal data from four motor tasks,
two variants of a sequence-learning task requiring rapid finger
button presses in a learned sequence, and two variants of a target-
reaching task using a joystick. Both sequence-tasks were designed
to induce learning, one explicit and one implicit; one of the visuo-
motor tasks was a learning task, the other a non-learning control
task. In each we compared resting activity before and after the
learning period.

TASKS 1 AND 2: SEQUENCE LEARNING
Participants
Two groups of twelve healthy individuals participated in either
an explicit (task 1) or implicit (task 2) version of the serial
reaction time task (SRTT; Robertson, 2007). All participants
were right handed, as confirmed by the Edinburgh handedness
questionnaire. All participants (mean age 23.6 ± 5.2 years) gave
written informed consent, and received either cash or credit

for their participation. Participants recalling more than four
items of the sequence were excluded from the implicit condi-
tion. All the participants were instructed to respond as quickly
and as accurately as possible to the target location by a button
press. Moreover, instructions to participants differed depending
on which group they participated in. The implicit participants
were unaware of the underlying sequence; while the explicit par-
ticipants were aware of the existence of a sequence that was
highlighted by a different color than the embedded random
sequences. The two tasks were equalized in terms of the test-
ing block size to avoid durational performance effects. The task
lasted approximately 10 min for the explicit group while it was
only slightly longer (∼by 2 min) for the implicit group. The local
ethics committee at the University of Birmingham approved the
experiment.

Procedure
Participants were scanned with a 3T Philips Achieva MRI scan-
ner as they completed a fixed set of tasks. First they viewed a
dynamic point light display of human body movements, as a
dummy task (Albert et al., 2009). They were then instructed to lie
still with their eyes open while fixating on cross displayed in the
middle of the screen during the initial rest scan which lasted for
10 min. An explicit or implicit procedural learning SRTT task was
then issued for approximately 15 min, dependent upon individual
reaction times. Participants responded with their right hand using
a 4-button response box. The dummy task was then repeated for
5 min. Finally participants remained for a second 10 min rest scan
conducted ∼5 min after the end of the SRTT task.

TASKS 3 AND 4: VISUO-MOTOR LEARNING
Data from a previously reported study have been reanalyzed here.
Details of the procedures are found in the original report (Albert
et al., 2009). In summary: two groups of twelve individuals par-
ticipated in one of two visuo-motor tracking tasks. Participants
used an MR compatible joystick to control a cursor with their
non-preferred left hand. For the test group (task 3) there was an
angular displacement between target and cursor accumulating by
10◦ every min for 10 min, reaching a maximum of 90◦, while for
the control group (task 4) there was no such displacement, and
the movements of joystick and cursor were congruent. As in tasks
1 and 2 each of the visuo-motor tasks were interleaved between
the two rest sessions and had the same dummy task preceding
every rest period acquisition.

Imaging parameters
For all 4 experiments, scans were conducted at the Birmingham
University Imaging Centre (BUIC), University of Birmingham,
Birmingham, UK; the experiments were approved by the
University’s local ethical panel, and all participants gave
written informed consent. The MRI unit was a 3 Tesla
Philips Achieva scanner (Koninklijke Philips Electronics
N.V., Eindhoven, Netherlands). Each participants had a high-
resolution T1-weighted structural scan where the TR = 8.4 ms,
TE = 3.8 ms, flip angle = 8◦ and FOV = 232 × 288 × 175 mm).
In all functional scans the TR = 2800 ms, TE = 35 ms, and
flip angle = 85◦. An 8 channel (SENSE factor 2) head coil was
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used. EPI volumes consisted of forty-nine 96 × 96 axial slices of
2.5 × 2.5 × 3 mm voxels. Using an FOV of 240 × 147 × 240 mm,
the entire cerebral cortex and cerebellum were covered.

Image pre-processing
All data were motion-corrected and normalized to a stan-
dard template using the statistical parametric mapping software
(SPM8; Friston et al., 2006). Pre-processing included regression of
motion parameters, nuisance signals, and global signal, followed
by band-pass filtering at 0.01–0.1 Hz to isolate the low-frequency
fluctuations characteristic of resting connectivity. Data was then
parcellated into 116 regions using the Automatic Anatomical
Labeling (AAL) atlas as implemented by IBASPM (Tzourio-
Mazoyer et al., 2002; Alemán-Gómez et al., 2006). This resulted
in an averaged fMRI time series for 116 regions (nodes) for each
subject, which were used for subsequent graph network analysis
(see Figure 2).

Network graph construction
To create network graphs for every participant (see Figure 1), we
used the Matlab-based Connectivity Decoding Toolkit (Richiardi

et al., 2011). This software applies the outcome of the widely
adopted IBASPM structural atlas to form a functional atlas by
averaging the time series data for each region. It then per-
forms a discrete wavelet transformation on the averaged time
series data, filtering it into four separate frequency sub-bands.
Here we adopted the use of a standard sub-band (0.06–0.1 Hz),
which has been widely used for resting state analysis. In practice
this sub-band has been shown to effectively filter out physi-
ological noise in upper frequencies, and avoids measurement
errors connected with lower frequencies (Fornito et al., 2010;
Richiardi et al., 2011). For functional connectivity between
the 116 parcellated regions, the Pearson correlation was com-
puted between all pairs of node time series to generate a
116 × 116 correlation matrix (i.e., the adjacency matrix, Aij)
for each subject (see Figure 2). The adjacency matrix repre-
sents a very densely connected network that makes it difficult
to test the reliability of the connections. For simplicity the adja-
cency matrix is thresholded and further binarized to maintain
only the most reliable connections (Rubinov and Sporns, 2011).
In this study we adopted five thresholds of r = 0.3, 0.4, 0.5,
0.6, and 0.7.

FIGURE 1 | Schematic diagram of different graph measures. In the upper
row, starting from left, shows the degree, which is the number of edges
connected to each node. As indicated here the red node has a degree of
three. The clustering coefficient of a node is given as a ratio of its neighbors
that are also linked to one another. The red node is connected to all three
possible neighboring nodes but forming only 2 of the 3 possible closed
triangles. Hence the clustering coefficient for this node is 2/3. The path
length of the red node is four as minimum number of connections between

the red node and final blue corresponds to four. On the bottom row
betweenness centrality is the ratio of all shortest paths that pass through
and from a node. The connector hub is shown in red as connections between
the nodes with the highest degree. The graph at the right consists of four
different modules, or clusters specified by the different node color.
Modularity refers to the existence of clusters of nodes with connections
which are more densely connected to other nodes within the same module
than to nodes outside the module.

FIGURE 2 | The diagram represents data analysis workflow. (A) Initial
data pre-processing and co-registration of structural and functional data.
(B) Application of parcellation scheme anatomical template image to each
individual fMRI dataset creating a regional mean fMRI time series.
(C) Wavelet analysis was used to bandpass filter the regional time series

and to estimate frequency-specific measures of functional connectivity
between regions. (D) The creation of functional connectivity adjacency
matrices (E) The adjacency matrices were thresholded and binarized then
these undirected graphs were used for the creation of (F) network
topological metrics were further evaluated by statistical testing.
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Network measures
Once the binary graphs were constructed, the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010) was used to calculate the
network measures. All network measures used thresholded and
binarized graphs with the exception of the strength measure,
which can only be applied to complete graphs. Although a
large number of measures can be used (Rubinov and Sporns,
2010), in this study we used 10 selected measures of the
thresholded binary graphs, choosing those most consistent
across the literature, yet allowing us to capture the impor-
tant features of the complex graphs. Network based measures
used in this study include degrees, hubs, characteristic path
length, clustering coefficients, local and global efficiency, small
worldness, betweenness centrality, modularity, and participation
coefficients.

Topological properties of the network
General measures of connectivity. One of the fundamental mea-
sures widely used in graph analysis is that of connectivity degree.
The degree Di of a node/region i is characterized as the total num-
ber of edges connecting that node/region to its neighbors (see
Figure 1). An increase in level of global network interaction for
a given region is signified by increase in degrees. Nodes with the
highest degrees can also be signified as hubs. The degree D of a
graph B is the mean of the degrees for the total number of nodes
in the graph (Heitger et al., 2012).

D = 1

N

∑
i ε B

Di

Another measure of global connectivity is strength (Si). For a
given region this is defined and computed as the sum of weights
wij (connection density) of all the connections of a region/node i,
providing information on the total level of weighted pair-wise
correlations of the region/node. In mathematical terms:

Si =
∑
j ε N

wij

In turn, the total connection strength S of the graph was computed
as the mean of Si for all nodes (Sporns, 2011; Heitger et al., 2012).

Path length provides information on global information trans-
fer efficiency, as a shorter path would allow for the more rapid
distribution of information between brain regions, with shorter
paths entailing a greater prospect for integration (see Figure 1).

The mean shortest path length Li of a node i is:

Li = 1

N − 1

∑
i �= j ε B

Li, j

The characteristic path length L of a network is the mean of the
shortest path length between the nodes (Sporns, 2011; Heitger
et al., 2012).

Furthermore, global efficiency of a network is also associated
with path length and generally defined as the mean of the inverse
shortest path length (Latora and Marchiori, 2001).

Region based measures of functional connectivity. Densely
interconnected groups of nodes are known as clusters within the
network. These clusters can be defined on either a regional or
network level (see Figure 1). The clustering coefficient of a node or
region Ci is a ratio between the numbers of existing edges among
the node’s neighbors divided by the total number of all the regions
possible edges:

Ci = Ri

Di(Di − 1)/2

Ri is the total number of connected pairs between all neighbors of
node i. On a network level the clustering coefficient C is defined
as the mean of the clustering coefficient of all nodes (Sporns et al.,
2004; Sporns, 2011; Heitger et al., 2012).

Local efficiency Ei_loc of a node i is linked to the clustering
coefficient and is defined as:

Ei_loc = 1

vi(vi − 1)

∑
j, v ε Hi

1

Lj,v

where the sub-graph Hi represents nodes that are connected to the
node i and in which Lj,v is the minimal number of edges connect-
ing node j and node v (similar to shortest path description) and
vi (similar to N). Ei_loc discloses how efficient the communication
is between node i and its neighbors. The mean local efficiency of
a graph, is merely the mean of the local efficiency of all the nodes
in the graph (Sporns, 2011; Heitger et al., 2012).

Small-world brain connectivity. Small-world networks can be
described as networks that have approximately the same charac-
teristic path length as random networks, yet are notably more
clustered than random networks, (Watts and Strogatz, 1998),
Formally:

γ = Creal/Crand > 1

λ = Lreal/Lrand ≈ 1

where the Lreal and Creal are the characteristic path length and
clustering coefficient of the real network, the Lrand and Crand are
the mean characteristic path length and clustering coefficient of
an comparable random network, i.e., a random network that has
similar graph characteristics in terms of size and edges as the real
network (Maslow and Sneppen, 2002; Sporns et al., 2004). The
small worldness coefficient is defined as a ratio σ = γ/λ, where
values of sigma greater than 1 can be considered small world
(Sanz-Arigita et al., 2010).

Measures founded on the notion of centrality are described as
the most important nodes that contribute to the shortest paths
inside a network and as a result act as central controls of infor-
mation flow (Rubinov and Sporns, 2010). A commonly adopted
centrality measure is betweenness centrality Xi of a node i, is
defined as:

Xi = 1

(N − 1)(N − 2)

∑
f , j ε G

f �= j, f �= i, j �= i

Yfj(i)

Yfj
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in which Yfj is the total sum of shortest paths connecting nodes
f and j and Yfj(i) is the total sum of shortest paths linking nodes f
and j that go through node i.

The principle nodes often referred to as hubs can also be
described as those nodes with the greatest betweenness centrality
in a complex network (He et al., 2007; Shu et al., 2009; Rubinov
and Sporns, 2010).

Modularity. A module is defined as a sub-network of highly
inter-connected nodes that are comparatively sparsely linked to
nodes in other modules (see Figure 1). Modularity in brain
networks is associated with densely connected neighboring func-
tional or anatomical cortical areas or communities, while connec-
tions between modules tend to be comparatively long distance
(Meunier et al., 2010). The modularity detection algorithm we
used was based on the Louvain method (Blondel et al., 2008) and
visualized with a circular diagram. This is an efficient method for
identifying modular structures. This is based on an algorithm that
maximizes modular detection by iterative searching over the pos-
sible divisions of a network until modularity for a given module
cannot be further improved.

The modularity measure: Q is originally defined as an
unweighted and undirected network that is partitioned into sub-
networks (Newman, 2004; Meunier et al., 2010)

Q = 1

2α

∑
Z ε P

×
∑

j, D ε Bi

(
Aij − kikj

2α

)

where A is the adjacency matrix of the network; α is the total
number of edges; ki and kj are the degrees of node i and j. The
index Z runs over the modules of the community or partition P.
Modularity compares the number of links between the numbers
of possible connections for all pairs of nodes within a sub-
network, against the number of such edges for a corresponding
random graph.

Following the optimal partitioning of a network into modules,
individual nodes can be ascribed to characterize their impact for
within and between -modular transfer of information (Guimerà
and Amaral, 2005; Meunier et al., 2010). The participation coeffi-
cient of a given node is the proportion of edges linking it to nodes
in other modules.

�j = 1 −
∑

W = 1

(
βjc

βj

)2

where βjc is the number of links of node i to nodes in module W
and βj is the degree of node i. If all the edges of node i are dis-
tributed within their module, then βjc = βj and the participation
coefficient �j is 0. However, if all the connections of node i are
distributed between the rest of the modules, �j approaches one
(Guimerà and Amaral, 2005).

Statistical analysis
We tested for significant differences between the pre- and
post-motor task RSN measurements using the non-parametric
Wilcoxon statistical hypothesis test when comparing related
groups, at identical thresholds for each network measure.

Additionally, we corrected for multiple comparisons to identify
within group (corrected for the 116 nodes) and between-group
differences (corrected of the four groups) across all network
measures (Zalesky et al., 2010).

RESULTS
Behavioural results indicate that motor performance significantly
improved across all three learning tasks [visuo-motor data was
reported in Albert et al. (2009)]. Hence learning was induced in
each case, but the task differences imply that we would expect dif-
ferent network changes underlying this change in performance.
The performance in the non-learning visuo-motor control group
did not change (Albert et al., 2009).

For the SRTT both groups showed procedural learning follow-
ing the training exposure phase of the SRTT task. Comparing
pre- and post-training for the implicit task, there was a signif-
icant reduction in reaction times (p < 0.05), while the explicit
task showed a greater difference (p < 0.01). There was also a
marked difference between the performance of these two groups,
with significantly reduced reaction times for the explicit group
(p = 0.01). This is an expected outcome due to the more rapid
sequence acquisition of participants with explicit awareness (i.e.,
in the “explicit group”).

GLOBAL CHANGES IN STRENGTH
To define global changes in the resting state networks after
learning we measured the correlation coefficient calculated on
RSN-specific low frequency components of the BOLD signal. For
each of 116 anatomically defined brain regions, we estimated the
strength (Rubinov and Sporns, 2010) of its functional connectiv-
ity to the rest of the brain in each individual dataset. In all 3 of the
motor learning tasks functional connectivity strength was signif-
icantly greater in the 2nd rest period post learning (p < 0.001;
see Figures 3A–C). In contrast overall strength of connectivity
was significantly reduced in the visuomotor performance task
(p < 0.01; Figure 3D). Strength also varied widely over different
brain regions, as indicated by overall ranking of strength across
the 116 regions, and by the local differences in the amount of
change in strength between the two rest sessions separated by
learning (as indicated by the jagged pre-learning ordered data in
blue, in Figure 3, compared to the red post-learning data).

LOCAL CHANGES IN STRENGTH
For the sequence learning tasks (task 1 and 2), the global changes
in strength also showed specific local network changes that were
persistently higher in the frontal and visual regions for explicit
SRTT task contrasted to the implicit SRTT task (p < 0.01). Given
the different nature of visuo-motor rotation tasks (task 3 and 4)
we expected different network responses; indeed, in the learn-
ing group (task 3) the most significantly affected nodes were the
amygdala and the hippocampus (p < 0.01), while for the per-
formance group, there were no significant effects in these brain
areas.

To complement these results based on analysis of continu-
ous strength measures of association between regions, we also
measured the topological properties of the binary (unweighted
and undirected) graphs derived by thresholding the Pearson’s
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correlation coefficient of the individual functional connectivity
matrices. At each threshold we compared the observed values of
degrees, correlation coefficients, and path length in brain networks
to their distributions in comparable random graphs with the same
number of nodes and degree distributions.

GLOBAL CHANGES IN DEGREES
All three learning groups showed a significant increase in degrees
after learning, at all costs or threshold levels (see Figures 4A–C).
For the explicit SRTT task 1, degrees were the most significantly

increased over all costs (p < 0.0001) this also indicates a large
effect size. This was followed by the visuo-motor learning group
(task 3), while the implicit sequence group (task 2) showed the
least significant increase across costs among the three learn-
ing conditions. In contrast, the visuo-motor performance group
(task 4) showed a significant decrease across all 4 cost levels
(p < 0.001; see Figure 4D).

Figure 5 shows the broad scale degree distributions consistent
with the existence of hubs. The figure also highlights the increase
in hubs only in the learning groups (see Figures 5A–C) while

FIGURE 3 | Group mean connectivity strength for each of the 116

regions before and following all four tasks, rank ordered by mean

regional strength measured in rest 2 (pre-task rest 1 data are shown in

blue, post-task rest 2 data in red). The solid line represents the mean while
shaded area indicates SEM. (A) Explicit SRTT task 1, (B) Implicit SRTT task 2,
(C) Visuo-motor learning task 3, and (D) Visuo-motor performance task 4.

FIGURE 4 | Group mean degree connectivity at all costs before and

following the four tasks, in all figures rest 1 (pre-task in blue) and rest

2 (post-task in red); (A) explicit SRTT task 1; (B) implicit SRTT task 2;

(C) visuo-motor learning task 3; (D) visuo-motor performance task 4.

Mean is represented by the solid and dotted lines while vertical bars
indicate SEM.
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FIGURE 5 | Histogram degree distributions before and following the

four tasks at a threshold of r = 0.6 for both REST1 (blue)

and REST2 (red), (A) explicit SRTT (B) implicit SRTT task (C)

visuo-motor learning task (D) visuo-motor performance task. The
figure shows higher probability of high-degree network hubs following
learning (red).

the visuo-motor performance group (task 4) showed a decrease
(see Figure 5D).

LOCAL CHANGES IN DEGREES
For task 1 the main nodes showing significant increases in degrees
were in the frontal orbital cortex including inferior triangular
middle occiptal gyrus (p < 0.01), which also showed significant
increases in strength. However, unlike strength, for degrees, the
right superior partietal gyrus also showed a significant increase in
the implicit SRTT task (task 2). Although a similar overall pattern
of global increase in degrees was seen in the visuo-motor learning
task (task 3; p < 0.001) the most pronounced local effects were in
entirely different regions. The significantly affected nodes include
the right amygdala and left cerebellum (lobule III) (p < 0.01)
while the visuo-motor adaptation performance group (task 4)
showed a significant decrease over the left cerebellum and basal
ganglia (p < 0.01).

GLOBAL CHANGES IN LOCAL EFFICIENCY
The measure of local efficiency showed similar post-learning
increases across all costs in the learning groups (tasks 1, 2, and 3;
p < 0.001; see Figures 6A–C). The visuo-motor performance
group (task 4) consistently showed a decrease in local efficiency
in rest 2 across costs (Figure 6D). However, these decreases were
non-significant (p > 0.05).

LOCAL CHANGES IN LOCAL EFFICIENCY
Furthermore, topological brain network images highlight the fact
that different anatomical networks are affected by the differ-
ent tasks. The explicit SRTT group (task 1) showed significant

increases in local efficiency (p < 0.05) in the frontal orbital regions
and the right angular gyrus and the right medial temporal cortex
while the implicit group (p < 0.05) (task 2) showed increases in
the left precentral gyrus, SMA and the thalamus (see Figures 7, 8).
The opposing effects on strength seen between the visuo-motor
learning and performance groups (task 3 and 4) were also evi-
dent for this measure of local efficacy: the learning group (task 3)
revealed significant increase the right cerebellum (p < 0.05) (lob-
ule 9) (see Figure 9), in the left caudate nucleus of the basal
ganglia and the left hippocampus (p < 0.05), while the perfor-
mance group (task 4) revealed significant decreases in the right
inferior parietal (p < 0.01; see Figure 10).

GLOBAL CHANGES IN PATH LENGTH
Another measure that showed significant decreases across all costs
for all learning conditions was path length (p < 0.001), while the
performance group (task 4) showed a significant increase (p <

0.001) across all thresholds except at the threshold r = 0.6 which
showed a more subtle increase (p < 0.05).

LOCAL CHANGES IN PATH LENGTH
Here the explicit SRTT group (task 1) showed significant and
widespread regional decreases in path length in the orbital frontal
regions, left inferior triangular gyrus, right post central gyrus,
left middle occipital cortex, right basal ganglia, and right cerebel-
lum crus II (p < 0.05). The implicit SRTT group (task 2) showed
increased effects path length in the left hippocampus and the left
parahippocampus (p < 0.05). The visuo-motor learning group
(task 3) showed decreases in the precunus, the left amygdala,
and the cerebellum while there was also a single increase in the
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FIGURE 6 | Group mean local efficiency at all costs before and

following the four tasks, in all figures rest 1 (pre-task in blue)

and rest 2 (post-task in red). (A) explicit SRTT (B) implicit SRTT

task (C) visuo-motor learning task and (D) visuo-motor performance
task. Group mean is represented by the solid line while vertical bars
indicate SEM.

left inferior opercular frontal cortex (p < 0.05). The performance
group (task 4) did not show any significant changes in path length
at the node level despite a significant overall increase.

CHANGES IN SMALL WORLDNESS
In order to calculate the small worldness coefficient, sigma, we
also calculated the clustering coefficient for all the four tasks this
produced near identical results to the local efficiency measure (see
above). An additional measure that is required for the calculation
of small worldness is path length (see above).

At a global level, all measures of functional networks expressed
some key organizational properties consistently across both
groups. All resting state networks including pre task networks
showed small world characteristics. At each cost level in the small-
world regime, we sampled 1000 random graphs and estimated the
mean and SD of each parameter so that we could then calculate.
Small worldness did not show any significant change (p > 0.05;
see Figure 11).

GLOBAL CHANGES IN BETWEENNESS CENTRALITY
Betweenness centrality showed the opposite trend showing an
overall global decrease in all the learning groups (task 1, 2, and 3)
while showing a global increase in the performance group (task 4,
p < 0.001).

LOCAL CHANGES IN BETWEENNESS CENTRALITY
More specific significant nodal changes for betweenness centrality
were seen in the explicit SRTT group (task 1) including decreases
in the left precental gyrus, the right angular gyrus, left thala-
mus and right cerebellum crus I, while the implicit SRTT group

(task 2) only showed decreases in the left post central gyrus and
left caudate (p < 0.01). As for the visuomotor learning group
(task 3), they also showed a general decrease in the right inferior
triangular gyrus and right middle occipital gyrus, cerebellum crus
II left (p < 0.01), while the performance group (task 4) showed
overall increases for this measure in the right precental gyrus and
right SMA and a decrease in the cerebullum (p < 0.01).

GLOBAL EFFICIENCY
Overall global efficiency showed a non-significant increase for all
the learning groups [task 1 (p = 0.23), task 2 (p = 0.53) and task
3 (p = 0.46)] over all costs while the performance group (task 4)
showed a non-significant decrease (p = 0.42).

MODULARITY
Another global measure is that of modularity in the form of Q
value (see Materials and Methods). This showed opposite effects
to global efficiency, with non-significant decreases for the learn-
ing groups and a non-significant increase for the visuo-motor
performance group (p > 0.05). However, modularity exposed
a different network distribution between the two SRTT tasks
and the two visuo-motor tasks (see Figures 12–15). Additionally,
Figure 14 highlights the segregation of cerebellum shown as a
separate cluster in the visuo-motor learning task (task 3).

PARTICIPATION COEFFICIENT
Table 1 shows significant increases in participation coefficient for
all three motor learning tasks, more specifically the explicit SRTT
(task 1) showed widespread cortical increases over frontal, pari-
etal, visual and sub-cortical regions while the implicit SRTT
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FIGURE 7 | Change in brain network graphs for regional local efficiency

at a threshold of r = 0.6 following the explicit SRTT task. The
highlighted regions represent significant nodes with more locally efficient
communication in REST 2 compared with REST 1.

(task 2) increased over sensory motor and sub-cortical regions
(p < 0.05). The visuo motor learning group (task 3) also showed
increases in the frontal cortex, precuneus, temporal gyrus, and
multiple areas in the cerebellum, while the performance group
showed no significant changes (p > 0.05).

DISCUSSION
Our graph analytic results highlight regular patterns in the
changes across four resting state functional connectivity data sets.
In each case we tested for between pre- and post-motor task
changes, showing comparable global topological patterns follow-
ing the three motor learning tasks, although the different tasks
affect different nodes and sub-networks. Moreover, the group
performing a “non-learning” visuo-motor task revealed a dif-
ferent global topological pattern in comparison with the three
learning groups. The current graph theoretic analysis also empha-
sizes that motor learning leads to rapid functional reorganization
that is maintained during post-learning resting state activity as
indicated by emergence of new functional network relationships
as a result of training.

Our resting state BOLD results followed an analogous pattern,
showing identical changes in all of the key measures aspects of the
network topology in comparison to Heitger et al. (2012) graph
theoretical results from task-based acquisitions.

Although behavioral differences existed between the tasks, per-
formance differences due to task duration are unlikely to have

FIGURE 8 | Change in regional local efficiency following the implicit

SRTT task. The format is the same as in Figure 7.

affected the outcome of the graph analysis results as all the tasks
lasted ∼10 min.

Task differences showed the expected differential local net-
work changes. Generally a large number of network measures
showed that the explicit tasks i.e., task 1 and task 3 affected the
prefrontal cortex. These effects were not seen in the implicit con-
dition (task 2). This dissociation between implicit and explicit
conditions has also been shown in task based imaging data
(Destrebecqz et al., 2005; Fletcher et al., 2005; Ghilardi et al.,
2009).

Additionally, our graph analytic RSN results support the
hypothesis—based on a recent meta-analysis of task-based
fMRI literature—that experience in visuo-motor tasks will show
stronger cerebellar changes while the procedural sequence-
learning tasks will show more widespread cerebral cortical activity
(Hardwick et al., 2012).

This increase in cerebellar activity for the visuo-motor task
is particularly distinct in terms of degrees, local efficiency, and
participation coefficients highlighting to an increase in both
short range local and long distance inter-modular processing.
Furthermore, as the SRT tasks were performed with right hand
and the visuo-motor were performed with the left a further dis-
tinction can be revealed due to handedness these tasks with a
greater right hemispheric activation in the case of the visuo-
motor tasks.

An added benefit of using graph network measure compared
with other standard techniques is that it highlights how differ-
ent network elements play different roles within the network
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e.g., some nodes may provide improved local information trans-
fer due to increased local computational demand while other
nodes may play a greater role in the longer distance transfer of the
information as indicated by path length and betweenness centrality
or may in fact in some cases do both.

FIGURE 9 | Change in regional local efficiency following the

visuo-motor adaptation learning task. The format is the same as in
Figure 7.

As expected the strength measure revealed regular enhance-
ment between the pre- and post-exposure measurements for the
learning groups, while demonstrating that network connectiv-
ity increased most significantly in the explicit SRTT task (see
Figure 3). The collective significant increases observed across

FIGURE 10 | Change regional local efficiency following the visuo-motor

performance task. The format is the same as in Figure 7; the figure here
represents significant decreases in local efficiency between the two rest
conditions are highlighted in blue.

FIGURE 11 | Small world coefficient sigma for the pre- and post-task rest

networks for each of the 4 experiments. Explicit SRTT task 1: red (pre-task
on left and post-task on right); implicit SRTT task 2; green, visuo-motor

adaptation learning task 3; purple, visuo-motor performance task 4;
blue, Group mean is represented by the solid line while shaded areas
indicate SEM.
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FIGURE 12 | A depiction of network modularity for both (A) REST 1 and

(B) REST 2 produced by the Louvain method for community detection

and visualized by the force directed Circular Graph algorithm at a

threshold of r = 0.6 following the explicit SRTT (task 1). This figure also
highlights the increased connection of Left SMA in Rest 2 and the node size
which is proportional to the degree of the node. Color code for modules are
Cyan, Sensory-Motor and Prefrontal; Dark Blue, Fronto-Parietal; Red,
Cerebellar. Yellow, Visual and Cerebellar; Green, subcortical.

several graph analytic measures including global strength, degrees,
correlation coefficients, and local efficiency are all indicative of
increased local connectivity in the network. The increases in
three of these measures were also observed by Heitger et al.
(2012) in task-related BOLD, in participants following a 4-day
bimanual coordination training regime with either visual or audi-
tory feedback. Furthermore, the two graph analytic measures of
path length and betweenness centrality confirmed the previously
reported decreases following motor learning (Heitger et al., 2012).
Reductions in these two measures indicate more direct commu-
nication pathways, with fewer intermediate nodes.

These decreased graph measures are likely to affect the global
communication patterns, and in support of this, global efficacy
showed a regular yet non-significant increase across the three
learning experiments.

Small-world networks are characterized by a short average
path length linking nodes together with a high clustering coeffi-
cient (Watts and Strogatz, 1998). This small worldness property
has been repeatedly shown in both structural and functional
neuroimaging over a broad range of spatial and temporal scales
detected by a variety of modalities including EEG and MEG
(Stam, 2004) and suggests that brain networks are character-
ized by dense local networks, and by long range connections

FIGURE 13 | Network modularity following the implicit SRTT, in the

same format as Figure 12.

between these local clusters. However, it has been shown that
small-world network properties break down in neuropsychi-
atric and epileptic patients, making it an important indicator of
abnormalities. In our data following motor learning in healthy
participants, small world properties were maintained but slightly
reduced (see Figure 4). This indicates an uneven increase between
local and global efficiency as small worldness can also be seen as a
ratio between these efficacy measures. It also implies that learning
only minimally affects the brains’ normal operational boundaries.

Although small-worldness provides a useful network topolog-
ical descriptor for both global and local levels of connectivity,
it does not give any information about the sub-network orga-
nization, which is instead captured by the modularity of the
network.

Modularity describes densely connected regions of a com-
munity or sub-networks within the same module but sparsely
linked to regions in other modules (see Figures 1 and 12–15).
Recent studies investigating resting-state BOLD data have found
that modularity shows meaningful decompositions of the net-
work into related functional sub-networks across a wide range
of populations and experimental conditions (Fair et al., 2009;
Meunier et al., 2010). Furthermore, modularity has been used
to highlight associations between functional and structural sub-
networks (Hagmann et al., 2008).

Due to these regional increases in density within the same
module compared to random graphs of the same size and con-
nection density, there was a positive Q value for modularity
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FIGURE 14 | Network modularity following the visuo-motor adaptation

learning task, in the same format as Figure 12. However, this figure
highlights the increased connection to the right SMA in Rest 2. Color code
for modules are Cyan, sensory-motor and prefrontal; Dark Blue,
fronto-parietal; Red/Pink, cerebellar; Yellow, visual; Green, subcortical.

(see Materials and Methods) for rest conditions. However, the
decrease in these Q values following learning is likely to be
due to the increase in the number of nodes participating in a
greater number of modules, as indicated by the participation
coefficient. Intra-modular connectivity therefore showed a signif-
icant increase in the number of connector nodes following motor
learning (tasks 1, 2, and 3) in the fronto-parietal and hippocam-
pal networks, while the performance group (task 4) showed very
minor decreases. Hub measures for all three learning tasks were
also significantly increased. Among the motor learning tasks the
explicit serial reaction time task showed the greatest difference
in connectivity degree, betweeness centrality, mean path length, and
connection strength. This was followed by the visuo-motor adap-
tation task and finally the implicit serial reaction time task. The
visuo-motor learning task (task 3) was difficult and very obvi-
ous to the participants. Hence it may have considerable explicit
components. This suggests that this hub outcome could be partly
due to the additional areas recruited by these two different explicit
tasks (the sequence task 1 and the visuo-motor learning task 3).
This is then analogous to the results of Heitger et al. (2012) who
also showed that their visual feedback group had a more favorable
outcome on all the above measures.

Greater efficiency and shorter path length of functional links
between the nodes of a neural network will probably lead to more
rapid transmission times and reduced noise degradation. This

FIGURE 15 | Network modularity following the visuo-motor

performance task, in the same format at Figure 12 and same Color

scheme same as Figure 14.

Table 1 | Brain regions with increased participation coefficients.

Anatomical region MNI co-ordinates Task 1 Task 2 Task 3

Superior frontal gyrus L. 13, 48, −17 In* In*

Superior frontal gyrus R. −20, 47, −17 In*

Insula L. 34, 8, 0 In*

Hippocampus L. 24, −20, −11 In* In*

Parahippocampal gyrus L. 21, −15, −22 In*

Amygdala L. 23, 1, −19 In*

Amygdala R. −27, −1, −20 In* In*

Fusiform gyrus L. 29, −40, −21 In*

Supramarginal gyrus R. −59, −33, 28 In*

Precuneus L. 6, −54, 42 In*

Putamen R. −27, 4, 0 In*

Pallidum R. −21, 0, −2 In*

Superior Temporal Gyrus R. −56, 21, 5 In*

Crus I L −35, −67, −29 In*

Vermis3 2, −40, −11 In*

Vermis6 2, −67, −15 In*

Summary of significantly increased brain regions measured in terms of partici-

pation coefficients in all three learning tasks at a threshold of r = 0.6. Significant

increases are labeled by In*.

increased efficiency also implies that these strengthened func-
tional connections form new “virtual” networks, reducing the
need for the equivalent dedicated structural networks, and thus
also avoiding the added incremental metabolic costs in terms
of modifying physical connections. As such, this may underlie
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a general brain optimization strategy that may support consol-
idation of these motor memories, as the brain areas affected
following immediate task based changes also play a role in con-
solidation (Ma et al., 2010; Bullmore and Sporns, 2012; Penhune
and Steele, 2012). However, there is likely to be a trade off in
longer-term motor learning to be negotiated between generality,
efficiency and wiring cost in the optimal configuration of brain
networks (Taubert et al., 2011).

CONCLUSIONS
This work has used a number of graph theoretical methods to
assess functional connectivity changes in resting state networks
following motor learning. Our findings of changes in resting
state activity following motor learning tasks are consistent with
prior observations of changes in graph metrics that were based
on task-related BOLD recordings. This adds further credence to
the growing view that resting state network analysis can identify

changes in functional connections that are both task-relevant and
likely to support longer-term consolidation of these motor mem-
ories. An additional finding is that we show for the first time
using graph analysis a clear distinction between network changes
in groups challenged with motor learning compared to a motor
performance group.

Taken together with the other network measures like local effi-
ciency these results imply that motor learning results in more
direct information transfer across the relevant networks, while
motor performance alone either decreased or maintained the
status quo.
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