
 
 

University of Birmingham

Duffy antigen receptor for chemokines and its
involvement in patterning and control of
inflammatory chemokines
Novitzky-basso, Igor; Rot, Antal

DOI:
10.3389/fimmu.2012.00266

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Novitzky-basso, I & Rot, A 2012, 'Duffy antigen receptor for chemokines and its involvement in patterning and
control of inflammatory chemokines', Frontiers in immunology, vol. 3, 266.
https://doi.org/10.3389/fimmu.2012.00266

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 27/06/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.3389/fimmu.2012.00266
https://doi.org/10.3389/fimmu.2012.00266
https://birmingham.elsevierpure.com/en/publications/c35e1a6e-39be-4cf5-83ad-8fc523c69876


“fimmu-03-00266” — 2012/8/16 — 10:35 — page 1 — #1

MINI REVIEW ARTICLE
published: 17 August 2012

doi: 10.3389/fimmu.2012.00266

Duffy antigen receptor for chemokines and its
involvement in patterning and control of
inflammatory chemokines
Igor Novitzky-Basso and Antal Rot*

MRC Centre for Immune Regulation, Institute of Biomedical Research, School of Infection and Immunity, University of Birmingham, Birmingham, UK

Edited by:

Klaus Ley, La Jolla Institute for Allergy
and Immunology, USA

Reviewed by:

Cory Michel Hogaboam, University of
Michigan Medical School, USA
Alexander Zarbock, University of
Muenster, Germany

*Correspondence:

Antal Rot, MRC Centre for Immune
Regulation, Institute of Biomedical
Research, School of Infection and
Immunity, University of Birmingham,
Vincent Drive, Edgbaston,
Birmingham B15 2TT, UK.
e-mail: a.rot@bham.ac.uk

Leukocyte functions are linked to their migratory responses, which, in turn, are largely
determined by the expression profile of classical chemokine receptors. Upon binding their
cognate chemokines, these G-protein-coupled receptors (GPCRs) initiate signaling cas-
cades and downstream molecular and cellular responses, including integrin activation and
cell locomotion. Chemokines also bind to an alternative subset of chemokine receptors,
which have serpentine structure characteristic for GPCRs but lack DRYLAIV consensus
motive required for coupling to G-proteins. Duffy antigen receptor for chemokines (DARC)
is a member of this atypical receptor subfamily. DARC binds a broad range of inflammatory
CXC and CC chemokines and is expressed by erythrocytes, venular endothelial cells, and
cerebellar neurons. Erythrocyte DARC serves as blood reservoir of cognate chemokines but
also as a chemokine sink, buffering potential surges in plasma chemokine levels. Endothelial
cell DARC internalizes chemokines on the basolateral cell surface resulting in subsequent
transcytosis of chemokines and their immobilization on the tips of apical microvilli. These
DARC-mediated endothelial cell interactions allow chemokines produced in the extravas-
cular tissues to optimally function as arrest chemokines on the luminal endothelial cell
surface.

Keywords: atypical chemokine receptors, chemokines, DARC, duffy antigen, endothelial cells, erythrocytes,

inflammation, transcytosis

DUFFY BLOOD GROUP ANTIGEN
The Duffy antigen receptor for chemokines (DARC) has recently
become the focus of studies investigating interactions of inflam-
matory chemokines with erythrocytes during systemic inflamma-
tory responses as well as with venular endothelial cells during
chemokine-induced leukocyte adhesion and emigration. These
studies uncovered new functional facets of this rather “old”
molecule. DARC was first described in 1950 as the Duffy blood
group antigen (Cutbush and Mollison, 1950; Cutbush et al., 1950).
An antibody termed anti-Fya present in the plasma of a poly-
transfused hemophiliac, Mr. Duffy, was found to cause a delayed
hemolytic transfusion reaction. In the following year, an anti-
body to the antithetic antigen, Fyb, was found in a multigravida
exposed to fetal Fyb erythrocytes (Ikin et al., 1951). Subsequently,
three “Duffy-positive” phenotypes were described: Fy(a+b−),
Fy(a−b+), and Fy(a+b+), arising from combinations of the anti-
thetical co-dominant FYA and FYB genes (Klein and Anstee, 2005).
However, some individuals, designated “Duffy-negative,” express
neither Fya nor Fyb antigens, Fy(a−b−). This phenotype results
from a polymorphic form of the FYB gene, FYB(ES) “erythroid
silent”, present in up to 99% of West Africans and the majority
of African Americans (68%; Mourant et al., 1976). The DARC
(Fy) gene is located on chromosome 1, position 1922 and seg-
regates with Un locus, having been the first to be assigned to an
autosome in humans (Iwamoto et al., 1996). The two main alle-
les FYA and FYB differ in a single base substitution (125 G to A)

in codon 42 in the NH2 extracellular domain, encoding glycine
in Fya and aspartic acid in Fyb (Chaudhuri et al., 1995; Iwamoto
et al., 1995). The FYB(ES) allele has a single T to C substitution
at nucleotide −67 within the erythroid GATA-1 promoter region,
33 bp upstream from the erythroid transcription starting point
and 46 bp upstream from the start of the major transcript transla-
tion codon, thus preventing DARC transcription in erythroid cells
only (Tournamille et al., 1995).

Hence FYB(ES) Fy(a−b−) individuals still express DARC at
non-erythroid sites, e.g., on endothelial cells and possibly other
cells (Peiper et al., 1995; Chaudhuri et al., 1997; Horuk et al., 1997).
The Duffy-negative phenotype was first linked with resistance to
malaria when Fy(a−b−) volunteers exposed to the bites of Plas-
modium vivax-infected mosquitoes, in contrast to Duffy-positives,
did not develop malaria (Miller et al., 1976). This confirmed
the long standing clinical observation that African populations
appeared resistant to this form of malaria, noted also during the
treatment of neurosyphilis by therapeutic P. vivax inoculation
(O’Leary, 1927; Boyd and Stratman-Thomas, 1933). Further work
showed that this parasite requires DARC binding for entry into
the erythrocytes (Miller et al., 1975; Horuk et al., 1993a), leading
to the hypothesis that the Fy(a−b−) phenotype evolved as a result
of selective pressure to protect its carriers from vivax but not fal-
ciparum malaria. Geostatistical maps show that in West Africa the
areas of prevalence of the Fy(a−b−) phenotype of almost 100%
(Howes et al., 2011), overlap with areas of expected but absent
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p. vivax infection (Guerra et al., 2010). However, this resistance
is not complete and some Fy(a−b−) populations, for example in
Madagascar, both carry parasites asymptomatically and experience
symptomatic vivax malaria (Ménard et al., 2010).

Other rare DARC polymorphisms include a C265T mutation in
FYB leading to FYX allele and 90% reduction of DARC expression,
the so called “Fyb weak” phenotype, and the G298A polymor-
phism resulting in the Ala100Thr substitution (Olsson et al., 1998;
Tournamille et al., 1998).

STRUCTURAL CHARACTERISTICS OF DARC
Human DARC contains 336 amino acids (molecular weight 35733)
and was first predicted to have nine trans-membrane domains
(Chaudhuri et al., 1993), but later shown to have seven, akin to
other chemokine receptors (Neote et al., 1994). The extracellular
amino-terminal domain of 65 amino acids harbors three potential
N-glycosylation sites at residues 16, 27, and 33 (Czerwinski et al.,
2007), and epitopes Fya, Fyb, and Fy6 (Tournamille et al., 2003).
The Fy6 epitope is between Q19 and W26 residues, the binding
site of the reticulocyte binding protein of P. vivax. Accordingly,
monoclonal anti-Fy6 antibody inhibits the invasion of human
erythrocytes by P. vivax (Tournamille et al., 2005).

DUFFY ANTIGEN/RECEPTOR FOR CHEMOKINES
Duffy blood group antigen was designated DARC after it was
shown to mediate the promiscuous binding of inflammatory
CC and CXC chemokines to erythrocytes (Horuk et al., 1993b;
Tournamille et al., 1997; Lee et al., 2003a; Pruenster and Rot, 2006;
Ulvmar et al., 2011). DARC’s extracellular N-terminal domain,
which bears the blood group determinants, is linked with the
fourth extracellular domain via a disulphide bond. These domains
together create an active chemokine-binding pocket (Tournamille
et al., 1997, 2003). Given the absence of a DRYLAIV motif, which
is required G-protein coupling, no detectable chemokine-induced
cell signaling has been recorded in either the form of calcium
flux (Neote et al., 1994), GTPase activity (Horuk et al., 1993b), or
gene transcription (Lee et al., 2003a). Thus, DARC is classified
as an atypical chemokine receptor (Nibbs et al., 2003; Pruenster
and Rot, 2006; Ulvmar et al., 2011; Graham et al., 2012). However,
some intracellular responses take place following DARC ligation by
cognate chemokines. It was demonstrated in heterologous trans-
fectants that chemokine binding induces redistribution of DARC
from the basolateral cell membrane, via an intracellular vesicu-
lar compartment onto the apical membrane and that chemokine
cargo is translocated together with DARC (Pruenster et al., 2009).
Such chemokine in situ binding mirroring exactly the ligand
specificity of DARC (Hub and Rot, 1998) as well as chemokine
transcytosis and luminal surface presentation (Middleton et al.,
1997) have been shown to place in venular endothelial cells in vivo
and ex vivo in intact viable tissues. Unlike other atypical chemokine
receptors, D6 in particular, no degradation of chemokines occurs
after their internalization by DARC. Accordingly, neutrophil and
monocyte migration toward cognate chemokines was enhanced
across cellular monolayers expressing DARC (Lee et al., 2003a;
Pruenster et al., 2009). Also in vivo, chemokine injections into
transgenic mice, which over-express DARC on the endothelium,
induced significantly greater leukocyte recruitment (Pruenster

et al., 2009). Thus endothelial DARC mediates abluminal inter-
nalization and transcellular transport of chemokines. This activity
of DARC prevents the escape of soluble tissue-derived chemokine
molecules into circulation and allows them to associate with the
tips of luminal microvilli and stimulate firm adhesion of leuko-
cytes. Inflammation can further up-regulate DARC expression in
postcapillary venules and veins, and induce DARC to appear in vas-
cular segments usually devoid of it (Liu et al., 1999; Segerer et al.,
2000; Patterson et al., 2002; Lee et al., 2003b; Bruhl et al., 2005;
Gardner et al., 2006; Geleff et al., 2010). It is not clear whether
DARC over-expression is the consequence of the development
of the inflammatory lesions or their pre-requisite. Primary lym-
phatic vessels do not express DARC although a small segment,
the podoplanin-dull pre-collectors, do express DARC, suggesting
that chemokines mediated cell migration may occur at this site
(Wick et al., 2008).

Despite the fact that chemokine internalization by DARC
does not lead to their degradation, DARC may physically
remove chemokines from extracellular environments and thus,
e.g., negatively influence angiogenesis induced by extravascular
pro-inflammatory chemokines. This was shown in mice over-
expressing endothelial DARC, which have reduced angiogenic
responses to CXCL2 (Du et al., 2002) and in the context of
tumor angiogenesis (Horton et al., 2007). Also, DARC-deficient
mice used in a transgenic model of prostate cancer developed
tumors with increased vessel density, greater intratumor angio-
genic chemokine levels, and augmented growth (Shen et al., 2006).
CD82, a tetraspanin which was identified as a prostate can-
cer metastasis suppressor gene, apparently directly interacts with
DARC which thus can inhibit tumor cell proliferation and induce
senescence (Bandyopadhyay et al., 2006). It appears therefore that
DARC may negatively affect tumor development and metastatic
spread either directly by binding to CD82 or by removing angio-
genic chemokines from perivascular spaces. Additionally, DARC
has been shown to heterodimerize with a classical chemokine
receptor CCR5, and through this interaction down-modulate
CCR5 mediated signaling responses (Chakera et al., 2008).

THE ROLE OF DARC IN CHEMOKINE HOMEOSTASIS
Erythrocyte DARC was originally described as a chemokine
“sink” (Darbonne et al., 1991) and this function was further sup-
ported when DARC was shown to reduce the levels of circulating
inflammatory chemokines, thus dampening systemic leukocyte
activation (Dawson et al., 2000). Chemokines in circulation can
induce the desensitization of their cognate receptors. By protecting
circulating leukocytes from chemokine excess, DARC may pre-
serve subsequent leukocyte responsiveness to chemokine signals
present on the endothelial surface or in the tissues. Conversely,
systemic pre-exposure to chemokines may prime leukocytes for
enhanced chemokine-induced migration (Brandt et al., 1998) or
other effector functions (Green et al., 1996; Hauser et al., 1999).
These two opposing potential outcomes may explain the follow-
ing apparently conflicting observations in DARC-deficient mice
exposed to various inflammatory stimuli (Dawson et al., 2000;
Reutershan et al., 2009; Vielhauer et al., 2009; Mei et al., 2010;
Zarbock et al., 2010). In an initial study DARC knockout (KO) ani-
mals received systemic LPS and responded by a marked increase
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in neutrophil infiltrate in the lungs and livers as compared to the
wild type controls (Dawson et al., 2000). Another study showed
that DARC KO mice have significantly less leukocyte infiltrate
in the bronchoalveolar lavage in response to chemokine instilled
into pulmonary airspace (Lee et al., 2003a). These experiments
used DARC KOs lacking this receptor on all cells. Subsequently,
bone marrow chimeras were constructed allowing the examina-
tion of respective roles of DARC on erythrocytes and endothelium
(Lee et al., 2006). Here, mice lacking erythrocyte DARC had sig-
nificantly fewer airspace neutrophils following intratracheal LPS
instillation, suggesting that erythrocyte DARC supports leuko-
cyte emigration. The lack of DARC in the lungs was associated
with higher chemokine concentrations in the airspaces compared
with mice lacking DARC on erythrocytes. In a model of LPS-
inhalation-induced acute lung injury neutrophil migration into
the alveolar spaces was increased in DARC KO animals, along
with elevated levels of CXC chemokines (Reutershan et al., 2009).
In chimeric animals, the absence of erythrocyte DARC was the
most significant factor determining leukocyte trafficking. Differ-
ence between the outcomes in these two studies may be due to
the divergent dose of LPS administered. With higher LPS con-
centrations the role for erythroid DARC as a sink may become
more significant (Reutershan et al., 2009). Of note is that dur-
ing severe systemic inflammation erythrocyte-bound chemokines
amounted to 30% of plasma chemokine concentrations, suggest-
ing only a limited sink effect of erythrocyte DARC during severe
inflammation (Reutershan et al., 2009). Conversely, in humans,
following endotoxin challenge several hundred fold increases in
chemokine levels in erythrocyte lysates were noted (Mayr et al.,
2008). Further investigation into the role of DARC in acute lung
inflammation revealed that a lack of DARC in mice results in
down-regulation of CXCR2 on neutrophils because of high levels
of circulating chemokines during severe inflammation (Zarbock
et al., 2010). It this study DARC was essential for chemokine-
mediated leukocyte recruitment, whereby DARC KO animals
were protected from acid-induced lung injury and experienced
preserved oxygenation. This occurred as a result of impaired
leukocyte arrest on endothelial cells and consequently reduced
pulmonary neutrophil recruitment. Adoptive transfer of neu-
trophils showed that the latter effect is dependent on neutrophils
and independent of endothelial cells and erythrocytes, suggesting
that the contribution of DARC is in the maintenance of recep-
tor expression in the environments with excess ligands. Because
neutrophils, which are activated by chemokines in the systemic
circulation (Colditz et al., 2007), may be passively trapped in the
lung circulation and contribute to the lung damage (Rot, 1991),
inflammatory models in other organs may be more revealing in
dissecting local vs. systemic effects of DARC on chemokine-driven
leukocyte emigration. Renal models of inflammation have shown
that DARC-deficient mice are protected from ischemic and LPS-
induced acute renal injury (Zarbock et al., 2007). Furthermore,
chemokine presentation on renal endothelial cells was absent,
and renal neutrophil recruitment was impaired, in the context
of lower inflammatory chemokine levels during systemic inflam-
mation (Zarbock et al., 2007). In contrast, Vielhauer et al. (2009)
studied tubule-interstitial inflammation and glomerulonephritis
in DARC-deficient mice and demonstrated that in these models

macrophage and T lymphocytes were recruited equally well in
DARC KO and wild type mice.

Both human and murine studies suggest that DARC can sustain
inflammatory chemokines levels on erythrocytes and in plasma
(Jilma-Stohlawetz et al., 2001; Fukuma et al., 2003), but the bio-
logical purpose of this reservoir function is not clear. Basal plasma
CCL2 levels are one-third lower in DARC KO mice than in control
wild type animals (Fukuma et al., 2003). When CCL11 or hCXCL1
were administered intravenously, these chemokines disappeared
more rapidly from the plasma of DARC KOs (Fukuma et al., 2003).
Duffy-negative humans were noted to have significantly lower
basal CCL2 levels than Duffy-positives (Jilma-Stohlawetz et al.,
2001) and following endotoxin administration, higher levels of
plasma CCL2 were observed in Duffy-positive individuals as com-
pared to the Duffy-negative ones (Mayr et al., 2008). Also CCL2
and CXCL1 levels, but not CXCL8 or CCL4 levels were higher
in erythrocyte lysates of Duffy-positive individuals at baseline,
whereas following endotoxin administration CCL2 and CXCL8,
but not CCL4, levels increased significantly in erythrocyte lysates
of Duffy-positive subjects. Given that chemokine plasma levels,
including of CXCL8 (Wong et al., 2008) and CCL2 (Bozza et al.,
2007) have been shown to be predictive of survival and corre-
late with sepsis severity, it is tempting to speculate that the loss
of DARC expression may affect the outcome in sepsis. It has
been recently suggested that chemokines with different binding
affinities for DARC can modify the levels of other erythrocyte-
bound and free plasma chemokines, affecting resultant leukocyte
responses (Mei et al., 2010). In addition, heparin and activated
coagulation factors can elute chemokines off erythrocyte DARC
(Schnabel et al., 2010). Thus chemokines with range of affinities
for DARC and other factors may significantly interfere with the
ability of DARC to bind any particular chemokine introducing
further complexity into mechanistic understanding of erythrocyte
DARC function.

Recently, differences in plasma and serum chemokine levels
were reported in persons with DARC Fya and Fyb (Schnabel et al.,
2010), although the mechanism for this is not apparent. Further
work revealed that Fyb erythrocytes have reduced surface DARC
expression as compared to Fya erythrocytes; however, the binding
affinity of DARC for chemokines was not appreciably different
between these two phenotypes (Xiong et al., 2011). As discussed
above, endothelial cells of post-capillary and collective venules
and small veins express DARC, which functions here as a tran-
scytosis receptor transporting chemokines from the basolateral to
the apical side (Pruenster et al., 2009) where they are immobi-
lized on the luminal surface. It is attractive to speculate that that
individuals of alternative Fya vs. Fyb DARC phenotypes may also
show differences in chemokine-binding specificity and patterning
by the endothelium, though to date there is no data to support
this notion.

CONCLUSION
Since the discovery of its chemokine-binding properties, DARC
has been mainly considered as a“decoy”receptor scavenging its lig-
ands. Recent research shed new light on much more multifaceted
activities of DARC. On erythrocytes, DARC acts on the one hand
as a blood chemokine sink and, on the other, as a reservoir of
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cognate chemokines buffering the bursts in their blood levels, and
maintaining these, respectively. Both of these functions are absent
in individuals with FYB(ES) DARC “negative” polymorphism.
Future work should uncover molecular and cellular mechanisms
explaining how the lack of erythrocyte chemokine sink and
depot functions in these DARC-negative individuals affects path-
omechanisms in various inflammatory diseases and cancer. In
endothelial cells DARC functions as a transcytosis receptor leading

to correct patterning of chemokines on the tissue–blood interface
in venules and veins, thus supporting optimal chemokine-induced
leukocyte endothelial cell adhesion and subsequent leukocyte
emigration.
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