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In the categorical approach to logic proposed by Lawvere, which systematically 
uses adjoints to describe the logical operations, equality is presented in the form 
of a left adjoint to reindexing along diagonal arrows in the base. Taking advantage 
of the modular perspective provided by category theory, one can look at those 
Grothendieck fibrations which sustain just the structure of equality, the so-called 
elementary fibrations, aka fibrations with equality.
The present paper provides a characterisation of elementary fibrations which is 
a substantial generalisation of the one already available for faithful fibrations. 
The characterisation is based on a particular structure in the fibres which may 
be understood as proof-relevant equality predicates equipped with a principle of 
indiscernibility of identicals à la Leibniz. We exemplify this structure for several 
classes of fibrations, in particular, for fibrations used in the semantics of the identity 
type of Martin-Löf type theory. We close the paper discussing some fibrations related 
to Hofmann and Streicher’s groupoid model of the identity type and showing that 
one of them is elementary.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Grothendieck fibrations provide a unifying algebraic framework that underlies the treatment of various 
form of logics, such as first order logic, higher order logics and dependent type theories. The approach 
dates back to the seminal work of Bill Lawvere on functorial semantics, in particular his work on hyperdoc-
trines [17,18]. The structure consists of a functor P : A T which is a fibration (we recall the definition 
in Section 2); the base T is to be understood as the universe of discourse given by the sorts and the terms 
of the theory, while, for an object X in T , the category AX of objects and arrows over X presents the 
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properties, the “attributes” in the words of Lawvere, of the object X and the relevant entailments between 
them. Logic, in a sense, appears via properties of the fibration which involve adjoints to basic functors such 
as “doubling the objects”

A
〈IdA , IdA〉

P

A ×T A

P ×T P

T

see also [14].
Some time after Lawvere proffers his structural view of logic, Per Martin-Löf puts forward the proposal of 

a dependent type theory where the constructions on types match very closely the construction on formulas, 
see [19–21]. Expressly, he refers to preliminary work of Dana Scott [27] on a tentative calculus of proofs as 
constructions; in turn Scott acknowledges the earlier attempts of Lawvere as they all address the idea to 
give propositions the same status as types (this idea indeed would later become known with similar, more 
fashionable locutions).

One of the many remarkable features of the Lawverian proposal for a categorical approach to logic is the 
systematic use of adjoint functors to describe the logical operations, in particular the realisation that equality 
comes in the form of a left adjoint to certain, structural, reindexing functors, see [18]. The counterpart in 
type theory appears in the literature some fifteen years later in the form of “propositional equality”, see [20], 
but also [24] which calls it “intensional equality”, often it is simply called “identity type”. Roughly speaking, 
given a type T , the identity type for T can be understood as a family of “proofs of equality” between terms 
of type T , inductively generated by reflexivity with a fixed endpoint.

Quite remarkably, some fundamental work in the categorical semantics of type theory—the groupoid 
interpretation of Martin-Löf Type Theory of [13] and the interpretation of identity types as homotopies 
of [1]—brings about again intuitions about equality which featured prominently in [18]. This cannot be a 
surprise. The Lawverian approach intended to conjoin the geometric view and the abstract view of logic, in 
particular equality had to be as powerful as to admit that two homotopical paths could be considered, in 
fact argued as if they were, equal, as powerful as to admit that isomorphic structures could be considered, 
in fact transformed into, the same.

Taking advantage of the modular perspective provided by category theory, one can look at those 
Grothendieck fibrations which sustain just the structure of equality. These are called “fibrations with equal-
ity satisfying Frobenius” in [14, 3.4.1]. In some previous work [6] we concentrated on the particular case 
of faithful fibrations with equality satisfying Frobenius—which we renamed elementary doctrines referring 
to Lawvere’s original terminology—and we shall follow suit and christen elementary fibration the notion 
defined in [14, 3.4.1].

Motivated by the characterisation obtained in [6], we present a characterisation of elementary fibrations 
that contributes to shed light on the relationship between the approaches to equality via category theory 
and via type theory. The characterisation is based on a structure which consists of a family of internal 
actions on the “attributes”. Slightly more precisely the family consists, on each of the objects in the total 
category A of the fibration P : A T , of an algebra map for a certain pointed endofunctor on A over 
the endofunctor on T which maps an object X to the product X ×X. However, we find it convenient to 
introduce such a structure in a more elementary way, by a gradual strengthening of weaker structures. This 
simplifies the comparison with the type-theoretic approach: as it will become clear, in type-theoretic terms 
this family of actions can be understood as a transport along a proof of equality.

The complete statement of our main result lists other equivalent characterisations of an elementary 
fibration and the proof builds on the well-known observation that existence of left adjoints to reindexing is 



J. Emmenegger et al. / Annals of Pure and Applied Logic 173 (2022) 103103 3
equivalent to existence of cocartesian lifts. In the case of faithful fibrations, the characterisation reduces to 
the well-known characterisation of first-order equality as a reflexive and substitutive relation stable under 
products, see [6]. In that paper the authors produced a comonadic characterisation of elementary faithful 
fibrations and applied that construction to the elimination of imaginaries of Shelah, see [28,25]. That direct 
connection with classical model theory extended elimination of imaginaries also to non-classical theories. 
The parallel with the present situation suggests that there should be a comonadic characterization of general 
elementary fibrations and, if so, it would be interesting to see what elimination of imaginaries produces in 
the general, non-necessarily faithful case. This will appear in a subsequent paper in preparation.

We also apply the characterisation to discuss the relationship between elementary fibrations and fibrations 
coming from the homotopical semantics of identity types. Since the work by Awodey and Warren [1] and 
Gambino and Garner [9], weak factorisation systems, best known as part of Quillen model categories [26], 
have proved to provide a suitable framework to account for the inductive nature of identity types, see for 
instance [16,29,15,2]. Recall that a weak factorisation system on a category C consists of two classes of 
arrows L and R which contain all the isomorphisms and are closed under retracts, and such that each 
arrow in C factors as an arrow in L followed by an arrow in R , and for each commutative square

A

l

X

r

B Y

with l ∈ L and r ∈ R there is a diagonal filler d : B X making the two triangles commute. Note that, 
contrary to orthogonal factorisation systems, such a filler is not required to be unique. A weak factorisation 
system determines a fibration: the full subfibration of the codomain fibration on those arrows in the right 
class R . When the factorisation system is orthogonal (plus some additional conditions) that fibration is 
always elementary. But, not surprisingly, for weak factorisation systems it is rarely so.

A weak factorisation system seems to lack the structure to isolate a suitable non-full subcategory structure 
on R . It also seems to lack the structure to soundly interpret the rules of the identity type in its associated 
fibration. Indeed, what in a weak factorisation system is a property of an arrow, namely the existence of 
diagonal fillers, in type theory is structure on a type, namely a choice of a family of terms. This has made 
it impossible so far to interpret, for example, (one of) the substitution rules for the identity type. As shown 
by van den Berg and Garner [3], this gap can be overcome by imposing some algebraic conditions on a 
choice of fillers for just certain squares. Further work by Garner and others [8,11,10] identified a suitable 
framework to express these conditions in algebraic weak factorisation systems [12], see also [5].

The richer structure of algebraic weak factorisation systems, whose definition we recall in Section 5, 
produces also more structured fibrations. In particular, this is the case with the algebraic weak factorisation 
system on the category of small categories Cat (and its full subcategory Gpd on the groupoids) whose 
underlying weak factorisation system is the one of acyclic cofibrations and fibrations from the canonical, 
or “folk”, model structure on Cat (and Gpd ). We prove that the fibration of algebras associated to the 
algebraic weak factorisation system is elementary. In the case of the algebraic weak factorisation system on 
Gpd , the associated full comprehension category is the Hofmann–Streicher groupoid model of Martin-Löf 
Type Theory from [13]. See [10,32] for the relation to the groupoid model, and [7] for a discussion of the 
enriched case.

There are two side results worth noticing: the first one is that we find models of dependent type theory 
where equality is given as an adjunction, but the identity types are not trivial. The second one is that the 
intensional model of type theory given by the groupoid interpretation can be reconnected to one of the 
original suggestions of Lawvere in [18].

In Section 2 we recall notations and results from the theory of fibrations which are necessary for the 
following sections. In Section 3 we introduce the structure of transporters in a fibration and prove some 
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elementary properties of these. These are put to use in Section 4 which contains the main characterisation 
theorem. Finally, Section 5 contains applications to algebraic weak factorisation systems. In particular, 
we illustrate the connection between the groupoid hyperdoctrine of Lawvere and the groupoid model of 
Hofmann and Streicher.

2. Preliminaries

Let p : E B be a functor. An arrow ϕ in E is said to be over an arrow f in B when p(ϕ) = f . For 
X in B , the fibre EX is the subcategory of E of arrows over idX . In particular, an object A in E is said to 
be over X when p(A) = X, and an arrow ϕ : A B over idX is often called vertical.

Recall that an arrow ϕ : A B is cartesian if, for every χ : A′ B such that p(χ) factors through p(ϕ)
via an arrow g : X ′ X, there is a unique ψ : A′ A over g such that ϕψ = χ, as in the left-hand diagram 
below. And an arrow θ : A B is cocartesian if it satisfies the dual universal property of cartesian arrows 
depicted in the right-hand diagram below.

E

p

B

A′

ψ

χ

A
ϕ

B

X ′

g
X Y

A

υ

θ
B

ω

B′

X Y g

Y ′

Once we fix an arrow f : X Y in B and an object B in EY , a cartesian arrow ϕ : A B over f is 
uniquely determined up to isomorphism, i.e. if ϕ′ : A′ B is cartesian over f , then there is a unique vertical 
iso ψ : A′ A such that ϕψ = ϕ′.

Clearly, every property of cartesian arrows applies dually to cocartesian arrows. So for an arrow f : X Y

in B and an object A in EX , a cocartesian arrow θ : A B over f is uniquely determined up to isomorphism.
In the following, we write cartesian arrows as , and cocartesian arrows as .
A functor p : E B is a fibration if, for every arrow f : X Y in B and for every object A in EY , 

there is a cartesian lift of f into A, that is, an object f∗A and a cartesian arrow f�A : f∗A A over f . 
A cleavage for the fibration p is a choice of a cartesian lift for each arrow f : X Y in B and object B in 
EY , and a cloven fibration is a fibration equipped with a cleavage. In a cloven fibration, for every f : X Y

in B , there is a functor f∗ : EY EX called reindexing along f . Henceforth we assume that fibrations can 
be endowed with a cleavage.

2.1 Remark. It is well-known that, for the fibration p : E B , an arrow f : X Y in B has cocartesian 
lifts if and only if the reindexing functor f∗ : EY EX has a left adjoint. The value of the left adjoint 
at an object A over X can be chosen as the codomain A′ of a cocartesian lift A A′ of f : X Y at A. 
Conversely, the cocartesian lift is given by the composition

A
ηA

f∗(

E

f (A))
f� E

f (A) E

f (A)

of the unit ηA : A f∗(

E

f (A)) of the adjunction 

E

f � f∗ and the cartesian lift of f .

Fibrations are ubiquitous in mathematics and the list of examples is endless. Since our aim is to charac-
terise those fibrations which encode a proof-relevant notion of equality, we choose the following classes of 
examples.
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2.2 Examples. (a) A first important logical example is the fibration determined by the Lindenbaum–Tarski 
algebras of well-formed formulas of a theory T in the first order language L [23,22]. We believe it shows how 
fibrations provide the appropriate abstract mathematical structure of logic. The base category is the category 
V of lists of variables and term substitutions. Objects of V are lists of distinct variables 	x = (x1, . . . , xn)
while morphisms are lists of substitutions for variables [	t/	y] : 	x 	y where each term tj in 	t is built in L
on the variables x1, . . . , xn; the composition

	x
[	t/	y]

	y
[	s/	z]

	z

is given by simultaneous substitutions

	x

[
s1[	t/	y]/z1, . . . , sk[	t/	y]/zk

]
	z .

The product of two objects 	x and 	y is given by a(ny) list 	w of as many distinct variables as the sum of the 
number of variables in 	x and of that in 	y. Projections are given by substitution of the variables in 	x with 
the first in 	w and of the variables in 	y with the last in 	w.

Denote by LT (L , T ) the category whose objects are pairs (	x, A) where 	x = (x1,. . . ,xn) and where A is 
well-formed formulas of L with no more free variables than x1,. . . ,xn and whose arrows [	t/	y] : (	x, A) 
(	y, B) are morphisms [	t/	y] : 	x 	y in V such that A �T B[	t/	y], i.e. A � B[	t/	y] is a provable consequence 
in T ; the composition is given by composition of V together with the cut rule in the logical calculus, while 
the identity on (	x, A) is given by the logical rule A �T A.

The first projection L : LT (L , T ) V sending [	t/	y] : (	x, A) (	y, B) to [	t/	y] : 	x 	y is a fibration. 
Reindexing is given by substitution of terms in formulas.

(b) Given a category C , let Fam(C ) be the category whose objects are set-indexed families of objects in C , 
i.e. pairs (I, (Ai)i∈I) where I is a set and Ai is an object in C , for i ∈ I, and an arrow from (I, (Ai)i∈I)
to (I ′, (A′

j)j∈I′) is a pair (f, ϕ) where f : I I ′ is a function and ϕ = (ϕi : Ai Af(i))i∈I is a family of 
arrows in C , see [14, 1.2.1].

Equivalently, an object of Fam(C ) is a functor A : I C where I is a set seen as a discrete category, and 
an arrow from A to B : J C is a pair (f, ϕ) where f : I J is a function and ϕ : A . Bf is a natural 
transformation as in the diagram

I

f

A

C .

J B

•ϕ

Since I is discrete, all commutative diagrams for naturality are trivial.
The functor Pr1 : Fam(C ) Set that sends (f, ϕ) : A B to f : I J is a fibration. An arrow 

(f, id) : Bf B is cartesian into B over f : I J . Note that Fam(1) ≡ Set and that the fibration 
Pr1 : Fam(C ) Set is isomorphic to Fam(!) : Fam(C ) Fam(1), where ! : C 1 is the unique 
functor.

(c) Let F be a full subcategory of C2, so that an arrow f : a b in F , where a and b are arrows in C , is a 
commutative square
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A
f1

a

B

b

X
f0

Y.

Assume that, for every f : X Y in C and g : B Y in F , there is a pullback square

P

g′

B

g

X
f

Y

and g′ ∈ F . In that case the composite

F

cod�F

C2 cod C

is a fibration. Given f : X Y in C , a cartesian lift into the object g : B Y , where g ∈ F , is a pullback 
square as the one above. Since F is full, in the following we shall often confuse it with its collection of 
objects, i.e. a collection of arrows of C .

When C has pullbacks we can choose F even as C2 itself. In the particular case of C : = Set the example 
in (b) come to be the same as the example in (c) since there is an equivalence

Fam(Set )

Pr1

Set2

cod
Set

Recall that a fibration p : E B has finite products if the base B has finite products as well as each 
fibre EX , and each reindexing functor preserves products. Equivalently, both B and E have finite products 
and p preserves them.

2.3 Notation. We do not require a functorial denotation for products; when we write 1 we refer to any 
terminal object in B and, similarly for objects X and Y in B , when we write X × Y , pr1 : X × Y X

and pr2 : X × Y Y , we refer to any diagram of binary products in B . Universal arrows into a product 
induced by lists of arrows shall be denoted as 〈f1, . . . , fn〉, but lists of projections 〈pri1 , . . . , prik〉 will always 
be abbreviated as pri1,...,ik . In particular, as an object X is a product of length 1, sometimes we find it 
convenient to denote the identity on X as pr1, the diagonal X X × X as pr1,1 and the unique X 1
as pr0. As the notation is ambiguous, we shall always indicate domain and codomain of lists of projections 
and sometimes we may distinguish projections decorating some of them with a prime symbol.

We shall employ a similar notation for terminal objects, binary products and projections in a fibre EX , 
writing �X , A ∧X B, π1 : A ∧X B A and π2 : A ∧X B B, respectively, and dropping the subscript 
in �X and ∧X when it is clear from the context. Given a third object C in EX and two vertical arrows 
ϕ1 : C A and ϕ2 : C B, we denote the induced arrow into A ∧B also as 〈ϕ1, ϕ2〉.

2.4 Examples. (a) The fibration L : LT (L , T ) V defined in Example 2.2(a) has finite products. For a list 
of finite variables 	x, a terminal object in LT (L , T )�x is any true formula of T in the contexts 	x. A product 
of A and B in LT (L , T )�x is given by the conjunction A ∧B.
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(b) Consider the fibration Pr1 : Fam(C ) Set defined in Example 2.2(b) and suppose that C has finite 
products. Then the fibration Pr1 has finite products. Indeed a product of the two families A : I C and 
B : I C in the fibre Fam(C )I is the family A ∧ B : I C where (A ∧ B)i is Ai × Bi with projections 
(idI , pr1) and (idI , pr2) where (pr1)i is the first projection Ai ×Bi Ai. A terminal object in Fam(C )I is 
given by the family 1 : I C which is constantly a chosen terminal object of C .
(c) Assume that the base C of the fibration cod�F defined in Example 2.2(c) has finite products. Then the 
fibration cod�F has finite products, and in the fibres these are given by pullback of arrows in F .

3. Transporters

This section presents a structure that will be useful in the characterisation in Theorem 4.7, providing 
along the way examples and some instrumental results.

3.1 Definition. Let p : E B be a fibration with finite products and consider an object X in B . A loop on 
X consists of an object IX over X ×X and an arrow ∂X : �X IX over pr1,1 : X X ×X. The fibration 
p has loops if it is equipped with a choice of a loop on every object X in B . We shall also say that p is a
fibration with loops.

3.2 Notation. Let p : E B be a fibration with loops. For two objects X, Y in B , we write IX � IY for the 
vertex of the product span in E displayed below.

pr1,3∗IX ∧ pr2,4∗IY

IX pr1,3∗IX pr2,4∗IY IY

X ×X
pr1,3

X × Y ×X × Y Y × Y
pr2,4

As �X ← �X×Y �Y is a product too, we also write ∂X � ∂Y for the unique arrow �X×Y IX � IY
induced by ∂X and ∂Y .

3.3 Definition. A fibration p : E B with finite products has productive loops if

(i) it has loops, i.e. there is a loop �X
∂X−→ IX on every X in B ;

(ii) for every X and Y in B , there is a vertical arrow χX,Y : IX � IY IX×Y .

The fibration p has strictly productive loops if it has productive loops and moreover the following diagram 
commutes for every X and Y .

�X×Y

∂X � ∂Y ∂X×Y

IX � IY
χX,Y

IX×Y

3.4 Notation. Let p : E B be a fibration with loops. Given A over X, we find it convenient to 
write δA for the arrow 〈pr�(pr1

∗A)
1,1 , ∂X !A〉 : A (pr1∗A) ∧ IX . We shall also need a parametric version 

of it, as for instance in Definition 3.12. When A is an object over Z × X we write δZA for the arrow 
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〈pr�(pr1,2
∗A)

1,2,2 , ∂′
X !A〉 : A (pr1,2∗A) ∧ (pr2,3∗IX), where ∂′

X : �Z×X pr2,3∗IX is the unique arrow over 
pr1,2,2 obtained reindexing ∂X as shown in the diagram below.

�Z×X

∂′
X = pr2,3∗∂X

pr2,3∗IX

�X
∂X

IX

Z ×X
pr1,2,2

pr2

pr1,2,2
Z ×X ×X pr2,3

X pr1,1
X ×X

We write Δ for the class of arrows of the form pr1,2,2 : Z ×X Z ×X ×X, for Z, X in B . For every 
X in B , we write ΛX for the class of all arrows (isomorphic to one) of the form δZA in E defined above, for 
A over Z ×X and Z in B , and Λ for the union of all ΛX for X in B .

3.5 Definition. Let p : E B be a fibration with finite products, X an object in B and ∂X : �X IX
a loop on X. Given A over X, a carrier for the loop ∂X at A is an arrow tA : (pr1∗A) ∧ IX A over 
pr2 : X ×X X. The carrier tA is strict if tAδA = idA.

3.6 Definition. Let p : E B be a fibration with finite products and X an object in B . A transporter on 
X consists of

(i) a loop ∂X : �X IX on X;
(ii) for every A over X, a carrier for ∂X .

A transporter is strict if every carrier is strict.
A fibration p : E B has (strict) transporters if it has a (strict) transporter on each X in B .
A fibration p : E B has (strict) productive transporters if

(i) it has (strict) transporters;
(ii) loops are (strictly) productive.

3.7 Remark. Strict productive transporters give a commutative diagram

�X×Y

∂X � ∂Y ∂X×Y

IX � IY
ωX,Y

IX×Y

for an arrow ωX,Y : IX×Y IX � IY . The reader will see this in the proof of (iv)⇒ (v) in Theorem 4.7.

3.8 Examples. (a) Consider a theory T over a first order language L with equality and take the fibration 
L : LT (L , T ) V from Example 2.2(a). Suppose 	x = (x0, ..., xn) and let (x0, ..., xn, x′

0, ..., x
′
n) be 

	x × 	x. Let I�x be the formula (x0 = y0) ∧ ... ∧ (xn = yn) in LT (L , T )�x×�x. Reflexivity of the equality 
predicate, i.e. the fact that �T (x0 = x0) ∧ ... ∧ (xn = xn) is provable in every theory T over L , determines 
an arrow ∂�x : ��x I�x in LT (L , T ) and makes L a fibrations with strictly productive loops. Let A be 
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a well formed formula of L in LT (L , T )�x. Substitutivity of the equality predicate, i.e. the fact that 
A ∧ (x0 = x′

0) ∧ ... ∧ (xn = x′
n) �T A[x′

0/x0, ..., x′
n/xn] is provable in every theory T over L , determines a 

strict carrier for the loop ∂�x at A.
(b) Consider the fibration Pr1 : Fam(C ) Set from Example 2.2(b). And suppose that C has a stable 
initial object, i.e. an initial object 0 such that 0 ×A ∼ 0 for all A. Let 1 be a terminal object of C , and 
consider the family IX : X × X C as the function that maps (a, b) to 1 if a = b and to 0 otherwise. 
There are two natural transformations ι : �X

. IXpr1,1, whose component on x ∈ X is the identity, 
and τA : (Apr1) ∧ IX . Apr2 whose component on (x1, x2) is the identity on A(x1) if x1 = x2, and the 
unique arrow 0 A(x2) otherwise. The object IX and arrows (pr1,1, ι), (pr2, τA) for A over X, form a strict 
transporter for the set X. And these are productive as the components on (x1, y1, x2, y2) of IX � IY and 
IX×Y are both initial or both terminal. Hence one may take the canonical iso as the component of χX,Y on 
(x1, y1, x2, y2).
(c) Let C be a category with finite products and suppose that C has a weak factorisation system (L , R ) such 
that C has pullbacks of arrows in R along any arrow. It follows that arrows in the right class R satisfy the 
hypothesis of Example 2.2(c), so cod�R : R C is a fibration with products. If arrows in the left class L
are stable under pullback along arrows in the right class R , then every object X of C has a strict transporter 
defined as follows. A loop ∂X : = 〈rX , pr1,1〉 is obtained factoring the diagonal pr1,1 : X X ×X as

X
rX

idX

PX

IX

X pr1,1
X ×X

where rX is in L . For an arrow a ∈ R , consider the following commutative diagram.

A

idA

ra

idA

X

rX

idX

A

a

A×X PX PX

pr1IX

pr2IX
X

A
a

X

Since the arrow ra is a pullback of rX along an arrow in R , it is in L . It follows by weak orthogonality that 
there is ta : A ×X PX A filling in the previous diagram

A

ra

idA
A

a

A×X PX

ta

PX
pr2IX

X

A carrier at a is then (pr2, ta). Instances of this situation can be found in any Quillen model category where 
acyclic cofibrations are stable under pullback along fibrations, but also in Shulman’s type-theoretic fibration 
categories [29] and Joyal’s tribes [15].
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Suppose now that the class L is stable under products in the sense that, for every object X in C , the 
functor (−) × X : C C maps L into L . Then cod�R has strict productive transporters. Indeed in this 
case ∂X � ∂Y = (pr1,2,1,2, rX × rY ) and the arrow rX × rY is in L as it factors as shown below.

X × Y
rX × Y

rX × rY

PX × Y
PX × rY

PX × PY

And the rest of the argument is similar to the one in (d) below.

(d) Let (C , W , F ) be a path category. It consists of two full subcategories W and F of C2 closed under 
isomorphisms and satisfying some additional conditions, see [4]. In particular, the category F satisfies the 
hypothesis of Example 2.2(c), so cod�F : F C is a fibration with products. In the notation of [4], 
the arrow (s, t) : PX X × X together with the arrow r : X PX and, for every f ∈ F , a transport 
structure in the sense of [4, Def. 2.24], provides a (not necessarily strict) transporter for X. In the following, 
when dealing with a path category, we shall always try to stick to the notation in [4]; however we prefer 
to denote the arrow r : X PX as rX . Since the arrows in W are stable under pullback along arrows 
in F , see [4, Prop. 2.7], it follows that rX × rY is in W , as terminal arrows are in F . Hence we obtain 
χX,Y with the required properties as the arrow (id, k), where k : PX × PY P (X × Y ) is a lower 
filler in

X × Y

rX × rY

rX×Y
P (X × Y )

(s, t)

PX × PY X × Y ×X × Y

see [4, Lemma 2.9]. It follows that the fibration cod�F has productive transporters. Note that these are not 
necessarily strict as the lower filler need not make the upper triangle commute.

3.9 Remark. Example 3.8(d) fits only momentarily in the framework that we are developing. This will 
become clear after Theorem 4.7, as our aim is to characterise elementary fibrations. This suggests the 
relevance of a weaker notion than elementary fibration, which we shall consider in future work.

3.10 Remark. The notion of fibration with strictly productive transporters should provide the basic structure 
to interpret the so-called “Indiscernability of identicals” in dependent type theory [31, Section 1.12]. This 
principle alone is strictly weaker than the full induction principle for identity types.

3.11 Remark. For X, Y in B , we can rewrite ∂X � ∂Y : �X×Y IX � IY as the composite 〈∂′
X !, ι〉∂′

Y as 
shown in the commutative diagram below.
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�X

∂X IX

�X×Y×Y

∂′
X pr2,4∗IX

�Y

∂Y

�X×Y

∂′
Y

∂′
Y pr1,3∗IY

!

id

〈∂′
X !, ι〉

IX � IY

π1

π2

IY pr2,3∗IY
ι pr2,4∗IY

Y

pr1,1
X × Ypr2

pr1,2,2

X pr1,1 X ×X

Y × Y X × Y × Y

id
pr2,3

pr1

pr1,2,1,3 X × Y ×X × Y

pr1,3

pr1,2,4
pr2,4

3.12 Definition. Let p : E B be a fibration with transporters. Let Z, X be in B and let A be over Z×X

in E . A parametrised carrier at A for the transporter on X is an arrow

tZA : (pr1,2∗A) ∧ (pr2,3∗IX) A

over pr1,3 : Z ×X ×X Z ×X. We say that the parametrised carrier tZA is strict if tZAδZA = idA, where 
δZA : A (pr1,2∗A) ∧ (pr2,3∗IX) is the arrow defined in Notation 3.4.

3.13 Proposition. Let p : E B be a fibration.

(i) If p has productive transporters, then for every Z, X in B, there is a parametrised carrier at every A
over Z ×X.

(ii) If the productive transporters are strict, then so are the parametrised carriers.

Proof. (i) The arrow tZA can be obtained as the composite

(pr1,2∗A) ∧ (pr2,3∗IX)
α ∧ 〈∂′

Z !, ι〉
(pr1,2∗A) ∧ (IZ � IX)

id ∧ χZ,X

(pr1,2∗A) ∧ IZ×X

tA
A

Z ×X ×X
pr1,2,1,3

Z ×X × Z ×X
pr3,4

Z ×X

where α : pr1,2∗A pr1,2∗A and ι : pr2,3∗(IX) pr2,4∗(IX) are cartesian over pr1,2,1,3 and ∂′
Z :

�Z×X×X pr1,3∗IZ is the unique arrow over pr1,2,1,3 obtained reindexing ∂Z along the pullback square 
below.
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Z ×X ×X
pr1

pr1,2,1,3

Z

pr1,1

Z ×X × Z ×X pr1,3
Z × Z

(ii) Let ∂′
X : �Z×X pr2,3∗IX be the arrow over pr1,2,2 obtained reindexing ∂X along the pullback square 

below.

Z ×X

pr1,2,2

pr2
X

pr1,1

Z ×X ×X pr2,3
X ×X

By Remark 3.11, one has that 〈∂′
Z !, ι〉∂′

X = ∂Z � ∂X . It follows that

tZAδZA = tA(id ∧ χZ×X)(α ∧ 〈∂′
Z !, ι〉)〈pr�pr1,2

∗A
1,2,2 , ∂′

X !A〉

= tA〈pr�pr1,2
∗A

1,2,1,2 , ∂Z×X !A〉
= tAδA
= idA. �

4. Elementary fibrations

Recall from [14, 3.4.1] the following definition.

4.1 Definition. A fibration with products p : E B is elementary if, for every pair of objects Z and 
X in B , reindexing along the parametrised diagonal pr1,2,2 : Z × X Z × X × X has a left adjoint E

Z,X : EZ×X EZ×X×X , and these satisfy:

Frobenius Reciprocity: for every A over Z ×X and B over Z ×X ×X, the canonical arrow

E

Z,X(pr1,2,2∗B ∧A) B ∧ E

Z,XA

is iso, and
Beck–Chevalley Condition: for every pullback square

U ×X

pr1,2,2

f ×X
V ×X

pr1,2,2

U ×X ×X
f ×X ×X

V ×X ×X

and every A over V ×X, the canonical arrow

E

U,X(f ×X)∗A (f ×X ×X)∗ E

V,XA

is iso.
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4.2 Examples. (a) Let L be a first order language with equality and let 	x = (x0, ..., xn) and 	x × 	x =
(x0, ..., xn, x′

0, ..., x
′
n). It is an easy exercise in first order logic to show that for every list of variables 	y for 

every well formed formula A with free variables in 	y × 	x and for every well formed formula B with free 
variables in 	y × 	x× 	x the two following rules

A ∧ (x0 = x′
0)∧, ....,∧ (xn = x′

n) � B

A � B[x0/x′
0, ..., xn/x′

n]
A � B[x0/x

′
0, ..., xn/x

′
n]

A ∧ (x0 = x′
0)∧, ....,∧ (xn = x′

n) � B

are valid. Therefore for every theory T the assignment

E

�y,�x : LT (L ,T )�y×�x LT (L ,T )�y×�x×�x

that maps a well formed formula A to the well formed formula A ∧ (x0 = x′
0) ∧, ...., ∧ (xn = x′

n), gives the 
desired left adjoint. The validity of Frobenius Reciprocity and of the Beck–Chevalley Condition is immediate. 
Whence for every theory T over a first order language L with equality the fibration L : LT (L , T ) V
presented in Example 2.2(a) is elementary.
(b) The fibration Pr1 : Fam(C ) Set of the Example 2.2(b) is elementary when C has finite products 
and a stable initial object. Indeed, let IX : X × X C be the family defined in Example 3.8. Then, for 
every A : Z ×X C , the family

Z ×X ×X

E

Z,X(A)
C

(x, a, b) A(x, a) × IX(a, b)

determines the required left adjoint, see [14, 3.4.3 (iii)].
(c) When C has finite limits, the fibration cod from Example 2.2(c) is elementary.

Let p : E B be a functor. For a class of arrows Θ in B , say that an arrow ϕ in E is over Θ if 
p(ϕ) ∈ Θ. Recall from [30] that an arrow ϕ : A B is locally epic with respect to p if, for every pair 
ψ, ψ′ : B B′ such that p(ψ) = p(ψ′), whenever ψϕ = ψ′ϕ it is already the case that ψ = ψ′.

4.3 Remark.

(i) When p is a fibration, ϕ is locally epic with respect to pif and only if ψϕ = ψ′ϕ implies ψ = ψ′ just for 
vertical arrows ψ and ψ′.

(ii) Every cocartesian arrow is locally epic with respect to p.
(iii) An arrow ϕ : A B that factors as a cocartesian arrow followed by a vertical υ, is locally epic with 

respect to pif and only if υ is locally epic with respect to p. Moreover, if p is a fibration, this happens 
if and only if υ is epic in the fibre Ep(B).

Assume from now on that p : E B is a fibration. We need to introduce a few definitions that will be 
instrumental in formulating the main Theorem 4.7.

It is well-known that, whenever there is a commuting square in E with two opposite arrows cartesian 
and sitting over a pullback square in B

A′

ϕ′

A

ϕ

W ′ W

B′ B Z ′ Z

p
(1)
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then the left-hand square in (1) is a pullback too.
We say that a class Φ of arrows in E is product-stable when, in every diagram (1) where the right-hand 

pullback is of the form

U × Y
g × Y

U × f

V × Y

V × f

U ×X
g ×X

V ×X

and ϕ is in Φ, also ϕ′ is in Φ. In such a situation, we may say that ϕ′ is a parametrised reindexing of ϕ
along g.

Recall from Notation 3.4 that we write Δ for the class of arrows of parametrised diagonals, i.e. arrows 
of the form pr1,2,2 : Z ×X Z ×X ×X, in B .

4.4 Lemma. Suppose B has binary products and p : E B is a fibration with left adjoints to reindexing 
along arrows in Δ. Let Φ be the class of cocartesian lifts of arrows in Δ, which exist thanks to Remark 2.1. 
Then the following are equivalent:

(i) The class Φ is product-stable.
(ii) The left adjoints satisfy the Beck–Chevalley Condition.

Proof. (i)⇒ (ii) Given f : Y Z and an object A over Z ×X, in the commutative diagram

(f ×X)∗A A

(f ×X ×X)∗( E

Z,XA) E

Z,XA

the dotted arrow is cocartesian by (i). The statement follows by Remark 2.1.
(ii)⇒ (i) Consider a diagram like in (1) for f in Δ and ϕ cocartesian over it:

A′

ϕ′

A

ϕ

U ×X
g ×X

pr1,2,2

V ×X

pr1,2,2

B′ B U ×X ×X
g ×X ×X

V ×X ×X

p

So, by Remark 2.1, it is the case that B ∼=

E

V,X(A). Hence B′ ∼=

E

U,X(A′) by (ii) which yields that also ϕ′

is cocartesian, again by Remark 2.1. �
We say that Φ is pairable if, for every ϕ : A B and every cartesian arrow ψ : C ′ C over p(ϕ), the 

arrow ϕ ∧ ψ : = 〈ϕπ1, ψπ2〉 : A ∧ C ′ B ∧ C is in Φ whenever ϕ is.

A

ϕ

A ∧ C ′

ϕ ∧ ψ

C ′

ψ

B B ∧ C C
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4.5 Lemma. Let p : E B be a fibration with finite products and suppose that it has left adjoints to 
reindexing along arrows in Δ. Let Φ be the class of cocartesian lifts of arrows in Δ, which exist thanks to 
Remark 2.1. Then the following are equivalent:

(i) The class Φ is pairable.
(ii) The left adjoints satisfy the Frobenius Reciprocity.

Proof. For a parametrised diagonal pr1,2,2 : Z ×X Z ×X ×X, an object A over Z ×X, and an object 
B over Z ×X ×X, consider a commutative diagram

A

ϕ

A ∧ pr1,2,2∗(B) pr1,2,2∗(B)

E

Z,X(A)

E

Z,X(A) ∧B B

By Remark 2.1 the middle arrow is cocartesian if and only if 

E

Z,X(A) ∧ B ∼=

E

Z,X(A ∧ pr1,2,2∗(B). Hence 
the statement follows. �

Let A ∈ EZ×X , let ρ : A′ A and σ : A A′ be cartesian arrows over pr1,2 : Z ×X ×X Z ×X and 
pr1,2,2 : Z ×X Z ×X ×X, respectively, and let ϕ : B C be over pr1,2,2. Then we say that the arrow 
ϕ ∧ σ : B ∧A C ∧A′ is a split pairing of ϕ with A.

4.6 Remark. We can provide a more explicit description of the class of arrows ΛX introduced in Notation 3.4. 
Recall that, for X in B , the class ΛX consists of all arrows isomorphic to one of the form δZA : A 
(pr1,2∗A) ∧(pr2,3∗IX) for Z in B and A ∈ EZ×X . Using the terminology introduced in this section, these are 
the arrows that are obtained from the loop ∂X by applying a parametrised reindexing followed by a split 
pairing. More explicitly, the arrows in ΛX are precisely those ψ : A B over Δ that fit in a commutative 
diagram

�X

∂X IX

�Z×X pr2,3∗IX

p

A

!

id

ψ
B

π2

π1

A

id
pr1,2∗A A

X pr1,1
X ×X

Z ×X

pr2
pr1,2,2

Z ×X ×X

pr2,3
pr1,2

Z ×X

(2)
id
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where the two arrows π1, π2 exhibit B as a fibred product of pr1,2∗A and pr2,3∗IX over Z ×X ×X.
In particular, it follows that the class ΛX is closed under parametrised reindexing along any arrow in B , 

and it is stable under split pairing with any object in EZ×X for Z in B .

Note that the definition of split pairing can be given in more generality, replacing the section-retraction 
pair pr1,1, pr1 on X with an arbitrary section-retraction pair s, r on X. Accordingly, it is also possible to 
define a class of arrows similarly to ΛX , but taking an arbitrary section-retraction pair s, r on X and starting 
from any arrow ϕ in E over s. In particular, let Λ′

X be the class of arrows obtained starting with the pair 
pr1,1, pr2 and the arrow ∂X . Then Λ′

X = ΛX .
We are at last in a position to state the main result of the paper.

4.7 Theorem. Let p : E B be a fibration with products. The following are equivalent:

(i) The fibration p : E B is elementary.
(ii) a. Every arrow in Δ has all cocartesian lifts.

b. The cocartesian arrows over Δ are product-stable and pairable.
(iii) a. For every object X in B there are an object IX over X×X and a cocartesian arrow ∂X : �X IX

over pr1,1 : X X ×X.
b. The cocartesian arrows over Δ are product-stable and pairable.

(iv) a. The fibration p has strict productive transporters.
b. Every arrow in Λ is locally epic with respect to pover Δ.

(v) a. For every X in B there are an object IX over X × X and an arrow ∂X : �X IX over pr1,1 :
X X ×X.

b. The arrows in Λ are cocartesian over Δ.
(vi) For every X in B there is an object IX over X ×X such that, for every Z, X ∈ B and every A over 

Z ×X, the assignment

A (pr1,2∗A) ∧ (pr2,3∗IX)

gives rise to a left adjoint to the reindexing functor pr1,2,2∗ : EZ×X×X EZ×X .

Proof. (i)⇔ (ii) By Remark 2.1, the equivalence follows from Lemma 4.4 and Lemma 4.5.
(ii)⇒ (iii) The object IX over X×X and the arrow ∂X are obtained taking a cocartesian lift of pr1,1 : X
X ×X from �X .
(iii)⇒ (iv) We begin proving condition (iv).b. By Remark 4.6 arrows in Λ are obtained from some loop ∂X
first by parametrised reindexing and then with a split pairing, as in diagram (2). Since ∂X is a cocartesian 
arrow over Δ and these are product-stable and pairable, arrows in Λ are cocartesian, in particular locally 
epic with respect to p.

Now, to prove condition (iv).a, first we construct a strict transporter on an object X. For this, it is 
enough to construct a carrier tA for A over X. Note that the arrow δA from Notation 3.4, being in Λ, is 
cocartesian. The universal property of δA yields a unique arrow tA as in the diagram

A

idA

δA (pr1∗A) ∧ IX

tA

X

pr1

pr1,1
X ×X

pr2
A X

p



J. Emmenegger et al. / Annals of Pure and Applied Logic 173 (2022) 103103 17
Finally, to prove that this choice of transporters is productive, let X, Y ∈ B . We can rewrite the arrow 
∂X � ∂Y : �X×Y IX � IY as the composite 〈∂′

X !, ι〉∂′
Y with the notation in Remark 3.11. The diagram 

therein also shows that ∂′
Y and 〈∂′

X !, ι〉 are in ΛY and ΛX , respectively. It follows that each is cocartesian, 
thus so is ∂X � ∂Y . Its universal property applied to ∂X×Y then yields the required χX,Y .
(iv)⇒ (v) There is only condition (v).b to prove: we need to show that, given X in B , arrows in ΛX are 
cocartesian. These are the arrows δZA, for Z in B and A ∈ EZ×X , introduced in Notation 3.4 and described 
more explicitly in Remark 4.6. Let ϕ : A B be an arrow over pr1,2,2 : Z ×X Z ×X ×X and consider 
the following diagram

A

ϕ̂

ϕ

δZA (pr1,2∗A) ∧ (pr2,3∗IX)

(pr1,2∗ϕ̂) ∧ id

pr1,2,2∗B

β

δZ(pr1,2,2∗B)
(pr′1,2,2∗B) ∧ (pr2,3∗IX)

γ

B (pr1,2,3∗B) ∧ (pr3,4∗IX)
tZ×X
B

Z ×X

pr1,2,2

pr1,2,2
Z ×X ×X

pr1,2,2,3
id

Z ×X ×X Z ×X ×X ×X,pr1,2,4

(3)

where pr′1,2,2 = pr1,2,2pr1,2 : Z ×X ×X Z ×X Z ×X ×X, the arrow tZ×X
B is a strict parametrised 

carrier at B obtained by Proposition 3.13, β and γ are cartesian and ϕ̂ is the unique vertical arrow such 
that βϕ̂ = ϕ. We need to show that the vertical arrow tBZ×Xγ(pr1,2∗ϕ̂∧ id) precomposed with δZA equals ϕ, 
and that it is the unique vertical such.

Since δZA is locally epic with respect to p, it follows that there is at most one vertical arrow ϕ′ : (pr1,2∗A) ∧
(pr2,3∗IX) B such that ϕ′δZA = ϕ. Therefore it is enough to show that diagram (3) commutes. To this 
aim we only need to show that

tZ×X
B γδZ(pr1,2,2∗B) = tZ×X

B δZ×X
B β = β

which follows from tZ×X
B δZ×X

B = idB and commutativity of the diagram below, which holds by definition 
of the arrows involved.
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�X

∂X IX

�Z×X pr2,3∗∂X pr2,3∗IX

�Z×X×X pr3,4∗∂X pr3,4∗IX

pr1,2,2∗B

β

δZ(pr1,2,2∗B) (pr′1,2,2∗B) ∧ (pr2,3∗IX)
γ

B δZ×X
B

(pr1,2,3∗B) ∧ (pr3,4∗IX)

pr1,2,2∗B

pr1,2,3∗B

X
pr1,1

X ×X

Z ×X pr1,2,2
pr1,2,2

pr2

Z ×X ×X
pr1,2,2,3

pr2,3

Z ×X ×X pr1,2,3,3

pr3

Z ×X ×X ×X

pr3,4

(v)⇔ (vi) This is just an instance of the equivalence in Remark 2.1.
(vi)⇒ (i) It is straightforward to verify that the left adjoints specified in (vi) satisfy the Beck–Chevalley 
condition for pullback squares of the form

U ×X

pr1,2,2

〈f,pr2〉
V ×X

pr1,2,2

U ×X ×X
〈f,pr2,3〉

V ×X ×X

(4)

where f : U ×X V , that is, the canonical arrow 

E

U,X〈f, pr2〉∗A 〈f, pr2,3〉∗

E

V,X(A) is iso.
The Beck–Chevalley condition in Definition 4.1 follows as a particular case. Frobenius reciprocity follows 

using the Beck–Chevalley condition for the pullback square

Z ×X

pr1,2,2

pr1,2,2
Z ×X ×X

pr1,2,3,3

Z ×X ×X pr1,2,2,3
Z ×X ×X ×X

∼
pr1,2,4,3

Z ×X ×X ×X

and observing that isomorphisms of the form pr1,3,2∗ : EV×Y×Y EV×Y×Y preserve the left adjoints in 
the sense that pr1,3,2∗

E

V,Y
∼=

E

V,Y , since pr1,3,2pr1,2,2 = pr1,2,2. �
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4.8 Remark. As it follows from the above proof of (vi)⇒ (i) in Theorem 4.7, the left adjoints in an elementary 
fibrations turn out to satisfy the Beck–Chevalley condition for pullback squares of the form (4), which are 
more general than those in Definition 4.1.

4.9 Remark. Using condition (iii) in Theorem 4.7, or condition 4.7(v).b, and Remark 3.11 we easily see that, 
in an elementary fibration, the arrows ∂X�∂Y and ∂X×Y are both cocartesian. It follows that the canonical 
arrow ωX,Y : IX×Y IX � IY of Remark 3.7 is the inverse to the arrow χX×Y of Definition 3.3.

4.10 Remark. Since faithful fibrations are equivalent to indexed posets, the equivalence between condition 
(i) and condition (iv) in Theorem 4.7 gives Proposition 2.4 of [6].

4.11 Proposition. If p : E B is an elementary fibration, A is a category with finite products, and 
F : A B is a functor which preserves finite products, then the fibration F ∗p : F ∗E A is also 
elementary.

Proof. Since F preserves finite products, the fibration F ∗p has finite products. To see that F ∗p is elementary, 
we apply Theorem 4.7(iv). For V an object in A , a transporter on F (V ) for the fibration p is also a transporter 
on V for the fibration F ∗p since the diagram

FV F (V × V )
F (pr2)F (pr1)

FV

is a product in B . Because of this, also condition (iv).b for F ∗p follows immediately from the same condition 
for p. �

5. Elementary fibrations and algebraic weak factorisation system

Consider the fibration cod�R : R C from Example 2.2(c) associated to the subcategory R of a 
weak factorisation system (L , R ). As we saw in Examples 3.8(c), the fibration cod�R has strict productive 
transporters when the base category C has finite products, L is closed under products and closed under 
pullbacks along arrows in R . In this case, for every X in C and (f0, f1) ∈ ΛX , the arrow f1 is in L . Indeed, 
rX is in L by construction and, for every δZA = (pr1,2,2, 〈idA, rXpr2a〉), the arrow 〈idA, rXpr2a〉 is a pullback 
along an arrow in R of a product of rX as in the diagram

A

a

〈idA, rXpr2a〉

idA

A×X PX A

a

Z ×X
Z × rX

idZ×X

Z × PX Z ×X ×X
pr1,2

Z ×X

where the right-hand square is a pullback.
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5.1 Lemma. Let F be a full subcategory of C2 closed under pullbacks. Given an arrow in F

A

a
f1

B

b

X
f0

Z,

the following are equivalent:

(i) The arrow (f0, f1) is locally epic with respect to cod�F .
(ii) Every left lifting problem for f1 against arrows in F has at most one solution.

Proof. (i)⇒(ii) It is enough to show that a lifting problem of the form

A

f1

h
C

c

B
idB

B

for c ∈ F has at most one solution. Let then g, g′ : B C be two diagonal fillers. They fit in the diagram 
below which commutes except for the two parallel arrows.

A

a
f1

h

B

b

g

g′
C

bc

X
f0

Y
idY

Y

But, since by hypothesis (f0, f1) is locally epic with respect to cod�F , also g = g′.
(ii)⇒(i) Let (k, g), (k, g′) : b c be such that (f0, f1)(k, g) = (f0, f1)(k, g′). Then the commutative diagram

A

f1

h
C

c

B
kb

g

g′

Z

exhibits g and g′ as solutions to a lifting problem for f1. It follows that g = g′. �
Combining Lemma 5.1 with Theorem 4.7 we immediately obtain a sufficient condition for the fibration 

cod�R to be elementary.

5.2 Corollary. Let (L , R ) be a weak factorisation system on a category C with finite products such that L
is closed under products and under pullbacks along arrows in R . If (L , R ) is an orthogonal factorisation 
system i.e. diagonal fillers are unique, then the fibration cod�R is elementary.
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If the factorisation system (L , R ) is not orthogonal, the fibration cod�R is not elementary in general. 
An instance of this situation is obtained in Proposition 5.9 taking as R the class of isofibrations that 
can be equipped with a cleavage. Those isofibrations appear as the right class of maps in one of the two 
weak factorisation systems which contribute to define the canonical, or “folk”, Quillen model structure 
on Cat , whose weak equivalences are equivalences of categories. Nevertheless, the category of split cloven 
isofibrations and morphisms that preserve the cleavage strictly, fibred over Cat or Gpd , is elementary, as 
we show in Proposition 5.4.

The additional algebraic structure of a cleavage is conveniently expressed using the theory of algebraic 
weak factorisation systems. Recall from [12], see also [5], that an algebraic weak factorisation system
(L, M, R) on a category C consists of functors M : C2 C , R : C2 C2, and L : C2 C2 giving 
rise to a functorial factorisation

A
Lf

f

Mf
Rf

B,

and suitable monad (η, μ) and comonad (ε, Δ) structures on R and L respectively, together with a distribu-
tive law between them. Let R-Alg be the category of algebras for the monad on R and let R-Map be the 
category of algebras for the pointed endofunctor on R. Similarly, let L-Coalg and L-Map be the categories 
of coalgebras for the comonad on L and the pointed endofunctor on L, respectively. When C has finite 
limits, the two forgetful functors

R-Alg

S

U ′
R-Map

N

U C2

cod
C

are homomorphisms of fibrations with finite products. Let A and R denote their full images in C2, respec-
tively.

R-Alg

S

U ′
A

C2

cod

R-Map

N

R

C

5.3 Remark. The category R is the closure of A under retracts. In fact, it is straightforward to check that 
this holds for every monad. By duality, the full image L of L-Map in C2 is the closure under retract of the 
full image of L-Coalg.

As discussed in [5, 2.7] and [10, Proposition 2.3], the underlying arrow of an (R, η)-algebra has the right 
lifting property against any arrow that can be given an (L, ε)-algebra structure. As the dual holds as well, 
the pair (L , R ) forms a weak factorisation system, the underlying weak factorisation system of (L, M, R).

The category Cat of small categories admits an algebraic weak factorisation system (L, M, R) such that 
the fibrations S : R-Alg Cat and N : R-Map Cat are equivalent to the fibrations of split cloven 
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isofibrations and of normal cloven isofibrations, respectively, with arrows the commutative squares that 
preserve the cleavage strictly. We recall the construction below, after few remarks. Section 4 of [10] describes 
the same algebraic weak factorisation system but restricted to the category Gpd of small groupoids.

The underlying weak factorisation systems (L , R ) of the algebraic weak factorisation system (L, M, R) is 
equivalent to the (acyclic cofibrations, fibrations) weak factorisation system of the canonical Quillen model 
structures on Cat that we mentioned earlier, in the sense that the category R is equivalent to the full 
subcategory of Cat2 on the isofibrations that can be equipped with a cleavage. Indeed, R is the full image 
of R-Map, and any cleavage can be turned into a normal one.

The full image G of R-Alg in Gpd 2, instead, is equivalent to the fibration that underlies Hofmann and 
Streicher’s groupoid model of Martin-Löf type theory as described in [13]. This is the fibration whose fibre 
over a small groupoid A is the category whose objects are functors A Gpd , and whose morphisms are lax 
2-natural transformations, regarding A as a 2-discrete 2-category. Gambino and Larrea [10] have identified 
suitable conditions on an algebraic weak factorisation system (L, M, R) that make the fibration of (R, η)-
algebras into a model of Martin-Löf type theory with identity types. As shown in [10], these conditions are 
met by the algebraic weak factorisation system (L, M, R) on Gpd , thus yielding a version of the groupoid 
model with normal isofibrations instead of split ones. More recently, the results in [10] have been lifted to 
the fibration R-Alg of algebras for the monad of an algebraic weak factorisation system [32], thus providing 
an algebraic presentation of Hofmann and Streicher’s groupoid model.

None of the three fibrations on G , R and R-Map, over Cat or Gpd , is elementary, as we show in Corol-
lary 5.7 and Proposition 5.9. Instead, the fibration on R-Alg, over Cat or Gpd , is shown to be elementary 
in Proposition 5.4.

The algebraic weak factorisation (L, M, R) on Cat is constructed as follows. For a functor F : A B

between small categories, MF is the category whose objects are pairs (A, x : B ~ FA) where A is an object 
in A and x is an iso in B, and whose arrows (b, a) : (A, x : B ~ FA) (A′, x′ : B′ ~ FA′) are pairs of an 
arrow b : B B′ in B and an arrow a : A A′ in A such that the square

B

b

x
FA

Fa

B′ x′
FA′

commutes. Denote iB : Iso(B) B2 the embedding of the full subcategory Iso(B) of B2 on the isos. Write

Iso(B)
iB

dB

cB
B2

dom

cod
B

idrB

the restrictions to Iso(B) of the three structural functors. Note that MF appears in the pullback of categories 
and functors

MF
F ′

c′B

Iso(B)
cB

A
F

B

(5)

and the functorial factorisation is obtained directly from it:
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A

IdA

F

LF

B
rB

IdB

MF
F ′

c′B RF

Iso(B)
cB

dB
B

A
F

B.

The factorisation extends to an algebraic weak factorisation system on Cat : for the comonad the component 
at F of the counit is

A

LF

IdA
A

F

MF
RF

B

while (the bottom component of) that of the comultiplication L . LL is

ΔF (A, x : B ~ FA) = (A, (x, idA) : (A, (A, x : B ~ FA)) ~ (LF )A)

—from here onward we leave out the definition of a functor on arrows when it is obvious. The component 
at F of the unit of the monad is

A
LF

F

MF

RF

B
IdB

B

and (the top component of) that of the multiplication RR . R is

μF ((A, x : B ~ FA), x′ : B′ ~ B) = (A, xx′ : B′ ~ FA).

The required distributive law follows from the identities

(RLF ) ◦ ΔF = idMF = μF ◦ (LRF ),

see [5, 2.2].

5.4 Proposition. The fibration S : R-Alg Cat is elementary.

Proof. We shall make good use Theorem 4.7 checking that the fibration S verifies condition (iv). To construct 
a transporter on the small category B consider first the functor 〈cB, dB〉 : Iso(B) B×B together with the 
structure map sB defined by2

2 This choice provides a stable functorial choice of path objects in the sense of [10, Definition 2.8].
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(y : B2
~−→ B1, (b1, b2) : (B′

1, B
′
2)

~−→ (B1, B2)) B′
2

b−1
1 yb2−−−−→ B′

1

M〈cB, dB〉
sB

R〈cB, dB〉

Iso(B)

〈cB, dB〉

B × B
IdB×B

B × B

.

Then to provide a loop on B it is enough to show that the pair (pr1,1, rB) is a morphism from the algebra 
(IdB, RIdB) to the algebra (〈cB, dB〉, sB), which is an easy diagram chase in

MIdB

RIdB

M(pr1,1, rB)
M〈cB, dB〉

sB

B
rB Iso(B).

The construction of carriers is postponed to Lemma 5.6. But note that, once carriers are determined, 
transporters will be strictly productive as the iso

〈Iso(pr1), Iso(pr2)〉 : Iso(B ×C) ∼= Iso(B) × Iso(C)

is clearly a morphism of algebras.
Finally, to see that morphisms in Λ are locally epic with respect to S, consider an algebra (A F−→ I × B, S); 

write D : A ×B Iso(B) I × B × B for the underlying functor of (pr1,2∗F ) ∧ (pr2,3∗〈cB, dB〉) and let 
T : MD A ×BIso(B) be its structure map, which maps an object ((A, x), (i, b1, b2) : (I, B1, B2) ~ (FA, B))
to (S(A, (i, b1)), b−1

1 xb2). Note that there is a functor K : A ×B Iso(B) M(pr1,2,2F ) mapping an iso 
x : B ~ pr2FA to

(A, (idFA, x) : (FA,B) ~ pr1,2,2FA)

and that the composite M(IdI×B×B, 〈IdA, rBpr2F 〉)K : A ×B Iso(B) MD, is a section of the algebra 
structure map. Then for every vertical morphism G : (pr1,2∗F ) ∧ (pr2,3∗〈cB, dB〉) (F, S), it is the case 
that

G = GTM(IdI×B×B, 〈IdA, rBpr2F 〉)K = SM(IdI×B×B, G〈IdA, rBpr2F 〉)K.

As δIF = (pr1,2,2, 〈IdA, rBpr2F 〉), algebra morphisms out of (〈cB, dB〉, sB) are determined by their precompo-
sition with δIF . �
5.5 Corollary. The fibration S : R-Alg Gpd is elementary.

Proof. The algebraic weak factorisation system structure on Gpd is obtained pulling back that on Cat along 
the embedding Gpd Cat . It follows that R-Alg Gpd is a change of base of R-Alg Cat along 
the embedding Gpd Cat . Hence R-Alg Gpd is elementary by Proposition 4.11. �
5.6 Lemma. Given an algebra (F : A B, S : MF A) in R-Alg, there is exactly one carrier for the loop 
(pr1,1, rB) : (IdB, RIdB) (〈cB, dB〉, sB) and it is the case that (pr2, S) : pr1∗(F, S) ∧ (〈cB, dB〉, sB) F .
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Proof. We may assume, without loss of generality, that the underlying functor of the algebra pr1∗(F, S) ∧
(〈cB, dB〉, sB) is the diagonal D : MF B × B in the pullback of categories and functors

MF
F ′

〈c′B,RF 〉
D

Iso(B)

〈cB, dB〉

A× B
F × IdB

B × B

with the notation of diagram (5). The structure map SD : MD MF is induced by those on F and 〈cB, dB〉
and maps a pair (A, x : B ~ FA), (b1, b2) : (B1, B2) ~ (FA, B) to the pair S(A, b1), b−1

1 xb2 : B2
~ B1. 

A functor T : MF A in the second component of the carrier has to fit in the commutative diagram

MF

D

T
A

F

B × B
pr2

B

and, since it has to be a homomorphism of algebras, the following diagram must commute

MD
M(pr2, T )

SD

MF

S

MF
T

A.

(6)

Moreover, the strictness condition imposes that the diagram

A

LF
IdA

MF
T

A

(7)

commutes. Note also that there is a functor H : M(RF ) MD such that SDH = μF and M(pr2, T )H =
M(IdB, T ). An object of M(RF ) consists of a pair (A, x : B ∼ FA) together with x′ : B′ ∼ B, and the 
functor H maps it to the pair consisting of (A, x) itself and (idFA, x′). Precomposing diagram (6) with H
and using (7) together with a triangular identity for the monad, the commutative diagram

MF

M(IdB, LF )

IdMF

IdMF

M(RF )
M(IdB, T )

μF

MF

S

MF
T

A,

shows that the only possible choice for T is the structural functor S : MF A, and it is straightforward 
to see that choice makes diagrams (6) and (7) commute. �
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5.7 Corollary. The fibrations N : R-Map Cat and N : R-Map Gpd are not elementary.

Proof. We prove the statement for the fibration over Cat , but the same argument applies to the one over 
Gpd .

The forgetful fibered functor U ′ : R-Alg R-Map takes loops to loops and, since it preserves finite 
products, the fibration N : R-Map Cat has a choice of strictly productive loops induced by that of S
given in Proposition 5.4. However, by Lemma 5.6, a carrier for an algebra in R-Map exists if and only if 
the algebra is an algebra for the monad.

Suppose now that N : R-Map Cat is elementary. In particular, for every B there are ιB : IB B × B

in R-Map and δB : B IB such that (pr1,1, δB) : IdB ιB is cocartesian with respect to N. It follows that 
the loop on B in N is a retract of the loop from S in the sense that there are functors σ and ρ such that the 
diagram of functors

B

δB

Id
B

rB

Id
B

δB

IB

ιB

σ Iso(B)
ρ

IB

ιB

B × B
Id

B × B
Id

B × B

(8)

commutes and the rows compose to identities. The functor ρ is obtained as a diagonal filler using the 
coalgebra and algebra structure of rB and ιB, respectively, as in [5, 2.4]. The functor σ is obtained by 
cocartesianess of (pr1,1, δB). Note that (Id,σ) : ιB 〈c, d〉 is an arrow in R-Map by construction.

But the existence of such a retraction would make ιB into an algebra for the monad. Indeed, let j :
MιB IB be the algebra map of ιB. We need to show that the front face in the diagram of functors below 
commutes.

MR〈c, d〉

μ〈c,d〉

M(Id, sB)
M〈c, d〉

sB
MRιB

μιB

M(Id, j)

M(Id,M(Id, σ))

MιB

j

M(Id, σ)

M〈c, d〉
sB Iso(B)

MιB
j

M(Id, σ)
IB

σ

The back face commutes since sB, which we constructed in Proposition 5.4, is an algebra for the monad. The 
bottom, top and right-hand faces commute since (Id, σ) is a morphism of algebras. Finally, the left-hand 
face commutes by naturality of μ. Thus σjM(Id, j) = σjμιB . It follows that the front face commutes as 
required since σ has a left inverse ρ.

As the fibred forgetful functor U ′ : R-Alg R-Map is full and faithful, it reflects cocartesian arrows. 
Therefore δB and rB are both cocartesian over pr1,1 in R-Alg and, in turn, isomorphic in R-Map. But this 
would provide carries in R-Map for the loop given by rB, in contradiction with Lemma 5.6. �
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5.8 Remark. Note that the argument in the proof of Proposition 5.4 which shows that arrows in Λ are locally 
epic with respect to S : R-Alg Catcan be repeated to show that the same arrows are locally epic with 
respect to N : R-Map Cat .

According to Corollary 5.7 and Remark 5.8, the fibration N of algebras for the pointed endofunctor, over 
Cat or Gpd , fails to be elementary because it lacks carriers for all those isofibrations whose cleavage is not 
split.

The underlying weak factorisation system (L , R ) of (L, M, R) satisfies the conditions in Example 3.8(c). 
It follows that the fibration cod�R over Cat (or Gpd ) can be provided with a choice of strictly productive 
transporters. In particular, the choice of loops is induced by that one in R-Alg and, similarly, a carrier on 
an algebra (F, S) is given by the algebra map S : MF A itself. Contrary to the case of R-Map, this 
is possible since S is not required to be a morphism of algebras, i.e. to make diagram (6) in the proof 
of Lemma 5.6 commute. But, for the very same reason, this choice of carriers is not necessarily unique 
any more. Indeed, as we show in Proposition 5.9 these fibrations fail to be elementary because there are 
groupoids for which the loop induced by R-Alg is not locally epic and, still, that is the only possible choice 
(up to isomorphism). The same argument applies to the full image G of the fibration R-Alg of algebras for 
the monad, as well as to the same fibrations restricted to Gpd .

5.9 Proposition. The fibrations cod�R and cod�G , over Cat or Gpd , are not elementary.

Proof. We prove the statement for cod�R over Cat , the same argument applies in the other cases. We begin 
as in the proof of Corollary 5.7: the fibration cod�R inherits a choice of (strictly productive) loops from S
and, assuming that cod�R is elementary, we conclude that the “elementary” choice of loops is a retract of the 
one induced by S. The only difference up to here is that now the functor ρ in diagram (8) is obtained as a 
diagonal filler from rB ∈ L and ιB ∈ R , which hold since rB is a (cofree) L-coalgebra and by the assumption 
that cod�R is elementary, respectively.

Using the notation in (8), the proposition follows once we provide a groupoid B such that IB is in fact 
isomorphic to Iso(B) over B × B, but rB is not locally epic. Let Kn denote the clique on n vertices, seen as a 
groupoid (in fact, an equivalence relation) and consider B : = K2 +K2. Thus B×B ∼= K4 +K4 +K4 +K4, 
Iso(B) ∼= K4 + K4 and 〈cod, dom〉 is isomorphic to the inclusion [ι1; ι4] : K4 + K4 K4 + K4 + K4 + K4. 
Being a subcategory of K4 +K4, the groupoid IB has two connected components too, say IB = I1 + I2, and 
σ is of the form σ1 + σ2 where σi : Ii K4. We already know that σ1 and σ2 are faithful and injective 
on objects. To show that they are both isomorphisms it is enough to show that they are full and surjective 
on objects. Note first that σ1 and σ2 are both isofibrations since [ι1; ι4]σ = ιB is. The claim that σ is an 
isomorphism thus follows from the following two simple facts about isofibrations ϕ between equivalence 
relations:

1. If ϕ is injective on objects, it is also full.
2. If the codomain of ϕ is connected and its domain is non-empty, then ϕ is surjective on objects.

To see that (pr1,1, rB) is not locally epic in R , it is enough to consider one of the two connected components 
of Iso(B). Denote the vertices of K4 as labelled by the isos in K2:

id0 x

x−1 id1
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where we draw only some arrows generating K4. Clearly, the functor rB maps K2 onto the diagonal (x, x)
from id0 to id1. Let ϕ be the automorphism of K4 that swaps x and x−1 and fixes the rest. Then ϕ agrees 
on the diagonal (x, x) with the identity IdK4 , but it is clearly not equal to it. �
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